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Two new classes of compact weighted essentially nonoscillatory (WENO) polynomial

limiters are presented for second-, third-, fourth-, and fifth-order discontinuous Galerkin

(DG) schemes on irregular simplex elements. The presented WENO-DG procedures are

extensions of the high-order WENO finite-volume and finite-difference schemes of Zhu

and Shu (2017) [25], (2019) [26] to high-order unstructured DG schemes. A compact

positivity preserving limiter is applied to the solutions to ensure pressure and density

remain within physical ranges at all time. It is then verified that the bounded WENO-

DG maintains the formal order of accuracy of the underlying DG schemes in the smooth

regions. The performance of the proposed WENO-DG is also demonstrated with inviscid

test cases including the classical Riemann problems, shock-turbulence interaction, scramjet,

blunt body flows, and the double Mach Reflection problems.

Published by Elsevier Inc.

1. Introduction

Consider the unsteady compressible Euler equations for a perfect gas flow

wt + ∇ · f(w) = 0, w(x, t = 0) = w0(x), (1)

where

w =





ρ
ρu

ρE



 , f(w) =





ρu

ρuuT + pI

ρuH



 , H = E +
p

ρ
, (2)
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ρ is density, u is the velocity vector in x directions, I is an identity matrix, and the total energy, ρE , is defined as

ρE =
p

γ − 1
+

1

2
ρ||u||2, (3)

where p is the pressure and γ is the specific heat ratio.

In the present work, Eq. (1) may be spatially discretized with high-order discontinuous Galerkin (DG) schemes on trian-

gular elements, and applied to continuous and discontinuous flows. The temporal term may be discretized with either the

three stage, third-order strong stability preserving SSP(3,3) Runge-Kutta (RK) [1,2], or the backward Euler time discretization

method.

As with many nonlinear partial differential equations, the solution of Eq. (1) may contain a strong discontinuity with

abrupt changes in physical quantities, such as density, pressure, and temperature. The DG method produces accurate results

if the solution is smooth and/or contains (relatively) weak discontinuities, otherwise significant oscillations and/or nonlinear

instabilities may occur. To avoid such difficulties with numerical oscillations, the DG method needs to be accompanied

by, for example, a limiter strategy such as minmod [3–6], artificial viscosity [7–10], total variation diminishing [11–13], or

weighted essentially nonoscillatory (WENO) [14–19] techniques. The advantage of WENO type limiters is that they can be

compact, of high order, and more importantly do not affect the expected order of accuracy of the underlying DG scheme if

applied to smooth regions. Available WENO schemes are either non-compact [20,21,14,22,16,15,23,24], which is undesirable

for DG methods, or have difficulties in reducing the residuals [20,21,24]. The proposed WENO-FV and WENO-FD schemes of

Zhu and Shu [25,26] address the convergence difficulties that are observed in the earlier WENO procedures [27,28].

Advancement in limiting procedures have also been reported for unstructured simplex elements. For instance, Dumbser

and Loubère [29] proposed a posteriori subcell finite volume limiter for DG schemes on simplex elements, while a compact

WENO limiter for ADER-FV schemes on fixed and moving simplex elements is proposed by Dumbser et al. [30].

Here, two classes of compact WENO polynomial limiters are presented for DG methods on simplex elements that may be

considered extensions of the WENO-FV [25] and WENO-FD [31] schemes. Although the original compact WENO limiters for

finite volume and finite difference schemes rely on an extended stencil for polynomial reconstruction, the main idea behind

the compact WENO for DG schemes is to construct a limited polynomial directly from the underlying DG scheme. The

compact WENO-DG limiters presented here, therefore, require a stencil only as large as (nf aces)(0) + 1 number of elements,

where (nf aces)(0) corresponds to the number of faces of the elements in which the limiter is being applied. For example, for

triangles, the compact WENO stencil has only up to 4 elements (see also Fig. 1). In the first proposed approach, the compact

stencil is considered, and a series of linear polynomials is constructed by solving a (dof × dof ) linear system, where dof

denotes degrees of freedom. In the second approach, a linear polynomial is constructed by solving a series of constrained

least-squares (LSQ) minimization problems within the compact stencil. In both approaches, a WENO polynomial limiter is

obtained with a convex combination of the original polynomial and the constructed linear polynomials that are added using

nonlinear weights. The numerical fluxes are evaluated with the Local Lax-Friedrichs (LLxF) flux, and a compact positivity

preserving limiter [32] is also applied to the solutions to ensure pressure and density remain bounded and physical at all

time.

The paper is organized as follows. Section 2 describes in detail the proposed compact WENO polynomial limiters for un-

structured DG schemes with simplex elements. The positivity preserving limiter for the Euler equations is briefly discussed

in Section 3. A few sample problems, ranging from the classical Sod and Lax problems to blunt body flows and double Mach

reflection test case are presented in Section 4. The concluding remarks are given in Section 5.

2. Proposed WENO-DG polynomial limiters

Two new classes of compact WENO polynomial limiters are proposed here for unstructured DG schemes. These schemes

are in part inspired by the recent successful WENO finite difference and finite volume procedures of Zhu and Shu [25,26],

which are extensions and steady state computations of the earlier works reported by Zhu and Qiu [28,33,34,25] and Levy

et al. [27]. The proposed WENO procedures are designed for simplex elements, and are compact, requiring information only

from the immediate neighbors. For each presented approach, a detailed step-by-step procedure is outlined that may be used

for implementation of the WENO as a post-processing step to the DG solution after each time iteration.

Consider a compact triangular stencil {0,1,2,3} as shown in Fig. 1, where the element 0 is the target element for

which the limiter is applied. The goal is to reconstruct a new candidate polynomial for the target element, p(0)new , that

is nonoscillatory in the presence of discontinuities, and dependent only on the available information within the compact

stencil. We remark that the polynomials constructed throughout this document are defined with a set of basis functions

expressed in a reference element.

The original polynomial on the target element, p(0) , may be expressed in the following identity relation as

p̃(0) := p(0) = γ0

(

1

γ0
p(0) −

∑

i

γi

γ0
p̃(i)

)

+
∑

i

γi p̃
(i), (4)

which holds for arbitrary positive coefficients γ j satisfying
∑3

j=0 γ j = 1, where, γ j , are the linear weights defined as
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Fig. 1. The compact WENO-DG stencil for triangular elements.

γ0 = 0.997, γ j = 0.001 ( j 6= 0),

and the p̃(i) are the to-be-reconstructed polynomials for the elements i = 1,2,3 (i.e., the immediate neighbors of the target

element). The p̃(i) reconstruction procedures are discussed in detail later. The linear weights are then replaced with the

nonlinear weights, ω, and the following reconstructed candidate polynomial is sought for the target element4

p(0)new = ω0

(

1

γ0
p(0) −

∑

i

γi

γ0
p̃(i)

)

+
∑

i

ωi p̃
(i), (5)

where the nonlinear weights are computed by adopting the high-order WENO-FD [25] and WENO-FV [26] techniques of Zhu

and Shu for the present WENO-DG schemes. These techniques are based on the WENO-Z strategy given in Refs. [35–37].

The nonlinear weights are then defined as

ωi =
ωi

∑

j ω j
, ω j = γ j

(

1+
τ

(ǫ + β j)
2

)

, τ =

(∑

i |β0 − βi|

n

)2

, (6)

where n is the total number of reconstructed polynomials used in constructing the WENO polynomial p(0)new as given in

Eq. (5) (i.e., maximum integer value of i) plus the polynomial of the target element 10 . Here ǫ = 10−12 is a small number

to avoid zero denominator, and β is the classical smoothness indicator defined as (see e.g., Jiang and Shu [20] and Kolb

[38])

βi =

k
∑

|l|=1

|10|
(|l|−1)

∫

10

(

∂ |l|

∂xl1 ∂ yl2
p̃(i)

)2

, l = (l1, l2), (7)

where k denotes the polynomial order, and |10| is the volume of the target element.

The above procedure is complete with reconstruction of the polynomials p̃(i) . This is discussed next where two compact

reconstruction approaches are presented in detail.

2.1. Polynomial reconstruction approach 1

In this section, a procedure to reconstruct a set of polynomials, p̃(i) , is described in detail. The reconstructed polynomials

are used for the WENO polynomial limiter given by Eq. (5). First, a procedure for a scalar case is given followed by a system

case.

2.1.1. Scalar case

1. Compute the means of the polynomials on the compact WENO stencil {0,1,2,3}:

u(i) =
1

|1i|

∫

1i

p(i), i = 0,1,2,3, (8)

where 1i denotes neighboring elements with corresponding volume of |1i |. For boundary elements, first obtain the right

values uR by applying the boundary condition along the boundary face, and then integrate uR to get the mean values. If

4 Classical trouble cell indicators are not employed in the presented examples and therefore, the proposed WENO is applied to all the computational

elements. Hence, all the elements in the computational domain are considered as target elements. This approach is beneficial in ensuring that the proposed

WENO does not affect the desired order of accuracy of the DG scheme even if it is artificially applied to smooth region.
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the boundary is an outflow, for example a supersonic outflow, on which we do nothing, integrate the left values uL on

the boundary face to get the corresponding mean values.

2. Construct a set of linear polynomials, p̃( j) , such that

1

|1i|

∫

1i

p̃( j) = u(i), (9)

where i corresponds to the element number in the compact WENO stencil (see Fig. 1), and j refers to the candidate

linear polynomial number. For a triangle, we have three such candidates, and for each candidate, we use the elements in

the ith set to construct a linear polynomial p̃( j):

( j, i) := (1, {0,1,2}); (2, {0,1,3}); (3, {0,2,3}). (10)

Remark. All the reconstructed linear polynomials are defined within the target element, with the basis functions, ϕ̃ , also

defined on the target element. Such basis functions are denoted as ϕ̃
(0)
i . For example, consider the j = 1 polynomial,

p̃(1) . This is defined as

p̃(1) =

2
∑

i=0

ũiϕ̃
(0)
i . (11)

This polynomial is then used for evaluation of the integral given in Eq. (9) with appropriate quadrature rules. The ele-

ments in the ith set {0,1,2} are needed in the construction of the polynomial p̃(1) . Therefore, a 3 × 3 linear system is

solved to obtain the three coefficients (degrees of freedom) of the reconstructed linear polynomial. Thus, for the j and

ith set used in this example, the following linear system is solved:








1
|10|

∑

q wqϕ
(0)
0 |q

1
|10|

∑

q wqϕ
(0)
1 |q

1
|10|

∑

q wqϕ
(0)
2 |q

1
|11|

∑

q wqϕ
(0→1)
0 |q

1
|11|

∑

q wqϕ
(0→1)
1 |q

1
|11|

∑

q wqϕ
(0→1)
2 |q

1
|12|

∑

q wqϕ
(0→2)
0 |q

1
|12|

∑

q wqϕ
(0→2)
1 |q

1
|12|

∑

q wqϕ
(0→2)
2 |q












ũ0

ũ1

ũ2



=





u(0)

u(1)

u(2)



 , (12)

where subscript q denotes summation over the element quadrature points, wq corresponds to the quadrature weights,

and the arrow indicates the extrapolation of the basis onto the neighbor elements 1 and 2. The above system is valid for

interior elements as shown in Fig. 1a. For elements that have faces on physical boundaries, the above system (12) takes

a different form. For instance, consider ith set {1, ∂�1, ∂�2} where ∂� denotes the corresponding boundary face of the

target element that is on a boundary. In this case, the system (12) reduces to








1
|10|

∑

q wqϕ
(0)
0 |q

1
|10|

∑

q wqϕ
(0)
1 |q

1
|10|

∑

q wqϕ
(0)
2 |q

1
|∂�1|

∑

∂q w∂qϕ
(0)
0 |∂q

1
|∂�1|

∑

∂q w∂qϕ
(0)
1 |∂q

1
|∂�1|

∑

∂q w∂qϕ
(0)
2 |∂q

1
|∂�2|

∑

∂q w∂qϕ
(0)
0 |∂q

1
|∂�2|

∑

∂q w∂qϕ
(0)
1 |∂q

1
|∂�2|

∑

∂q w∂qϕ
(0)
2 |∂q












ũ0

ũ1

ũ2



=





u(0)

u∂�1

u∂�2



 , (13)

where ∂� denotes the length of the corresponding boundary face, ∂q indicates summation over the corresponding

boundary face quadratures, and u∂�l
is the mean value evaluated on the corresponding boundary face of the target

element after the boundary condition is applied.

The same process is repeated to construct the other two linear polynomials p̃(2) and p̃(3) .

3. Project the three basis functions of the constructed linear polynomials onto the basis space of the original polynomial of

the target element, p(0); i.e., the (k + d)!/(kd!) basis functions, where k is the polynomial order, and d is the element

dimension.

4. Reconstruct the new WENO limiter as given in Eq. (5) with i = 1,2,3.

2.1.2. System case

1. Follow steps 1 and 2 given for the scalar case.

2. Project p̃( j) , j = 0,1,2,3 onto the characteristic fields

˜̃p
( j)
i = Li · p̃

( j), (14)

where Li are the left eigenvectors based on the mean values of the target cell and the normal direction i. For a triangle,

there are three normal directions corresponding to each face of the element. Note: p̃(0) := p(0) .
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Fig. 2. A sample of randomly generated irregular triangular elements.

Fig. 3. Verification – Residual history for the coarsest mesh.
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Fig. 4. Verification – Residual history for the finest mesh.

3. Use ˜̃p
j
i , and follow steps 3 and 4 given for the scalar case, and evaluate p̃

(0)new

i for each direction i; i.e.,

p̃
(0)new

i =
ω0

γ0

˜̃p
(0)
i +

∑

j

(

ω j − ω0
γ j

γ0

)

˜̃p
( j)
i , j = 1,2,3, i = 1,2,3 . (15)

4. Project p̃
(0)new

i back into the physical space

p
(0)new

i = R i · p̃
(0)new

i , (16)

where R i are the right eigenvectors based on the mean values of the target cell and the normal direction i.

5. Obtain the final reconstructed WENO polynomial for the target cell with weighted averaging:

p(0)new =

∑

i p
(0)new

i |1i|
∑

i |1i|
, (17)

where |1i | corresponds to the volume of the neighboring element for face i of the target element. If the face is a

boundary face, use the volume of the target element, |10|.
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Fig. 5. Example 1 – Residual history for a) third-order strong stability preserving (SSP) Runge-Kutta time scheme, and b) Backward Euler time scheme.

Table 1

Verification – Order of accuracy verification for the second-order DG with and without WENO on irregular triangular elements.

Grid h size L2 Error: DG (P1) Order: DG (P1)

ρ ρu ρv ρE ρ ρu ρv ρE

20×20 2.66E-1 6.015E-3 6.323E-3 6.328E-3 2.056E-2 – – – –

40×40 1.40E-1 1.452E-3 1.520E-3 1.524E-3 4.960E-3 2.21 2.22 2.21 2.22

60×60 8.93E-2 5.950E-4 6.279E-4 6.270E-4 2.056E-3 1.99 1.97 1.98 1.96

80×80 6.93E-2 3.422E-4 3.602E-4 3.595E-4 1.176E-3 2.18 2.19 2.19 2.20

100×100 5.61E-2 2.170E-4 2.255E-4 2.260E-4 7.449E-4 2.17 2.23 2.21 2.17

Grid h size L2 Error: WENO-DG (P1) Order: WENO-DG (P1)

ρ ρu ρv ρE ρ ρu ρv ρE

20×20 2.66E-1 6.015E-3 6.323E-3 6.328E-3 2.056E-2 – – – –

40×40 1.40E-1 1.452E-3 1.520E-3 1.524E-3 4.960E-3 2.21 2.22 2.21 2.22

60×60 8.93E-2 5.950E-4 6.279E-4 6.270E-4 2.056E-3 1.99 1.97 1.98 1.96

80×80 6.93E-2 3.422E-4 3.602E-4 3.595E-4 1.176E-3 2.18 2.19 2.19 2.20

100×100 5.61E-2 2.170E-4 2.255E-4 2.260E-4 7.449E-4 2.17 2.23 2.21 2.17

2.2. Polynomial reconstruction approach 2

In this section, a second approach in constructing the polynomials p̃(i) is presented. In this approach, a constraint

minimization problem is solved using the least squares (lsq) approach. The proposed lsq linear polynomial reconstruc-

tion procedure for unstructured DG schemes is also compact, and its implementation is nonintrusive similar to the first

presented approach.

The aim here is to construct a set of linear polynomials, p̃lsq , on the target cell such that

argmin
ũ

∑

l∈S






1

|1l|

∫

1l

p̃lsq(ũ, x)dx − u(l)






2

, S = {1,2,3} , (18)

where l corresponds to the immediate neighbors of the target element, is satisfied subject to a constraint that the means of

the constructed polynomials remain the same as the means of the original polynomials on the target element; i.e.,
∫

10

p̃lsq dx = u(0). (19)

Thus, the following minimization problem is sought by employing a penalization parameter (called Lagrange multiplier) λ:

E(ũi, λ) = argmin
ũi






∑

l∈S






1

|1l|

∫

1l

p̃lsq(ũi, x)dx− u(l)






2

+ λ






1

|10|

∫

10

p̃lsq(ũi, x)dx − u(0)









 , (20)
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Table 2

Verification – Order of accuracy verification for the third-order DG with and without WENO on irregular triangular elements.

Grid h size L2 Error: DG (P2) Order: DG (P2)

ρ ρu ρv ρE ρ ρu ρv ρE

20×20 2.66E-1 3.679E-4 2.752E-4 2.795E-4 1.153E-3 – – – –

40×40 1.40E-1 4.803E-5 3.425E-5 3.455E-5 1.497E-4 3.17 3.34 3.25 3.18

60×60 8.93E-2 1.438E-5 9.911E-6 9.873E-6 4.455E-5 2.69 2.76 2.79 2.70

80×80 6.93E-2 6.079E-6 4.237E-6 4.238E-6 1.885E-5 3.39 3.35 3.34 3.39

100×100 5.61E-2 3.123E-6 2.114E-6 2.120E-6 9.690E-6 3.17 3.31 3.29 3.16

Grid h size L2 Error: WENO-DG (P2) Order: WENO-DG (P2)

ρ ρu ρv ρE ρ ρu ρv ρE

20×20 2.66E-1 3.679E-4 2.752E-4 2.795E-4 1.153E-3 – – – –

40×40 1.40E-1 4.803E-5 3.425E-5 3.455E-5 1.497E-4 3.17 3.34 3.25 3.18

60×60 8.93E-2 1.438E-5 9.911E-6 9.873E-6 4.455E-5 2.69 2.76 2.79 2.70

80×80 6.93E-2 6.079E-6 4.237E-6 4.238E-6 1.885E-5 3.39 3.35 3.34 3.39

100×100 5.61E-2 3.123E-6 2.114E-6 2.120E-6 9.690E-6 3.17 3.31 3.29 3.16

Table 3

Verification – Order of accuracy verification for the fourth-order DG with and without WENO on irregular triangular elements.

Grid h size L2 Error: DG (P3) Order: DG (P3)

ρ ρu ρv ρE ρ ρu ρv ρE

20×20 2.66E-1 7.134E-6 7.199E-6 7.190E-6 2.358E-5 – – – –

40×40 1.40E-1 4.448E-7 4.377E-7 4.385E-7 1.459E-6 4.32 4.36 4.35 4.33

60×60 8.93E-2 7.258E-8 7.195E-8 7.213E-8 2.418E-7 4.04 4.02 4.02 4.00

80×80 6.93E-2 2.374E-8 2.373E-8 2.365E-8 7.874E-8 4.41 4.37 4.40 4.42

100×100 5.61E-2 9.509E-9 9.330E-9 9.303E-9 3.145E-8 4.35 4.44 4.44 4.36

Grid h size L2 Error: WENO-DG (P3) Order: WENO-DG (P3)

ρ ρu ρv ρE ρ ρu ρv ρE

20×20 2.66E-1 7.176E-6 7.212E-6 7.221E-6 2.371E-5 – – – –

40×40 1.40E-1 4.426E-7 4.369E-7 4.374E-7 1.455E-6 4.33 4.36 4.35 4.34

60×60 8.93E-2 7.273E-8 7.206E-8 7.227E-8 2.423E-7 4.02 4.01 4.01 3.99

80×80 6.93E-2 2.373E-8 2.374E-8 2.367E-8 7.880E-8 4.42 4.38 4.40 4.43

100×100 5.61E-2 9.455E-9 9.326E-9 9.301E-9 3.137E-8 4.37 4.44 4.44 4.38

Table 4

Verification – Order of accuracy verification for the fifth-order DG with and without WENO on irregular triangular elements.

Grid h size L2 Error: DG (P4) Order: DG (P4)

ρ ρu ρv ρE ρ ρu ρv ρE

20×20 2.66E-1 2.285E-7 1.849E-7 1.879E-7 7.260E-7 – – – –

40×40 1.40E-1 7.790E-9 5.853E-9 5.993E-7 2.455E-8 5.26 5.37 5.36 5.27

60×60 8.93E-2 9.745E-10 7.319E-10 7.275E-10 3.050E-9 4.63 4.63 4.70 4.65

80×80 6.93E-2 1.362E-10 1.779E-10 1.766E-10 7.412E-10 5.59 5.58 5.58 5.58

Grid h size L2 Error: WENO-DG (P4) Order: WENO-DG (P4)

ρ ρu ρv ρE ρ ρu ρv ρE

20×20 2.66E-1 2.285E-7 1.849E-7 1.879E-7 7.260E-7 – – – –

40×40 1.40E-1 7.890E-9 5.853E-9 5.996E-7 2.455E-8 5.26 5.37 5.36 5.27

60×60 8.93E-2 1.034E-9 7.604E-10 7.532E-10 3.185E-9 4.50 4.55 4.62 4.55

80×80 6.93E-2 2.363E-10 1.780E-10 1.767E-10 7.413E-10 5.82 5.73 5.73 5.75
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Fig. 6. Verification – Order of accuracy plots for the conserved density, x and y momentums, and energy for DG and the proposed WENO-DG on irregular

triangular elements.

Fig. 7. Schematic of the Riemann problem, and the irregular triangular grid with h = 1/100. The two states of the gas are separated at xd = 0.

Table 5

Initial left (L) and right (R) states used for the Sod and Lax test cases. The position of the initial discontinuity, xd and final simulation times, t f inal are also

given. See Fig. 7 for geometry information.

Test case ρL uL pL ρR uR pR xd t f inal

Sod 1.0 0.0 1.0 0.125 0.0 0.1 0.0 0.2

Lax 0.445 0.698 3.528 0.5 0.0 0.571 0.0 0.14

where ũi are the coefficients of the to-be-constructed linear polynomial for ith degrees of freedom, dof , and |1l| is the

volume of the neighbor l. The constraint minimization problem may be expanded and expressed with employing proper

quadrature rules as

E(ũi, λ) =

argmin
ũi





∑

l∈S

(

1

|1l|

∑

i

∑

q

ũiϕ̃
(0→l)
i,q ω

(l)
q |det J |(l) − u(l)

)2

+ λ

(

1

|10|

∑

i

∑

q

ũiϕ̃
(0)
i,q ω

(0)
q |det J |(0) − u(0)

)


 ,

(21)

where ω
(l)
q is the weight of the quadrature for the qth quadrature point of the lth neighbor, |det J |(l) = |10|

(l) is the

determinant of the Jacobian of the transformation from the reference to the physical element of neighbor l, and ϕ
(0→l)
i,q is

the ith basis function in the reference element of the target element extrapolated to the lth neighbor, and evaluated at the

corresponding qth quadrature point.

The minimization problem is solved by setting the derivatives of E w.r.t. the jth dof coefficient ũ j and λ to zero; i.e.,

∂E

∂ ũ j
=
∑

l

(

1

|1l|

∑

q

ϕ̃
(0→l)
j,q ω

(l)
q |det J |(l)

)(

1

|1l|

∑

i

∑

q

ũiϕ̃
(0→l)
i,q ω

(l)
q |det J |(l) − u(l)

)
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Fig. 8. Predicted density profile for the Sod problem with h/100 irregular triangular elements at t = 0.2, and comparison against the exact solution.

+λ̃

(

1

|10|

∑

q

ϕ̃
(0)
j,q ω

(0)
q |det J |(0)

)

= 0, (22)

∂E

∂λ
=

1

|10|

∑

i

∑

q

ũiϕ̃
(0)
i,q ω

(0)
q |det J |(0) − u(0) = 0. (23)

This may be expressed in a matrix form as

(
∑

l

(
1

|1l |
2

∫

1l
ϕ̃

(0→l)
j

∫

1l
ϕ̃

(0→l)
i

)
1

|10|

∫

10
ϕ̃

(0)
j

sym. 0

)

︸ ︷︷ ︸

A ji

(

ũi

λ̃

)

︸ ︷︷ ︸

U i

=

(
∑

l
u(l)

|1l |

∫

|1l |
ϕ̃

(0→l)
j

u(0)

)

︸ ︷︷ ︸

B j

, (24)

where A ji is a symmetric matrix, and λ̃ = λ/2.

It is important to note that whenever the integration is performed on the neighbor element l, the linear polynomial basis

defined on the target element, ϕ̃(0) , must be extrapolated to the neighboring element. This is emphasized in Eq. (24) by

employing the notation ϕ
(0→l)
j . For convenience and simplicity in the discussion, however, this notation is removed in the

subsequent text, and such extrapolation is therefore assumed to be understood whenever the integration is performed on

the neighboring elements.

For interior triangular elements similar to one shown in Fig. 1a, the matrix A ji is a symmetric 4×4 matrix, and U i and

B j are vectors of length four (three for dof + one for the constraint). They take the following forms



ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E
D

 P
R

O
O

F

Please cite this article in press as: A. Mazaheri et al., Bounded and compact weighted essentially nonoscillatory limiters for discontinuous Galerkin

schemes: Triangular elements, J. Comput. Phys. (2019), https://doi.org/10.1016/j.jcp.2019.06.023

JID:YJCPH AID:8747 /FLA [m3G; v1.260; Prn:17/06/2019; 14:18] P.11 (1-28)

A. Mazaheri et al. / Journal of Computational Physics ••• (••••) •••–••• 11

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Fig. 9. Predicted velocity profile for the Sod problem with h/100 irregular triangular elements at t = 0.2, and comparison against the exact solution.

A ji =











∑

l
1

|1l|
2

(
∫

1l
ϕ̃

(0)
0

)2 ∑

l
1

|1l|
2

∫

1l
ϕ̃

(0)
0

∫

|1l |
ϕ̃

(0)
1

∑

l
1

|1l|
2

∫

1l
ϕ̃

(0)
0

∫

|1l |
ϕ̃

(0)
2

1
|10|

∫

10
ϕ̃

(0)
0

Sym.
∑

l
1

|1l |
2

(
∫

1l
ϕ̃

(0)
1

)2 ∑

l
1

|1l |
2

∫

1l
ϕ̃

(0)
1

∫

1l
ϕ̃

(0)
2

1
|10|

∫

10
ϕ̃

(0)
1

Sym. Sym.
∑

l
1

|1l |
2

(
∫

1l
ϕ̃

(0)
2

)2
1

|10|

∫

10
ϕ̃

(0)
2

Sym. Sym. Sym. 0











, (25)

U i =







ũ0

ũ1

ũ2

λ̃







, B j =











∑

l
u(l)

|1l|

∫

1l
ϕ̃

(0)
0

∑

l
u(l)

|1l|

∫

1l
ϕ̃

(0)
1

∑

l
u(l)

|1l|

∫

1l
ϕ̃

(0)
2

u(0)











. (26)

For triangular elements whose faces may be on boundaries, such as the one depicted in Fig. 1b, where two of the target

element faces are on the boundary, the set of neighbors in the linear reconstruction is therefore l = {1, ∂�1, ∂�2}, where

∂� denotes the corresponding boundary face of the target element that is on a boundary. For instance, consider the triangle

shown in Fig. 1b, for which the following expressions for the A11 and its corresponding right-hand-side B1 are obtained

A11 =
1

|11|2






∫

11

ϕ̃
(0)
0






2

+
1

|∂�1|2






∫

∂�1

ϕ̃
(0)
0






2

+
1

|∂�2|2






∫

∂�2

ϕ̃
(0)
0






2

, (27)
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Fig. 10. Predicted pressure profile for the Sod problem with h/100 irregular triangular elements at t = 0.2, and comparison against the exact solution.

B1 =
u(1)

|11|

∫

|11|

ϕ̃
(0)
0 +

u∂�1

|∂�1|

∫

∂�1

ϕ̃
(0)
0 +

u∂�2

|∂�2|

∫

∂�2

ϕ̃
(0)
0 , (28)

where u∂�l
is the mean value evaluated on the corresponding boundary face of the target element after the boundary

condition is applied. Note that ∂�l denotes that the integration is performed on the corresponding boundary face of the

target element and thus, no extrapolation is needed for the last two terms of the expression (27); extrapolation must be

applied to the first term of the expression.

The complete step-by-step procedure with the second presented approach is outlined below.

2.2.1. Scalar case

1. Compute the means of the polynomials on the compact WENO stencil {0,1,2,3}. This is the same as the step 1 of the

approach 1.

2. Construct the p̃lsq polynomial as outlined above.

3. Use p̃lsq , and follow steps 3 and 4 of approach 1, and evaluate p̃(0)new ; i.e.,

p(0)new =
ω0

γ0
p(0) +

(

ωlsq − ω0
γ lsq

γ0

)

p̃lsq. (29)

2.2.2. System case

1. Follow steps 1 and 2 given for the scaler case.
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Fig. 11. Predicted density profile for the Lax problem with h/100 irregular triangular elements at t = 0.14, and comparison against the exact solution.

2. Project p̃(0) and p̃lsq onto the characteristic field by multiplying them with the left eigenvectors

˜̃p
(0)
i = Li · p̃

(0), (30)

˜̃p
lsq
i = Li · p̃

lsq, (31)

where Li are the left eigenvectors based on the mean values of the target cell and the normal direction i. For triangle,

there are three normal directions corresponding to each face of the element. Note: p̃(0) := p(0) .

3. Evaluate p̃
(0)new

i for each direction i using ˜̃p
(0)
i and ˜̃p

lsq
i ; i.e.,

p̃
(0)new

i =
ω0

γ0

˜̃p
(0)
i +

(

ωlsq − ω0
γ lsq

γ0

)

˜̃p
lsq
i . (32)

4. Project p̃
(0)new

i back into the physical space

p
(0)new

i = R i · p̃
(0)new

i , (33)

where R i are the right eigenvectors based on the mean values of the target cell and the normal direction i.

5. Obtain the final reconstructed WENO polynomial for the target cell with weighted averaging:

p(0)new =

∑

i p
(0)new

i |1i|
∑

i |1i|
, (34)

where |1i | corresponds to the volume of the neighboring element for face i of the target element. If the face is a

boundary face, use the volume of the target element, |10|.
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Fig. 12. Predicted velocity profile for the Lax problem with h/100 irregular triangular elements at t = 0.14, and comparison against the exact solution.

3. Positivity preserving limiter (PPL) for Euler

The proposed WENO-DG does not necessary bound the density and pressure within their physical values and thus, a

proper bound preserving strategy must be adopted to avoid occurrences of unphysical quantities in time and/or space. The

bound preserving limiter must also preserve the formal order of accuracy of the underlying DG scheme. Here, a positivity

preserving algorithm of Wang et al. [32] is adopted and applied to the polynomials in conjunction with the WENO polyno-

mial limiters. The presented PPL limiter for Euler equations, Eq. (1), is completely local requiring only information within

each element, and therefore, enabling an extremely efficient parallel implementation. Similar to the presented WENO-DG,

the given PPL procedure is also nonintrusive and may be applied as a postprocessing step to the polynomials after each

time iteration. The step-by-step PPL procedure for DG methods is:

1. Compute the means of the polynomials w = (ρ,ρu,ρE)T on each element 1

w i =
1

1

∫

1

w i, (35)

where, i = 0 . . . (d + 1) denotes the indices of the vector of conservative variables w, and d refers to the dimension.

2. Construct a new polynomial for density as follows

ρ̂ = θ (1) (ρ − ρ) + ρ, θ (1) = min
x∈q

{

1,
ρ − ǫ

ρ − ρq(x)

}

, (36)

where ǫ is a small number, which is taken as 10−13 in this study, and subscript q denotes values defined on Gauss-

Lobatto quadrature points. This step enforces positivity for density.
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Fig. 13. Predicted pressure profile for the Lax problem with h/100 irregular triangular elements at t = 0.14, and comparison against the exact solution.

3. Create a new vector of conservative variables ŵ with the new density polynomial ρ̂ obtained in the previous step

ŵ =





ρ̂
ρu

ρE



 . (37)

4. Compute the following scaling factor for every quadrature point, q

θq(x) =

{

1 : p(ŵ) ≥ 0

p(w)/
(

p(w) − p(ŵq(x))
)

: otherwise
. (38)

5. Limit the ŵ polynomials to obtain w̃

w̃ = θ (2)
(

ŵ−w
)

+w, θ (2) = min
x∈q

(

θq(x)
)

. (39)

6. Replace w with the limited polynomials w̃ after each time iteration. For explicit time schemes such as SSP RK, this

procedure is applied after each RK stage.

4. Numerical results

The limiters’ abilities to achieve the desired order of accuracy is verified first using an inhomogeneous Euler system. A

few sample examples are then presented to assess the performance of the proposed limiters. These include the classical

Riemann problems (Sod and Lax), the Shu-Osher shock-density interactions, the Mach 3 wind tunnel case of Woodward

and Colella [39], a Mach 3 two-strut scramjet, Mach 3 and Mach 10 blunt body problems, and the Mach 10 double Mach
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Fig. 14. Predicted density profile for the Shu-Osher problem with h/40 irregular triangular elements at t = 1.8.

reflection problem. In all the test cases presented here, the corresponding domains are discretized with irregular triangular

elements and simulations are carried with a CFL condition that is formally proven to be stable [40] under the following

condition

||λ||
dt

h
≤

1

2(2k + 1)
, (40)

where ||λ|| is the magnitude of the largest characteristic quantity of the hyperbolic system, dt is the time step, h is the

element size, and k is the polynomial order.

For each test case, the proposed WENO-DG schemes are applied and the predicted results are shown for second-, third-,

fourth-, and fifth-order solutions. The computed nonlinear weights profiles are also presented.

4.1. Verification – inhomogeneous Euler

Consider the two-dimensional Euler equations

wt + ∇ · f(w) = S, w(x, t = 0) = w0(x), (41)

with the vector of conservative variables w and the source S,

S =








0.4cos(x+ y)

0.6cos(x+ y)

0.6cos(x+ y)

1.8cos(x+ y)








, (42)
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Fig. 15. Predicted velocity profile for the Shu-Osher problem with h/40 irregular triangular elements at t = 1.8.

in domain (x, y) ∈ [0,2π ]. This system has the following exact steady state solution

ρ = 1+ 0.2 sin(x + y), u = 1, v = 1, p = 1+ 0.2 sin(x+ y), (43)

which is imposed on the domain boundaries. A series of randomly generated irregular triangular grids is considered (see

Fig. 2), and steady state solutions of the DG (Pk), k = 1,2,3,4, scheme with and without the presented WENO and PPL

limiters are obtained. The convergence history plots for third-, fourth-, and fifth-order cases shown in Figs. 3 and 4 indicate

that the residuals have settled down to 10−12–10−15 values (machine zero) for both presented WENO approaches. Fig. 5

shows the difference in residuals history for both explicit SSP (3,3) RK and implicit Euler backward time discretization

schemes.

The predicted high-order DG (Pk) solutions are also compared with the exact solution on the given grids by computing

the L2 error. The resulting L2 errors are tabulated in Tables 1–4 and shown in Fig. 6. The L2 errors for both WENO limiters

are identical to the decimal point shown and therefore only one set of values is given. The WENO and positivity preserving

limiters are both applied to all the elements within the domain. The (k + 1)th order of accuracy for both DG and the

WENO-DG schemes are verified, confirming that the proposed WENO maintains the expected order of accuracy of the

underlying DG (Pk) scheme. It is also interesting to note that the presented error magnitudes are order of magnitude

smaller than the corresponding results reported with the third-, fourth-, and fifth-order WENO-FV schemes in Ref. [31].

4.2. Riemann problems

Here, a two-dimensional irregular triangular domain is considered to test the WENO scheme against the classical

one-dimensional Sod and Lax problems. The computational domain (x, y) ∈ [−0.5,−0.05] × [0.5,0.05] is discretized with

triangular elements with a characteristic mesh size of h/100; see Fig. 7. The two states of the gas (γ = 1.4) are separated
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Fig. 16. Predicted entropy profile, ln(p/ργ ), for the Shu-Osher problem with h/40 irregular triangular elements at t = 1.8.

at xd with the initial left and right values given in Table 5. The proposed WENO-DG is then applied to these problems, and

the simulations are continued until the t f inal is reached.

Figs. 8–13 show the predicted solutions, (ρ,u, p), against the exact Sod and Lax values. The predicted fifth-order WENO-

DG results are comparable with the fifth-order ADER-CWENO scheme of Dumbser et al. [30].

4.3. Shu-Osher problem

The one-dimensional idealization of the shock-turbulence interaction suggested by Shu-Osher [41] is considered in a

two-dimensional framework. The goal of this test is to assess the proposed limiters in capturing the shock wave and its

interactions with the unsteady low frequency density fluctuations and its waves propagations downstream of the shock. The

computational domain (x, y) ∈ [−5.0,−0.1] × [5.0,0.1] is discretized with triangular elements and a characteristic mesh

size of h/40. The domain is initialized as

(ρ,u, v, p)|t=0 =

{

(3.857143,2.629369,0.,10.33333), x < 4.0,

(1. + 0.2 sin(5x),0.,0.,1.), x ≥ 4.0.
(44)

This corresponds to a Mach 3 shock (γ = 1.4) interacting with the sine waves density field. The results at t = 1.8 are

presented in Figs. 14–16. The fine structured of the shock-density wave interactions are clearly captured by the proposed

limiter.
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Fig. 17. The geometry of the Mach 3 wind tunnel forward facing step with a sample irregular grid.

Fig. 18. High-order DG with proposed WENO and positivity preserving with irregular triangular elements (h = 1/160) for the forward facing step problem.

Shown are 30 equidistance density contour lines at t = 4.0 from 0.32 to 6.15. The corner step singularity neither in the scheme nor by the grid is treated

to remove the known artifacts that is present in the second-order result. These artifacts are largely removed in the higher-order results.

4.4. Mach 3 forward facing step

Consider the forward facing step problem that was originally proposed by Woodward and Colella [39]. This test is often

referred to as the Mach 3 wind tunnel test. The computational domain is shown in Fig. 17. The initial conditions correspond

to a uniform flow moving to the right with Mach 3, (ρ,u, v, p) = (1.4,3.0,0.0,1.0). The inflow condition is imposed to the

left boundary while a do-nothing boundary condition is set to the right boundary. A reflecting boundary condition is applied

to other surfaces, and the flow is initialized with the left boundary values. The domain (see Fig. 17) is discretized using

irregular triangular elements with characteristic element size of h/160. The high-order solutions at t = 4.0 are presented in

Fig. 18. Note that no modification, neither to the scheme nor to the grid resolution, is applied to the corner singularity. The

corner step singularity is known to produce an erroneous entropy layer in addition to spurious Mach stem at the bottom

wall. These artifacts are clearly present in the presented second-order result; the predicted higher order solutions are almost

free from these artifacts.

4.5. Scramjet

Consider a two-strut scramjet (see Fig. 19 and Table 6) with a Mach 3 inflow imposed on the left surface boundary. For

this test, the second proposed approach produced nearly machine zero residuals as illustrated in Fig. 20. The profiles of the

computed nonlinear weights along the centerline of the two-strut scramjet are shown in Fig. 21. The corresponding density

contours in the range of 1.5 and 8.0 are shown in Fig. 22. These results are in agreement with the previously published

results [42–44] on a similar configuration; the exact geometrical information used in generating the previously published

articles was not known to the authors.
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Fig. 19. The geometry of the two-strut scramjet test case with a sample irregular grid with 10,000 vertices. Coordinates of the lower half portion of the

geometry is given in Table 6.

Table 6

The coordinates of the lower half portion of the two-strut scramjet geometry shown in Fig. 19.

Points 1 2 3 7 8 9 10 11

(x, y) (0,-3.5) (0.4,-3.5) (16.9,-1.74) (4.9,-1.4) (12.6,-1.4) (14.25,-1.2) (9.4,-0.5) (8.9,-0.5)

Fig. 20. Absolute value of the elemental residuals obtained with the second proposed WENO approach for the Mach 3 two-strut scramjet test case.
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Fig. 21. Nonlinear weights along the centerline of the Mach 3 two-strut scramjet problem.

Fig. 22. Hundred equally spaced density contours in the range of 1.5 and 8.0 using the second presented WENO approach for the Mach 3 two-strut scramjet

test case with 10,000 unadapted irregular triangular elements.
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Fig. 23. Schematic of the blunt body geometry and a sample irregular grid.

Fig. 24. Nonlinear weights along the stagnation line of the Mach 10 blunt body problem.

4.6. Mach 3 and 10 Blunt body flows

Consider a bluff body in an inviscid compressible flow traveling at Mach 3 and Mach 10. The free stream condition is set

to (ρ,u, v) = (1.4,3,0) with γ = 1.4, and a reflecting boundary condition is imposed on the solid surface. The bluff body

(see Fig. 23) consists of a flat face with a unit length l, and two curved shoulders with l/2 radii.

The plots of the nonlinear weights along the stagnation line for each of the governing equations are shown in Fig. 24.

Density contour lines are shown in Fig. 25 for both Mach 3 and Mach 10 flows.
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Fig. 25. Thirty equally spaced density contours in the range of 1 and 8 for the Mach 3 (top row) and Mach 10 (bottom row) blunt body test cases.

The strong shocks are correctly captured but there exists some waviness in the density contour lines, particularly when

the polynomial order and the intensity of the shock are increased. However, these striation-like patterns, which are due to

irregularity of the grid elements in the vicinity of the shock, appear to have minimal effects on the surface quantities as

illustrated in Fig. 26. Further improvement to the proposed WENO is needed to reduce these striation-like patterns in the

post shock regions. This will be reported in future studies.

4.7. Double Mach reflection test case

The double Mach reflection problem is originally proposed by Woodward and Colella [39] as a benchmark test for Euler

solvers. The problem consists of a Mach 10 shock front that meets a 30-deg inclined ramp. The shock front initially sits

at x0 = 1/6, and makes a 60-deg angle with the reflecting wall (x-axis). The properties of the undisturbed air (γ = 1.4)

ahead of the shock are ρ = 1.4 and p = 1. Hence, the shock speed is |us| = 10. As it is a customary, this problem is solved
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Fig. 26. Top row: Mach 3. Bottom row: Mach 10; a,d) density profile along a line normal to the stagnation point, b,e) surface density, and c,f) surface

temperature. Data are extracted from a low-order visualization.

Fig. 27. Schematic of the double Mach reflection, and the computational domain (x, y) ∈ [0,4] × [0,1] with the ramp-aligned coordinate system.

in a computational domain (x, y) ∈ [0,4] × [0,1] with a coordinate system that is aligned with the ramp; see Fig. 27. The

domain is discretized with irregular triangular elements and a mesh size of h = 1/200.

Considering the ramp-aligned coordinate system, the problem is therefore setup with the following initial condition:

(ρ,u, v, p)|t=0 =

{

(8.0,+8.25cos(π/6),−8.25 sin(π/6),116.5), x < xs,

(1.4,0.0,0.0,1.0), x ≥ xs,
(45)

where the shock position is computed as,

xs(y) = x0 + y tan(π/6). (46)

For the boundary conditions, the post-shock values are imposed for the short region from x = 0 to xs along the lower

boundary at y = 0, while for the rest of the lower boundary, a reflecting boundary condition is imposed. This ensures that

the reflecting shock is attached to the wall. The initial post-shock condition is also assigned at the left boundary along

the x = 0 axis. The boundary condition on the upper boundary along the y = 1 axis consists of both pre- and post-shock

values. This boundary condition is imposed based on the exact positioning of the traveling Mach 10 shock; i.e., xs|y=1 +
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Fig. 28. Nonlinear WENO weights, ω j , along the y = 0.3 for the double Mach reflection case.

|us|/ cos(π/6) t . The readers are referred to Ref. [45] for discussions on the effects of the upper boundary condition and the

computational domain size on numerical artifacts in the predicted solutions; such effects are not investigated in this study.

The computed nonlinear weights along the y = 0.3 is plotted in Fig. 28. The density contours for a truncated domain

(x, y) = [0,3.2] × [0,1] (the computational domain extends to x = 4) with 41 equally spaced isolines from 1.5 to 22.5 at

t = 0.2 are shown in Fig. 29 for the second-, third-, fourth-, and fifth-order WENO-DG. The closeup views of the triple Mach

points region, (x, y) ∈ [2,2.9]×[0,0.6], are shown in Fig. 30. Clearly, the complexity of the triple Mach points is captured by

the proposed limiters on the irregular triangular mesh. The quality of the solution improves with increasing the polynomial

order on the same identical irregular triangular mesh. The resolution of the curled flow structures along the primary slip

line, which is caused by its interactions with the secondary reflected shock emanating from the secondary triple point, is

often used for judging the quality of the numerical scheme (see Ref. [45] for definitions of the primary and the secondary

triple points and slip lines). The presented results provide a remarkable curled flow structures compared to the solutions

reported by Hu and Shu [21], Zhu et al. [46], and Dumbser et al. [30]. Further improvement in the WENO could reduce the

noise in the predicted contour lines. Grid adaptation could also enhance the results further.

5. Concluding remarks

Two compact WENO limiters were proposed for DG schemes for irregular triangular elements, and detailed step-by-step

construction procedures were outlined. The WENO-DG limiters were bounded with a compact bound-preserving limiter

for the Euler equations. It was verified that the proposed bounded WENO-DG polynomial limiters preserve the expected

order of accuracy of the underlying DG schemes when they are applied to smooth regions. A few test cases, including

the classical Riemann problems, Shu-Osher shock-turbulence interaction, scramjet, blunt body, and double Mach reflection

problems, involving strong shocks were performed, and the results for second-, third-, fourth-, and fifth-order compact and

bounded WENO-DG are presented. It was shown that the second proposed WENO-DG is more effective for some problems in
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Fig. 29. High-order DG with proposed WENO and positivity preserving with irregular triangular elements (h = 1/200) in (x, y) ∈ [0,4] × [0,1]. Shown are

41 equidistance density contour lines at t = 0.2 from 1.5 to 22.5.
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Fig. 30. High-order DG with proposed WENO and positivity preserving with irregular triangular elements (h = 1/200) in (x, y) ∈ [0,4] × [0,1]. Shown are

zoom-in views around the Mach stems at t = 0.2 with 41 equidistance density contour lines from 1.5 to 22.5.

reducing the elemental residual to machine zero than the first proposed limiter. Both limiters however showed similar end

results. The proposed limiter performed well in the Sod and the Lax problems. The limiter also performed remarkably well

capturing the high-frequency oscillations generated by the shock-turbulence interactions in the Shu-Osher problem, as well

as the complexity of the triple Mach point and the curled flow structures in the double Mach reflection problem. Practical

problems such as the two-strut scramjet and blunt body problems were reasonably predicted by the proposed limiter. Blunt

body surface quantiles showed nearly smooth solution predictions even in the presence of striation-like patterns in the

post shock regions due to irregularities of the grid elements in the shock regions, and misalignment of the element faces

with the bow shock. Further improvement to the WENO polynomial limiter, and extensions to three-dimensional tetrahedral

elements will be reported in future studies.
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Highlights

• Compact high-order WENO for DG methods on triangular elements.

• Bounded polynomial limiter with a positivity preserving.

• (k + 1)th order of accuracy on irregular triangular elements.

• Nonintrusive and simple implementation procedures.
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