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Abstract. This study deals with the solution of an inverse problem in a flat mini-channel of
of 1 mm thickness. At this scale, the difficulty is to introduce non-intrusive sensors. The sensors
can modify the local flow and therefore the heat transfer. Our objective is to characterize the
mean velocity U and the heat transfer coefficient of external exchange h in order to recover
the bulk temperature distribution Tb(x). The inverse method makes it possible to go back to
this information starting from measurement of the temperature fields on the two external faces
of the channel and from a corresponding model through the minimization of a least square
criterion. In this work, the temperature fields can be obtained either by a numerical model
or by infrared thermography. Before an experimental validation by infrared thermography, we
perform numerical simulations and a sensitivity analysis of the external temperature fields to
the mean flow velocity U and to the external heat transfer coefficient h. The temperature and
flux distributions over the internal faces of the walls are estimated by an inverse method then.

1. Introduction
Modelling fluid flow and heat transfer inside a mini- or micro-channel constitutes a challenge
because it requires taking into account many effects that do not occur in traditional macro-
structured systems [1]. In a mini-channel, presence of solid walls, whose volume fraction is not
negligible, modifies heat transfer and can induce axial conduction effects in the channel walls.
These are generally neglected in the macro-systems [2, 3].

This study concerns the numerical and experimental modelling of both single phase water
flow and heat transfer (conduction and advection) in a flat mini-channel (see figure 1). The
flowing fluid layer (1 mm thickness) is located between two parallel polycarbonate solid walls (1
and 2 mm thicknesses). This material has been chosen in order to minimize axial conduction.
In mini-channel heat exchangers, it provides higher effectivenesses than good conductors such
as copper [2]. The objective of this paper lies in the inversion of the recorded temperature fields
on the external faces of this plane channel, which can be measured using an infrared camera, as
well as a model of conjugated transfer [4] in the three layers of the system (two walls and the
layer of the flow), for :

• estimating the structural parameters of this thermal system (mean velocity and external
heat transfer coefficient)
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• recovering the temperatures of internal walls and the corresponding wall fluxes from the
external temperature distribution and from the external heat transfer coefficient estimated
previously.

2. The studied system and its modelling
Let us consider the following system (figure 1): a laminar flow in a channel of length 2L of
thickness ef , limited by two parallel polycarbonate plates of thicknesses e1 and e2. A velocity
profile u (y) and a temperature T∞ are imposed at the entrance of the channel. Two uniform
heat flux (ϕhot and ϕcold) are imposed on a portion ` = 12 mm of the external faces. The
remaining parts of these faces are subject to convective losses to the ambient environment, and
the lateral faces are insulated, see Figure 1.

Figure 1. Geometry of mini-channel

The two solid plates are characterized by a thermal conductivity λs and a volumetric heat
capacity ρcs. The internal thickness is ef and the fluid (water) is characterized by a conductivity
λf , a volumetric heat capacity ρcf and a kinematic viscosity νf .

2.1. Analytical model
The equations describing the steady state heat transfer in the mini-channel and in the adjacent
parallel polycarbonate plates with the corresponding boundary conditions are given below:
• The heat equation in the walls: • The heat equation in the fluid:

∂2Ts
∂x2

+
∂2Ts
∂y2

= 0 (1) λf

(
∂2Tf
∂x2

+
∂2Tf
∂y2

)
− ρcfu (y)

∂Tf
∂x

= 0 (2)

• Transverse boundary conditions on the external faces, where ϕ is the heat flux density and
H is the Heaviside step function :

– at y = −ef/2− e1 :

−λs
∂T

∂y
= ϕhot [H (x− x1)−H (x− x2)]− h (T − T∞) (3)

– at y = +ef/2 + e2

−λs
∂T

∂y
= −ϕcold [H (x− x3)−H (x− x4)] + h (T − T∞) (4)

• Solid/fluid interface conditions at y = ±ef/2:

−λs
∂Ts
∂y

= −λf
∂Tf
∂y

and Ts = Tf (5)
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To find the solution of this problem, one can use the Fourier integral transform defined by:

θ (αn, y) = θn (y) =

∫ +L

−L
T (x, y) e−iαnxdx (6)

where αn = nπ
L is the discrete eigenvalue of order n that correspond to a virtual domain

[−L L] which includes the real [−l l] interval corresponding to the channel shown in figure 1
(L ≥ l). We assume that Ti = T∞ and ∂Ti/∂x = 0 at x = −L for i = s or f and that there is
no heat source for x ∈ [l L] which yields Ti = T∞ and ∂Ti/∂x = 0 in x = L.

Before carrying out the development in Fourier domain of equations (1) and (2), and in order
to make the velocity field u (y) homogeneous in a set of K fluid sub-layers, the velocity in each
layer of thicknesses ek = yk − yk−1 = ef/K corresponds to a constant velocity uk:

u (y) =
3

2
U

(
1− 4

(
y

ef

)2
)

⇒ uk =
3

2
U

(
1− 4K

3e3f

(
y3k − y3k−1

))
(7)

After the integral transformation , equations (1) and (2) can be written as follows [4, 5] :
• in the walls:

d2θs
dy2

− α2
nθs = 0 (8)

• in the fluid:

d2θf
dy2

− γ2nθf = 0 (9)

where γ2n = α2
n + iukaf αn and af =

λf
ρcf

.

Introducing Φ as being the Fourier transform of the heat flux density ϕ with:

ϕ = −λ∂T
∂y

(10)

the general solution of equations (8) to (10) can be written in the quadrupoles form [4]:[
θn
Φn

]
h

= H1S1n

(
K∏
k=1

(F kn)

)
S2nH2

[
θn
Φn

]
c

(11)

where the subscripts h and c denote respectively the external hot face and the external cold
face, and with

H1 = H2 =

[
1 0
h 1

]
, Sin =

[
Ain Bin
Cin Ain

]
and F kn =

[
Akn Bkn
Ckn Akn

]
(12)

and Ain = cosh (αnei), Bin = sinh (αnei) /(λsαn) and Cin = (λsαn) sinh (αnei),
Akn = cosh (γnek), Bkn = sinh (γnek) /(λfγn) and Ckn = (λfγn) sinh (γnek).
The temperature distribution T (x, y) analytical solution of equations (1) and (2) is obtained

through an inverse truncated Fourier transformation with Nh harmonics:

T (x, y) ≈ 1

2L

Nh∑
n=−Nh+1

θn (y) eiαnx (13)

2.2. Numerical model: simulations for constant flux
At first, our objective is to use the temperature profiles on the external faces and the analytical
model to estimate the mean velocity U and the external heat transfer coefficient h. Two types
of simulations were carried out here to obtain the temperature fields . The first one uses the
commercial code COMSOL [6], and the second presented above uses a quadrupoles model based
on the development with Fourier transforms.
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In figures (2) and (3), the temperature profiles on the external faces are plotted. They
correspond to different mean velocities U (see table 1) and to the nominal values of the
parameters of our model given in table 2.

U (m/s) Re Pe M

10−3 1.99 13.96 4 10−3

10−4 1.99 10−1 1.396 4 10−2

10−5 1.99 10−2 1.396 10−1 4 10−1

Table 1. Mean velocity and corresponding non-dimensional numbers.

Here Re and Pe are the Reynolds and Péclet numbers and M is the non-dimensional number
introduced in [2] that quantifies the ratio of the heat flow rates transferred by axial conduction
in the wall and convective heat transfer in the flow [2, 4]:

Re =
2Uef
ν

and Pe =
2Uef
af

and M =
λses

ρcfef ` U
(14)

h ϕhot ϕcold T∞ ef e1 e2 l

W.m-2.K-1 W.m-2 W.m-2 ◦C m m m m

10 275 -275 20 10−3 10−3 2.10−3 6.10−2

Table 2. Standard parameters of our simulation.
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Figure 2. Comparison analytical/numerical
temperature on hot face for different mean
velocities U .

0 0.02 0.04 0.06 0.08 0.1 0.12
10

12

14

16

18

20

22

24

26

28

Position (m)

T
e

m
p

e
ra

tu
re

 (
°C

)

 

 

T
cold

 U=10−3 (L=8 l; N
h
=800)

Comsol U=10−3

T
cold

 U=10−4  (L=2 l; N
h
=200)

Comsol U=10−4

T
cold

 U=10−5  (L=l; N
h
=100)

Comsol U=10−5

Figure 3. Comparison analytical/numerical
temperature on cold face for different mean
velocities U .

One notes in figures 2 and 3 the very good agreement between the temperature profiles
calculated by COMSOL code [6] and those obtained by the analytical model. A small difference
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appears at the downstream end of the channel: it can be explained by the short distances
between the sources and the insulated ends.

3. Inverse approach
Our first objective is to use the temperature profile at one of the external faces to estimate both
the mean velocity of the fluid U and the external heat transfer coefficient h. Before implementing
this parameter estimation problem, a sensitivity study has been made for parameters U and h.
The four scaled sensitivities on both external faces are given below:

S∗hotU = U
∂Th
∂U

, S∗coldU = U
∂Tc
∂U

, S∗hoth = h
∂Th
∂h

and S∗coldh = h
∂Tc
∂h

(15)

These coefficients are plotted in figures (4) for different mean velocities U (10−5, 10−4 and
10−3 (m/s)).
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Figure 4. Distribution of scaled sensitivity for different value of U .

The scaled sensibilities on both external faces are almost same. For a low mean velocity U ,
the levels of the scaled sensitivity to the external heat transfer coefficient h are more important
than those to the mean velocity U . On the contrary, the levels of scaled sensitivity to U become
dominant for high velocities. We can conclude that the higher the velocity the higher advection
prevails with respect to conduction in the heat exchange (see the Péclet number levels).

3.1. Estimation of U and h
For the first attempt of inversion we use the data without noise. The estimation is performed
through the minimization of a quadratic criterion built on the difference between the analytical
temperature profile on the hot face Th (xi) for U = 10−5 (m/s) and h = 10 (W.m-2.K-1) on
Nx = 200 points equally spaced between −l and l and the analytical model output Th (xi;U, h):

J (U, h) =
1

2

Nx∑
i=1

(Th (xi)− Th (xi;U, h))2 (16)

This procedure of minimization uses a method of nonlinear programming based on Trust
region algorithm (MATLAB [7]).

For the lowest velocity case, one obtains after minimization Û ≈ 10−5 (m/s) and ĥ ≈ 10
(W.m-2.K-1) with relative estimation errors of the order of 2.10−7 for U and 3.10−6 for h and with
a mean quadratic error σ =

√
J /Nx = 2.6 10−5 K. Then, one adds a normal and independent

noise to the temperature profile Th (x). This noise is characterized by a standard deviation
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σT = 0.1 K. For one single estimation, one obtains after minimization Û = 9.989 10−4 (m/s)

and ĥ = 9.899 (W.m-2.K-1). The rms residual between the temperature profile on the hot face

Th (x) and the simulated profile Th

(
xi; Û , ĥ

)
is of the same order magnitude as the standard

deviation of the added noise.
To quantify the quality of the estimation procedure, one can calculate the variance-covariance

matrix defined by:

cov
(
β̂
)

= σ2t
(
STS

)−1
(17)

where S is the sensitivity matrix and β = [U, h]T is the parameter vector. This covariance

matrix has diagonal elements which are the variances of β̂j ’s. They characterize the dispersion

(standard deviation) of the estimation β̂ of parameter β around the expectation of the estimator:

U relative standard deviation σÛ/U relative standard deviation σĥ/h

10−3 2.87× 10−2 12.9× 10−2

10−4 0.46× 10−2 0.48× 10−2

10−5 2.06× 10−2 0.25× 10−2

Table 3. Relative standard deviation for the covariance matrix.

To verify this results, one carries out several tests of inversion with Ns = 100 realizations of
the added noise. The results in terms of the averages of the Ns estimations are given in table 4.

U
¯̂
U σÛ/U

¯̂
h σĥ/h

10−3 9.9837× 10−4 2.4518× 10−2 10.1454 8.480× 10−2

10−4 9.994× 10−5 0.402× 10−2 9.9969 0.46× 10−2

10−5 1.0009× 10−5 1.9625× 10−2 10.0013 0.25× 10−2

Table 4. Evolution of the estimation results of U and h with the mean velocity U .

All these results show that both parameters can be estimated using measured temperatures.

3.2. Estimation of the boundary conditions at the internal walls
One uses here the analytical model (11) combined with the temperature of the external faces and
with the external coefficient of exchange h previously estimated in order to estimate internal wall
temperature Twh and Twc and internal wall fluxes ϕwh and ϕwc. It is an inverse heat conduction
problem where the wall temperature profile and flux on both external faces of the system are
considered as data (input). By writing now the quadripolar relationship (11) between the hot
face and the internal hot wall, one obtains:[

θn
Φn

]
h

= H1S1n

[
θn
Φn

]
wh

therefore

[
θn
Φn

]
wh

= (H1S1n)−1
[
θn
Φn

]
h

(18)

Thus starting from the simulated noisy temperature and the known flux on the hot face, one

can estimate the Fourier transform of temperature and flux

[
θn
Φn

]
h

for N
′
h ≤ Nh harmonics
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(parametrization of the data using model (13)) and afterwards deduce the boundary conditions
at the internal hot wall Twh (x) and ϕwh (x) by (18). For the cold wall, one can write in a similar
manner: [

θn
Φn

]
wc

= S2nH2

[
θn
Φn

]
c

(19)

In figure 5, one plots the noisy temperature profile of the external hot face Th (pseudo-
experiment with σ = 0.1 ◦C) and the parametrized temperature profile obtained with Nh = 12
harmonics and also the corresponding temperature residual. The results of the estimation of the
internal walls boundary conditions for U = 10−5 (m/s) are now considered. Figure 6 shows the
temperature profiles obtained by the analytical model (18) Twh for Nh = 100 and by inversion
of (18) using the previously parameterized external Th profile (Nh = 12). The difference (error)
between these profiles is also shown on the same figure. The fluxes over external walls (ϕh and
ϕc) and internal wall (parametrized ϕwh and ϕwc and estimated ϕ̂wh and ϕ̂wc) are given in
figures 7 and 8 (cold face temperature distribution is simulated the same way).
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3.3. Calculation of the bulk temperature
The final objective of this work is to shortcut the notion of internal heat transfer coefficient to
recover the bulk temperature Tb (x) of the flow directly through a thermal balance in the liquid.
We show here how to get a model for it. In 2D channel flow, the bulk temperature Tb (x) is
defined by:

Tb (x) =
1

Uef

∫ ef

0
u (y)T (x, y) dy (20)

Using the decomposition of the fluid layer into K sub-layers previously used to make the
velocity field uniform in each layer, one obtains:

Tb (x) =
1

Uef

K∑
k=1

∫ ek

ek−1

uk Tk (x) dy (21)

therefore:

Tb (x) =
1

Uef

K∑
k=1

uk Tk (x) ek (22)

where Tk (x) will be calculated the same way the wall temperatures by using the analytical
model: [

θ
Φ

]
yk

=

H1S1n

 k∏
j=1

(F kn)

−1 [θ
Φ

]
h

(23)

4. Conclusion and perspectives
The objective of this preliminary study is a numerical modelling of the flow and heat transfer
in a plane mini-channel with a validation of the modelling through an experiment bench where
the distribution of the temperature is measured by an infrared camera. An analytical model
has been presented. It uses Fourier transforms that allow the calculation of the conjugated
heat transfer inside a mini-channel without the use of any internal heat transfer coefficient. A
sensitivity analysis of the external wall temperature distribution to the velocity profile and to the
external heat transfer coefficient has been implemented, as well as the inversion of external 1D
temperature fields. They showed that experimental implementation of this method was possible.
The next stage will consist to the experimental validation by using the model developed in this
study and the infrared thermography in an inverse approach.
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