
HAL Id: hal-02321379
https://hal.science/hal-02321379v1

Submitted on 21 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a better integration of modelers and black box
constraint solvers within the Product Design Process
Jean-Philippe Pernot, Dominique Michelucci, Marc Daniel, Sebti Foufou

To cite this version:
Jean-Philippe Pernot, Dominique Michelucci, Marc Daniel, Sebti Foufou. Towards a better integration
of modelers and black box constraint solvers within the Product Design Process. Annals of Mathe-
matics and Artificial Intelligence, 2019, 85, pp.147-173. �10.1007/s10472-018-9599-5�. �hal-02321379�

https://hal.science/hal-02321379v1
https://hal.archives-ouvertes.fr

Annals of Mathematics and Artificial Intelligence (2019) 85: 147–173

https://doi.org/10.1007/s10472-018-9599-5

Towards a better integration of modelers and black box
constraint solvers within the product design process

Jean-Philippe Pernot1 ·Dominique Michelucci2 ·Marc Daniel3 · Sebti Foufou2,4

Published online: 18 September 2018

© Springer Nature Switzerland AG 2018

Abstract

This paper presents a new way of interaction between modelers and solvers to support the

Product Development Process (PDP). The proposed approach extends the functionalities

and the power of the solvers by taking into account procedural constraints. A procedural

constraint requires calling a procedure or a function of the modeler. This procedure performs

a series of actions and geometric computations in a certain order. The modeler calls the

solver for solving a main problem, the solver calls the modeler’s procedures, and similarly

procedures of the modeler can call the solver for solving sub-problems. The features, speci-

ficities, advantages and drawbacks of the proposed approach are presented and discussed.

Several examples are also provided to illustrate this approach.

Keywords Geometric modeling · Constraints · Procedural constraints · Solver · Modeler

1 Introduction

Product design is a cyclic and iterative process, a kind of systematic problem solving, which

aims at finding a solution integrating the procedural aspects of design with the structural

� Sebti Foufou
sfoufou@u-bourgogne.fr

Jean-Philippe Pernot
Jean-Philippe.Pernot@ensam.eu

Dominique Michelucci
dmichel@u-bourgogne.fr

Marc Daniel
Marc.Daniel@univ-amu.fr

1 Arts et Métiers, LISPEN EA 7515, HeSam, Aix-en-Provence, France

2 LE2I, CNRS UMR 5158, University of Burgundy Franche-Comté, Dijon 21000, France

3 LIS Laboratory, UMR CNRS 7020, Aix-Marseille University, Marseille, France

4 Computer Science, New York University, Abu Dhabi, United Arab Emirates

148 J.-P. Pernot et al.

and feasibility aspects of design problems [22]. Design is also a heuristic interactive process

that can be adapted to the particular requirements of a task [14]. It is therefore crucial that

computer-aided tools adopted during the industrial Product Development Process (PDP) can

support users in dealing with these paradigms and associated requirements. Clearly, the PDP

is not unique and may vary deeply from company to company, depending on several factors

such as the complexity of the product to be designed, the available financial resources, the

equipment used, the team of specialists involved and so on. The variability of the PDP is

also directly linked to the adopted scenarios and the needs are different if the product has to

be designed starting from scratch, or using an existing product to be reverse engineered, or

if a version already exists and can be used as a starting point for the development of a new

product. Anyhow, structuring a PDP is always more and more critical as product complexity

increases.

Despite this variability, a generic structure of a PDP can be devised as a reference scheme

that can be adapted to specific companies, scenarios and classes of products. Here, even if

alternative paradigms can be imagined [13], it is assumed that a digital model of the product

stands as a reference product model. Figure 1 summarizes the structure of such a reference

PDP [22]. The arrows represent the flow of information and/or digital models that can be

communicated from one activity to another as soon as the first activity has been carried out.

Double-headed arrows are not prescribing systematic communications between two or more

activities. They can be reduced to single-way communications for some specific scenarios

[22].

The PDP involves many actors, tasks, and activities, currently supported by dedicated

Information Technology (IT) tools such as: computer-aided design (CAD), computer-aided

styling (CAS) [21], computer-aided engineering (CAE), and computer-aided manufacturing

(CAM). This process often relies on digital mock-ups (DMUs) that integrates multi-

representation and multi-resolution geometric models to shape complex components and

products possibly incorporating free-form surfaces [53]. In any case, dedicated adaptation

processes have to be developed to answer the needs for multi-representations and multi-

resolutions at the different stages of a PDP. Such adaptations also have to take into account

Fig. 1 Generic structure of a PDP and its associated flows of information and/or digital models [22]

Towards a better integration of modelers and black box... 149

interoperability conditions that are key issues when setting up a PDP within a competitive

industrial environment. Unfortunately, the ability of the existing tools to interoperate is not

yet fully supported and some adaptation steps can for instance take up to several thousands

of hours for the preparation of specific simulations in the aeronautic domain [15].

At the end of the PDP, the complete product definition can be seen as the result of an

optimization process where various requirements (e.g. functional, aesthetic, economical,

feasibility) have to be satisfied so as to get the best admissible and optimized solution. Most

of the time, all the requirements cannot be fulfilled and a compromise has to be found.

Sometimes, requirements are even conflicting. Moreover, any optimization process calls

for more structure between the design and simulation tasks to tightly connect simulation

and design updates when component shapes are evolving. Of course, this also refers to the

previously identified lack of interoperability. It is illustrated in Fig. 1 with double-headed

arrows between design processes and simulation to enforce that CAD and FE models must

interact with each other during a shape optimization process.

Consequently, shape modifications and dimension adjustments are common practices

that must be supported by the digital models of a product and its components. This statement

justifies the need for a modeler to interact with the product characteristics and the need

for a solver to find a solution which satisfies the requirements specified by the actors of

the PDP. Historically, the first modelers were mainly used to define CAD models so that

CNC machines can produce the different parts. Now, CAD models are regarded as product

reference data which can be used and adapted all along the PDP and not only to prepare the

manufacturing phases. Thus, the modeler has become mainstream in the PDP. Today, even if

they can still be improved and notably for the design of free-form shapes, modelers are quite

robust and are widespread in the industry. They can support different modeling strategies

more or less adapted for design reusability [11]. They can support product models composed

of several hundreds of thousands parts. Most of the time, the modeler also encapsulates a

solver used to play with the parameters of the CAD models so as to find a solution which

best satisfies the requirements. Such an encapsulation is clearly a limitation as it prevents a

proper integration of the numerous requirements associated with the different steps of the

PDP. It will be further discussed in this paper.
Regarding the solvers, the needs have also evolved. The first attempts have been to solve

problems having rather simple geometrical constraints [3, 34]. But the needs for more com-

plex constraints have raised and new taxonomies have been suggested [12]. In the recent

years, semantic-based design, which includes declarative modeling, has become an impor-

tant field of research [2]. The idea is to avoid low-level manipulations of geometric entities,

and to be closer to the way the actors of the PDP are thinking and working, i.e. closer to

the semantics they manipulate. Today, one major issue is to be able to manage require-

ments which cannot be expressed as a set of equations. For examples, the maximum of the

Von Mises stress should be smaller than 200 MPa, the final product should cost less than

$150, the mass of the object should be smaller than 1 kg, there should not be collisions

between the parts. These are examples of requirements which cannot be transformed in a set

of equations. Thus, the solvers also have to take into account procedural requirements and

constraints, i.e. requirements and constraints requiring the call to a procedure or a function.

This refers to the notion of black box constraints, which is discussed in this paper.
Thus, there exists a need for developing a new generation of modelers able to handle a

broad type of constraints resulting from more or less complex procedures (black box con-

straints or procedural constraints), that are specified at the different steps of the PDP. Such

a modeler must be able to delegate the optimization loop to a solver which might have to

call procedures possibly available in different software or libraries used all along the PDP.

150 J.-P. Pernot et al.

Thus, the communication between the modeler and the solver is two-ways and the interop-

erability is improved. In this article, the modeler plays a central role in the sense that it is

used to generate and/or update the CAD models according to geometric commands directly

sent by the user, or by the solver. It also supports the call to procedures used to evaluate

specific properties of the CAD models. In the context of this work the modeler has to be

understood, at a broad sense, as the tool which performs the geometric modifications when

changes are requested. It is in charge of maintaining the consistency of the current geomet-

ric configuration. A solver finds the values of unknown variables linked by constraints and

submitted to optional energy function to be minimized.

This paper contributes to the analysis and understanding of the existing technics and

proposes a new approach for a better integration of modelers and solvers within the PDP.

The modeler and the solver are separated and can interact, meaning that the solver can call

procedures provided by the modeler. However, this separation has to be balanced. Some-

times the modeler and the solver could be two modules of the same software (for instance,

in Section 4.4 the CATIA solver is used through plugins on CATIA, while in Sections 4.1

and 4.2 solvers are seen as independent modules but linked to the application), or they could

be decoupled (in Section 4.3, UNITY calls an external solver). The contributions of this

paper could be summarized as: (i) a framework to better interoperate and to support the

interactions between a solver and the numerous tools used along the PDP; (ii) the frame-

work supports both equations and black box constraints. It is compatible with today’s tools

for detecting conflicts and redundancies between constraints, it can still compute derivatives

and exploit the sparsity of the systems; (iii) several examples are presented to show possible

implementation architectures for the framework.

This paper is organized as follows. The next section analyzes the current approaches

and their limitations. Section 3 details the new proposed approach and discusses the advan-

tages and disadvantages. Section 4 illustrates some of its features through several examples,

before the conclusion in Section 5.

2 Limitations of today’s approaches

Nowadays, CAD modelers provide their solvers of geometric constraints and usually the

solver has its own constraints editor. In some cases the solver may even have one editor

for 2D and another for 3D constraints. Basically, the constraints concern vertices of inter-

est, straight lines, planes, circles, spheres, and cylinders whose parameters are the unknown

variables. These classical solvers use various types of constraints (such as incidence, tan-

gency, alignment, parallelism, orthogonality, angles and distances) to sketch and constrain

the shape of mechanical parts. These solvers translate the constraints into equations. For

example, the 2D constraint of distance d between two points (x, y) and (x′, y′) is translated

to the equation (x − x′)2 + (y − y′)2 − d2 = 0. Here, the variable d is either a parameter in

which case its value is known to the solver, or unknown in which case the solver will have

to compute it.
Those mathematical equations are usually represented using Directed Acyclic Graphs

(DAGs). In such a representation, a DAG is a tree with some shared vertices. The leaves

of the tree are either variables (i.e. parameters or unknowns) or numerical coefficients. The

internal nodes of the tree are either elementary arithmetic operations or functions such as

exp, sin, cos, tan. As the mathematical equations associated to geometric constraints are

available, it is possible to compute the expressions of the derivatives, and use formal calcu-

lus. Indeed, if all the constraints are algebraic it is, theoretically, possible to resort to formal

Towards a better integration of modelers and black box... 151

calculus using standard or Grobner basis. It might also be possible to triangulate the system

of equations and put it in the form f1(U, x1) = f2(U, x1, x2) = . . . = 0 where U is the

vector of parameters and xi are the unknown variables. When the constraints are expressed

in 2D and the problem can be solved by hand using ruler and compass, it is possible to com-

pute the construction plan of the solution figures. The construction plan can be computed

using geometric algorithms [3, 4, 36, 39, 51, 59], Artificial Intelligence [17, 18, 20], or even

formal calculus such as some variants of Lebesgue algorithm. In practice, geometry learn-

ing software applications, for instance GeoGebra [30], resort to formal calculus more than

CAD solvers [42, 54]. Finally, DAGs can be translated into C or C++ programs, which are

compiled and linked dynamically to numerical solvers and modelers.

Strictly geometric constraints are not sufficient for CAD/CAM. Thus, in late nineties,

Hoffmann et al. [35], and Joan-Arinyo [40] proposed an hybrid solving method. The idea is

to combine a geometric solver and an equational solver. This hybrid approach also relies on

equations. So the solver is still unable to call procedures of the modeler.

Clearly, such an architecture is limiting and is not likely to improve the level of interoper-

ability within the PDP. Often, the product shape results from an optimization problem where

the various requirements are specified by the actors involved in the PDP. Those require-

ments can be of different types and their computation may require the need of external tools

or libraries. For example, the shape of a turbine blade is the result of a complex optimiza-

tion process which aims at finding the best compromise between notably its aerodynamic

and mechanical performances. During such an optimization loop, several complex simula-

tions are required and cannot be performed neither by the modeler nor by the solver. Thus,

several calls to external software or libraries are performed.
Moreover, the requirements may not always be represented with equations. This is true

when specifying constraints on mechanical quantities such as the Von Mises stress which

results from a complex Finite Element simulation. But this can also happen when dealing

with free-form surfaces which are often obtained tediously from fairly sophisticated mod-

eling functions (e.g. sweep, loft, blend). Thus, solvers have to take into account constraints

expressed by procedures or functions. Of course, these so-called black box constraints can-

not be manipulated in the same way as if some equations were available. It is for example

not possible to compute symbolic expressions of derivatives. However derivatives can still

be approximated with finite differences or any other approximation scheme, and exactly

evaluated with dual numbers (Section 3.8).
Furthermore, it can be observed that free-form surface models do not benefit from

construction tree structures that ease modifications and associate a process with a digital

representation of an object [12]. Industrial CAD software rely on an incremental model-

ing paradigm where a complex free-form shape is incrementally and interactively generated

through a sequence of simple shape modeling operations. The chronology of these oper-

ations is at the basis of a history tree describing the construction process of an object.

Consequently, without a real construction tree, free-form shape modifications are generally

tedious and frequently result in update failures. This is even true when dealing with surfaces

exchanged through the STEP or IGES standard formats for which the construction tree is

not transferred. As a result, it is always difficult to incorporate free-form surface modifi-

cations in a shape optimization loop since the impact of parameter modifications are much

less predictable on free-form surfaces than on CAD models composed of simple analytical

surfaces. Such a limitation reduces drastically the capacity to interoperate and to really inte-

grate the requirements coming from the entire PDP. Sometimes, the modification of some

parameters require interactive manipulations which reduce the efficiency of a PDP with a

significant cost [62].

152 J.-P. Pernot et al.

The uncertainties the actors have when defining their requirements are also not fully

handled by today’s modelers and solvers. Product requirements can be subdivided into two

complementary categories, qualitative and quantitative ones. Quantitative requirements like

a power or a velocity can be subjected to tolerances, which in some sense give a flexibil-

ity that can be used to find the compromise. Qualitative requirements like aesthetics cannot

be associated with tolerances, and compromises are more subjective, which in some sense

can be a good mean to absorb the uncertainties. Even if those examples suggest some pos-

sible ideas to better take into account the uncertainties, specific developments need to be

undertaken.

Finally, because modifying a shape is also comparable to exploring a solution domain,

letting the user know that some shape modifications are just not possible is as important

as providing solutions. User-specified requirements may not always be consistent and the

overall set can be over-constrained. It is up to the solver to detect those inconsistencies and

to give feedbacks on how to remove them. If this is well done in today’s 2D sketchers [44],

such a level of understanding is not yet fully supported within commercial software. Here

again, such a limitation restricts the integration of 3D shapes in the product optimization

process since the solver can play with some parameters and can generate non acceptable and

not detected configurations which can, at the extreme, cause a crash of the system. We show

that all low- or high-level existing methods for detecting conflicts and providing feedbacks

to users still apply with the proposed framework. The latter extends their scope.

3 Next generation of modeler-solver interactions

3.1 Towards a new approach

To overcome the limits of today’s approaches, a new modeling framework, with a solver

handling constraints associated with the different steps of the PDP, is proposed. Figure 2

illustrates this idea of solver-modeler interactions with a solver at the center and other tools

and software surrounding it. The modeler calls the solver for solving a main problem, the

solver calls the modeler’s procedures, and similarly procedures of the modeler can call the

Fig. 2 Framework of the envisioned approach with a solver handling black box constraints associated to the
different steps of the PDP

Towards a better integration of modelers and black box... 153

solver for solving sub-problems. Similarly, other tools (e.g. CAE, CAS, CAM software)

can also be integrated and do interact with the solver as the modeler does. Thus, the solver

interacts with the different tools, and notably with the modeler, using geometric procedures

to evaluate the constraints arising from the product and process requirements. The solver

sends feedbacks to the different tools. Considering the interactions with the modeler, the

solver calls two kinds of procedures: constructive procedures which create shapes, and query

procedures which interrogate existing shapes and measure their properties. As a result, the

solver receives outputs which can be used during the solving process. All procedures input

numerical values, and return numerical values.

Thus constraints are no more represented with equations F(X) = 0, for a function F

from R
m to R

n, but only with procedures that compute F(V) for given numerical values

V ∈ R
m. These constraints are called black box constraints [32] or procedural constraints,

to emphasize that equations are no more available, contrarily to what happen with classi-

cal geometrical solvers. The solver has to find values V such that F(V) returns 0 in R
n.

The solver is aware of the signature of the underlying function F : Rm → R
n. The com-

munication protocol between the solver and the modeler is detailed below. However, the

user-specified requirements may be inconsistent and the overall set can be over-constrained.

Thus, the solver has to detect those inconsistencies and give feedbacks to the experts on

how to remove them. The way over-constrained configurations can be detected and treated

is discussed in this paper.

This new approach makes sense only if systems of procedural constraints can be effi-

ciently solved. Fortunately, classical fast methods in numerical analysis can be used to solve

systems of procedural constraints. Moreover, they permit to exploit the sparsity of systems

of procedural constraints.
Integrating a procedural constraints solver into an existing parametric modeler, such as

FreeCAD [26] and FreeSHIP [27] for CAD, or Blender [6] for computer graphics, brings

several low-cost advantages such as: (i) improving the functionalities of the modeler, (ii)

opening more possibilities for the modeler in terms of constraint formulation and solving,

(iii) simplifying the solver as well as the modeler in terms of functionalities and usage.

Actually, the main features of the proposed approach are discussed below.
The implementation of the proposed approach does not require the development of a

new type of modelers, contrarily to the DECO project [32]. Moreover, the solver can use a

large set of very sophisticated and efficient geometric procedures available in the modeler

or in the PDP software. Few examples of such procedures are the computations of dis-

tances, furthest distances, interpenetration depths, bounding boxes, volumes, intersections,

Boolean operations between solids, blending, filleting, meshing, reconstructing, etc. In the

classical approach, the distance can only be the distance between simple elements (points,

lines or planes), with procedural constraints, it can be the distance between complex shapes

like assemblies. Figure 3 shows the generalization to three arbitrary objects of Appolonius

problem which consists in finding the circle tangent to three given circles. Procedural con-

straints permit to generalize to three arbitrary objects, solving with BFGS: dA(x, y) − R =

dB(x, y) − R = dC(x, y) − R = 0. The procedure dA(x, y) computes the smallest distance

from point (x, y) to the object A, whereas x, y and R are the unknowns. It is possible to gen-

eralize using greatest distances DA,DB , DC and solving: (dA(x, y)−R)(DA(x, y)−R) =

(dB(x, y) − R)(DB(x, y) − R) = (dC(x, y) − R)(DC(x, y) − R) = 0.

In the proposed approach, the solver delegates the details and the complexities of the cal-

culations to the procedures of the modeler. Therefore, the solver remains simple and easy

to maintain. Similarly, the modeler no longer has to manage the resolution of some con-

straints: it delegates them to the solver. Thus, both the solver and the modeler are simplified.

154 J.-P. Pernot et al.

Fig. 3 Generalization of the Appolonius problem to three arbitrary objects. Some iterations of the L-BFGS
solver are sufficient to visually converge to a solution

The use of constructive and query procedures permits to dramatically extend the scope of

expressible constraints, and the power of the modeler.

This approach helps combining heterogeneous geometric representations such as

meshes, implicit analytical surfaces (e.g. quadrics, torii, cyclides), and parametric surfaces

such as Bézier or NURBS [32]. When dealing with such heterogeneity, the solver only needs

to call the appropriate procedures from the modeler. It is impossible with classical solvers.

Another advantage of this approach is that procedures are definitely much more con-

venient and powerful than equations. Geometric modelers on the market provide efficient

procedures for generating shapes, and for interrogating shapes and sets of shapes (called

assemblies, or scenes). For instance, an interrogating procedure computes the point of a

given shape S the closest (or the furthest) to a given point p. This procedure may use GPU

or accelerating data structures such as octrees, BSP trees, and kd-trees. If S is an unknown

shape, it may seem that this procedure can no more be used. But, when a numerical iterative

solver is used, it provides (approximate) numerical values for unknown variables (actually

modifiable) X at each step. At initialization, components of X0 are read from the sketch.

Thus, after all, it is possible to use procedures of the modeler even when S is unknown.

This advantage of procedures over equations also holds when the shape S in the previ-

ous example is as simple as a segment (a part of a line), a triangle (part of a plane), or a

square (part of a plane), which are the simplest examples of composite figures ubiquitous in

CAD/CAM. Procedures are also much more convenient than equations for the constraint:

|M(X)| = 0, where the determinant of the matrix M must vanish. Entries of M can be piece-

wise polynomials or rational functions. Unfolding the mathematical expression for |M(X)|

has exponential cost, when X are unknowns. But all Linear Algebra packages provide

procedures to compute in polynomial time |M(U)| for given numerical values U ∈ R
n.

One inconvenience of the proposed approach is that the solver can no more use Interval

Analysis and interval solvers [38], subdivision methods [19, 24, 28, 50], or Computer Alge-

bra. However, procedures still can use all these methods because their parameter values are

known.

Another inconvenience is due to non analytic functions (splines, NURBS, min, max, |.|,

functions using if-then-else instructions). Non analytic functions must be taken into account.

Procedure compute them in a straightforward way, contrarily to equations. But using non

analytic functions has two consequences. Only the second is indeed an inconvenience.

First consequence, deciding dependences of non analytic functions on variables (does

Fl(X) depends on Xc?) is non decidable. It is decidable in a probabilistic way for analyti-

cal functions, but slow. Thus the best solution is that the modeler informs the solver of the

dependences, in other words which entries in the Jacobian are not structurally zero. This

information is called the sparsity data or the sparsity graph. It is equivalent to the clas-

sical bipartite graph linking equations (now procedures) and unknowns (now modifiable

Towards a better integration of modelers and black box... 155

variables). This graph is used to detect the structurally over-, under- and well-constrained

part, and the irreducible well-constrained subsystems in the well-constrained part. Meth-

ods in sparse linear algebra also rely on this graph [41]. Today, the interface of some non

linear solvers or optimizers does not account for the sparsity data. Assuming that the spar-

sity data is available, it is still possible (Section 3.6) to exploit the sparsity of systems of

constraints in CAD/CAM, i.e., the fact that the results of procedures do not depend on all

unknown (actually modifiable) variables. For sure, when considering more requirements, it

will be interesting to try to decompose the problem in subproblems which can be treated

and analyzed step by step [37].

Second consequence, homotopy solvers which find all roots of polynomial systems [61]

are no more usable, for two reasons: first, equations are no more available, and second, even

if they were (with DAG), functions computed by procedures are non analytical, thus non

polynomial, so homotopy theory no more applies. For example, the fundamental theorem of

algebra (a degree d polynomial has d complex roots, i.e., C is an algebraically closed field)

does not apply to piecewise polynomials.

3.2 Technical and theoretical issues

In this section, we mention some technical or theoretical issues of our approach.

First, when solving procedural constraints of type F(X) = 0, the solver has no more

access to the mathematical expression for the underlying function F (if one exists). The

solver can no more compute the mathematical expression of derivatives of F . Yet it can still

approximate the values of derivatives with finite differences but this is not accurate enough

for the witness method which computes the rank of the Jacobian minors. A significant result

is that automatic differentiation (at running time), with the arithmetic of dual numbers [23,

25], computes precise (with the accuracy of floating-point arithmetic) values of derivatives

at a given point (f ′(3) = 6 if f (x) = x2). For instance, if an algorithmic shape depends on,

say, a small number n = 10 of parameters U = (u1, . . . un), a FEM simulation using the

dual numbers arithmetic and computing a performance p(u1, u2, . . . un) will automatically

compute in the same time p(U) and all derivatives, i.e., the gradient ∇p = (∂p/∂ui(U)),

making possible to search the optimal value U∗ which maximizes the performance p(U).

Even if the procedure computing the performance p(U) generates for some physical FEM

simulation some temporary and huge mesh with N ≫ n 3D vertices, e.g., N = 105, or any

other huge data structure, only n dual numbers or infinitesimals are needed, and not n+3N .

Second, some procedures compute several functions, like CalcP t (s, u, v) which com-

putes three coordinates xu,v, yu,v, zu,v of the point with parameters u, v on a surface with

control net s. Some book-keeping is needed to avoid multiple evaluations. Either some

memorization (called memoization in functional programming) is used, or the solver calls

some handle function update(X) to enable the modeler to update its internal data structures,

before the solver evaluates procedural constraints.

Third, some functions may have an incomplete definition domain, for example

CalcP t (s, u, v) which assumes (u, v) ∈ [0, 1]2. This problem already occurred and is

solved in previous examples like DECO [32]. A solution is as follows: the procedure

CalcP t (s, u, v) clamps its arguments u and v, but it does not modify the values of variables

u and v (only the solver can do that). The inequality constraints on u and v can be either

reduced to equations using slack variables ((u − 1/2)2 + u2
s − 1 = 0 with us the slack vari-

able for u), or are bounds constraints [10] in some constrained optimization problem. Byrd

et al [10] propose a variant of L-BFGS for solving constrained optimization problems like:

min G(X) with L ≤ F(X) ≤ U .

156 J.-P. Pernot et al.

Fourth, discontinuity issues might be another difficulty for the proposed approach. As

an example, let’s consider the function ClosestPt(S, p), which returns the closest point to

p ∈ R
3 in or on the shape S, is not continuous everywhere, e.g., when S is not convex. In

practice, the consequence of such discontinuity is that the solver must start from an initial

guess close enough to the expected solution. Other source of discontinuity may include stair-

cases, toothed wheels and frameworks, which are typical parametric or algorithmic shapes.

The number of parts of parametric or algorithmic shapes depends on parameter values. For

example, the number of steps, and the number of intermediate bearings of a staircase depend

on the height of the floor; the number of toothed wheels depends on the size of the gear; the

number of bars and nodes of frameworks or lattices depends on their spans; the number of

vertices of a control net of a NURBS may depend on the resolution; etc. Every algorithmic

shape (or technical feature) could be specified in a Unified Technical Document (or a stan-

dardized format e.g. STEP) to be implemented using a procedure. Toothed wheels are an

example of algorithmic shapes that have been implemented in a procedure and constrained

in the DECO project [32].

Fifth, the interface, or the communication protocol, between the modeler and the solver

must permit to benefit from the sparsity of procedural constraints. There are mainly two

kinds of interfaces. The first interface is used in the DECO project: the modeler and the

solver use black DAGs (Directed Acyclic Graphs). This first interface permits to exploit

the sparsity of procedural constraints. However, many libraries such as GNU GSL or Scipy,

which provide solvers or minimizers, use the second kind of interface, as follows. To solve

a system F(U, X) = 0 with U = UT , the value of U (for target T). The solver typically

receives three arrays F,U, X: F is an array of pointers to procedures computing F(U,X)

(procedural equations are: F(U, X) = 0), U is the array of floating-point values for param-

eters, X is the array of initial values for the unknowns X. The solver can modify X, but

not U . Sometimes the solver accepts an array (of pointers to procedures) F ′ for computing

the gradient vectors ∇Fi . It can also use finite differences to approximate derivatives. The

solver also receives technical information such as array sizes, threshold values for termi-

nation tests, a maximum number of iterations, etc. The same kind of interface applies for

constrained or unconstrained minimization problems. Finally, the solver receives some han-

dle or callback functions, e.g., for drawing pictures of the current figure in our context; it

can permit users to monitor and drive the resolution process. Clearly, this second interface

is not sufficient for exploiting sparsity. Another array D is needed for specifying depen-

dences: D[c] is the list of all (index of) variables Xk on which the constraint Fc depends. D

can be seen as a sparse matrice, and its transpose T can be used instead: T [k] is the list of

(index of) constraints depending on Xk . These two arrays are clearly equivalent. They are

sufficient to exploit sparsity. They are already used for that purpose in the interface of many

Sparse Linear Algebra libraries, for instance to compute fill-reducing ordering of unknowns

[28, 56]. These arrays represent the bipartite graph equations-unknowns used in matching

theory (Dulmage-Mendelsohn decomposition).

3.3 Solving without equations

This section discusses the scalability of our approach through exploiting sparsity. The solver

must solve without equations the underlying systems F(X) = 0, starting from an initial

guess close enough to the expected root. This proximity was already needed with classical

geometric constraints, i.e. when equations are available. In practice, users provide this initial

guess with a sketch.

Towards a better integration of modelers and black box... 157

Fig. 4 Solving with Newton (11 rows).

We implemented and tested several solving methods to be used in the proposed

approach: Newton, Levenberg-Marquardt [29], L-BFGS (Limited memory Broyden-

Fletcher-Goldfarb-Shanno) [7], Hooke-Jeeves, stochastic descent, and the Jaya heuristic

[55]. Some methods need gradients. They are computed with centered finite difference (not

with dual numbers).

The methods have been tested on this geometric problem: let ABC be a given triangle;

let r be an integer; place r rows of circles in ABC, with one circle in the first row, k circles

in row k, so that circles are outwards tangent to their neighbors or to the sides of ABC.

See Figs. 4 and 5. For r rows, there are r(r + 1)/2 circles and 3 times more unknowns:

n = 3r(r + 1)/2 as each circle k has unknown center coordinates (xk, yk) and unknown

radius rk . This is a well-constrained problem as the number of constraints is equal to the

number of unknowns n = 3r(r + 1)/2. It is also irreducible: it has no well-constrained

(nor rigid) subsystem. Though equations (circle-circle tangencies, or line-circle tangencies)

are available, they are not accessible to the solver: the solver is only aware of an array of

n (pointers to) procedures F [0, . . . n − 1], and an array of n unknowns V which are the

concatenation of tuples (xk, yk, rk) for k = 0, . . . n − 1. The initial values for (xk, yk, rk)

are obtained as follows: this problem is easy to solve when the triangle ABC is equilateral,

which gives barycentric coordinates ak, bk, ck (with ak + bk + ck = 1) for the center of

circle k: (xk, yk) = akA + bkB + ckC. They give an initial guess for X.

The test problem described in the previous paragraph is artificial but very convenient

for measuring performances, and controlling the behavior and output of algorithms, due to

its visual and intuitive nature. Figure 4 shows Newton iterations for 11 rows, and Fig. 5

some Hooke-Jeeves iterations. Table 1 shows the figures with more rows, and Table 2 gath-

ers together the empirical complexities of the tested algorithms. The empirical complexity

for an algorithm is the slope of the curve (very close to a line) of the log-log diagram

(log ni, log T (ni)), where ni is the number of unknowns, T (ni) is the running time of the

algorithm. We tested with 50, 100, 150, 200, and 400 rows. L-BFGS has the best empirical

complexity: O(n1.33). Then Newton and Levenberg-Marquardt have complexity O(n1.4).

Hooke-Jeeves has complexity O(n1.9). Neither parallelism nor GPU acceleration is used.

All these complexities are less than O(n2), the size of a dense Jacobian. To reach them,

it is essential to exploit the sparsity of systems of procedural constraints. Remember that,

for multiplying two dense matrices, or solving a dense linear system, the complexity of the

Fig. 5 Solving with Hooke-Jeeves (20 rows).

158 J.-P. Pernot et al.

Table 1 Number of circles and unknowns for the test problem

nb of rows 50 100 150 200 300 400

nb of circles 1275 5050 11325 20100 45150 80200

nb of unknowns 3825 15150 33975 60300 135450 240600

famous Strassen method is O(n2.807), and the complexity of the Coppersmith-Winograd

algorithm (the best method known so far, but unused in practice) is O(n2.376). Even the

Hooke-Jeeves method is much better, and lower than O(n2). Other methods: stochastic gra-

dient, and Jaya either diverge, or converge with damping but are too slow, so we will not

comment their complexity.

In our experiments, classical and heuristics enhanced solvers such as Jaya and stochas-

tic descent did not perform well with the test problem. However, turning to meta-heuristics

could be interesting when there is a huge set of solutions for which users have no a priori

preference, but they can reject a bad solution, even if it is difficult for them to say why;

or it is too time consuming to explicit all constraints and preferences. A similar problem is

met in forensic: some witnesses can not describe faces or persons, though they can recog-

nize them. To solve this forensic issue [60], a software (like EvoFIT) generates a set of 20

pictures of random faces; the witness chooses the faces which resemble the most the target

face. The software combines parts of selected faces, proposing a new set of 20 faces to the

witness. After some rounds, a resembler portrait is reached. One may imagine to use the

same method for choosing a solution amongst a huge set. The modeler generates 20 solu-

tions, for instance starting from 20 random seeds, improved with some Newton iterations or

some minimization; users reject too bad solutions; maybe they can say which part is good in

some solution and should be kept. The modeler combines selected solutions, as in genetic

algorithms, and improves each new combination to satisfy the procedural constraints, with

Newton iterations or a Minimizer. One may expect to find a good solution after some rounds.

3.4 Existing tools for qualitative study

It is essential to provide users with qualitative study tools for debugging constraints, detect-

ing errors and fixing them, for decomposing systems into sub-systems, and for exploiting

sparsity to speed-up the solving process. We mention hereunder three kinds of tools.

Methods in the first kind call the solver. We call them protocols. Many protocols have

been suggested to detect contradicting, or conflicting subsystems. Remember that an over-

constrained system can be contradicting or redundant. Here is an example of such a protocol:

start from a figure close to the expected solution, and solve constraints incrementally. Let

Table 2 n is the number of

circles or of unknowns and

constraints (and not the number

of rows)

Algorithm Complexity

L-BFGS (m = 10) O(n1.33)

Newton O(n1.4)

Levenberg-Marquardt O(n1.4)

Hooke-Jeeves O(n1.9)

This table gives the empirical
complexity (the slope of log-log
diagram) of algorithms for the
test problem, exploiting sparsity

Towards a better integration of modelers and black box... 159

Fk be the first non-satisfied constraint, then C = {F1, . . . Fk} is contradicting. Then remove

from C every constraint Fi such that C − Fi is still non-satisfied. This protocol gives the

smallest contradicting subsystem and can be used when equations are not available.

The two other kinds of tools do not call the solver.

The second kind is a set of combinatorial (or structural) methods [4, 33, 39, 51, 59] which

consider various graphs. These methods do not call the solver. For simplicity, this article

considers only the sparsity graph [33, 59]. It is a bipartite graph linking equations (now

procedural constraints) and unknowns (now modifiable variables). Combinatorial methods

rely on Matching Theory [47]. They compute maximum matching in the sparsity graph.

They detect structurally under, over and well-constrained parts. They also detect structurally

under, over and well-constrained parts modulo isometries, e.g., a triangle is well-constrained

modulo isometries by three constraints. In both cases, they decompose into structurally

irreducible parts. They still can be used when constraints are represented with procedures

rather than equations, as explained below (Section 3.5).

But combinatorial methods are limited: they detect only structural conflicts. Moreover a

combinatorial characterization of rigidity (well-constrainedness modulo isometries) is still

unknown for general geometric constraints and its existence is questionable. The combina-

torial characterization of rigidity is the topic of Rigidity Theory. The latter considers only

generic point-point distances, which is insufficient for CAD/CAM.

The third and last kind of tools is the witness method [48] and its variants [37, 49, 63].

The principle of these methods is as follows: suppose we want to solve F(U,X) = U −

UT = 0, where U are names of parameters (unmodifiable variables), UT is the value of U (T

for target), X are names of unknown (modifiable) variables. A witness is a couple UW , XW

such that UW and XW are vectors of numerical values and such that F(UW , XW) = 0.

Moreover it is assumed that the witness is typical of (or even very close [37] to) the target, so

that the witness and the target share the same combinatorial properties. More precisely, the

ranks of each minor in the known witness Jacobian F ′(UW , XW) and in the unknown target

Jacobian F ′(UT , XT) (F ′(UT , XT) is unknown because exact values of XT are unknown)

are equal. Under mild assumptions of typicality and exactness (consider that for the sake

of simplicity, there is no inaccuracy), the witness method detects all dependences between

constraints: it is more powerful than structural methods. In practice, users are in charge of

deciding the typicality: for instance, a flat triangle (or a flat polyhedron) is not typical of a

triangle (of a polyhedron), and this assumption is not an issue. The simplifying exactness

assumption is not practicable and is more problematic, but Hao Hu et al. [37] recently

proposed tools to account for the unavoidable numerical inaccuracy, when using the witness

method for modelling free-form curves and surfaces. The witness method can still be used

when constraints are represented with procedures rather than equations, as explained below

in Section 3.6.

3.5 Building the sparsity graph

We explain here how the sparsity graph, equivalent to the standard bipartite graph equation-

unknown, can be constructed.

Let F(x, y) = b1, G(x, y) = b2, H(y, z) = b3 be a sparse and linear or linearized

system with F(x, y) = ax+by, G(x, y) = cx+dy, H(y, z) = ey+f z. Figure 6 illustrates

the bijection between the two perfect matchings adf and bcf of the bipartite graph and the

two terms in the determinant adf − bcf . The latter does not depend on e, because none of

the perfect matchings contains edge e. Matching theory [4, 44, 47, 59] also permit to detect

that (F,G)(x, y) is a subsystem.

160 J.-P. Pernot et al.

F G H HGF

x y z x y z

a d e fb c a d e fb c

= adf−bcf

c d 0

a b 0

0 e f

Fig. 6 Determinant matching with bipartite graph. Edges in the perfect matchings are bold

Consider a procedure computing a function F : X ∈ R
n → Y = F(X) ∈ R

m. Combi-

natorially, it is equivalent to m equations fi : Yi − Fi(X) = 0, i = 1, . . . m. As usual, there

is a vertex for each fi , for each Yi, i = 1, . . . m, and for each Xk, k = 1, . . . n. One edge

links fi to Yi , and n edges link fi to X1, . . . Xn. Then structural methods apply.

3.6 Interface for using the witness method

For the witness method to apply [43, 48, 63], the modeler (or any procedure calling the

solver) must provide a witness: either a previous release of the product, or a computed

witness [43]. It is the users who decide if the witness is typical of the expected solution.

Also, to enable the witness method to detect rigid subsystems, variables must be tagged so

that the witness method can compute an a priori basis for infinitesimal rigid body motions;

again, infinitesimals, or dual numbers, appear [23, 48]. This a priori basis is independent

of the constraints, it depends only on the kind of variables, more precisely on the kind

of unknown coordinates. Tags give the kind of coordinates of the tagged variable when it

is a coordinate: values of coordinates depend on the used Cartesian frame. A tag, i.e, a

coordinate can be:

– the x, the y or the z of a point. The x, y, z of the same point must be linked together in

some way, e.g., the variable X3 is the x of the point (X3, X4, X5).

– the x, the y or the z of a vector. Indeed, vectors and points are different because they do

not behave the same under translations. The x, y, z of the same vector must be linked

in some way.

– the a or b or c of a normal vector. Vectors and normal vectors are different: a vector

is the difference between two points. A normal vector is associated to a linear form:

(x, y, z)t → (a, b, c)(x, y, z)t . Actually, the a, b, c is the vectorial part of the equation

of a plane (see below). The a, b, c of the same normal vector must be linked in some

way.

– the a or b or c or d of the equation of a plane: ax + by + cz + d = 0. The a, b, c, d of

the same plane must be linked together.

– a geometric variable which is independent on the Cartesian frame: radius or length,

area, volume, scalar product.

– finally a variable can be a non geometric variable, thus independent on the Cartesian

frame: energy, force, cost, etc.

The last two tags can be merged. Tags permit the witness method to decompose systems

into rigid (i.e., well-constrained modulo isometry) sub-systems. It is also possible to tag

variables to account for similitudes but this decomposition is more rare [57, 58].

Towards a better integration of modelers and black box... 161

3.7 Mathematical necessary conditions

This paragraph summarizes necessary mathematical conditions for the solver to find a solu-

tion, or to detect conflicts and help users to fix them. The necessary conditions are classical

and do not change with our approach.

It is assumed that procedures are correct and consistent, for instance parameters of each

procedure are independent, and, better, orthogonal in some sense. Of course, it is assumed

that procedures are not malevolent, to avoid the Byzantine problem.

Functions computed by procedures must be smooth (like a distance function) or smooth

almost everywhere (like the closest point function, i.e., the orthogonal projection of a given

point on a given shape). This mathematical condition can be relaxed for algorithmic shapes,

e.g., gearwheels [32], as already mentioned. Also, the sketch should be close enough to the

expected root.

The modeler must provide the sparsity data or sparsity graph to the solver, and a typical

witness, so that the solver can use classical qualitative study methods. Users are in charge

of deciding the typicality. Remember that a witness is a sketch, but the converse is not

mandatory.

When some cost or energy function G(X) has to be minimized, it is assumed that G is as

smooth as possible, that G(X) becomes infinite when ‖X‖ becomes infinite and that G(X)

has a finite lower bound [7].

3.8 Dual numbers

Derivatives are key components in many geometric computations. Dual numbers have been

implicitly used in the witness method [25] and in the dual quaternions. This section intro-

duces dual numbers and shows how they can be used to compute derivatives exactly [23],

with the accuracy of floating-point arithmetic, even when equations are not available. This

accuracy is needed by the witness method [25]. Dual numbers are not new, but to the best

of our knowledge, the way we use them in geometric modeling has never been done before.

Within the proposed paradigm, dual numbers allows the computation of the derivatives even

when the equations are not available.

Dual numbers are best understood with an analogy with complex numbers (C). For

a computer scientist, writing a C++ library for an arithmetic for dual numbers and for

complex numbers is almost the same.

A complex number z is a pair of two real numbers (x ∈ R, y ∈ R). The pair (0, 1) is

called i. The part x of z is its real part, and y its imaginary part. The addition of two complex

numbers z = (x, y) and z′ = (x′, y′) is defined by

(x, y) + (x′, y′) = (x + x′, y + y′)

Thus it is consistent to write the pair z = (x, y) as (x, 0) + (0, y) = x(1, 0) + y(0, 1) =

x1 + yi. The product of z and z′ is defined by

(x, y) × (x′, y′) = (xx′ − yy′, xy′ + yx′)

thus i2 = (0, 1) × (0, 1) = (−1, 0) = −1. Actually, reducing i2 to −1 gives another path

to the product rule :

(x + yi) × (x′ + y′i) = xx′ + yy′i2 + (xy′ + yx′)i

= (xx′ − yy′) + (xy′ + yx′)i

162 J.-P. Pernot et al.

There is a remarkable isomorphism φC between z ∈ C and the 2 × 2 real matrice

φC(z) =

(

x −y

y x

)

Indeed, φC(z + z′) = φC(z) + φC(z′) and φC(z × z′) = φC(z) × φC(z′).

A dual number resembles a complex number. It is a pair of two real numbers (x ∈

R, y ∈ R). The pair (0, 1) is called ǫ and can be thought as an infinitesimal number. x is the

standard part of the pair (x, y), and y its infinitesimal or non standard part. The addition of

two dual numbers (x, y) and (x′, y′) is defined by

(x, y) + (x′, y′) = (x + x′, y + y′)

Thus it is consistent to write the pair z = (x, y) as (x, 0) + (0, y) = x(1, 0) + y(0, 1) =

x1 + yǫ. The product of z = x + yǫ and z′ = x′ + y′ǫ is defined by

(x, y) × (x′, y′) = (xx′, xy′ + yx′)

thus ǫ2 = (0, 1) × (0, 1) = (0, 0). Actually, reducing ǫ2 to 0 gives another path to the

product rule :

(x + yǫ) × (x′ + y′ǫ) = xx′ + (xy′ + yx′)ǫ + yy′ǫ2

= xx′ + (xy′ + yx′)ǫ

This time, the isomorphism φ between the dual number z = x+yǫ and the 2×2 real matrix

φ(x + yǫ) is defined by:

φ(z) =

(

x 0

y x

)

Indeed, φ(z + z′) = φ(z) + φ(z′), φ(z × z′) = φ(z) × φ(z′), thus φ(1/z) = φ(z)−1 and

φ(zk) = φ(z)k . Let us detail the product:

(a + b ǫ) × (a′ + b′ ǫ) = aa′ + (ab′ + ba′) ǫ

↓ ↓ ↓
(

a 0

b a

)

×

(

a′ 0

b′ a′

)

=

(

aa′ 0

ba′ + ab′ aa′

)

From this isomorphism, we deduce that:

1

a + b ǫ
=

1

a
−

b

a2
ǫ when a �= 0

thus bǫ has no inverse (the associated matrix is not invertible). This rule is a special case of:

(a + bǫ)k = ak + kak−1b ǫ

If P is a polynomial, then P(xv + ǫ) where xv is a floating-point number, gives P(xv) and

the derivative P ′(xv):

P(xv + ǫ) = a(xv + ǫ)3 + b(xv + ǫ)2 + c(xv + ǫ) + d

= a(x3
v + 3x2

v ǫ) + b(x2
v + 2xv ǫ) + c(xv + ǫ) + d

= (ax3
v + bx2

v + cxv + d) + (3ax2
v + 2bxv + c) ǫ

= P(xv) + P ′(xv) ǫ

It extends to multivariate polynomials: either we have only one ǫ and two evaluations are

needed:

Q(xv + ǫ, yv) = Q(xv, yv) + Q′
x(xv, yv)ǫ

Q(xv, yv + ǫ) = Q(xv, yv) + Q′
y(xv, yv)ǫ

Towards a better integration of modelers and black box... 163

or each variable is attached its own ǫ and one evaluation suffices:

Q(xv + ǫx, yv + ǫy) = Q(xv, yv) + Q′
x(xv, yv)ǫx +

Q′
y(xv, yv)ǫy

Actually, this feature (computing (P (x), P ′(x)) together) extends to non polynomial

functions. The arithmetic of dual numbers is used to compute f (t) and its derivative f ′(t) in

the same time: here f is a continuous and derivable function (at least at value t), and f ′(t)

is the value of the derivative of f at t ∈ R. The idea is to represent the pair (f (t), f ′(t))

with a dual number f (t) + f ′(t)ǫ. It is possible because the arithmetic of dual numbers

mimics the rules for derivatives of sums and products (caution: the primes in f ′, g′ denote

the derivatives):

(f, f ′) + (g, g′) = (f + g, f ′ + g′)

and

(f, f ′) × (g, g′) = (f × g, f × g′ + f ′ × g)

In a library for complex numbers, we have to define exp, cos, etc for complex numbers.

Idem for dual numbers. This definition is straightforward: for any f , f (a + bǫ) equals by

definition f (a) + bǫf ′(a), thus:

exp(a + bǫ) = ea + bea ǫ

cos(a + bǫ) = cos(a) − b sin(a) ǫ

sin(a + bǫ) = sin(a) + b cos(a) ǫ

tan(a + bǫ) = tan(a) + b(1 + tan2(a)) ǫ

The definition of the function sgn(a + bǫ) is easy:

sign(a + bǫ) = sign(a) + (1 − sign(a)2)sign(b)

where sgn(v) is the sign of v ∈ R; It is −1 if v < 0, 1 if v > 0 and 0 if v is zero. Then the

definition of the absolute value follows:

|a + bǫ| = sign(a + bǫ) × (a + bǫ)

The definitions of the min and max of two dual numbers could be formulated in a simi-

lar way. In passing, symbolic differentiation (at compile time) can not deal so nicely with

functions |.|, min, max and if-then-else constructs.

Dual numbers permit to compute the derivative of D(X) = det(M(X)), for square

matrices M(X), even if entries of M are piecewise polynomials, or algorithms: just replace

floating point numbers with dual numbers and then use any standard numerical method

(Gauss pivot, LUP). There are also formulas.

Lemma det(I + ǫM) = 1 + Trace(M) ǫ, where M is standard:

det(I + ǫM) = (1 + M11ǫ)(1 + M22ǫ) . . . (1 + Mnnǫ) + R

= 1 + Trace(M) ǫ + R

where R represents the other perfect matchings in I + ǫM . But other perfect matchings use

at least two off-diagonal entries in I + ǫM , thus are multiples of ǫ2, thus are zero.

164 J.-P. Pernot et al.

When A is invertible, det(M(x + ǫ)) = det(A + ǫB) is:

det(A + ǫB) = det(A(I + ǫA−1B))

= det(A) det(I + ǫA−1B)

= det(A)(1 + Trace(A−1B) ǫ)

When A is not invertible, we use its SVD : A = U�V t (with � diagonal and U, V

unitary):

det(A + ǫB) = det(U�V t + ǫB)

= det(U(�V t + ǫU tB))

= det(U(� + ǫU tBV)V t)

= det(� + ǫU tBV)

equals the product of diagonal entries of � + ǫU tBV . It is 0 when there are at least two

null singular values in �. Otherwise it is

(σ1 + k1ǫ) . . . (σn−1 + kn−1ǫ)(0 + knǫ) = 0 + σ1 . . . σn−1kn ǫ

The main mathematical difference between complex numbers and dual numbers is that

complex numbers form a (commutative) field, while dual numbers only form a commutative

ring: they are not a field because there are non zero divisors of zero (ǫ and all bǫ for b ∈ R).

This arithmetic can be generalized in two directions. First it is possible to manage many

infinitesimals. The idea is to attach an infinitesimal number ǫi to each unknown xi with

the rule ǫ2
i = ǫiǫj = 0. Note that one ǫ is sufficient for computing directional deriva-

tives, needed for example in line-search for BFGS. Second, it can be interesting for some

applications to replace the rule ǫ2 = 0 with the rule ǫ3 = 0 or ǫ4 = 0.

We conclude this section by showing the relevance of dual numbers for geometric

computations. An algebraic construction φ starting from R gives the quaternions, which

represents 3D rotations. If φ is applied to R + ǫR, it gives biquaternions also called dual

quaternions, which represents both 3D rotations and translations.

4 Examples highlighting the new approach

The previous section presented the new approach and discussed its specificities. It showed

that the solver can still perform the required computations even when equations are unavail-

able or irrelevant. This section introduces four illustrating examples. In the three first

examples, the solver has to solve the following constrained minimization [5] problem P :
{

F(X) = 0

min G(X)

where X is the vector of unknowns, F(X) is the vector of constraints, and G(X) is an

objective function required when the constraints do not necessarily yield a unique solution.

Depending on the examples, the unknowns, the constraints, and the objective functions will

be different. The last example is slightly different since it corresponds to an attempt to

create a declarative modeler on top of an existing modeler. In our prototyping and exper-

iments, we have implemented simple classical algorithms [5, 7] (typically, minimizing

Augmented Lagrangian Merit Functions) and sometimes used Matlab or Mathematica. A

professional implementation could use WORHP (“We Optimize Really Huge Problems”),

a recent library [9, 46] solving such problems.

Towards a better integration of modelers and black box... 165

Table 3 Characteristics of the four proposed examples with respect to criteria on: the mixing of geometric
models, the use of DAG with black boxes, the type of interaction modelersolver, the possibility to use any
solver, the level of the constraints

Example Mixed Black boxes Integration Solvers Level

#1 yes yes P yes high

#2 no no P yes high

#3 yes no E yes high

#4 no no I no high

As explained in Section 3, the tools can interact with the solver in multiple ways. This is

summarized in Table 3 wherein each example is characterized with respect to four criteria.

The first column indicates if the application mixes different geometric models (e.g. NURBS,

subdivision surfaces, canonical surfaces). The second column indicates the full use of DAGs

with black boxes. The third column deals with how the modeler and the solver are intercon-

nected. Letter P means that both are connected in the application for convenience purposes

(Package). Letter E corresponds to a solver which is completely outside the modeler (Exter-

nal). Letter I corresponds to a full integration of the modeler and the solver (Integrated).

The next column indicates the possibility to freely apply different solvers. The last column

proposes a (subjective) judgment of the abstraction level of the given constraints. Here,

high means that the user does not have to manipulate low-level constraints or equations, but

he/she can specify higher level requirements.

4.1 On the use of black box constraints and DAGs

The first example is given by the DECO project [32]. The designer enters in Python (still

at a rather low level of abstraction) a description of a shape that is converted into a DAG

used to solve the problem and to generate the desired shape. The proposed approach has

been validated with a modeler and solver totally implemented from scratch [32]. The system

accepts usual DAGs (i.e. the so-called white DAGs) as illustrated in Fig. 7 but also more

complex DAGs (i.e. the so-called black DAGs) where some nodes can be procedures (e.g.

written in C++).

To illustrate this approach, a very simple example and its associated black DAG are

given on Figs. 8 and 9. A B-spline surface defined by a network of control points (bottom

of Fig. 8) has to pass through a user-specified point p of coordinates (xp, yp, zp). Some

control points can freely move and their coordinates are the unknowns X of the optimization

problem (grey nodes on Fig. 8). The others are fixed and correspond to the surrounding

Fig. 7 Example of a white DAG
composed of scalar operators,
variables and constants,
representing the expression
xy + y2 [32]

166 J.-P. Pernot et al.

Fig. 8 Black DAGs representing the optimization problems to be solved, when (u, v) is constant (left) and
variable (right) [32]

control points visible in Fig. 9. This specification can be described by three functions F0,

F1 and F2 which have to be equal to 0.

F0(X) = GetX(CalcP t(s, u, v)) − GetX(p) = 0

F1(X) = GetY(CalcP t(s, u, v)) − GetY(p) = 0

F2(X) = GetZ(CalcP t(s, u, v)) − GetZ(p) = 0

The function CalcP t(s, u, v) is written in C++. It returns the 3D coordinates of a point of

parametric coordinates (u, v) of a B-spline surface s.

As the solution is not unique, a function G(X) has to be minimized. Here, it corresponds

to the discrete energy of the surface computed on its control polyhedra [32]. This function is

also written in C++. This specification gives rise to the black DAGs of Fig. 8. Two distinct

cases have been tested. On the left part, the parametric coordinates of the point are fixed

and equal to (0.5, 0.5). On the right part, the parametric coordinates (u, v) are not known

and correspond to the grey nodes. In both cases, the solver must work without equations.

The results are proposed in Fig. 9.

Other examples [32] in DECO combine heterogeneous geometries: NURBS, subdivision

surfaces and algorithmic shapes (toothed gears), and involve hundreds of unknowns.

The DECO project shows the feasibility and the promises of variational geometric mod-

eling with black DAGs, i.e. without equations. DECO examples do not cover all the potential

cases in geometric design but the reader can imagine that different or more complex exam-

ples can be treated with the same approach. The energy to minimize can be easily changed

Fig. 9 Results corresponding to the problems of Fig. 8: starting point (left), final position when (u, v) is
constant (center) or variable (right) [32]

Towards a better integration of modelers and black box... 167

depending on the user’s goal. The user can also create simple constraints and use them to

create his/her more elaborated ones thus extending drastically the constraints toolbox. Ide-

ally, the proposed solver could benefit from higher-level procedures available in commercial

software packages. This will be further illustrated in the example of Section 4.4.

4.2 Aesthetic-orientedmodifications of free form curves

Curves are widely used within the PDP and many approaches try to develop manipulation

technics closer to the way designers and stylists think and work [1, 8, 64]. The idea is to

try to get rid of the underlying mathematical models while focusing on high level shape

description procedures which transform a description in a set of procedures and/or equa-

tions. In this context, deformation operators enabling direct aesthetic modifications have

been developed [31]. The deformation results from the resolution of the previously intro-

duced optimization problem P where X are unknown coordinates of the control points. The

constraints are defined by aesthetic properties which can be translated to a vector of equa-

tions F(X). For example, the designer can change the straightness S (or non-straightness

NS) of the curve that is directly linked to the unknowns X by the following scalar equations:

S =
1

1 + NS
and NS =

A.C.L

ℓ2
∈ [0, +∞[

where A is the area under the curve, C is the integral of the curvature, L is the curve length

and ℓ is the chord length [31]. The user can also interact directly with the curvature or

with the position of some particular points as it will be illustrated in the proposed example.

The system of equations resulting from the specification is often under-constrained and an

objective function G(X) has to be minimized. Here, the objective function is a quadratic

function which results from the coupling of a mechanical model directly connected to the

control points of the curve to be deformed [52].

The example of Fig. 10 illustrates how the user can deform an initial curve while impos-

ing a position constraint, a curvature constraint and an overall straightness constraint. In this

example, the initial straightness Si = 0.6556 is increased by 0.15 to reach the final value

of Sf = 0.8056 in the deformed configuration. In this case, since there are more unknowns

Fig. 10 Aesthetic modification of curve using black box constraints [31]

168 J.-P. Pernot et al.

than equations, the minimization of the variation of the external forces has been used to pre-

serve the shape of the initial curve [52]. Of course, the user does not see the values of the

straightness and curvature but can interact with them through a set of high-level parameters

to modify the values.

In this work, the solver is decoupled from the modeler as suggested in Section 3.1. Even

if the equation of the straightness was available, for simplicity raison, it was decided to

consider it as a black box and only the evaluation output by the black box was used. Any-

how, for more complex relationships one could imagine that there is not explicit translation

between the aesthetic properties and geometric parameters, and that the constraints result

from a procedure which can be considered as a black box.

4.3 Mixing heterogenousmodels within a deformation process

Multi-representations can be used at different stages of the PDP and a given object can be

seen as a combination of components linked with relationships specifying the constraints

and spatial transformations. In this context, a new shape description model together with

its associated constraints toolbox was proposed in [45] to enable the description of com-

plex shapes from multimodal data. Not only rigid transformations are considered but also

scale modifications according to the specified context of the constraint setting. The het-

erogeneous virtual objects (i.e. composed by scalable multimodal components) then result

from the resolution of a constraint satisfaction problem through an optimization approach.

Here unknowns X are the positions, the orientations and the scaling factors of each het-

erogeneous components. So, there are exactly 9 unknowns per component involved in the

virtual object definition. The constraints F(X) are taken from a toolbox and can either be

expressed by equations or by procedures. The objective function G(X) to be minimized is

obtained by combining the energies required to translate (P), rotate (R) and scale (S) the

components between their initial and final configurations [45] :

G(X) =
∑

i

(

μpi ||�Pi ||
2 + μri ||�Ri ||

2 + μsi ||�Si ||
2
)

The example of Fig. 11 shows the result of the combination of two images and two

meshes to define a so-called crazy chair. Here, there are 36 unknowns for the 4 components

and 18 equations corresponding to 6 position constraints. The scaling factors are set up so

that the initial components are not scaled too much : μpi = μri = 500 and μsi = 105.

This approach has been implemented in Unity for the Virtual Environment and makes use

of Mathematica for the solving. Thus, as suggested in Section 3.1, the solver is decoupled

from the modeler and it can make use of procedures and black box constraints.

4.4 Declarative modeling approach built on top of a CADmodeler

This example explores the idea to construct a plugin above a modeler, taking advantages of

its already existing powerful functions and set of procedures [16]. Starting from a mental

image, the designer uses a semantic description module to express his/her intent through

a specific vocabulary and grammar based on the same idea of the example proposed in

Section 4.2. The description combines shapes with location attributes and relative quanti-

fiers. The second step of the process is to transform this first description into a set of generic

shape modeling functions and operators. This second description is closer to the usual

Towards a better integration of modelers and black box... 169

Fig. 11 Heterogeneous model modification using procedures [45]

operators available in CAD modelers but it remains independent of any CAD modelers.

The third step consists in interpreting the last description into specific CAD modeling func-

tions so that this modeler can finally be launched to generate the desired shape. Here, the

proposed approach has been implemented and validated using CATIA as a CAD modeler.

This entire process is illustrated on the example of Fig. 12. Starting from the description

below (restricted to its first items) directly specified by the user through a dedicated graphic

user interface, the resulting CAD model is obtained together with its building tree. One can

notice that this description is based on the creation of simple objects subjected to generic

shape modeling operations: localization with [above] and bending with [bend]. Different

generic operations were implemented like slicing an object or bumping a face each of them

having a set of control parameters which values are directly linked to the adjectives [few],

[moderately] and so on.

– [Start with] [cylinder 1] [moderately] [wide], [few] [high]

– [Above] [cylinder 1], [add] [cylinder 2] [moderately] [wide], [extremely-few] [high]

– [Bend] [extremely-few] [cylinder 2]

– [Above] [bending 1], [add] [cylinder 3], [moderately] [wide], [very-few] [high]

The advantage of this approach is the possibility to completely exploit the plugged mod-

eler since the model is created by this modeler. This is particularly interesting to sketch a

draft CAD model in the early design phases. This draft CAD model can then be seen as an

initial configuration, or sketch, X0 for the optimization problem to be solved by the solver.

More complex requirements must still be added to be able to create complex initial models.

170 J.-P. Pernot et al.

Fig. 12 A bottle of water (a) and the draft model obtained with the declarative modeler (b) [16]

5 Conclusion

This paper considers a new approach of the design process by proposing a framework to

interconnect a modeler with a solver, considering that the PDP is a large optimization pro-

cess. The idea is not to replace existing solvers but rather to better integrate them within

an open framework. In some sense, our approach can inherit the advantages of the existing

solutions.

Procedures are more general and more convenient than equations, which are not available

in some cases. It is always possible to use the best algorithms for numerical solving and

qualitative study of systems. It is always possible to compute, with floating point arithmetic

precision, the values of the derivatives of functions computed with procedures despite the

absence of their mathematical expressions.

Assuming an adequate interface between the modeler and the solver, it is always possible

to exploit the sparsity of constraint systems being reducible or not reducible. This ensures

the scalability of the approach. At a higher level, this approach allows to combine heteroge-

neous geometric representations. It doesn’t require the redesign of the geometric modeler,

and can even use the procedures of different geometric modelers.

Limitations of using this approach include the fact that the solver cannot resort to formal

calculus, and interval analysis. It can no more compute the analytic expression of deriva-

tives. However, the procedures called by the solver still can use formal calculus, or interval

analysis.

Towards a better integration of modelers and black box... 171

The proposed approach has been illustrated with several promising examples. This is the

first step towards the next generation of modelers and solvers for a better interoperability

within the PDP.

References

1. Fiores II 2000–03, Character preservation and modelling in aesthetic and engineering design. GROWTH
Project GRD-CT-2000-0003. http://www.fiores.com

2. Aim@Shape: Engineering Design Methods: Strategies Design Product. Advanced and Innovative Mod-
els and Tools for the Development of Semantic-Based Systems for Handling, Acquiring, and Processing
Knowledge Embedded in Multi-Dimensional Digital Objects. European Network of Excellence Key
Action: 2.3.1.7. Semantic-based Knowledge Systems, VI Framework (2004)

3. Ait-Aoudia, S., Foufou, S.: A 2d geometric constraint solver using a graph reduction method. Adv. Eng.
Softw. 41, 1187–1194 (2010)

4. Ait-Aoudia, S., Jegou, R., Michelucci, D.: Reduction of constraint systems. arXiv:1405.6131. (Third
COMPUGRAPHICS 1993, pp. 331–340) (2014)

5. Bierlaire, M.: Optimization: Principles and Algorithms. EPFL Press, Lausanne (2015)
6. Blender.org: Blender for Open source 3D Creation. https://www.blender.org/
7. Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numerical optimization: theoretical and

practical aspects. Springer Science & Business Media (2006)
8. Bouchard, C., Aoussat, A., Duchamp, R.: Role of sketching in conceptual design of car styling. Journal

of Design Research 5(1), 116–148 (2006)
9. Büskens, C., Wassel, D.: The ESA NLP Solver WORHP. In: Fasano, G., Pint’er, J.D. (eds.) Modeling

and Optimization in Space Engineering, vol. 73, pp. 85–110. Springer, New York (2013)
10. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization.

SIAM J. Sci. Comput. 16, 1190–1208 (1994)
11. Camba, J.D., Contero, M., Company, P.: Parametric cad modeling: an analysis of strategies for design

reusability. Comput. Aided Des. 74, 18–31 (2016)
12. Cheutet, V., Daniel, M., Hahmann, S., La Gréca, R., Léon, J.C., Maculet, R., Ménégaux, D., Sauvage,

B.: Constraint modeling for curves and surfaces in CAGD: a survey. Int. J. Shape Model. 13(2), 159–199
(2007)

13. Contero, M., Company, P., Vila, C., Aleixos, N.: Product data quality and collaborative engineering.
IEEE Comput. Graph. Appl. 22, 32–42 (2002)

14. Cross, N. Engineering Design Methods: Strategies for Design Product, 3rd edn. Wiley, Chichester (2000)
15. Danglade, F., Pernot, J.P., Véron, P.: On the use of machine learning to defeature CAD models for

simulation. Comput.-Aided Des. Applic. 11(3), 358–368 (2014)

16. Decriteau, D., Pernot, J.P., Daniel, M.: Towards declarative CAD modeler built on top of a CAD modeler.
In: Proceedings of CAD’15, Computer Aided Design and Applications, pp. 107–112 (2015)

17. Dufourd, J.F., Mathis, P., Schreck, P.: Formal resolution of geometrical constraint systems by assembling.
In: Proceedings of the Fourth ACM Symposium on Solid Modeling and Applications, pp. 271–284.
ACM (1997)

18. Dufourd, J.F., Mathis, P., Schreck, P.: Geometric construction by assembling solved subfigures. Artif.
Intell. 99(1), 73–119 (1998)

19. Elber, G., Kim, M.S.: Geometric constraint solver using multivariate rational spline functions. In: Pro-
ceedings of the Sixth ACM Symposium on Solid Modeling and Applications, pp. 1-10. ACM, New York
(2001)

20. Essert-Villard, C., Schreck, P., Dufourd, J.F.: Sketch-based pruning of a solution space within a formal
geometric constraint solver. Artif. Intell. 124(1), 139–159 (2000)

21. Eva Catalano, C., Falcidieno, B., Giannini, F., Monti, M.: A survey of computer-aided modeling tools
for aesthetic design. J. Comput. Inf. Sci. Eng. 2, 11–20 (2002)

22. Falcidieno, B., Giannini, F., Léon, J.-C., Pernot, J.-P.: Processing free form objects within a Product
Development Process framework. In: Michopoulos, J.G., Paredis, C.J.J., Rosen, D.W., Vance, J.M. (eds.)
Advances in Computers and Information in Engineering Research, vol. 1, pp. 317–344. ASME-Press
(2014)

23. Fischer, I.: Dual-Number Methods in Kinematics, Statics and Dynamics. Routledge, Evanston (2017)
24. Foufou, S., Michelucci, D.: Bernstein basis and its application in solving geometric constraint systems.

Journal of Reliable Computing 17, 192–208 (2012)

172 J.-P. Pernot et al.

25. Foufou, S., Michelucci, D.: Interrogating witnesses for geometric constraint solving. Inf. Comput. 216,
24–38 (2012). Special Issue: 8th Conference on Real Numbers and Computers

26. FreeCAD: FreeCAD: An open-source parametric 3D CAD modeler. https://www.freecadweb.org/
27. FreeSHIP: FreeSHIP: Surface Modeling. https://sourceforge.net/projects/freeship/
28. Fünfzig, C., Michelucci, D., Foufou, S.: Nonlinear systems solver in floating-point arithmetic using

lp reduction. In: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, SPM’09,
pp. 123–134. ACM, New York (2009)

29. Ge, J.X., Chou, S.C., Gao, X.S.: Geometric constraint satisfaction using optimization methods. Comput.-
Aided Des. 31(14), 867–879 (1999)

30. GeoGebra.org: GeoGebra: Dynamic Mathematics for Learning and Teaching. https://www.geogebra.org/
31. Giannini, F., Montani, E., Monti, M., Pernot, J.P.: Semantic evaluation and deformation of curves based

on aesthetic criteria. Comput.-Aided Des. Applic. 8(3), 449–464 (2011)
32. Gouaty, G., Fang, L., Michelucci, D., Daniel, M., Pernot, J.P., Raffin, R., Lanquetin, S., Neveu, M.:

Variational geometric modeling with black box constraints and DAGs. Comput. Aided Des. 75, 1–12
(2016)

33. Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21(1), 65–84 (1992)
34. Hoffmann, C.M.: Geometric and Solid Modeling: an Introduction. Morgan Kaufman, San Mateo (1989)
35. Hoffmann, C.M., Joan-Arinyo, R.: Symbolic constraints in constructive geometric constraint solving. J.

Symb. Comput. 23(2-3), 287–299 (1997)
36. Hoffmann, C.M., Lomonosov, A., Sitharam, M.: Geometric constraint decomposition. In: Geometric

Constraint Solving and Applications, pp. 170–195. Springer (1998)
37. Hu, H., Kleiner, M., Pernot, J.P.: Over-constraints detection and resolution in geometric equation

systems. Comput. Aided Des. 90, 84–94 (2017)
38. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Interval Analysis. Springer, London (2001)
39. Jermann, C., Trombettoni, G., Neveu, B., Mathis, P.: Decomposition of geometric constraint systems: a

survey. Int. J. Comput. Geom. Appl. 16(05n06), 379–414 (2006)
40. Joan-Arinyo, R., Soto-Riera, A.: Combining constructive and equational geometric constraint-solving

techniques. ACM Trans. Graph. (TOG) 18(1), 35–55 (1999)
41. Khorramizadeh, M.: An application of the Dulmage-Mendelsohn decomposition to sparse null space

bases of full row rank matrices. In: International Mathematical Forum, vol. 52, pp. 2549–2554 (2012)
42. Kondo, K.: Algebraic method for manipulation of dimensional relationships in geometric models.

Comput. Aided Des. 24(3), 141–147 (1992)
43. Kubicki, A., Michelucci, D., Foufou, S.: Witness computation for solving geometric constraint systems.

In: Science and Information Conference (SAI), 2014, pp. 759–770. IEEE (2014)
44. Lesage, D., Léon, J.C., Sebah, P., Rivière, A.: A proposal of structure for a variational modeler based on

functional specifications. In: Gogu, G., Coutellier, D., Chedmail, P., Ray, P. (eds.) Recent Advances in
Integrated Design and Manufacturing in Mechanical Engineering, pp. 73–84. Springer (2003)

45. Li, Z., Giannini, F., Pernot, J.P., Véron, P., Falcidieno, B.: Re-using heterogeneous data for the conceptual
design of shapes in virtual environments. Virtual Reality 21(3), 127–144. Springer (2017)

46. Linke, T., Wassel, D., Büskens, C.: Recent advances in the solution of large nonlinear optimisation. In:
Rodrigues, H., Herskovits, J., Soares, C.M., Guedes, J.M. (eds.) Engineering Optimization IV, pp. 141–
146. Taylor & Francis, New York (2014)

47. Lovász, L., Plummer, M.D.: Matching Theory. American Mathematical Society Providence, USA.
ISBN13 9780821847596 (2009)

48. Michelucci, D., Foufou, S.: Interrogating witnesses for geometric constraint solving. In: 2009
SIAM/ACM Joint Conference on Geometric and Physical Modeling, pp. 343–348. ACM (2009)

49. Moinet, M., Mandil, G., Serre, P.: Defining tools to address over-constrained geometric problems in
computer aided design. Comput. Aided Des. 48, 42–52 (2014)

50. Mourrain, B., Pavone, J.P.: Subdivision methods for solving polynomial equations. J. Symb. Comput.
44(3), 292–306 (2005)

51. Owen, J.C.: Algebraic solution for geometry from dimensional constraints. In: Proceedings of the First
ACM Symposium on Solid modeling Foundations and CAD/CAM Applications, pp. 397–407. ACM
(1991)

52. Pernot, J.P., Falcidieno, B., Giannini, F., Léon, J.C.: A hybrid models deformation tool for free-form
shapes manipulation. In: 34Th Design Automation Conference (ASME DETC08-DAC 49524), pp. 647-
657. ASME, New-York (2008)

53. Pernot, J.P., Falcidieno, B., Giannini, F., Léon, J.C.: Incorporating free-form features in aesthetic and
engineering product design: state-of-the-art report. Comput. Ind. 59(6), 626–637 (2008)

54. Rameau, J.F., Serré, P.: Computing mobility condition using Groebner basis. Mech. Mach. Theory 91,
21–38 (2015)

Towards a better integration of modelers and black box... 173

55. Rao, R.: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained
optimization problems. Int. J. Ind. Eng. Comput. 7(1), 19–34 (2016)

56. Saad, Y.: Iterative methods for sparse linear systems. SIAM, Philadelphia (2003)
57. Schreck, P., Mathis, P.: Geometrical constraint system decomposition: a multi-group approach. Int. J.

Comput. Geom. Appl. 16(05n06), 431–442 (2006)
58. Schreck, P., Schramm, É.: Using invariance under the similarity group to solve geometric constraint

systems. Comput. Aided Des. 38(5), 475–484 (2006)
59. Serrano, D.: Automatic dimensioning in design for manufacturing. In: Proceedings of the First ACM

Symposium on Solid Modeling Foundations and CAD/CAM Applications, SMA ’91, pp. 379–386.
ACM, New York (1991)

60. Solomon, C., Gibson, S.J., Maylin, M.I.S.: A new computational methodology for the construction of
forensic, facial composites. In: Proceedings of the 3rd IWCF, Netherlands, 2009. Lecture Notes in
Computer Science, vol. 5718, pp. 67–77. Springer (2009)

61. Sommese, A.J., Wampler, C.W. II.: The Numerical Solution of Systems of Polynomials Arising in
Engineering and Science. World Scientific, Singapore (2005)

62. Stiteler, M.: Construction History and Parametrics: Improving Affordability through Intelligent CAD
Data Exchange. Chaps program final report, Advance Technology Institute (2004)

63. Thierry, S.E., Schreck, P., Michelucci, D., Fünfzig, C., Génevaux, J.D.: Extensions of the witness method
to characterize under-, over-and well-constrained geometric constraint systems. Comput. Aided Des.
43(10), 1234–1249 (2011)

64. Tovey, M.: Intuitive and objective processes in automotive design. Des. Stud. 13(1), 23–41 (1992)

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

