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Abstract. Prediction of durability of wood product is a major challenge and an important goal for furniture
industry. Numerical simulation based on approximation methods such as the finite element method (FEM) is an
efficient and powerful tool to address this challenge while avoiding expensive experimental testing campaigns.
Nevertheless, the strong heterogeneity of wood-based materials, the specific geometrical characteristics of wood-
based structures (such as furniture that can often be represented as an assembly of beams, plates and/or shells)
and the complex nonlinear 3D local behavior near the connections between structural parts may induce some
difficulties in the numerical modeling and virtual testing of furniture for robust design purposes. Especially,
when cyclic loading occurs, the behavior of junctions in furniture involves a local permanent strain that increases
with the number of cycles and that can lead to an important gap potentially affecting the structural integrity of
furniture. In this paper, we present an experimental campaign of cyclic compression tests carried out on spruce
specimens. Theses specimens are cut out from a bunk bed and loaded under cyclic compression. The cyclic
compression loading applied to the specimens leads to an evolution of the permanent strain during cycles that is
modeled using a simple law describing the displacement gap as a function of the number of cycles. Considering
the strong dispersion in the mechanical properties of wood-based materials and the variabilities induced by the
experimental configuration, a stochastic modeling of the gap is proposed by having recourse to the maximum
entropy (MaxEnt) principle in order to take into account the random uncertainties on the experimental setup
and between the test specimens. The random mechanical response of a complex corner junction in a bunk bed
under cyclic loading is then numerically simulated by using a Monte Carlo numerical simulation method as
stochastic solver. This provides independent realizations of the random gap evolution (with respect to the
number of cycles) in the bunk bed corner, allowing probabilistic quantities of interest related to the random gap,
such as first- and second-order statistical moments (mean value, standard deviation) as well as confidence
regions (with a given probability level), to be estimated.

Keywords: Wood furniture behavior / cyclic loading / compression cyclic test / connecting element /
stochastic modeling
1 Introduction: from wood product properties
to furniture behavior

In furniture industry, the recommendation of the European
committee for standardization suggests manufacturing a
prototype for each new furniture design. Such a prototype
then undergoes a series of mechanical validation tests to
ensure its strength and durability [1]. On the basis of the
collected experimental results, the robust design and
optimization of the prototype is then performed by a trial
and error strategy until a compromise is reached. In order
uc.chevalier@univ-paris-est.fr
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to shorten the trial and error design loop, a growing interest
has been recently devoted to the development of numerical
simulation methods adapted to the furniture industry
needs [2]. Basically, three main points have to be addressed
to perform virtual tests on furniture:

–

m
in
characterization of the furniture material properties;

–
 characterization of the connections behavior between
furniture components;
–
 construction of a numerical model adapted to the
geometrical features of furniture for accurate and efficient
numerical simulations of timber (wood-based) structures.

Each of these points has already been studied by
numerous authors despite the fact that furniture industry
began to develop numerical modeling strategies (using
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Fig. 1. Test bunk bed and focus on the junction and connecting
elements.
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computer-aided engineering (CAE) techniques including
finite element analysis (FEA) for instance) quite recently
compared to other industrial sectors such as the transport
(automotive, aeronautic, aerospace, rail) and energy
sectors. Such numerical strategies allow the cost incurred
by experimental tests and also the time delay before
marketing to be significantly reduced due to a lower
number of product development cycles. However, many
scientific challenges remain to be addressed in order to
perform robust and reliable virtual validation tests by
taking into account the heterogeneity, anisotropy and
variability of wood-based materials and the mechanical
behavior (strength and durability) of connections between
the structural components of furniture. The interested
reader can refer to [3] for a general review of the FEM
applied to the analysis of wood-based structures. This work
makes reference to 300 research publications on wood
analysis including papers and conference proceedings that
were published between 1995 and 2004. Since the middle of
the 1990s, several scientific contributions on furniture
modeling have been published: in [4], a series of perfor-
mance tests were carried out on side chairs in order to
evaluate their strength and durability characteristics
according to some acceptance levels of applied loads that
were previously determined for a desired category of use.
More recently in [5], Eckelman et al. focused on wooden
furniture and the structural modeling of the front rails of
sofas through performance tests conducted on school chairs
made up of round mortise and joints.

The problem related to the modeling of the connection
joints between furniture elements has also been addressed
in [6–8]. In [6], Kasal et al. investigated the strength
properties of glued-dowel jointed sofa framesmanufactured
from solid wood and wood-based composite materials. As a
result of this work, it has been shown that the FEM allows
obtaining reasonable estimates of the overall strength
performance of the sofa frames, and that the wood-based
composite materials could be used instead of solid wood
materials for the production of furniture frames. In [7],
experimental tests were performed to determine the
ultimate shear and bending moment capacities of glued
corner blocks under controlled laboratory conditions.
Finally, in [8], a model was also developed and compared
to experimental results of static compression and tension
tests for estimating the bending moment resistance of
screw connected L-type corner joints made up of particle-
board and medium density fiberboard. All these contribu-
tions were essentially based on experimental tests under
given load conditions but without considering all 3D
loading possibilities on a piece of furniture or even just a
furniture part. Another interesting work on joints modeling
can be found in [9] which dealt with the analysis of the
stress-strain state developed in corner joints for box-type
furniture by using FEA.

Later on, a growing interest has been devoted to
furniture modeling: in [10] for example, Mishra and Sain
carried out 3D finite element simulations of a chair base
made up of wood thermoplastic composites under static
loading conditions by means of the commercially available
SolidWorks (SW) software. Another example can be found
in [11] where Çolakoglu and Apay presented the numerical
simulation and strength analysis of three chairs produced
from different types of wood in free drop using ANSYSTM

software. A recent collaboration between FCBA (the
French Institute of Technology for Forest-based and
Furniture Sectors) and the MSME laboratory of Université
Paris-Est has produced both experimental and numerical
results considering the three following aspects, namely the
heterogeneity, anisotropy and dispersion of wood proper-
ties [12], with more recently a special focus on the
mechanical behavior of connections under static loading
[13]. The furniture product concerned in this collaboration
is a bunk bed made up of spruce and whose junctions are
designed with steel through bolt and dowel nut connectors.
Two wooden pins allow maintaining the horizontal part
orientation stable (see Fig. 1).

As a result of FEA, design recommendations and
suggestions have been provided for furniture designers and
manufacturers. Nevertheless, performing more accurate
numerical simulations would require a better knowledge of
the wood properties under cyclic loading. Furniture design
under cyclic loading conditions has been addressed in very
few works in the literature until now: several research
papers deal with fatigue as in [14–16] for example, but
without considering any remaining strain under cyclic
loading.

Considering the bunk bed study, Figure 2 presents some
numerical simulations carried out on SolidWorks software
where a static external force F is applied on the bolt head of
the connection. The normalized tests for this specific
configuration consist in applying a cyclic loading and
controlling the evolution of the gap that may increase with
the number of cycles. Focusing on the connection, one can
observe two regions of interest where local compression of
wood in the transverse direction (that is orthogonal to the
woodfibers)generatesapermanent strainthatmustbetaken
into account in order to predict the gap evolution with
respect to the number of cycles. It appears that an in-depth
analysis of the cyclic compression behavior of the wood
material in the transverse direction is required to model the
mechanical behavior of furniture accurately.

Considering the fact that we want to provide a fast
tool for evaluating the connections behavior under cyclic
loading, we chose to develop a simple homogeneous
model. Wood products highlight complex behavior due
to heterogeneity, orientation and anisotropy that would
require to develop a more complex heterogeneous model.



Fig. 2. (Top) Numerical simulation of the bolt head of a
representative structure of the side of the bunk bed submitted to a
static load F=300N and (bottom) focus on the two regions of
interest located under the bolt head and at the bottom of the
contact zone.
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Nevertheless, the influence of material heterogeneities
is taken into account by considering the dispersion via a
probabilistic approach that also takes into account the
anisotropy in the normal to fibers plane. In real wooden
part of furniture it is rather difficult and even impossible to
make the difference between the radial and the circumfer-
ential orientations. Consequently, the proposed approach
is consistent with the degree of uncertainties on the
knowledge of the wood properties.

The paper is organized as follows. Section 2 presents the
experimental test campaign performed on spruce cubic
specimens. Cyclic compression tests have been performed
with a fixed value of the maximum pressure during ten
thousand cycles. The gap evolution has been modeled by
using a decreasing exponential law with respect to the
number of cycles, and a proportional law with respect to
the local contact pressure. In Section 3, as the dispersion
due to the strong heterogeneity of wood material in the
transverse orientation (in relation to the compression
direction) is important, we consider a stochastic modeling
of the cyclic behavior of wood, as already done in [17,18],
through the construction of an ad hoc probabilistic model
for each parameter modeled as a random variable. In
Section 4, a simplified pressure distribution is proposed to
model the mechanical behavior of the corner of a bunk bed
that has already been considered and studied under static
loading in [13]. In that way, one can evaluate the gap
evolution with the number of cycles during the cyclic tests
performed on the piece of furniture under consideration
(bunk bed). The mean model for the gap evolution in the
bunk bed corner has been numerically simulated and used
to study the influence of geometrical parameters of the
bunk bed corner model on the gap after ten thousand
cycles. Taking into account the parametric probabilistic
model of the cyclic behavior of wood constructed in
Section 3, one can generate independent realizations of the
underlying random variables (that are the uncertain model
parameters) with the identified probability distributions
and perform a stochastic analysis of the gap evolution in
the bunk bed corner using a Monte Carlo stochastic solver.
Finally, we compute the first- and second-order statistical
moments of the random gap in the bunk bed model and we
construct a confidence region corresponding to a given
probability level for robust design purposes.

2 Mechanical behavior of spruce under cyclic
compression

Wooden materials, even in the proportionality domain,
corresponding to a linear elastic behavior, highlight a
singular response under cyclic compression loading. After
each compression cycle, a small amount of residual
penetration remains and consequently, the penetration
increases as the number of cycles increases. Let us now
describe the test specimens and detail the experimental
configuration of the cyclic compression tests.

Small sized cubic specimens of spruce (Picea sp. with an
approximate mean density of 440 kg·m�3 and a standard
deviation of 27.8 kg·m�3) were cut from different wood
parts especially prepared to be used in the manufacturing
of bunk beds provided by a furniture company. The
specimens were cut with dimensions of approximately
57mm � 57mm � 57mm and were chosen to be as clear as
possible (without any visible defect). The wood fibers
direction was estimated to be almost parallel to four of the
six sides of the cube for all specimens. The orientation of the
compression is normal to the direction of the wood fibers
and the compression load is applied directly on the wood
surface using an ad hoc compression cylindrical tool. All
specimens have been stored in the same environmental
conditions at a temperature of 20±2 °C and a relative
humidity of 65±5% for approximately 6 months. The
moisture content of the specimens was approximately 12%.

The specimens were tested with a universal testing
machine Deltalab500 provided with a load cell of 5 kN
capacity. The force is applied with a displacement rate
of±0.2mm·min�1 during 10 000 cycles. The applied force
F(t) varies from 0 to Fmax with Fmax=300, 400, 600 and
800N. The associated penetration u(t) corresponds to the
displacement measured from the position of the cylinder
compression head. Graph of Figure 3a shows the first 25
cycles of time function F(t) with Fmax=300N, and
Figure 3b represents the evolution of force F(t) as a
function of penetration u(t) in order to characterize the
wood behavior under cyclic local compression. First, one
can see a preliminary accommodation stage that can also be
observed in static compression tests, followed from the
second cycle by a regular evolution with an increasing
penetration at each cycle. No limit cycle is reached and the



Fig. 3. Cyclic compression test on the bolt head. (Left) Evolution of force F(t) with respect to time t during the first 25 triangular
loading cycles, where the force does not come back exactly at 0N but at 10N in order to avoid rupture and contact problems that could
be not detected by the load cell. (Right) Evolution of force F(t) with respect to displacement u(t), showing a preliminary phase (similar
to a static compression test) during the first cycle, followed by more regular cycles (the model focuses on the regular cycles).

Fig. 4. Global response of the cyclic compression test carried out on the bolt head: evolution of penetration u(t)–u(t0) with respect to
the number of cycles whenF(t) varies from 0 to 360N and back following a triangular signal for amaximum loadFmax=300N (left) and
Fmax= 600N (right). The upper (cyan) curve corresponds to the maximum penetration when the maximum load is applied, while the
lower (red) curve corresponds to the residual permanent penetration dr when no more force is applied.
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penetration increases regularly and gradually, but one can
also observe that the behavior becomes stiffer when the
load increases but becomes softer when the load decreases,
thus highlighting a typical nonlinear elastic behavior.

After a first cycle with a penetration of nearly 1mm,
displacement u(t) does not come back to 0 and one can
observe an accumulation of penetration as the cyclic test
continues. In the following, we are interested in the
evolution of residual penetration dr after the first cycle, that
is starting from time t0 corresponding to displacement
u(t0)=0.34mm (represented by a circle in Fig. 3b). For each
experimental test we determine the envelope of function
u(t)�u(t0) by computing theminimal andmaximal values of
u(t)–u(t0) reached during each cycle as shown in Figure 4.
Thus, we construct the graph of residual penetration dr
versus number of cycles N corresponding to the lower (red)
curve in Figure 4 (the upper (cyan) curve will not be
considered in the following). The residual penetration
evolves almost linearly after several cycles as it can
be observed in Figure 4 (where only the first 1700 cycles of
a representative cyclic test are plotted for a better
visualization of both phases). It can then be modeled as
an affine function of the number of cycles after a transition
stage.

The same cyclic compression test has been carried out
with a maximum load of 600N and shows a higher residual
penetration than in the case of 300N with a greater slope in
the transition phase. Conversely, in the regular (almost
affine) part, the evolution of penetration versus the number
of cycles is similar in both test cases as shown in Figure 4a



Fig. 5. (Left) Measurement of the density index d and rings
orientationu ona face foragiventest cubic specimen. (Right)Cyclic
local compression managed through the cylinder head contact
surface. The load cell applies regular compression load cycles.
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and b. A measure of the slope in the regular (almost affine)
part would then provide more information on the cyclic
behavior of wood.

Each test cube has been photographed, the orientation
u of the wood rings with respect to the load direction has
beenmeasured as shown in Figure 5a, and the density index
d has been characterized by counting the number of rings
divided by the face area. We performed around 15 cyclic
compression tests for each value of maximum force Fmax
resulting in a complete campaign of 64 tests. Each
compression test consists of performing 10 000 cycles and
each cycle duration is about 3 sec, consequently each test is
about 8 h long and the complete campaign lasts around 2
months.

It is worth noticing that, for the same series of tests,
different typologies of behavior can be identified. Indeed,
Figure 6 shows that for a fixed value of maximum load
Fmax=300N, most experimental tests give results similar
to the curve displayed in Figure 6a showing an almost
linear increasing behavior, but some of them present a flat
or even decreasing behavior (see Fig. 6b and c), while
others show an almost linear increasing evolution of the
residual penetration with a change of slope sometimes
beyond several thousand cycles (see Fig. 6d). These various
evolutions are rather difficult to explain especially the one
displayed in Figure 6b where the residual penetration
starts to decrease after 3000 cycles, which means that the
material recovers strength as the cycles continue. A
viscoelastic behavior would probably explain such a
material growth under compression loading.

Considering the most representative evolution of the
residual penetration shown in Figure 6a, the resulting
curve can be fitted with an affine function weighted by an
exponentially decreasing function of the number of cycles.
The residual penetration dr is then defined as a function of
the number of cycles N under the following form:

drðNÞ ¼ d0 1þ LNð Þ 1� exp � N

Nref

� �� �
ð1Þ

where d0 is a virtual residual penetration defined as the
ordinate at the origin (i.e.N=0) of the affine function
modeling the regular (almost linear) second part of the
curve, k∞=Ld0 denotes the slope of the regular (almost
linear) part of the curve, and Nref is the number of
cycles that characterize the transition (nonlinear) first part
of the curve. Precisely, Nref is the number of cycles where
the residual penetration reaches 62% of d0(1+LN). The
mean value of this parameter is Nref = 50 cycles that is a
very small value compared to the 10 000 cycles of the
compression test. Consequently, the fluctuations of this
parameter have a very low impact on the cyclic behavior
and will not be studied in the following. Nref is assumed to
be equal to 50 for all simulations.

Figure 8 displays the experimental values identified for
both parameters d0 and k∞ for the eleven tests performed
with a maximum load Fmax=300N. The two top (resp.
bottom) figures correspond to the values of parameter d0
(resp. of slope k∞) with respect to ring orientation u and
density index d. Both parameters d0 and k∞ do not seem to
be correlated with the ring orientation or the density index
and present an important dispersion of 54% (resp. 68%).

Table 1 reports the second-order statistical moments
(mean value, standard deviation and dispersion) of both
model parameters d0 and k∞ for the four considered values
of Fmax. Mean values and standard deviations are given for
each series of tests and one can see that the dispersion
illustrated in Figure 7 for Fmax=300N can reach even
higher values for the series of tests performed at Fmax=400
or 600N. Considering the mean values, Figure 8 shows that
the evolutions of both parameters d0 and k∞with respect to
maximum load Fmax can be modeled as linear functions of
Fmax: d0=aFmax and k∞=bFmax, where a and b are some
strictly positive constants independent of Fmax. Since both
parameters d0 and k∞ are assumed to vary linearly with the
maximum applied load Fmax during each cycle, the
parameter L= k∞/d0 introduced in equation (1) can be
considered as a constant value that is independent of
maximum load Fmax and equal to b/a. Note that to go
further in the exploitation of the proposed model, it would
be useful to study the evolution of the model parameters
with respect to the local pressure and not to the global
force.

Considering the compression cylinder dimensions
(cylindrical tool of 15mm diameter) and assuming that
the contact pressure is uniform, the maximum contact
pressure p during a cycle can be determined for all tests and
parameter d0 can be written as:

d0 ¼ aSp; ð2Þ
where S denotes the cylinder contact area. Considering
the high dispersion of the values of d0 and k∞ between all
tests, both parameters a and L will be considered as
uncertain and modeled by real-valued random variables
in Section 3 to take into account the variabilities in the
cyclic behavior of wood. Using equation (2), one can
easily derive the local relation of proportionality
between pressure p and residual penetration dr at each
cycle in the following form:

p ¼ Kdr with K ¼ 1

aS 1þ LNð Þ 1� exp � N
Nref

� �� � : ð3Þ



Fig. 6. Different evolutions of the residual penetration (or remaining depth) with the number of cycles for the series of tests with
Fmax= 300N after 4000 cycles: (a) an almost linear increasing response (corresponding to most experimental results); (b) a flat then
decreasing response; (c) a constant flat response; (d) an almost linear increasing response with a change of slope after 3000 cycles.

Table 1. Identification of the mean value, standard deviation (std) and dispersion of parameters d0 and k∞ for the four
loading cases ranging from 300 to 800N.

Load Fmax (N) 300 400 600 800

Mean of d0 (mm) 0.105 0.117 0.207 0.218
Std of d0 (mm) 0.056 0.054 0.083 0.040
Dispersion of d0 54% 46% 40% 20%
Mean of k∞ (mm/cycle) 9.29� 10�6 9.87� 10�6 15.0� 10�6 15.5� 10�6

Std of k∞ (mm/cycle) 6.32� 10�6 9.64� 10�6 14.3� 10�6 7.95� 10�6

Dispersion of k∞ 68% 98% 95% 51%
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This proportionality relation between the pressure and
the residual penetration will be used in the bunk bed corner
model presented in Section 4.
3 Stochastic modeling of the cyclic behavior
of wood in the direction normal to fibers

To take into account the uncertainties and variabilities in
the experimental results, each model parameter is
represented as a second-order real-valued random variable
whose probability distribution must be defined and
constructed. In our case, the model parameters are the
ratio L= k∞/d0 between k∞ and d0 and the one a= d0/Fmax
between d0 and Fmax. As these two parameters have very
different origins and there is a priori no available
information about some statistical dependence between
them, we further consider that they are mutually
independent random variables.

Figure 9 shows all the experimental data for parameters
a and L obtained from the 64 cyclic compression tests as
well as independent realizations of the corresponding
random variables which have been generated from the
probability distributions constructed in Section 3.2.Table 2
gives the mean value, standard deviation and dispersion of
random variables a and L estimated by using the 2000
independent realizations represented on the right side of
Figure 9. The probability distribution of each random



Fig. 7. Model definition and parameterization of the residual penetration for a representative cyclic compression test of 10 000 cycles:
the almost linear increasing part is modeled by an affine function d0+ k∞N, where k∞ is the slope and d0 the ordinate at the originN=0,
and the nonlinear transition part is characterized by a characteristic number of cycles Nref.

Fig. 8. Dispersion of the experimental results obtained from the eleven cyclic compression tests performed with Fmax=300N: the 2
top figures show the identified values of d0 versus the ring orientation (left) and the density index (right), while the 2 lower figures show
the ones of slope k∞.
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Fig. 9. Dispersion of model parameters a and L on the 64 cyclic compression tests: (left) data obtained from the experimental tests;
(right) 2000 independent realizations of random variables a and L generated from the identified probability distributions.

Table 2. Second-order statistical moments (mean value,
standard deviation and dispersion) of random variables a
and L⋅

Variable a × 1000
(mm·N�1)

L × 106

(cycle�1)

Mean value 0.320 84.0
Standard deviation 0.140 78.5
Dispersion 44% 93%
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variable is assumed to be represented by a probability
density function (pdf) whose construction is briefly
described in the next paragraphs.

3.1 Maximum entropy principle

Considering a second-order real-valued random variable X
defined by the pdf pX(x), the entropy S(pX) of pX is given by:

S pXð Þ ¼ �
Zþ∞

�∞

pXðxÞlnðpXðxÞÞdx ð4Þ
S(pX) represents a measure of the uncertainties associated
to the pdf pX of X. Initially introduced within the
framework of information theory [19–21], the maximum
entropy (MaxEnt) principle [22–25] is a general and
efficient optimization procedure that allows a parametric
representation of the pdf of random variable X to be
constructed by maximizing the entropy S(pX) under a
set of constraints defined by the available information onX
[26–28] such as the support of the pdf, the existence of the
mean value, the standard deviation or higher order
moments related to X for example. A Lagrange multiplier
li is introduced and associated with each constraint defined
by the available information. In addition to the normali-
zation condition, these constraints are generally related to
some statistical properties ofX and typically given under the
following form:

E gi Xð Þf g ¼
Zþ∞

�∞

gi xð ÞpX xð Þdx ¼ fi;

i ¼ 1; . . . ;m ð5Þ
whereE denotes the mathematical expectation, gi are given
mappings defined from ℝ into ℝ and fi are given values in
ℝ. For instance, if the mean value of X is assumed to be



Fig. 10. Probability density functions of random variables L (left) and a (right).
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known, then gi(x)= x and fi corresponds to the mean value
E{X} ofX. It can be shown that the Lagrangemultipliers li
are the solution of a convex optimization problem that
consists in minimizing the strictly convex function H
defined by

H l0; l1; . . . ; lmð Þ

¼ l0 þ
Xm
i¼1

fili þ
Z∞
�∞

1 a;b½ � xð Þexp �l0 �
Xm
i¼1

ligi xð Þ
 !

dx

ð6Þ
where l0 is the Lagrange multiplier associated to the
normalization condition, the interval [a,b] denotes the
support of the pdf pX of random variable X and 1[a,b](x) is
the indicator function of interval [a,b] that is equal to 1 if x
belongs to [a,b] and 0 otherwise. The pdf pX of X is then
parameterized by the (m+1) Lagrange multipliers l0, l1,…,
lm and explicitly given by

pX xð Þ ¼ 1 a;b½ � xð Þexp �l0 �
Xm
i¼1

ligi xð Þ
 !

ð7Þ

For instance, assuming that X is a second-order real-
valued random variable whose support is ℝ and whose
mean value and standard deviation are given, the MaxEnt
principle leads to a Gaussian pdf for pX. In the next
paragraph, we will address the construction of the pdf
associated with each of the random variables L and a
involved in the stochastic cyclic compression problem.

3.2 Probability density functions of the random variables
in the stochastic modeling of cyclic behavior of wood

In this section, we construct parametric representations of
the pdfs of both second-order random variables L and a by
having recourse to theMaxEnt principle. Themean value of
random variableL is denoted bymL, and the dispersion ofL
around mL is characterized by its standard deviation sL.
From a mathematical viewpoint, random variableL cannot
take negative values and there is a priori no upper bound for
the values ofL, so that the support ofL is assumed to beℝ+.
Finally, the constraints defined by the available information
on L and integrated in the MaxEnt formulation for the
construction of the pdf pL(l) of L are given by

1 ¼
Z∞
0

pL lð Þdl

mL ¼
Z∞
0

lpL lð Þdl

sL
2 þmL

2 ¼
Z∞
0

l2pL lð Þdl

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð8Þ

The Lagrange multipliers l0, l1 and l2 are numerically
computed by minimizing the strictly convex function H
(l0,l1,l2) defined by equation (6), leading to l 0= 4.49,
l1= 0.011 and l2= 1.86� 10�6. The corresponding identi-
fied pdf pL(l) of random variable L is represented in
Figure 10. Obviously, this pdf does not correspond to a
Gaussian pdf as it is not symmetric and its support is not
the real line ℝ since pdf pL(l) is strictly equal to 0 for
negative values of l.

Knowing explicitly the pdf of random variable L, one
can easily construct the inverse cumulative density
function (cdf) of L and generate independent realizations
of L (see Fig. 9) using the inverse transformation sampling
method and a uniformly distributed (pseudo-)random
number generator: from independent realizations of a
uniform real-valued random variable between 0 and 1
(drawn from the aforementioned uniform random genera-
tor), the inverse cdf of L allows for computing independent
realizations of L that are consistent with the experimental
results. We can also proceed in the same manner to



Fig. 11. Connection between two parts of the bunk bed (a vertical part with square cross section and a horizontal part of thickness b in
the z direction): (left) initial configuration and (right) deformed configuration due to the bending momentum in the junction resulting
in a penetration near point C.
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construct the pdf of random variable a bymaking use of the
MaxEnt principle with the same constraints as for random
variable L. In this case, minimizing the strictly convex
function H(l0,l1,l2) yields the three following values for
l0, l1 and l2: l0= 1.09, l1=�12.6, l2= 19.7. Figure 10
shows the pdf of both random variables L and a.

Let us note that this stochastic modeling based on the
MaxEnt formulation leads to pdfs forL and a that are very
different. For random variable L, the dispersion is very
high and the shape of the pdf is a strictly monotonic
exponentially decreasing function that is similar to an
exponential pdf and very far from a Gaussian pdf. For
random variable a, the dispersion is smaller than in the case
of random variable L and the shape of the pdf looks like a
Gaussian function truncated on ℝ+. In the following
section, we will use the proposed stochastic modeling of
uncertainties to perform Monte Carlo numerical simula-
tions of a bunk bed corner problem in order to analyze the
random gap evolution in the bunk bed corner and provide
statistical information (such as statistical moments and
confidence regions) related to the random gap evolution
after completing ten thousand loading cycles.

4 Modeling the gap evolution in the bunk
bed corner
In this section we present a simplified model describing the
pressure distribution in the two regions of interest of the
bunk bed represented in Figure 2 and allowing the gap
evolution to be predicted. First, the meanmodel for the gap
evolution in the bunk bed corner under cyclic bending
loading will be presented and then, the statistical
properties of the random gap evolution are analyzed by
using the stochastic modeling presented in Section 3 and
the Monte Carlo numerical simulation method.
4.1 Mean model for the gap evolution in the bunk bed
corner under cyclic bending loading

We consider the bunk bed corner problem illustrated in
Figure 11, in which a vertical part with a square cross
section (of side length 57mm) is linked with only one or two
fixing components corresponding to through-bolt and
dowel-nut connectors. As previously mentioned, two
wooden pins prevent the horizontal part from rotating
around the y axis but they will not be considered in the
model for the sake of simplicity.

When applying a downward vertical load at the right
end of the horizontal part, one generates a bending
momentum around the z axis that passes through the
junction. The right side of Figure 11 illustrates the
bending effect on the relative displacement of both
wooden parts. This relative displacement can be
described using only two parameters d and u, respectively
equal to the penetration of the bolt head in the vertical
part and the relative rotation between the two wooden
parts. One can see that this relative displacement
generates some interferences between the two compo-
nents in a localized area, where strain occurs in both
wooden parts and in particular in the vertical part
where the contact pressure is applied perpendicularly to
the wood fibers direction (just like in the cyclic
compression tests presented in the previous sections).
In these zones, the local pressure p(x) located at
point M can be linked to the local residual penetration
dr(x) using the simple law p(x)=Kdr(x) presented in
Section 2.

If the bolt is assumed to be rigid enough compared to
both wooden parts, one can postulate that the penetra-
tion d of the bolt head is equal to the gap between the two
parts at point O. Consequently, the local penetration



Fig. 12. Balance of the horizontal wood part gives: (i) a relation
between the maximum contact pressure pmax and the tension F in
the bolt: F= pmaxbD/2 with pmax=K(ue�d)=KuD and (ii) a
relation between the bending moment M in the connection and
the tension F in the bolt: F=M/(e�D/3).

Fig. 13. Evolution of the gap d and the relative rotation u with
respect to the number of cycles during a cyclic loading at a
constant bending momentM=20N·m corresponding to a tension
F=306N in the bolt.
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dr(x) can be expressed in terms of the vertical position
x as:

dr xð Þ ¼ ux� d ð9Þ

There is contact between the two wooden parts only in
case of effective penetration (i.e. for dr(x) > 0) and
consequently, the length D of the loaded contact zone goes
from x= d/u to x= e. We then denote by a, the length
defined by the ratio a= d/u. This leads to the following
expression for the length D of the loaded zone:

D ¼ e� a ð10Þ
Equation (10) indicates that a is the length of the free
surface between the bolt and the contact zone. Considering
the relation between residual penetration dr(x) and local
contact pressure p(x), one can model the pressure by a
linear distribution near C and by a uniform distribution
near A. The force balance equation of the bolt and the
momentum balance equation of the traverse (horizontal
wooden part) lead to the following set of equations:

F ¼ KSbd ð11Þ

F ¼ K
bD ue� dð Þ

2
ð12Þ

M ¼ e� D

3

� �
F ð13Þ

where Sb is the contact area under the bolt head. Bending
momentum M can be determined by performing a global
numerical simulation of the corner problem, while d, u, D
and F are unknown parameters (Fig. 12).

Using equations (11) and (12) and introducing length a
lead to:

aSb ¼ bD
e� a

2
ð14Þ
Then, considering equation (10) we obtain:

b e� að Þ2 � 2aSb ¼ 0 ð15Þ
Solving this 2nd degree polynomial equation, one can
derive the expression of length a as follows:

a ¼ eþ Sb

b
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2eb

Sb

s !
ð16Þ

It is worth noticing that length a depends neither on
the rigidity K which varies during cycles, nor on the
load amplitude F, hence a is fully deterministic. As all
terms Sb, e and b are constant geometrical parameters, the
ratio a between penetration d and rotation u remains also
constant during cycles.

We then use equation (10) to obtain D, equation (13) to
obtainF, equation (11) to obtain d and finally the definition
of a is used to calculate the rotation u. This procedure can
easily be implemented as a post-processing of the finite
element computation of the bending momentum in each
corner and allows the evolution of the gap d in the
connection between both wooden parts to be predicted.

For example, Figure 13 shows the results obtained by
performing a global numerical simulation of a normalized
cyclic test on the bunk bed corner with a bending
momentum M=20N·m, leading to a tension F=306N
in the bolt, and with the following geometrical features:
2e=148mm, b=25mm and Sb=148 mm2. One can notice
that in this case, length a=50mm so that the length of the
contact zone between the horizontal traverse and the
vertical part of the corner is D=24mm. It is also worth
noticing that the gap d between the two wooden parts does
not exceed 0.22mm after 10 000 cycles, which allows for a
safe design for the mean model of the bunk bed corner.



Fig. 14. Influence of geometrical parameters on the gap: half
height e and thickness b of the traverse have a reducing influence
on the gap d.

Fig. 15. Influence of the external diameter under the bolt head
on the gap: using a clamping washer of diameter D=30mm
allows reducing the gap d by a factor four.
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Considering the example presented in Figure 13 as the
reference case, one could be interested in studying the
influence of geometrical parameters, such as the height 2e
or the thickness b of the traverse, on the gap d. Figure 14
represents the evolution of gap dwith respect to thickness b
(with a fixed reference value for e) and also with respect to
half height e (with a fixed reference value for b). One can see
that both geometrical dimensions have a reducing influence
on the value of the gap after 10 000 cycles, which means
that the gap d decreases as the thickness b or the half height
e increases. The variation of the gap with respect to b is
small compared to the one with respect to e. But even
reducing drastically this last geometrical parameter, the
gap remains less than 1mm which seems to be secure
enough according to the technical specifications for the
considered piece of furniture. Besides, the design of the
connection could be changed by adding a clamping washer
of diameter D under the bolt head, so that the contact area
Sb under the bolt head would be bigger and the contact
pressure lower. Figure 15 shows the evolution of the gap d
as the bolt diameterD increases from 15 to 50mm. One can
see that increasing the bolt diameterD (or equivalently, the
contact area Sb under the bolt head) allows reducing the
gap evolution, since the length D of the contact zone
increases and therefore the length a decreases and the
maximum contact pressure pmax becomes lower.

Comparing the graphs of Figures 14 and 15, one can
conclude that the most part of this gap reduction is mainly
due to the contact area Sb under the bolt head and the
height 2e of the traverse. Increasing the thickness b has a
lesser impact on the gap. Quantifying such influences on
the gap is of great importance for the design of furniture.
Furthermore, in order to enhance the prediction of the gap
within the context of robust design under uncertainties, we
will perform a stochastic analysis of the random gap in
accordance with the stochastic model derived in Section 3
in order to compute estimates of the mean value and
standard deviation and to provide a confidence region
(corresponding to a given probability level) for the random
gap.

4.2 Stochastic analysis of the random gap evolution

In this section, we consider the stochastic modeling
presented in Section 3 to take into account the uncertain-
ties in the cyclic behavior of wood and we analyze the
propagation of these uncertainties through the furniture
corner model under cyclic bending loading using the Monte
Carlo numerical simulation method [29–33] as stochastic
solver. For this purpose, we carried out 2000 numerical
simulations of the stochastic corner model and focused on
the random gap d10 000 corresponding to the random
residual penetration under the bolt head after 10 000 cycles.

A convergence analysis of the mean value and standard
deviation of the random gap d10 000 has been performedwith
respect to the number of independent realizations used by
theMonte Carlo stochastic solver. Figure 16 shows that the
convergence is reached after around 500 realizations for the
first two statistical moments. The converged estimation of
the mean value of the random gap d10 000 is found to be
equal to 0.26mm which is quite close but slightly higher
than the deterministic value of 0.22mm obtained for the
deterministic mean model.

The set of 2000 independent realizations of the random
gap d10 000 computed to perform the convergence analysis
for the first- and second-order statistical moments can also
be used to construct an estimation of the probability
density function of this random variable.



Fig. 16. Convergence analysis of the mean value and standard
deviation of the random residual penetration after 10 000 cycles
with respect to the number of realizations.

Fig. 17. Probability density function of the random response
d10 000 represented by a histogram.
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Figure 17 shows the shape of the underlying pdf in the
form of a histogram built from an appropriate number of
bins (here, 30 bins) to cover the range of values in the
interval [dmin, dmax], where dmin and dmax are the minimum
and maximum values taken by the random variable d10 000
over the set of 2000 independent realizations computed by
using the Monte Carlo stochastic solver. Smoother
representations of the pdf may be obtained by using
kernel density estimation (smoothing) techniques [34–36].
Considering the histogram of Figure 17, it is possible to
define a confidence region corresponding to a given
probability level pc (for example, pc=90%). The upper
and lower bounds of this confidence region are defined by:

d10 000
þ ¼ j pcð Þ and d10 000

� ¼ j 1� pcð Þ ð17Þ
where z(p) is the quantile function defined for a real-valued
random variable X with cdf FX(x) by:

j pð Þ ¼ inf x∈R; FX xð Þ≥ pf g for p∈ �0; 1½ ð18Þ
The computation of such bounds can simply be done by

sorting the realizations in increasing order and counting the
number of realizations until the cdf reaches pc for the upper
bound and (1–pc) for the lower bound. In the case of the pdf
of the random residual penetration d10 000 after 10 000
cycles shown in Figure 17, the upper and lower bounds
of the 90% confidence interval are such that
d10 000

+=0.65mm and d10 000
�=0.05mm. It appears that

the mean value of 0.26mm is included but not centered in
the confidence interval.

Finally, if we consider the span of the 90% confidence
interval in comparison with the value obtained by using the
deterministic mean model, we can conclude that the gap
after completing 10 000 cycles may reach 0.65mm that is
almost three times higher than the expected value of
0.22mm predicted by the deterministic mean model.
This conclusion highlights the relevance of the proposed
stochastic approach for modeling the gap occurring in the
connections of furniture undergoing mechanical cyclic
loading.

5 Conclusions

The static response of furniture under mechanical loading
can be numerically simulated using FEA but the large
dispersion due to the strong heterogeneity of wooden
materials necessitates to perform a stochastic analysis of
furniture behavior by taking into account the uncertainties
in the experimental configuration and between the different
test specimens. In case of cyclic loading, the study is even
more complicated considering the nonlinear behavior of the
material under a repeated compression loading.

In this study, we first performed a series of cyclic
compression tests on spruce specimens to identify the
evolution of the residual penetration with respect to the
number of cycles under different maximum loads.
The experimental results show that the global response
of the cyclic compression tests is quite regular but exhibits
a large dispersion from one specimen to another. Based on
these experimental curves, we have proposed a simple
analytical model to describe the evolution of residual
penetration versus the number of cycles. To take into
account the uncertainties in the cyclic behavior of wood, we
then have constructed a probabilistic model for the
uncertain parameters modeled by statistically independent
real-valued random variables using the maximum entropy
(MaxEnt) principle.

Finally, the proposed probabilistic model has been used
to study the mechanical behavior of a typical connection
between two wooden parts of a bunk bed. An analytical
model of the bunk bed corner has been built and used to
investigate the influence of geometrical features on the gap
evolution under cyclic loading within the deterministic
framework. Subsequently, a stochastic analysis of the
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random gap has been carried out using the Monte Carlo
numerical simulation method as stochastic solver, thus
allowing the mean value and the standard deviation as well
as a 90% confidence region for the random gap to be
estimated. It has been shown that the natural dispersion in
the wood behavior under cyclic loading leads to realizations
of the random gap that can reach three times the value
predicted by the deterministic mean model.
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