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A graph is a circle graph if it is the intersection graph of the chords of a circle. Using an algebraic characterization of circle graphs proved by Naji [START_REF] Naji | Reconnaissance des graphes de cordes[END_REF] (as the class of graphs satisfying a certain system of equalities over GF(2)), Bouchet proved the following result in [START_REF] Bouchet | Bipartite graphs that are not circle graphs[END_REF].

Theorem 1 (Bouchet [START_REF] Bouchet | Bipartite graphs that are not circle graphs[END_REF]). If a bipartite graph G is the complement of a circle graph, then G is a circle graph.

The known proofs of Naji's theorem are fairly involved [START_REF] Gasse | A proof of a circle graph characterization[END_REF][START_REF] Geelen | Naji's characterization of circle graphs[END_REF][START_REF] Naji | Reconnaissance des graphes de cordes[END_REF][START_REF] Traldi | Notes on a theorem of Naji[END_REF], and Bouchet [START_REF] Bouchet | Bipartite graphs that are not circle graphs[END_REF] (see also [START_REF] Durán | Structural results on circular-arc graphs and circle graphs: A survey and the main open problems[END_REF]) asked whether, on the other hand, Theorem 1 has an elementary proof. The purpose of this short note is to present such a proof.

We will need two simple lemmas. Given a finite set of points X ⊂ R 2 of even cardinality, a line bisects the set X if each open half-plane defined by contains precisely |X|/2 points. The following lemma is an immediate consequence of the 2-dimensional discrete ham sandwich theorem (see e.g. [START_REF] Matoušek | Using the Borsuk-Ulam theorem[END_REF]Corollary 3.1.3]), and is equivalent to the necklace splitting problem with two types of beads. In order to keep this note self-contained, we include a short proof.

Lemma 2. Let X, Y ⊂ R 2 be disjoint finite point sets of even cardinality on a circle C. Then there exists a line simultaneously bisecting both X and Y .

Proof. Let p 0 , . . . , p 2n-1 be the points of X ∪ Y in cyclic order along C. For 0 ≤ i ≤ 2n -1 we denote by I i the set {p i , p i+1 . . . , p i+n-1 } (here and in the remainder of the proof, all indices are considered modulo 2n). Clearly, for every 0 ≤ i ≤ n -1, there exists a line i in R 2 bisecting the points of X ∪ Y , with I i on one side of i and I i+n on the other side. For 0

≤ i ≤ 2n -1, define f (i) = |X ∩ I i | -1 2 |X|.
Note that since X has even cardinality, each f (i) is an integer.

To prove the lemma, it suffices to show that f (i) = 0 for some 0

≤ i ≤ n -1, for then |X ∩ I i | = 1 2 |X| and |Y ∩ I i | = 1 2 (|X| + |Y |) -|X ∩ I i | = 1 2 |Y |.
If f (0) = 0 then we are done, so let us assume that f (0) = 0. Without loss of generality f (0) < 0, and hence f (n) = -f (0) > 0. Since f (i + 1) -f (i) ∈ {-1, 0, 1} for all 0 ≤ i ≤ n -1, there exists 1 ≤ i ≤ n -1 such that f (i) = 0, as required.

Lemma 3. Consider a set of pairwise intersecting chords c 1 , . . . , c n of a circle C, with pairwise distinct endpoints. Then any line that bisects the 2n endpoints of the chords intersects all the chords c 1 , . . . , c n .

Proof. Assume for the sake of contradiction that some chord c i does not intersect . Then c i lies in one of the two open half-planes defined by , say to the left of . Since bisects the 2n endpoints of the chords, it follows that there is another chord c j that does not intersect and which lies in the half-plane to the right of . This implies that c i and c j do not intersect, which is a contradiction.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Consider a bipartite graph G such that its complement G is a circle graph. In particular, for any vertex v i of G there is a chord c i of some circle C such that any two vertices v i and v j are adjacent in G (equivalently, non-adjacent in G) if and only if the chords c i and c j intersect. Since G is bipartite, the vertices v 1 , . . . , v n (and the corresponding chords c 1 , . . . , c n ) can be colored with colors red and blue such that any two chords of the same color intersect. We can assume without loss of generality that the endpoints of the n chords are pairwise distinct, so the coloring of the chords also gives a coloring of the 2n endpoints with colors red or blue (with an even number of blue endpoints and an even number of red endpoints). Since the 2n endpoints lie on the circle C, it follows from Lemma 2 that there exists a line simultaneously bisecting the set of blue endpoints and the set of red endpoints.

On one side of , reverse the order of the endpoints of the chords c 1 , . . . , c n along the circle C. Observe that crossing chords intersecting become noncrossing, and vice versa. By Lemma 3, intersects all the chords c 1 , . . . , c n , and thus the resulting circle graph is precisely G. It follows that G is a circle graph, as desired.
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