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Abstract

In previous work [Opt. Lett. 44, 2827 (2019)], we presented a method based on digital holography
and orthogonal matching pursuit, which is able to determine the 3D positions of small objects moving
within a larger motionless object. Indeed, if the scattering density is sparse in direct 3D space, compressive
sensing algorithms can be used. The method was validated by imaging red blood cell trajectories in the
trunk vascular system of a zebrafish (Danio rerio) larva. We give here further details on the reconstruction
technique and present a more robust version of the algorithm based on multiple illuminations.
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1 Introduction

Digital holography (DH) enables to retrieve the am-
plitude and the phase of the optical field scattered
by an object from the interference between this field
and a reference beam [1]. The resulting interfero-
gram, called the hologram, is recorded on an image
sensor, making possible numerical reconstruction of
the complex field [2].

For this purpose, the field on the sensor is back-
propagated within a series of planes adjacent to the
object. In this way, a spatial distribution of the field
scattered in the vicinity of the object is obtained.
Nevertheless, this 3D field does not fit the 3D distri-
bution of the scattering density of the object.

As was shown in [3], a gold nanoparticle imaged
by digital holographic microscopy (DHM) will give a
cone of light after field backpropagation. The angle
of the cone corresponds to the numerical aperture of
the microscope objective, while its apex is located
at the position of the gold bead. Holography, which
is able to localize this apex, is thus well suited to
track small particles, and was used for this purpose
in a large number of works, especially flow imaging
[4, 5, 6, 7].

Due to its phase retrieval capability, holography
is a valuable complement to standard microscopic
techniques and was widely applied to imaging of bi-
ological samples [8, 9, 10]. Quantitative phase imag-
ing techniques are able to provide an estimate of the
thickness or of the dry mass of a living cell [11, 12, 13].

If a true 3D reconstruction of the object is required,
techniques such as diffraction tomography should be
considered. By recording a series of holograms for
different directions of illumination and by performing
a tomographic reconstruction, the 3D optical index
distribution of the object can be computed [14, 15].
However, because it requires to record a large number
of holograms (≥ 100), tomography is not well suited
for the imaging of moving objects.

In the case where there is a basis in which the 3D
scattering density is sparse enough, it is also possible
to reconstruct a 3D image of the object from a single
hologram by compressive sensing (CS) [16, 17]. This
point has been demonstrated by Brady et al. [18]
who have imaged by holography an immobile object

whose representation is sparse in the wavelet basis.
Since this work, DH coupled to the CS has given
rise to many developments. We can mention com-
pressive in-line holography [19], compressive Fresnel
holography [20], off-axis frequency shifting hologra-
phy [21], off-axis holography of diffuse objects [22],
video-rate microscopic tomography [23], or incoher-
ent holographic microscopy [24]. Recently, a combi-
nation of compressive holography and coded expo-
sure enabled the reconstruction of 3D videos of small
sparse objects [25].

In this work, we focused on 3D imaging of blood
circulation in zebrafish (Danio rerio) larvae, which
implies to localize in space and in time the positions
of the red blood cells (RBCs). Due to the fact that
their refractive index is close to the one of the sur-
rounding medium, the cone of the scattered light is
narrow. For this reason, the RBCs can not be pre-
cisely localized with classical holographic backprop-
agation. In [26], we proposed a technique based on
a specific holographic setup and a ”cleaning” algo-
rithm, which enabled to compute the positions of the
RBCs in 3D, as well as the shape of the blood vessels.
Nevertheless, the drawback of this algorithm was the
relatively long computing time. In [27], we described
an algorithm which enabled to speed up calculations
by a factor of ∼ 500, based on compressive sensing.

Indeed, RBCs can be viewed as small scattering
objects that move within a larger motionless object
(the anesthetized zebrafish larva). In the basis of
the direct 3D space (i.e. x, y, z), their 3D scattering
density is sparse, which allows to apply compressive
sensing reconstruction methods. In this specific case,
the use of sparsifying operators [28] is not required.
We used an algorithm based on orthogonal match-
ing pursuit (OMP). The case of objects composed
of point sources was also studied by Liu et al. [29],
where a more complex reconstruction algorithm was
proposed based on similar compact sensing matrix
computation.

By performing calculations from a small number of
holograms, we were able to obtain the 3D positions
of the RBCs at one camera frame. By performing a
series of reconstructions from a long sequence of holo-
grams, we got movies of the 3D positions of RBCs,
and by averaging in time, we determined the shape of

2



the blood vessels from the trajectories of the RBCs.

In this paper, we will give further details on the ex-
perimental configuration and the reconstruction pro-
cedure. We will, in particular, describe a method for
the localization of the RBCs that uses the fact that
the object is illuminated by several beams, which re-
sults in a more robust reconstruction algorithm.

2 Experimental setup

The experiment is carried out in an off-axis con-
figuration similar to previous work [26]. To in-
crease the angular diversity of illumination, the sam-
ple was imaged with a higher NA microscope ob-
jective (20x/NA=0.5 water immersion, Zeiss) and
with three illumination beams, instead of NA=0.3
and two illuminations in [26]. The holographic sig-
nal was acquired by a Mikrotron EoSens CL camera
(1280 × 1024 pixels, 14 µm, 12 Bits, 200 frames/s).
The laser diode power at the sample was less than 1
mW at λ = 662 nm.

The experimental setup is depicted in Fig. 1. The
illumination beam EIL generated by a laser diode is
divided into three using beam splitters (BS) and mir-
rors (M). The object is thus illuminated from three
different directions. The intensities of the beams can
be equalized with neutral density filters. The scat-
tered light E is collected by the microscope objective
(MO) and imaged on the camera, in plane C ′, where
it interferes with the reference field ER. The combin-
ing BS is tilted with an angle θ to perform off-axis
holography. The camera records the resulting inter-
ferogram I = |EC′ + ER|2, where EC′ is the field
scattered by the object in the camera plane C ′.

We have validated the technique by imaging the
microcirculation in zebrafish (Danio rerio) larvae.
Unpigmented larvae were obtained from spontaneous
spawning of casper young adult fish pairs and grown
at 28.5◦C. They were anesthetized with tricaine at
five days and mounted in lateral view in 1% low melt-
ing point agarose in a 35 mm glass ibidi bottom petri
dish. The trunk blood flow was imaged immediately.
Animals were handled according to standard proce-
dures [30].

Figure 1: Triple illumination off-axis holographic mi-
croscopy setup. BS, beam splitters; M, mirrors; MO,
microscope objective; θ, off-axis angle; C ′, camera
plane; EIL, illumination beam; E, scattered object
field; and ER, reference field.

3 Selection of the moving ob-
jects

The zebrafish larva is an optically thick object com-
posed of tissues, organs and bones scattering light,
which results in a signal irrelevant for our applica-
tions. In order to select the moving RBCs and elimi-
nate this background, we considered sequences of in-
terferograms Im with m = 0, 1, 2... corresponding
to successive camera frames. The resulting hologram
HC′ in the camera plane C ′ is then obtained by com-
bining the Im with coefficients whose sum is zero:

HC′(x, y) =
∑
m

ηm Im(x, y) with
∑
m

ηm = 0. (1)

For example, HC′ = (Im + Im−1) − (Im−2 + Im−3),
and ηm = (1, 1,−1,−1).

In this way, the immobile background is sub-
tracted, and the RBCs whose positions changed
across the frames remain in the hologram. The num-
ber of Im and the interval between them can be
changed in order to increase the signal amplitude.
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Figure 2: Typical off-axis holographic microscopy
setup. L, laser; C’, camera; BS, beam splitter;
M, mirror; MO, microscope objective; C, conjugate
plane of plane C’ by objective MO; V, imaged vol-
ume; S, a scattering object; E, object field; and ER,
reference field.

This approach is very similar to the one of Schw-
erte and Pelster [31] who highlighted blood circula-
tion in zebrafish larvae by calculating differences of
successive frames in white light video movies. This
approach was also used with holography in [32].

In practice, we considered combinations of six holo-
grams, according to the following equation (with
N = 6):

HC′(x, y) =
N−1∑
k=0

sin(
2πk

N
) Im(x, y). (2)

If we consider a higher N , we will average on more
frames, which will result in more signal but can as
well increase the noise.

4 Formulation of the compres-
sive sensing equations

A simplified outline of the setup with a single illu-
mination is depicted in Fig. 2. The imaged objects
are located in a volume V and illuminated by a laser

diode L. The scattered light E is collected by the
MO and imaged on the camera, in plane C ′. It inter-
feres with the reference field ER to form the hologram
I = |EC′ + ER|2, where EC′ is the field scattered by
the objects in the camera plane. Since the experiment
is carried out in off-axis geometry, by filtering in the
Fourier space [33], we can select the +1 order com-
ponent of the hologram, corresponding to the EC′E∗R
term.

By considering that the reference field is a flat field
(|ER| ' 1), we thus calculate the field EC′ and elimi-
nate the phase effects related to eventual aberrations
of the MO [34], to the off-axis configuration and to
the curvature of the reference wave [35]. We get
therefore the field EC(x, y) in the plane C, conjugate
of the plane C ′ by the MO. We get as well the field ẼC

in the Fourier space, ẼC(kx, ky) = FT [ EC(x, y) ],
where FT is the discrete Fourier transform operator.

From now, we can combine several holograms in
order to eliminate the background and select only
the moving RBCs. In the following, the fields EC′ ,
EC and their Fourier transforms designate the fields
scattered by the moving objects only.

The RBCs that scatter light, act like small
sources of field S(x, y, z) located in volume V
[Fig. 2]. According to angular spectrum prop-
agation equations [36], the field EC(x, y) radi-
ated by the sources S in the plane C at z=0 is
EC(x, y) =

∑
z FT−1 exp(+ikz.z) FT [ S(x, y, z) ],

(where FT−1 is the inverse Fourier transform opera-
tor). With the linearity of the Fourier transform, we
get the expression of the scattered field spectrum in
the camera conjugate plane:

ẼC(kx, ky) =
∑
z

exp(+ikz.z) FT [ S(x, y, z) ] , (3)

where kz is the z component of the wavevector k, i.e.,

kz =
√
k2 − k2x − k2y with k = |k| = 2πnm/λ, where

λ is the wavelength in vacuum and nm ' 1.33 the
refractive index of the medium.

Equation (3) can be written as a linear system of
equations that connects the 3D field scattered by the
objects to the field spectrum in the camera conjugate
plane:

u = Av, (4)
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where v ≡ S(x, y, z) and u ≡ ẼC(kx, ky) are vectors
of dimensions 768× 768× 160 and 768× 768, respec-
tively, and A is a matrix of dimension 7684×160 [see
Fig. 3(a)].

This system is strongly under-determined since the
dimensions of vectors u and v correspond to the num-
ber of pixels of the calculation grid in plane C and
the number of voxels of the volume V, respectively.
The compression ratio (CR) between the vectors is
large, since it corresponds to the number of planes z
considered for the 3D reconstruction (i.e., CR= 160).

We should note that the matrix A is too large to be
calculated. To compute u = Av, (3) must be used.
Similarly, to compute v = A†u, we must use (5) for
each z:

S(x, y, z) = FT−1
[

exp(−ikz.z) ẼC(kx, ky)
]
. (5)

The moving RBCs represent a very small part of
the imaged volume, and the vector v is highly sparse
in the basis of the positions x, y, z. It is then possible
to solve (4) iteratively using compressive sensing.

5 Orthogonal matching pursuit
algorithm

The CS method we used here is based on the orthog-
onal matching pursuit (OMP) [37]. It is described in
detail in our previous article [27]. Let us recall the
main steps of the algorithm. It can be schematized
by the equation:

u(n+1) = u(n) − anAT(n)A†u(n), (6)

where n is the iteration index. The initialization
u(1) = u ≡ ẼC is done with the object field in
the Fourier space obtained from the +1 order of the
recorded hologram after phase corrections and back-
ground subtraction.

The algorithm calculates iteratively the 3D sources
v(n) = A†u(n), and the 2D field Av(n) radiated by
the sources, by selecting within the sources v(n) the
brightest ones with the operator T(n). The 2D field
radiated by the selected sources (i.e. AT(n)A†u(n))
is subtracted from the 2D field u(n) in order to get

Figure 3: (a) Schematic representation of the trans-
formations. Matrix A describes the emission by the
3D sources v ≡ S resulting in a 2D field in Fourier
space u ≡ ẼC . Matrix A† represents the 3D field
reconstruction from the 2D field in the camera con-
jugate plane. (b) Normalization procedure diagram:
u(n) is the hologram at the iteration n, un the field
radiated by the sources selected at iteration n, an the
normalization coefficient, and u(n+1) the hologram at
the iteration n+ 1, orthogonal to un.

the 2D field for the next iteration u(n+1). In this
way, the 2D hologram in Fourier space is cleaned
at each iteration, while the positions of the selected
sources are saved.

We should remark that in order to optimize and
stabilize the cleaning procedure, the selected sources
T(n)v(n) are multiplied by a normalization factor an.
It is adjusted so that the resulting vector u(n+1) re-
mains orthogonal to the vector un = AT(n)A†u(n)

radiated by the selected sources [Fig. 3(b)]. The en-
ergy of the 2D field |u(n+1)|2 is thus minimized after
cleaning.

To achieve the condition of orthogonality, we have
to satisfy (u(n)−anun) �un = 0, where � is the scalar
product. We get

an =
un � u(n)

|un|2
. (7)

At each iteration step n, the total energy (summed
over all pixels) remaining in the 2D field |u(n)|2 de-
creases. When this energy becomes sufficiently low,
e.g., when it represents only 20% of the initial energy,
the iterative process stops. The final 3D distribution
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v of the sources is given by the summation of the
sources selected at each iteration:

v =
∑
n

anT(n)A†u(n). (8)

It represents the 3D distribution of the RBCs at one
camera frame.

6 Operator T (n) for the selec-
tion of the sources

The reconstruction speed and quality depend of the
operator T (n) that selects at each iteration n the
brightest sources. There are several ways to define
this operator. In [27], the criterion to select the RBCs
was the maximum of the energy of the complex field.
A second manner to proceed is to use the energy cor-
relation between the three laser beams illuminating
the object. Let us give here more details on these
methods of selection of the RBCs.

6.1 Selection of the sources based on
energy

In order to find the positions of the RBCs, we can
calculate the energy of the complex 3D field and look
for its maxima. Indeed, the RBCs are located at the
intersections of apexes of the cones of scattered light
there energy is maximum. We should remark that
the localization is possible only due to the multiple
illumination. Since the refractive index of RBCs is
very close to the one of the surrounding medium, the
angle of the scattering cones is small, and thus the
localization with a single beam would not be precise
enough.

Let us consider the Fourier transform of the off-axis
hologram, represented on a 1280 × 1280 calculation
grid [Fig. 4(a)]. The zero grating order is on the
center, while the +1 and −1 orders that represent
the rear pupil of the microscope objective are on the
top and on the bottom, respectively. The three bright
spots inside the pupil correspond to the ballistic light
of the illumination beams. Note that the objective
has a phase ring which can be seen on the figure.

Since it does not overlap with the beams, it has no
effect on our reconstructions.

The +1 grating order signal (which corresponds to
ẼC(kx, ky)) was selected by cutting a disk of radius
340 pixels within the Fourier space. This disk was
copied on a 768 × 768 calculation grid [Fig. 4 (b)].
The zero order was filtered by a circular mask of ra-
dius 170 to avoid signal mixing. The center of the
pupil with the phase ring was as well removed with
a disk of radius 195 pixels.

The algorithm starts with the filtered +1 order
u(1) ≡ ẼC(kx, ky). At each iteration step n, after the
calculation of the 3D field v(n) = A†u(n) with (5),
the energy of the sources |v(n)|2 ≡ |S(n)(x, y, z)|2 is
calculated for each voxel (x, y, z). Then a threshold

of energy E(n)th is chosen, e.g. E(n)th = 0.8 E(n)max, where

E(n)max is the maximum of the vector |v(n)|2.

Afterwards, the operator T
(n)
E selects the voxels

(x′, y′, z′) whose energy is above the threshold E(n)th

and adds to these voxels the voxels located within a
predefined radius (e.g., rRBC = 4 pixels) in the same

z = z′ plane. The selected sources T
(n)
E A†u(n) ≡

Sn(x, y, z) are thus

• Sn(x, y, z) = S(n)(x, y, z) if |S(n)(x′, y′, z′)|2 >

E(n)th ,
√

(x′ − x)2 + (y′ − y)2 ≤ rRBC , and z=z′,

• Sn(x, y, z) = 0 otherwise.

Two criteria can be used to terminate the algo-
rithm. In [27], the stopping criterion was the value
of the total energy of the hologram. When it be-
comes lower than 20% of the initial energy, i.e., if
|u(n)|2 < 0.2 |u(1)|2, the algorithm ends. Here, we
considered the ratio between the maximum energy at
the current iteration and the maximum at the first
iteration. When it becomes sufficiently low, e.g., if

E(n)max/E(1)max < 0.06, the calculation will stop.
In practice, the second criterion is reached before

the first. The final 3D sources v ≡ S(x, y, z) are
then obtained by a summation of all the detected
sources and by taking into account the normalization
coefficients:

S(x, y, z) =
∑
n

anSn(x, y, z). (9)
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Figure 4: (a) Fourier transform of the off-axis holo-
gram. The bright spots inside the +1 and −1 orders
correspond to the three illumination beams. (b) Crop
of the +1 order of the hologram, filtering of the center
of the pupil and of the zero order. (c) Separation of
the three illumination beams inside the +1 order with
circular masks (red, green and blue). (d) Intensity of
the three fields (red, green and blue) reconstructed
in the camera conjugate plane.

6.2 Selection of the sources with mul-
tiple illuminations

A second approach is to consider separately the three
laser beams illuminating the object from different di-
rections. The separation can be performed in the
Fourier space, while the +1 order of the hologram is
selected.

Figure 4(c) shows the crop of the +1 order, where
three circular masks (in red, green and blue) are ap-
plied to select the light scattered by the illumina-
tion beams. The bright peaks correspond to bal-
listic light, while the surrounding halo constitutes
scattered light. The complex 3D field can then be
computed for the three beams separately, giving the
vectors v(n,i) ≡ S(n,i)(x, y, z) with i = 1, 2, 3. The

intensities of the three fields in the direct space in
plane C are represented in Fig. 4(d).

The principle of the OMP algorithm is the same as
previously. Nevertheless, the transforms associated
with A and A† are applied to the three fields sep-
arately, and the reconstruction of the vectors u(n,i)

(with i = 1, 2, 3) in the Fourier space with (3) has to
take into account the selection masks.

Another major change is the criterion of selection

of the sources Sn(x, y, z) with the operator T
(n)
C . Af-

ter the calculation of the vectors S(n,i) in the object
space, we calculate for each voxel the product of the
energies of the three fields, which we call the correla-
tion Corr3, similar to what was done in [26]:

Corr3n(x, y, z) = |S(n,1)(x, y, z)|2 (10)

× |S(n,2)(x, y, z)|2 × |S(n,3)(x, y, z)|2.

Since we have a product of three energies, to get
an equivalency with the previous method, we should

consider the cube root Corrn = 3

√
Corr3n at each

pixel. We define then a threshold C(n)th , based on the

maximum value of Corrn, e.g., C(n)th = 0.8 Corrn,max.

The operator T
(n)
C selects the voxels (x′, y′, z′)

whose correlation is above the threshold C(n)th and
adds to these voxels the voxels located within a prede-
fined radius (e.g., rRBC = 4 pixels) in the same z = z′

plane. The selected sources T
(n)
C A†u(n) ≡ Sn(x, y, z)

are thus

• Sn(x, y, z)=〈S(n,i)(x, y, z)〉i if Corrn(x′, y′, z′) >

C(n)th ,
√

(x′ − x)2 + (y′ − y)2 ≤ rRBC , and z=z′,

• Sn(x, y, z) = 0 otherwise,

where 〈.〉i represents the average among the three
fields.

The remaining calculations such as the cleaning of
u(n) with the use of the coefficient an and the sum-
mation of all the sources after the last iteration are
the same as for the energy.
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7 Reconstructions analysis

7.1 3D images of zebrafish microcir-
culation

The CS calculations were conducted on a 768×768×
160 tridimensional grid and on 256 camera frames in
approximately 2 h using GPU (NVidia GTX Titan
Xp) and CUDA libraries (cuFFT, cuBlas...). Voxel
size was 0.6 µm in x and y, and 1.8 µm in z. The
3D visualizations were performed with a homemade
CUDA program based on an NVidia code example
(VolumeRender).

Figure 5(a) shows the 3D positions of the RBCs
at one camera frame obtained from a combination of
six holograms modulated by a sinus and using the

operator T
(n)
C that selects the brightest sources tak-

ing account of the correlation among the three illu-
mination beams. It can be noticed that each RBC
produces two bright spots due to the image sub-
traction. A complete 360◦ rotation can be seen in
(Visualization 1).

Figures 5(b) and 5(c) show the 3D images of the
shape of the blood vessels, obtained by averaging
the positions of the RBCs over 256 camera frames.
The reconstructed vascular system compares favor-
ably to images obtained by confocal microscopy [38].
We should remark that we do not reconstruct the
blood vessels walls like it can be done in fluores-
cence microscopy. Nonetheless, the shape of the
main trunk vessels is well reconstructed. A complete
360◦ rotation of the vascular system can be found in
(Visualization 2).

In order to visualize the 3D motion of the RBCs
inside the blood vessels, we superimposed the non-
averaged and averaged reconstructions [Fig. 5(d)]. A
360◦ rotation of this sequence of 3D images is shown
in Visualization 3. In the movie, the direction of
blood flow in the dorsal aorta, caudal vein, interseg-
mental vessels and dorsal longitudinal anastomotic
vessels can be determined. Since the camera has a
relatively high frame rate (200 images/s), the RBCs
motion appears fluid.

Figure 6(b) shows the reconstruction obtained con-
sidering only the energy of the hologram (i.e., with

the operator T
(n)
E ). It can be compared with the

Figure 5: (a) Representation of RBCs considering a
single 3D reconstruction at one camera frame. View
at 0◦. (b,c) Representations of the vascular system
considering a summation of a sequence of 256 holo-
grams. Views at 96◦ and 120◦. (d) The RBCs posi-
tions are superimposed with the shape of the blood
vessels. Dorsal aorta (DA), caudal vein (CV), inter-
segmental vessels (ISV) and dorsal longitudinal anas-
tomotic vessels (DLAV) can be clearly seen. View at

0◦. Reconstructions performed with operator T
(n)
C

and a selection threshold C(n)th = 0.8 Corrn,max. For
a 360◦ rotation see Visualizations in supplement.

reconstruction that considers the three illumination
beams [Fig. 6(a)]. We can remark that the difference
is very small. Nevertheless, the image obtained with

T
(n)
E seems to be noisier, with artifacts along the field

propagation direction z (white arrows).

7.2 Convergence of the algorithm

Figure 7(a) shows the mean decrease in total energy

of the hologram with time for operators T
(n)
E and

T
(n)
C . The algorithm converges in fewer iterations

when the correlation among the three illuminations is
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Figure 6: Comparison between the reconstructions
with the two operators T (n): (a) Reconstruction us-

ing triple illumination with T
(n)
C and selection thresh-

old C(n)th = 0.8 Corrn,max. (b) Reconstruction based

on energy with T
(n)
E and selection threshold E(n)th =

0.8 E(n)max. Views at 96◦. White arrows: reconstruc-
tion artifacts.

considered. Nevertheless, the computing time of one
iteration is about twice longer, and therefore the to-
tal calculation times remain equivalent for both cases.
Figure 7(b) shows the mean decrease of the ratio be-
tween the maximum energy (or correlation) at the
current iteration by the maximum energy (or corre-
lation) at the first iteration. The algorithm stops
when this ratio is smaller than 0.06.

Figures 7(a) and 7(b) show as well the cases where

the chosen threshold value is too low (E(n)th = 0.5 E(n)max

and C(n)th = 0.5 Corrn,max). In this case, the algo-
rithm converges very fast, since an important amount
of energy is removed at each iteration. Nevertheless,
this reduces the quality of the 3D reconstructions.
In Fig. 7(b), in the case where the reconstruction
is based only on energy, the ratio variation is not
stable and increases at some iterations. The second
algorithm is more robust and does not present such
non-uniformity.

Figure 8 shows the reconstructions obtained with
low thresholds (i.e., 0.5). In the case where only the
energy was considered, the 3D image is incomplete.
The dorsal vessels where the blood flow was not sig-
nificant are not reconstructed. High-energy artifacts
elongated in the z direction are as well present (white
arrows).

Figure 7: (a) Mean decrease in energy of the holo-
gram with time. (b) Temporal variation of the ratio
between the mean maximum energy or correlation
and its value at the first iteration. The averages of
energy, correlation, and time are performed on 256
images. Plots are given for the cases where T (n) con-
siders total energy (red circles) or correlation between
the three beams (blue diamonds) as well as for two
selection thresholds: 0.8 (empty) and 0.5 (full). Each
point corresponds to one iteration of the algorithm.
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Figure 8: (a) Reconstruction by selection of the

sources based on energy with T
(n)
E and a thresh-

old E(n)th = 0.5 E(n)max. (b) Reconstruction by se-
lection of the sources based on the correlation be-
tween the three beams with T

(n)
C and a threshold

C(n)th = 0.5 C(n)max. White arrows: reconstruction arti-
facts.

The reconstruction with the three illumination
beams [Fig. 8(b)] is more robust, and the shape of
the vascular system is nonetheless retrieved. In some
frames however, the least bright RBCs in the dor-
sal vessels are not reconstructed, which results in a
blinking image along the frames.

8 Conclusion

In this paper, we presented a reconstruction proce-
dure based on CS and a specific DHM setup using
a triple illumination of the object. This technique
is able to efficiently retrieve the 3D positions of the
RBCs in the zebrafish larva vascular system, since
they represent small scattering objects moving in a
large motionless volume. The reconstruction of the
3D positions of the RBCs as well as the shape of the
perfused vascular system enables to perform in-vivo
imaging of microcirculation.

We compared two methods of selection of the
RBCs; one is based on the maximum of the energy of
the hologram, while the second considers the correla-
tions in energy between the three illumination beams.
The last one takes explicitly into account the fact that
the object is illuminated by three beams. It appears
to be more robust to ill choices of threshold parame-

ters and gives less noisy results.

We should remark that several parameters influ-
ence the amplitude of the reconstruction noise. For
example, in order to eliminate the background, we
considered combinations of six holograms with sinus
coefficients ηm. By combining more images, we will
average on more frames and get therefore more signal
with, at the same time, the risk of increasing noise.
We could as well consider complex exponential co-
efficients ηm. In this case, the RBCs would appear
more elongated. The influence of the stopping crite-
rion should also be taken into account. If the chosen
threshold is too small, irrelevant low energy signal
will be selected, resulting in reconstruction artifacts
in the image.

The basis used for CS calculations is the direct 3D
space (x, y, z) and since the object is sparse in this
basis, the OMP method works quite well. The dic-
tionary is simply composed of point sources at every
(x, y, z) coordinate. Since the object is illuminated
by several beams, the reconstruction does not require
an orthogonal basis where every pair of voxels would
have uncorrelated holograms. An optimized basis
could be learned, but it would necessitate a large
number of test holograms to constitute the dictionary
as in [39, 40].

We could also try more complex reconstruction al-
gorithms on our data, in particular the one proposed
by Liu et al. [29], or regularized algorithms such as
LASSO [41], thresholding algorithms such as FISTA
[42], and bayesian algorithms [43]. We have never-
theless to take into account memory issues, since the
dimensions of our sensing matrix are very large.
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and D. Trede. Inline hologram reconstruc-
tion with sparsity constraints. Optics letters,
34(22):3475–3477, 2009.

[20] Y. Rivenson, A. Stern, and B. Javidi. Compres-
sive fresnel holography. Journal of Display Tech-
nology, 6(10):506–509, 2010.

[21] M.M. Marim, M. Atlan, E. Angelini, and J.-
C. Olivo-Marin. Compressed sensing with off-
axis frequency-shifting holography. Optics let-
ters, 35(6):871–873, 2010.

[22] K. Choi, R. Horisaki, J. Hahn, S. Lim, D.L.
Marks, T.J. Schulz, and D.J. Brady. Compres-
sive holography of diffuse objects. Applied op-
tics, 49(34):H1–H10, 2010.

[23] J. Hahn, S. Lim, K. Choi, R. Horisaki, and
D.J. Brady. Video-rate compressive holo-
graphic microscopic tomography. Optics express,
19(8):7289–7298, 2011.

[24] O. Cossairt, K. He, R. Shang, N. Mat-
suda, M. Sharma, X. Huang, A. Katsaggelos,
L. Spinoulas, and S. Yoo. Compressive re-
construction for 3d incoherent holographic mi-
croscopy. In 2016 IEEE International Confer-
ence on Image Processing (ICIP), pages 958–
962, Sep. 2016.

[25] Zihao Wang, Leonidas Spinoulas, Kuan He, Lei
Tian, Oliver Cossairt, Aggelos K. Katsaggelos,

and Huaijin Chen. Compressive holographic
video. Opt. Express, 25(1):250–262, Jan 2017.

[26] D. Donnarumma, A. Brodoline, D. Alexandre,
and M. Gross. 4d holographic microscopy of ze-
brafish larvae microcirculation. Optics express,
24(23):26887–26900, 2016.

[27] A. Brodoline, N. Rawat, D. Alexandre,
N. Cubedo, and M. Gross. 4d compressive
sensing holographic microscopy imaging of small
moving objects. Optics Letters, 44(11):2827–
2830, 2019.

[28] Stijn Bettens, Hao Yan, David Blinder, Heidi
Ottevaere, Colas Schretter, and Peter Schelkens.
Studies on the sparsifying operator in com-
pressive digital holography. Opt. Express,
25(16):18656–18676, Aug 2017.

[29] Jing Liu, Guoxian Zhang, Kai Zhao, and Xiaoyu
Jiang. Compressive holography algorithm for the
objects composed of point sources. Appl. Opt.,
56(3):530–542, Jan 2017.

[30] Monte Westerfield. The zebrafish book : a guide
for the laboratory use of zebrafish (Danio rerio).
University of Oregon press, 2007.

[31] Thorsten Schwerte and Bernd Pelster. Digital
motion analysis as a tool for analysing the shape
and performance of the circulatory system in
transparent animals. Journal of Experimental
Biology, 203(11):1659–1669, 2000.

[32] J. Gao, J.A. Lyon, D.P. Szeto, and J. Chen.
In vivo imaging and quantitative analysis of
zebrafish embryos by digital holographic mi-
croscopy. Biomedical optics express, 3(10):2623–
2635, 2012.

[33] E. Cuche, P. Marquet, and C. Depeursinge. Spa-
tial filtering for zero-order and twin-image elim-
ination in digital off-axis holography. Applied
optics, 39(23):4070–4075, 2000.

[34] T. Colomb, E. Cuche, F. Charrière, J. Kühn,
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