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a b s t r a c t

Currently, the content-based retrieval is a problem of major interest in several different fields and,
focusing on mechanical engineering, many approaches exist to compare and retrieve single CAD parts,
to evaluate shape similarity, to extract features and to segment models. However, most of the proposed
approaches do not take into account all the key characteristics of an assembly model, such as the
relationships between its components, and the different levels according to which two assembly
models can be considered similar, i.e. either globally, partially, or locally. For these reasons, the retrieval
of CAD assembly models still faces challenges to fully satisfy designers’ expectations. The aim of
this paper is to review the state-of-the-art of works addressing the CAD assembly model retrieval
and to identify future challenges and possible research directions. Firstly, the paper highlights the
user requirements for CAD assembly model retrieval and proposes a set of criteria for analyzing the
available methods grouped into the following macro-categories: objective, assembly characterization,
assembly descriptor, query specification and type of similarity. Secondly, it describes and characterizes
the available methods by organizing them according to the adopted criteria. Finally, it discusses the
open issues and future challenges.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Designing and developing a product is a complex cyclic and
iterative process, which includes the specification of the various
constituting functional sets and related composing parts. Each
person taking part in the Product Development Process (PDP)
makes use of specific knowledge needed to define functional
specifications, mapping from function requirements to physical
description, feasibility and usability [1]. It follows that knowledge
in product design has a wide range of meaning and its repre-
sentations depend on the context. To stay competitive on the
market, companies have to capitalize, transfer and communicate
knowledge within their teams [2,3].

Today, managing efficiently the knowledge associated with
the product, handling a possible huge amount of heterogeneous
digital data located on different sites and supports, being more

✩ This paper has been recommended for acceptance by S Hahmann.
✩✩ No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict with
this work. For full disclosure statements refer to https://doi.org/10.1016/j.cad.
2019.03.005.

∗ Corresponding author at: Istituto di Matematica Applicata e Tecnologie
Informatiche ‘‘Enrico Magenes’’, CNR Via De Marini 6, 16149 Genova, Italy.

E-mail address: katia.lupinetti@ge.imati.cnr.it (K. Lupinetti).

dynamic in the decision making, being more reactive and flexible
to the evolutions of the market has become a clear differentiation
criterion. This is at the base of the fourth industrial revolution,
commonly known as Industry 4.0 [4].

Currently, most of the semantic knowledge associated with
the multiple representations at multiple resolutions of a product
is managed by PDM (Product Data Management) and PLM (Prod-
uct Life-Cycle Management) systems, which handle much more
information than only the geometric data. Ideally, all the digital
data associated with a product during the PDP should be stored
in a well-structured manner within those systems. Depending
on the companies, there exists a large variability regarding the
amount and quality of available digital data. This is not only true
for the data themselves but also for the metadata which can be
attached by means of attributes. This variability or even lack of
data documentation makes difficult the access and reuse of the
relevant data and knowledge. Actually, both explicit and implicit
information can be necessary when searching digital data. The
first set corresponds to all the data which are directly avail-
able from the database, whereas the second may require more
sophisticated reasoning processes to extract and interpret the
meaningful data [3]. Thus, even PDM and PLM systems alone do
not fully meet the Industry 4.0 requirements of an autonomous
and efficient knowledge exchange and retrieval [4].

https://doi.org/10.1016/j.cad.2019.03.005
0010-4485/© 2019 Elsevier Ltd. All rights reserved.
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Independently of the use of PDM and PLM systems for the
product data organization, the 3D CAD models are generally con-
sidered as central representations used to convey the knowledge
and information along the PDP. Therefore, they provide suitable
keys to access the digital data, and thus knowledge, related to
the products. As a consequence, being able to evaluate similarity
between 3D CAD models and retrieve the corresponding digital
data within the Digital Mock-Up (DMU) has become mainstream
in the context of Industry 4.0. Several issues are to be considered
when developing such similarity evaluation approaches: (i) the
concept of similarity strongly depends on the application context
and objectives. Indeed, the similarity evaluation relies on the type
of knowledge that the user wants to gain, and this influences
what can be considered similar. Those issues are even more
challenging when considering assemblies of CAD models; (ii) to
get a meaningful similarity evaluation and to filter the results,
extrinsic information is not enough, thus it is necessary to extract
and use intrinsic information; (iii) the size of the databases has
grown up exponentially in the last few years and a DMU can
incorporate more than 1 million parts representing several tera-
bytes of data [5], thus it is increasingly challenging to handle a
large amount of produced data and to develop efficient searching
and browsing methods and tools [6].

There exist many methods for content-based parts retrieval
dealing with models represented as both 3D meshes and B-Rep [7,
8]. They can be grouped according to the different approaches,
e.g. shape-based [9–15], feature-based [16,17] or topology-based
[18–21]. Some of them can also detect partial similarities, i.e.
models that are similar only for a subset of their shape [22–25].

Although these techniques are able to retrieve single parts
of assembly models, they do not take into account all the di-
verse aspects characterizing an assembly such as the relationships
between its parts, and thus they are limited for assembly re-
trieval. Actually, CAD assembly models are designed to perform
specific kinematic functions that cannot be detected without
analyzing how the single parts interact [26,27]. Moreover, an
additional issue derives from the plurality of the similarity lev-
els according to which two assembly models can be considered
similar. Indeed, two assemblies may be globally similar, but also
partially similar; where partial similarity may be further split
into part-in-whole (i.e. input model completely contained in a
retrieved model) and whole-to-whole by partial matching (i.e. a
subpart of the input model is similar to a subpart of the retrieved
model). In the following, the first is referred as partial similarity
and the second is indicated as local similarity. In the example
of Fig. 1, models M1 and M2 are globally similar, they are also
partially similar to M3 and M4 as the first two are contained in
the last two ones; finally M3 and M4 are locally similar since they
share similar subparts.

More recently, efforts have been devoted to exploit the iden-
tification of some meaningful sub-parts of objects for the model
classification and retrieval in selected contexts. For instance, in
computer graphics and computer vision, recent works have inves-
tigated the use of deep learning techniques to evaluate shape sim-
ilarities [28–31]. In general, these methods are not yet effective
for the retrieval of CAD assembly models, because they evaluate
shape similarity neglecting other important features character-
izing the design of a product. Therefore, in this context, the
criteria used to assess the similarity cannot fully capture all the
knowledge involved in the retrieval of CAD assembly models. For
instance, to recognize local similar features, the method proposed
by Qi et al. [31] performs a segmentation that does not consider
at all the design intent, as well as the more general information
embedded in a DMU. Their reasoning, is limited to the geomet-
ric information available from the mesh representations. Even
other segmentation strategies as the one proposed by Huang

Fig. 1. Different types of similarity among assembly models: local, partial and
global similarity.

Fig. 2. Example of objects with similar shape but made of different components
and types of joints.

et al. [32], which aims at segmenting objects by identifying the
possible joints, are not adequate in the mechanical engineering
field since they are simple view-based approaches that do not
handle information about the technological solutions adopted
for the definition of the joints. To clarify this difference, Fig. 2
shows an example of two different chairs. The legs of the chair in
Fig. 2(a) are welded together creating a support structure that is
screwed with the seat; while the legs of the chair in Fig. 2(b) are
represented as single parts in the CAD model and they are linked
by dovetail joints. In this example, a traditional segmentation
process splits the objects regardless of the building technology. In
other words, it considers only how an object looks like while
neglecting other important information, such as the kinematic
links. Finally, even if adopting a deep learning approach in the
matching process seems promising when compared to traditional
methods based on graph matching, the lack of proper datasets of
CAD assembly models makes such implementation difficult (see
Section 6).

Similarly, methods for the comparison of 3D scenes, as the
one proposed by Paraboschi et al. [33], are suitable to recog-
nize global as well as local object similarities at the level of
the shapes, but they fail to identify internal mechanisms which
typically characterize certain products. Indeed, for instance, there
exist a huge amount of mechanical systems made of gears, and
what characterizes these products is the arrangement of the
gears, which typically has an influence on their mechanical char-
acteristics (e.g. different gear reduction rate and transmission
yield).
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This paper reviews techniques addressing the evaluation of
similarities between CAD assembly models, focusing on the infor-
mation implicitly embedded in the CAD models. The contribution
is threefold: (i) definition of a set of criteria for the compar-
ison and categorization of the existing CAD assembly retrieval
techniques; (ii) an in-depth analysis and a systematic character-
ization of the existing techniques with respect to the identified
criteria; (iii) an exploration of the current issues and future chal-
lenges. The paper is organized as follows. Section 2 provides an
overview of the content of CAD assembly models introducing
the adopted terminology and highlighting the issues character-
izing CAD assembly model representations. Section 3 describes
how the application context may influence the similarity evalua-
tion. The criteria adopted for the analysis of the retrieval methods
are introduced in Section 4, while Section 5 contains the sys-
tematic analysis of the assembly retrieval techniques. Finally,
Section 6 discusses the current limitations and future challenges
regarding the retrieval of content-based CAD assembly models.

2. Background: elements of a DMU relevant for assembly re-

trieval

DMU represents a clearly defined set of data in the product
model, whereas the term ‘‘product model’’ includes all of the
information gathered during the PDP [34]. Generally, a DMU
consists of three types of data [35]: geometric data (i.e. geometric
description of the parts involved in an assembly model), product
structure (i.e. how the parts are gathered together) and attributes
(i.e. metadata referred to parts or to their relationships). Despite
this commonly adopted decomposition structure, several alterna-
tive implementations might be adopted in existing CAD systems,
thus complicating the design of efficient retrieval techniques. For
instance, the positioning of the parts can be performed in dif-
ferent ways, and the DMU can be more or less simplified. These
aspects are discussed in the next sections.

2.1. Geometric data

Geometric data describe the shape of components (parts or
subassemblies) and are generated by CAD modelers. To represent
a solid object, the boundary representation (B-Rep) is the de-
facto standard in commercial CAD systems. Elements used in
a B-Rep are shells, faces, loops, edges and vertices, as well as
the corresponding geometric information, e.g. surface types and
parameters, curve equations and point coordinates. In addition,
a B-Rep describes how the elements are related to each other,
i.e. the topology. Moreover, the history of construction sometimes
is also represented as a building tree, i.e. it stores the order of the
features used to design a part. Anyhow, this tree is not unique,
because parts can be built in different ways and different features
can be associated with them. Depending on the steps of the PDP,
the building trees may however not be available.

The geometric description of the B-Rep elements can use
analytic or parametric representations. Here, particular atten-
tion has to be paid to the vocabulary adopted in the litera-
ture. Sometimes authors refer to CAD models even though the
proposed approaches deal with meshes obtained by tessellating
CAD models, which is significantly different. Similarly, some au-
thors refer to assembly models even though they manipulate
collections of meshes [29,30,36,37]. This state-of-the-art focuses
on the methods which make use of B-Rep CAD models defined by
analytic and parametric representations, being those adopted in
the mechanical engineering context.

Furthermore, the geometric description of the CAD models
can be defined at different levels of detail depending on the
lifecycle stage and the PDP organization. For instance, in the early

Fig. 3. Example of multiple representations and multiple resolutions related to
a bearing component.

design stage, a CAD model is usually roughly detailed in all its
components; later for simulation activities some components are
completely detailed and others (considered less important with
respect to the simulation objectives) can be simply drafted or
even removed; at the final stage all the components to be man-
ufactured have to be completely specified. Similarly, some parts
may not be completely detailed because designed and produced
by an external company. This refers to the notion of multiple
resolutions of the CAD models, which has to be taken into account
when developing retrieval system.

In addition, standard components (e.g. screws, nuts, bearings,
gears, seals or circlips) are often imported from supplier catalogs
and/or 3D databases. Therefore, they are not necessarily designed
using the same CAD modeler, and also the modeling strategy may
differ. Thus, for a given component, depending on the supplier,
multiple geometric representations and multiple resolutions may
exist. Fig. 3 shows an example where a bearing is designed in
four different manners: two as assembly models and two as
parts. Moreover, the representation can be complete allowing to
recognize the bearing (as in Fig. 3(a) and Fig. 3(c)), or simplified
with some idealized shapes (as in Figs. 3(b) and 3(d)) which
will be hardly identified as a bearing by a traditional retrieval
approach.

Finally, the possibility to represent a product in many different
ways prevents the use of the number of elements of two assem-
blies as an effective similarity indicator and, more generally, this
large multiplicity may affect the capacity to retrieve models in a
completely automatic way. Indeed, when the shape is idealized
(as for the bearing in Fig. 3(d)) it is hard understanding what
the part corresponds to. For instance, it could represent a sim-
plified bearing, a simplified gear, or a simplified seal. Sometimes,
exploiting the information on the surrounding context of the part
can help to retrieve the correct interpretation.

2.2. Product structure

Designing an assembly model is a complex process aiming
at creating a product satisfying predefined requirements by a
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Fig. 4. Lower kinematic pairs.

combination of components accomplishing specific functions. The
components of an assembly model may be gathered together
using a hierarchical and logical structure of dependence among
the designed parts. Such product structuring is not unique and
is used to organize product data in a manner appropriate to the
designers’ needs.

The most commonly adopted product structures are the as-
designed (i.e. aggregating parts by their function, such that each
subassembly represents a unit that performs a specific function)
or as-planned (i.e. reflecting how parts have to be manufactured
or assembled from a manufacturing or a process planning per-
spective) structures [38]. Depending on the companies and stages
of the PDP, other structures can be adopted, such as maintenance
or quality structures. Sometimes, parts can be organized with re-
spect to their relative positioning for visualization purposes. They
can also be grouped according to their material to speed up the
preparation of advanced simulations.

Finally, the product structure is usually stored separately from
the geometry, even if modern CAD systems allow including it in
the CAD models. When, the product structure is not available, all
the parts are gathered together under a unique root node. Un-
fortunately, this variability in the way assembly models can be
decomposed and structured is not always taken into account by
the methods in literature.

2.3. Attributes

Besides component geometry and product structure, annota-
tions are used to express explicitly some geometric properties
such as major/minor diameters, pitch, or number of threads [39].
Since a DMU can be simplified and details may not be fully
defined, additional attributes can be used to further characterize
parts. For instance, component material, and physical properties
are represented as annotations. They are necessary to enable the
manufacturing of a product [40] or to perform simulations. In
the end, other attributes are used to identify name, number and
version of a product, to distinguish its status and maturity level
in the PDP and to provide details about description, material and
product manufacturing information.

The above mentioned explicit information may be present
in the DMU as attributes, but it is not mandatory. Moreover,
the absence of conventions among designers and the variability
against the industrial context make challenging to exploit this in-
formation in retrieval systems. Actually, this type of information
is not robust and of little use for CAD retrieval [7]. Thus, in this
review, the retrieval techniques which try to make use of such
unreliable information have been identified.

2.4. Components’ positioning

In addition to the definition of the product structure, design-
ing an assembly model requires localizing each part in the 3D
space [41]. When considering physical objects, components are
positioned relatively to the others by means of contacts. Similarly,
in the DMU, parts are positioned to characterize the possible rel-
ative displacements. However, this information can be not always
available or designers can simply use homogeneous transforma-
tions to position parts. In addition, as discussed in Section 2.1, the
DMU does not always perfectly represent the real configurations
and some shapes may be simplified. Hence, the pure geometric
information stored in the DMU to assess the contacts between
two components can be ambiguous. To circumvent this limita-
tion, designers often make use of extra-information to explicitly
encode and constrain the relative positions of the parts. The
specification of the contacts is then performed through at least
one of the following solutions [39]:

• Kinematic links (or joints) characterize the relationships
between parts. They determine the positions of the compo-
nents as well as the allowable movements, i.e. the allowed
degrees of freedom (DOF). The kinematic links are divided
into two groups: lower kinematic pairs and upper kine-
matic pairs. A kinematic pair is said to be a lower pair
if the involved parts have surface area contact between
them. Different lower kinematic pairs can be identified ac-
cording to the types of surfaces involved in the contact. The
possible lower kinematic pairs are depicted in Fig. 4. Inter-
estingly, these kinematic pairs are not necessarily linked to
the shapes of the involved surfaces, e.g. the kinematic pair
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Fig. 5. Example of geometric constraints.

Fig. 6. Possibles interfaces between parts of an assembly model.

of two cylindrical surfaces can be a screw even though the
threads have not been modeled geometrically on both parts.
An upper kinematic pair arises when two surfaces are con-
strained to remain in contact along a common line or at a
common point [42]. Ball bearings have this type of kinematic
pair, as the contacts between the balls and the inner and
outer rings are punctual.

• Assembly constraints determine the relative position of
geometric entities (i.e. faces, edges or vertices) of parts of an
assembly model. Typically, geometric constraints between
parts include: parallel, perpendicular, coincident, tangent,
concentric, distance and angle (Fig. 5). Kinematic pairs can
be defined through a bundle of assembly constraints, but
assembly constraints can also be used alone, without any
definition of kinematic pairs.

• Absolute positions when parts are placed in a single 3D ref-
erence frame using homogeneous transformations to define
the affine transformation matrix for each object.

Today’s CAD systems provide capabilities to easily specify
and store the positions as well as the possible relationships
between parts. However, when considering large DMUs made
of several hundreds of parts, storing, updating and modifying
those relationships can rapidly become very difficult, even im-
possible. Thus, the parts in a DMU are often simply gathered in
hierarchies of subassemblies and only the absolute positions are
stored, i.e. without information about what parts are connected
and how. In this literature review, particular attention is paid
to the retrieval methods that assume the availability of this
information.

2.5. Interfaces modeling

Unrealistic or unrealizable configurations may be present in an
assembly model [39]. This is the case, for instance, of volumetric
interferences (i.e. self-intersections) between parts of an assem-
bly model [43,44]. In an assembly, interfaces may be grouped into
interferences, contacts and clearances as shown in Fig. 6.

In real-life situations, some of these configurations are not
possible. In the DMU, they are generated by some mistakes or de-
signed on purpose to convey a certain meaning [35]. An interfer-
ence is a non-realistic configuration since it implies overlapping

volumes of two components in a product, which is not possi-
ble for physical objects. Nevertheless, unrealistic interferences
may be created on purposes, such as the intersections among
screw and nut threads, or when considering flexible parts, like
springs, seals and insulating parts, or when designing parts as-
sembled by shrink-fitting. Thus, some of these configurations can
be interpreted as imprecise positioning, while others are deliber-
ate artifacts reflecting some conventional meanings [39]. Clearly,
the existence of such ambiguous configurations may affect the
similarity evaluation process, and two models, corresponding to
similar physical objects, may be recognized as dissimilar simply
because they are modeled differently. Thus, in this state-of-the-
art, it is important to distinguish the retrieval methods which are
able to deal, or not, with these unrealistic configurations.

2.6. Conclusions

As discussed in the previous sections, even though engineers
can spend a lot of time designing and enriching industrial DMUs,
there often exists a gap between the generated assembly mod-
els and the corresponding real-life physical products. Unrealistic
interfaces, simplified shapes, ambiguous configurations, missing
information, large variability in the way CAD models can be
designed and assembled, inconsistency and unreliability of the
available datasets are issues that can affect the effectiveness of a
retrieval system. Vilmart et al. also reached the same conclusion
and emphasized the importance to have an assembly descrip-
tion that is independent of any user intervention [45]. To this
aim, the intrinsic properties of an assembly model (e.g. parts
occurrences, symmetries, patterns, mating information) should be
used to characterize the description of CAD assembly models. In
the sight of these considerations, this review notably aims to
understand how the existing retrieval approaches describe an
assembly model and if the used information is provided manually
by the user, or if it is automatically extracted.

3. Application scenarios and similarity criteria

Assembly retrieval may be of interest in several activities
of the PDP where the criteria for evaluating similarities may
obviously change according to the objective. To underline the im-
portance of evaluating assembly similarity according to different
points of view, this section provides an overview of some appli-
cation scenarios that can benefit from assembly model retrieval,
highlighting for each of them the most appropriate type of sim-
ilarity and the criteria according to which it may be meaningful
for the user to evaluate similarity [46,47].

3.1. 3D model reuse

In the design of new products, it is common practice to reuse
existing 3D models to include components previously designed
using them as originally designed, or making slight changes to
meet new requirements [47–49]. To avoid starting the detailed
design phase from scratch and to capitalize on previous knowl-
edge, engineers might be interested in examining any existing
solution considered similar to their needs. These solutions can
include also components provided by third parties thus not fully
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detailed. To this end, it may be useful to start a rough design of
the new component and use it to search the similar components
over the whole dataset. This recovery process should identify a
restricted collection of assemblies that contain parts with similar
shapes and comparable assembly conditions. In this case, it is use-
ful to start with a rough query, i.e. a query in which the shape of
the components is not fully detailed but just sketched. Thus, the
similarity of the part shape must be evaluated at a level of detail
that does not consider, for example, minor characteristics such as
fillets and chamfers. Here, the retrieved objects may be similar
to the query either partially, locally or globally. Sometimes, it
may be useful to reuse and update previous designs when it is
necessary to replace a certain type of product components. For
example, when due to the working conditions, a type of bear-
ing adopted in an assembly model needs to be replaced with
another type capable of supporting more load. Retrieving all the
models containing that specific component assembled in similar
conditions allows identifying the products, which may benefit of
the component substitution. In addition, the identification of the
position of these defective components in an assembly helps to
evaluate procedures and costs necessary for their replacement
and to correctly update the related CAD models. Here, the type
of interesting similarity is partial or local and the criteria for
evaluating the similarity can be stricter, involving, for instance,
also the dimensions of the components and the number of con-
stituent parts together with all the information on shape and
mutual relationships.

3.2. Product information reuse

This application scenario corresponds to the process of mining
a database to retrieve design information and documentation
associated with a given product. Generally, it allows obtaining
useful knowledge for the design of a new product: technical
information, production processes and costs associated with sim-
ilar products previously developed [50]. For instance, if a de-
signer wants to retrieve assembly instructions of some products,
it might be useful to retrieve models considered either globally,
partially or locally similar according to the mating conditions
between components.

3.3. Product standardization and rationalization

Standardization is the process of defining common character-
istics among a set of components so that they are compatible with
each other. This process allows the rationalization of products by
eliminating very similar components or by outsourcing products
and product variations, thus reducing the size of the product
portfolio to be developed.

These practices allow a considerable time saving, especially in
case of complex devices with many parts which may require a
complex design and/or production process. Here, the evaluation
of the similarity is mainly local and can involve the functionality
of a component as well as some information on how it is linked to
other components. For instance, if a company aims to standardize
the steering wheel of certain cars, then the specific shape of
the steering wheel is not relevant, while the most important
characteristic is how the wheel is linked to the drive shaft by
means of external mating surfaces.

3.4. Maintenance planning

Maintenance refers to those activities necessary to preserve
the status of a product preventing its damage due to the aging and
deterioration of components. To this aim, the retrieval of similar
assemblies meant as the identification of similar components in

a set of assembly models, and the knowledge of their rate of
wear and tear helps to optimize the management of the stocks
in the warehouse. Also in this scenario, the user aims to retrieve
a specific component included in a set of assembly models (thus
locally or partially similar assemblies with strict similarity criteria
involving shape and mutual relations).

3.5. Reverse engineering

In mechanical-field, reverse engineering is the process that
creates a 3D digital model starting from a physical object. The
reconstruction of a digital model starts capturing data from real
objects, where the acquisition may be done through different
devices, as a camera, a laser scanner or a 3D computed tomog-
raphy (CT). Based on the generated point clouds, designers often
have to follow a tedious and time-consuming patch-by-patch
reconstruction strategy to come up with a fully reverse engi-
neered B-Rep CAD model. This is even truer when considering
the reverse engineering of CAD assembly models. Thus, being
able to shift from a patch-by-patch to a part-by-part modeling
strategy can drastically speed up the CAD assembly reconstruc-
tion process. Here, the ability to retrieve models into a database
can facilitate some reconstruction operations, and in this case,
the type of query may rely on the adopted acquisition tool. If a
laser scanner has been used, then the aim is to retrieve models
with a similar outer shape, while a 3D CT allows the possibility to
investigate also the similarity between part relationships. In this
scenario, all the three types of similarity may be interesting.

4. Adopted criteria to review the literature

In this section, criteria to analyze the existing methods that
address the identification of similarities among assembly models
are identified and described. The presented criteria are grouped
into the following five macro-categories: objective, assembly
characterization, assembly descriptor, query specification and
type of similarity. Those categories are used to set up Table 1,
which gathers together the synthetic evaluation of the reviewed
methods with respect to the considered comparison criteria.

4.1. Objective

The process of retrieving assembly models benefits various
stages of the PDP, where a different retrieval purpose may iden-
tify different similarity requests. For this reason, this criterion is
used to highlight the specific objectives addressed by the different
methods.

4.2. Assembly characterization

To understand according to which criteria the similarity can
be assessed by the works present in the current state-of-the-art,
it is important to know the type of information used to describe
the assembly models in the retrieval system. Thus, the set of
criteria used for the characterization of the assembly refers both
to the type of data and to the knowledge that the authors use
to typify the assembly model and the way the information is
obtained. More precisely, it includes the so-called Part informa-
tion criterion which expresses the geometric characteristics used
to describe the assembly models components, the Topological
information criterion which captures the type of information
used to characterize the relationships between the parts, the
Annotations criterion which states if the retrieval methods make
use of such extrinsic information, and the Functional classifi-
cation criterion to explain if the assembly descriptor elaborates
somehow these data to get a functional classification of the
components.
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Renu et al. [51] Search for models with
similar shapes for assembly
instructions reuse

– SD – – – – – – – – ✓ ✓ - ✓ Part  ✓ – –

Katayama et al. [52,53] Search for models with
similar shapes, same number of
components and same layout

– 2DP – – – – – – – ✓ – ✓ – ✓ Assembly  ✓ – –

Wang et al. [54] Search for assembly models
with similar shapes

– SD – – – – – – – – ✓ – ✓ – Assembly G# ✓ ✓ –

Zhang et al. [55] Search for assembly
models with similar shapes

– SD – – – – – – – – ✓ – ✓ – Assembly G# ✓ ✓ –

Hu et al. [56] Search for assembly
models with similar
shapes and composition

– LFD PS – – – – – – – ✓ ✓ – ✓ List of parts G# ✓ ✓ –

Tao et al. [57] Search for assembly models
with similar shapes and
component connections for
assembly plans generation

SI – EN, LN – A – – ✓ – ✓ ✓ ✓ ✓ ✓ Assembly  ✓ – –

Miura et al. [58] Search for assembly models
with similar shapes
and component connections

– AD – – - A – – – ✓ ✓ ✓ ✓ ✓ Assembly  ✓ – –

Han et al. [59] Search for assembly models
with similar parts, constraints
and function information

– – – – PC PC – ✓ AR ✓ ✓ ✓ ✓ – Text G# ✓ ✓ –

Li et al. [60] Search for similar assembly
models of injection mold
design of automotive interiors

– SD – A A – – ✓ AI ✓ ✓ ✓ ✓ ✓ Part or Assembly  

 

✓ ✓ –

Deshmukh et al. [47,61,62] Search for similar assembly
models according to multiple
assembly characteristics

C,SI – – – A A – ✓ US ✓ ✓ ✓ ✓ ✓ Matinggraph G# ✓ ✓ –

Chen et al. [48] Search for similar assembly
models according to multiple
assembly characteristics

– SD – A PC PC C – US ✓ ✓ ✓ ✓ ✓ Assembly G# ✓ ✓ –

Zhang et al. [63] Search for similar assembly
models according to multiple
assembly characteristics

C,DA,SI – – A A – – – – ✓ ✓ ✓ ✓ – Assemblyset  ✓ ✓ ✓

Wang et al. [64] Search for similar assembly
models according to multiple
assembly characteristics

– SD – – A – – – – ✓ ✓ – ✓ ✓ Assemblyset  ✓ ✓ ✓

Lupinetti et al. [65] Search for similar assembly
models according to multiple
assembly characteristics

– 3DSH – A C – C – AI ✓ ✓ ✓ ✓ ✓ Assembly orGraph G#

G#

✓ ✓ ✓
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4.2.1. Part information
This criterion indicates which information is used to ch-

faracterize the parts in an assembly model. To guarantee a
comprehensive and structured classification, it is divided into:
(1) Geometric information, (2) Shape descriptors, (3) Statistical
information. Then, for each category only the information used
by the reviewed retrieval methods are shortlisted and explained.

Geometric information

Geometric information specifies if an approach characterizes
the parts of the assembly models by using data that can be easily
computed processing their B-Rep models. The types of geometric
information used by the methods included in this survey are
described below:

• Curvature (C): The normal curvature at a point P on a sur-
face varies around the normal direction of the surface. The
maximum and the minimum values of the normal curvature
are named as principal curvatures and the difference of
their signs can characterize the point on a surface. In this
state-of-the-art, the works, which use normal curvature to
characterize the shape of the parts, sample points on the
faces and then evaluate the average of the different types
of point.

• Dihedral angle (DA): A dihedral angle is the internal angle
defined by two adjacent faces on an edge. According to the
normals of the faces and the direction of the edge, a dihedral
angle can be concave, convex or smooth.

• Surface information (SI): It refers to the type of surface un-
derlying the faces of the parts, i.e. if a face is planar, cylin-
drical, conical, spherical, toroidal or other; and the surface
convexity, i.e. convex, concave or planar.

When analyzing the reviewed approaches, the type of geomet-
ric information used is described. Methods that exploit multiple
types of geometric information report multiple labels in Table 1
under the column geometric information.

Shape descriptors

The shape descriptors indicate how the methods character-
ize the shape of the parts. Shape descriptors may be computed
directly from the B-Rep of the parts or they can require a pre-
process to obtain a polygonal representation. This survey focuses
on the type of descriptor used and not on how it has been
computed. Then, for each analyzed method, only the character-
istics of the adopted shape descriptors are described. The shape
descriptors used by the analyzed methods are described below:

• Shape distribution (SD): This descriptor is used to evaluate
the shape similarity of two parts. It is described by Osada
et al. [10], where the 3D shape of each part is characterized
by the distances of randomly sampled points on the surface
of the parts. Several distances can be used to compute the
shape distribution and most of the time, in the considered
methods, the Euclidean distance is employed.

• Set of 2D projections (2DP): It is a view-based descriptor to
characterize components of assembly models according to
their shape regardless of their structure. Since view-based
methods are not robust to translation and rotation in the
space, a set of projections is collected.

• Light Field Descriptor (LFD): It is a view-based descriptor that
collects different 2D views of a 3D model [66]. It is based on
the idea that if two 3D models are similar, they also look
similar from any view angle.

• Angle distance (AD): The angle distance is a two-dimensional
distribution proposed by Ohbuchi et al. [67] for the shape
retrieval of components, where the first dimension indicates

the normalized distribution of distances between sampled
points on a part, while the second dimension refers to
the normalized distribution of inner products between the
surface normal vectors.

• Spherical harmonics (3DSH): The evaluation of shape simi-
larities can rely on the computation of spherical functions
following the method proposed by Kazhdan et al. [68]. Here,
a function (that represents an approximation of the object to
be described) is decomposed into harmonics, the harmonics
are then summed with respect to their frequency and the
norm of each frequency component is finally computed. It
results in a normalized histogram, which reports the values
of the sums of the harmonics for the given frequencies. In
particular, in their work, there are 544 bins in the histogram.

Statistical information

Statistical information indicates which numerical data are
used to describe the parts of an assembly. Innumerable data can
be used for this purpose, and the statistics used in the analyzed
methods are listed below:

• Part statistics (PS): Two assembly models can be compared
according to the parts that compose them. The works that
adopt this description refer to the number of parts and how
many times each part appears in an assembly model.

• Edge number (EN): This criterion indicates if the methods
take into account the number of edges or of outer edges to
characterize the parts of an assembly model.

• Loop number (LN): This criterion indicates if the methods
make use of the number of loops to characterize the parts
of an assembly model.

When analyzing the reviewed approaches, the type of statisti-
cal information used is described. Methods that exploit multiple
types of statistical information report multiple labels in Table 1
under the column statistical information.

4.2.2. Topological information
This criterion helps to describe the type of information used

to characterize the relationships among the parts of an assembly
model. Here also, a method can make use of several of those de-
scriptors and this is highlighted by multiple labels in the column
topological information of Table 1:

• Structure: If a method makes use of this descriptor, it means
that it exploits the hierarchical decomposition of the assem-
bly models, as described in Section 2.2.

• Kinematic links: This descriptor refers to the relationships
defined by the contacts between parts as described in Sec-
tion 2.4. In the analyzed works, this information sometimes
is referred as mating conditions or joints between two parts.

• Geometric constraints: This descriptor refers to the exploita-
tion of specific constraints between geometric entities of
two parts of an assembly model, as described in Section 2.4.

• Part arrangement: Since different parts can be positioned in
an assembly model in several ways, this descriptor charac-
terizes if the analyzed works are able to recognize particular
part arrangements in the 3D space, e.g. repetition of some
parts.

In this paper, each method is analyzed to identify whether
it uses or not (−) the above-mentioned topological informa-
tion. Table 1 also details the way the information is collected:
(A) characterizes methods which assume that the relationships
between the components of an assembly are explicitly encoded
and available from the native CAD models; (C) indicates that
they are automatically derived and computed from the assembly
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geometry; (PC) if they are partially computed (i.e. if some con-
figurations are automatically extracted and others are manually
specified by the user).

4.2.3. Annotations
As described in Section 2.3, attributes are sometimes added

and attached to the assembly models to specify details on the
shape of the parts or to further specify useful data (e.g. mate-
rial, welding types and tolerances). Here, this criterion simply
captures whether the reviewed methods use (✓), or not (−), an-
notations as structured metadata (e.g. ontology or thesaurus) or
simple text annotations. As discussed earlier, exploiting such un-
reliable information cannot be considered as an effective practice
for retrieval applications since it is user- and system-dependent.

4.2.4. Functional classification
Today, there is a growing interest in developing knowledge-

based and semantic-based assembly retrieval systems to access
and to exploit the functional characteristics of the product com-
ponents and subassemblies [3,45]. Functional information can
be extracted automatically by reasoning on some information
available in the CAD models, or exploiting support systems that
encode product data, or using user-specified data. To character-
ize the methods according to the techniques used to populate
the functional information, this criterion can be associated with
different labels: user specification (US), algorithm reasoning pro-
cedures (AR), artificial intelligent techniques (AI), or use of ad-hoc
tools such as PDM/PLM systems or ontologies (ST).

4.3. Assembly descriptor

This criterion aims to characterize the assembly model de-
scriptor adopted by the different reviewed works. In particular, it
specifies the Level of components that are described, the Level

of descriptor and if the assembly descriptor is Scale sensitive.

4.3.1. Level of components
This criterion indicates if, in the reviewed works, the assembly

models are described at the level of the Assembly, at the level of
the Part, or at the level of the Feature. At the assembly level, an as-
sembly model is described by its parts and their relationships. At
the part level, an assembly is described only through the list of
its parts, and at the feature level, shape portions having specific
assembly meaning are used to characterize an assembly. Since
none of the analyzed methods uses the feature level description,
in Table 1 this level does not appear.

4.3.2. Level of descriptor
It indicates if the assembly descriptor is able to capture local

characteristics of an assembly model or if it describes the assem-
bly under a global point of view. Thus, this criterion may take two
values: Global or Local. Note that even if the descriptor is able to
characterize the assembly model at the local level, this does not
automatically imply that the retrieval method exploits this ability
to assess local or partial similarities.

4.3.3. Scale sensitivity
This criterion specifies if the method is able (✓), or not (−),

to distinguish assemblies with the same number of parts and
assembled in the same order, but having different sizes. Usually,
this ability relies on the type of data used to characterize the
assembly models. For instance, shape distribution descriptors that
compute several distances on the surface of a part are influenced
by the dimension of the part if these distances are not normalized.

4.4. Query specification

A database can be queried in multiple ways according to both
the available data and the user’s search purpose. For instance,
to retrieve similar assemblies to get information about their as-
sembly plan, it is reasonable to use as query a detailed assembly
model, so as to take into account all the related information,
while, to retrieve models with similar shapes, then it is sufficient
to use as query just a list of the parts involved in the assembly. For
this reason, this criterion is introduced to specify the Type of

query model, i.e. how the query is expressed as well as the type
of associated input data, and the model Completeness, i.e. if all
the elements of the query model are defined at the same level.

4.4.1. Type of query model
This criterion indicates the type of data used to represent the

query model. According to the reviewed literature, it can assume
the following values: single CAD assembly model (Assembly), set
of CAD assembly models (Assembly set), CAD part model (Part),
set of CAD part models (List of parts), and abstract assembly
descriptor (Text, Mating graph or Graph).

4.4.2. Completeness
Some works allow leaving unspecified some elements of the

query model. In this state-of-the-art, a method that requires the
use of a Complete query is labeled by the symbol  , while the
symbol G#is used to characterize methods that can make use of
an Incomplete query model. This criterion applies to any type
of query model, i.e. on both CAD assembly models and abstract
representations of assembly models. Naturally, the possibility to
make use of incomplete query opens more possibilities to the
corresponding retrieval methods.

4.5. Type of similarity

This criterion allows the characterization of the reviewed
methods according to their ability to assess Global, Partial and
Local similarities as introduced in Section 1. Clearly, the use
of an assembly descriptor able to characterize a model at the
local level does not imply that the retrieval method exploits this
characteristic to assess a partial/local similarity. For example, this
happens when the representation of an assembly model is based
on graphs and when the matching method looks for graphs or
subgraphs isomorphisms. Indeed, a graph-based representation is
able to capture a local similarity between two assembly models,
this is represented by a common subgraph between the two
graphs. If the retrieval method uses graph isomorphism matching
applied to the entire query and the entire target models, then
the similarity is evaluated at the global level and the local simi-
larity will not be captured. To capture local similarity the use of
subgraph isomorphism is preferable.

5. Overview of techniques for assembly model retrieval

While the literature of shape-based retrieval of parts is very
vast, the interest of the research community in the retrieval of
CAD assembly models is quite recent. In this section, the principal
methods for assembly model retrieval are discussed and char-
acterized using the criteria introduced in Section 4. In addition,
when possible, the time complexity of the adopted matching
algorithm is reported. Unfortunately, since only a few works
provide it or detail the adopted algorithms, an exhaustive analysis
on the time complexity of the studied methods is not feasible.

Methods have been grouped into two main categories distin-
guishing the methods that consider only the information related
to the parts constituting the assembly model (Section 5.1) from
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the methods that also exploit topological information among
the parts (Section 5.2). Each group is further decomposed in
subcategories according to their ability to address the different
types of similarity introduced in Section 1, i.e. Global, Partial and
Local similarities. This section ends up with a synthesis of the
survey and Table 1 summarizes the assessment of each method
according to the previously introduced criteria. Obviously, this
survey reflects our understanding of the reviewed methods, based
on a systematic analysis of the available papers published at the
time of the survey.

5.1. Retrieval methods using only shape information

This section gathers together methods that address assem-
bly model retrieval based solely on the shape of the constitut-
ing parts. The shape description of each part can be managed
individually in the assembly descriptor or processed to get a
global description of the entire CAD assembly model. Methods
are analyzed according to their ability to recognize only global
similarity (Section 5.1.1), or also partial one (Section 5.1.2).

5.1.1. Global similarity
Renu and Mocko [51,69] explore the use of model similarity

and text analysis approaches to develop a relationship between
solid models and assembly work instructions. This is aimed at
supporting the reuse of decisions taken during the assembly pro-
cess design. To reach this objective, the authors have fixed three
objectives: (i) evaluate solid model similarity in terms of their as-
sembly processes; (ii) investigate the natural language processing
approaches required to analyze assembly work instructions; (iii)
use part geometry information to mine databases of assembly
work instructions and retrieve relevant work instructions. In [51],
the authors have faced the first objective aiming to search for
models with similar assembly instructions, thus addressing the
reuse of product information. Their process to determine solid
model similarity consists of the following four steps:

• Compute histogram-based similarity scores: In this step,
Osada’s method [10] is used to generate shape descriptor
for each part of the compared assembly models.

• Generate clusters of similar solid models based on his-

togram score: The adopted shape descriptor provides sim-
ilarity of overall shape of solid models and it is used to
generate clusters of similar models.

• Compute surface area and tessellation area distribution

differences: Here, to recognize local differences between
CAD models, like the one illustrated in Fig. 7, the tessella-
tions of solid models within each cluster are analyzed for
evaluating the differences of the surface areas and of the
area distributions.

• Multi-index sorting to generate ranked list of similar

solid models: Finally, a multi-index sorting is performed
on the values of the difference parameters (e.g. global his-
togram similarity, difference in surface area, difference in
tessellation area) to rank the models recognized similar to
the given query assembly model.

In this work, there is no evidence of the use of assembly
relationships information (−). The part information uses a shape
distribution (SD), which is computed from the tessellations of
the parts. Since the method involves area value in the evaluation
of the similarity, the method is scale sensitive (✓). Finally, this
method characterizes assembly models at the level of parts and
the query model has to be a complete ( ) assembly model.

Katayama and Sato [52,53] developed a method for the re-
trieval of globally similar assembly models, which evaluates the
similarity according to their hierarchical decompositions. The

Fig. 7. Local differences in CAD models and their tessellations [51].

idea is to define a new representation of an assembly model,
which conveys the global shape of the assembly as well as the
shape of the single components. Fig. 8 illustrates the main steps
of their method for the similarity evaluation of two assembly
models, where different components are specified using different
colors. Similarly to view-based methods [8], the components of an
assembly model are projected into a set of 2D planes, where the
components are identified by their design name. The size of the
2D planes is proportional to the size of the CAD model, and the re-
sulting projections are rotation- and translation-dependent. Then,
the 2D Radon transform and the Fourier transform are applied to
the results of the projections. The distance between each pair of
components is then computed using the Euclidean distance. The
final distance of two assembly models is given by the sum of the
distances between the corresponding components.

This method characterizes assembly models according to their
shape and indirectly to their structure. Indeed, the structure is
not considered as a proper topological relation, but it is used to
define the way components are projected. For this reason, this
method has been included among the works that do not make use
of topological information. Anyhow, the fact that the structure is
considered means that the adopted assembly descriptor charac-
terizes the models at the assembly level. Parts are characterized
by a set of 2D projections (2DP) and the method is scale sensi-
tive (✓). Finally, the input for this retrieval method is an assembly
model and the number of components has a strong impact on
the similarity assessment, since two assembly models having
different numbers of components are not considered similar ( ).

5.1.2. Partial similarity
To retrieve assembly models, Wang et al. [54] compare the

shapes of all the constituting parts. The query is represented by
an assembly model but, since only its parts are considered, the
query model can be incomplete (G#).

In their approach, an assembly model is described as a point
set, and the comparison of assembly models is transformed into
the comparison of point sets (Fig. 9). The point set is obtained
by taking the heights of the bins in the histograms encoding the
shape distribution descriptors of the parts of the assembly. In
this way, the assembly descriptor is characterized at the part
level. Since the same set of parts may originate different as-
semblies, whose differences cannot be captured, the descriptor
characterizes the models at the local level. For the matching
of point sets, the Earth Mover’s Distance (EMD) strategy pro-
posed by Rubner et al. [70] for image retrieval is used. Here,
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Fig. 8. Example of the procedure to compute the distance in terms of shape and structure between two assembly models [53].

Fig. 9. Example of the description of an assembly model [54].

the complexity of the method depends on the algorithm used to
compute the EMD between two n-bin histograms, which usually

is O(n3 log n). Anyhow, they do not provide any further details on
the adopted algorithm.

Lately, Zhang et al. [55] adopted a modified Hausdorff distance
on the same assembly descriptor. This modified version, proposed
by Dubuisson and Jain [71], takes the mean distance between two
point sets. In [71], the time complexity is not discussed.

Also in this case, incomplete query models are allowed (G#). In-
deed, since the relationships between parts are not considered,
the query model can simply be a set of parts which have to
be present in the target model. Then, the matching techniques
allow retrieving both Global and Partial similarities. Finally, these
techniques suffer from several limitations: (i) the description
power of the shape distribution, i.e. complex shapes cannot be

disambiguated, (ii) the computational time to perform a many-
to-many matching in case of complex assemblies and, above all,
(iii) the non-consideration of the relationships between assembly
components.

Hu et al. [56] provide two methods for the matching of as-
semblies exploiting only geometric information of the parts. The
first method is based on vector space model (VSM) for the exact
matching. In this approach, the generic j-th assembly of their
database is represented through a n-dimensional vector dj =

(w1j, . . . , wij, . . . , wnj), where n is the number of parts in the j-
th assembly and wij is the weight of the i-th part in the j-th
assembly. The weights are computed taking into account two
factors. The first relevant factor considers the number of occur-
rences of a part and the assembly complexity, i.e. the number
of composing parts. The second one regards the uniqueness of
a part. Indeed, a part that occurs in few assemblies is more



K. Lupinetti, J.-P. Pernot, M. Monti et al. / Computer-Aided Design 113 (2019) 62–81 73

discriminating for matching operations. Assembly statistics (PS)
are computed by analyzing the assembly and identical parts are
recognized by using Light Field Descriptor (LFD) [66]. Using this
vector space model (VSM), the assembly descriptor is able to
capture local characteristics of the model but not its global shape
(or other global features).

The similarity between two assemblies is computed as a func-
tion of the angle between their associate VSMs. This approach
provides only exact matching, which is too limited in real applica-
tions. To overcome this limit, the authors propose also a relaxed
matching algorithm. Consequently, the query can be seen as an
incomplete assembly model (G#), since it is possible to select an
assembly model or just a set of parts that has to be included
in an existing model. This matching problem is solved using the
graph theory, in particular employing a bipartite graph. The parts
of the query and of the target assemblies originate the graph
nodes, while the graph arcs represent the similarity between
two parts. The bipartite graph matching problem is solved using
the Kuhn–Munkres algorithm [72,73] allowing to detect both
the Global and Partial similarities. However, this technique is
computationally expensive, O(n3), thus the authors propose an
approximate matching algorithm. With their greedy approach, the
matching process complexity is reduced to O(n).

The main limitation of the method of Hu et al. relates to the
assumption that two assembly models are similar if they mostly
share the same parts. This can be a filter to reduce the number
of models to be compared, but it cannot distinguish assemblies
constituted by the same parts differently assembled.

As a conclusion, in this section, the approaches are strongly
based on the shape information and do not use assembly rela-
tionships, i.e. no topological information is used. Thus, geometric
constraints, kinematic links, or part arrangements are not ex-
ploited, which may restrict the application scenarios for which
the reviewed assembly retrieval system can be applied. Also,
the parts’ position is not considered by almost all these works,
indeed [51,54,55] and [56] combine only data on the shape of the
assembly parts without examining their absolute position. Con-
versely, Katayama and Sato [52,53] take into account the parts’
position in an indirect way. Indeed, they do not reason on the
transformation matrices of the parts, but they compute the shape
descriptor of assemblies directly on the models resulting from the
final assembly process, i.e. considering the parts in their absolute
position.

Lastly, the methods using assembly descriptors able to char-
acterize assembly models at local level fail to identify local sim-
ilarity because of the adopted matching techniques. Effectively,
there is no evidence that the query model may be bigger than
the retrieved correspondences, then they require that the query
model is included in the target model at least. Theoretically, by
revising the matching procedure, these methods can detect also
local similarities.

5.2. Retrieval methods using shape and topology information

This section presents retrieval methods that make use of as-
sembly relationship information. The relationships in assembly
models may be represented by the use of graph-based descrip-
tors. Even if different graph structures can be adopted, individual
assembly components are usually represented as nodes, links
between components as arcs of the graph and other information
are represented in form of attributes of nodes and arcs. Here
again, methods are categorized and analyzed according to their
ability to recognize global, partial and local similarity and finally
those that assess all the three different types of similarity.

5.2.1. Global similarity
Tao and Huang [57] propose an approach to find assem-

bly models for design reuse and generation of manufacturing
plans. Their component attributed relational graph (CARG) rep-
resents an assembly model as a direct graph where the nodes
represent the components and the arcs correspond to connec-
tions between two components. Several attributes are associated
with the nodes and the arcs for the description of the assembly
model. In particular, each node encodes the component volume,
the surface type (SI), the surface convexity (SI), the loop number
of a face (LN) and the edge number of its outer loop (EN). An
arc represents the adjacency relationship between two compo-
nents and encodes the types of contact surface pair and the
connection relations, which can assume the following values:
screw connection, pin joint, key joint, rivet joint, bearing, belt,
chain and bonding or welding. Since the description of the single
parts has been preserved in each single node, and has not been
collapsed into a unique assembly descriptor, this descriptor is
able to capture both the entire assembly as well as the details
at the level of its parts.

Using a graph as assembly descriptor, in principle, local simi-
larity could be detected. However, the adopted matching proce-
dure is based on a global evaluation of the similarity. It computes
the similarity S(P1

, P2) between two components P1 and P2 con-
sidering the stored properties and the connection relations. To
evaluate the similarity between two assemblies A1 and A2, a
compatibility matrix SM(A1

, A2) is built, where the element in the
i-th row and j-th column is S(P1

i , P2
j ). Then the similarity between

the assemblies A1 and A2 is computed as follows:

S(A1
, A2) =

SM(A1
, A2)max

max (m, n)
, (1)

where SM(A1
, A2)max is the value of the optimal matching com-

patibility matrix SM(A1
, A2) evaluated using Kuhn–Munkres al-

gorithm [72,73] and m (resp. n) is the number of components in
A1 (resp. A2). The authors do not discuss the complexity of their
method, anyhow the Kuhn–Munkres algorithm usually has o(k3)
time complexity [74], where, in this case, k = max(n,m).

This method uses simple geometric information and kinematic
links to characterize parts of assembly models and their rela-
tionships. The geometric information is partially directly avail-
able from the B-Rep model of each part (A), and Kinematic links
are available likewise (A). The use of surface area makes the
method sensible to dimension differences, i.e. it is scale sen-
sitivity (✓). The values as ‘‘rivet joint’’, ‘‘bearing’’ and so on,
used to characterize the connection relations, suggest that some
attributes (✓) are supposed to be available in CAD models.

Miura and Kanai [58] provide a 3D shape retrieval method
which satisfies the following four requirements: (i) evaluating as-
sembly structure similarity (i.e. the method evaluates shape and
structure similarities of the assembly); (ii) maximum matching
ability (i.e. similarity measure should not change significantly if
a minor component changes in the assembly); (iii) insensitivity
to the movable components (i.e. similarity measure should not
consider relative positions of the components in an assembly
model); (iv) flexible control of similarity evaluation (i.e. similarity
should be easily defined and tuned by the designer).

The adopted assembly descriptor is an assembly graph, where
each node corresponds to a component in the assembly and
each arc indicates a contact, an interference or if at least a
geometric constraint is present between two components. To
characterize the geometry of the model, several attributes are
specified for nodes and arcs. In particular, the area, the volume
and the angle distance (AD) are associated with nodes, while
the type of constraints characterizes the arcs (if they identify a
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constraint). The data that characterize the constraint informa-
tion has to be available (A) in the CAD models. The use of a
graph representation guarantees a local characterization of the
assembly model, anyhow the assembly retrieval is performed by
a global graph matching, that it is treated as the stable marriage
problem and solved by the Gale–Shapley algorithm [75], which
usually runs in time o(n2) [76], where, in this case, n refers to
number of nodes of the graph representing the query model. Even
if, there exist several optimizations to reduce the complexity for
this algorithm, the authors provide no information about their
use. The similarity is evaluated at the level of the components
by using the difference between the stored shape features of two
components and at the level of the structure by using an assembly
graph matching. The method is scale sensitive (✓) because of area
and volume information used in the matching procedure. Finally,
the considered ‘‘assembly structure’’ refers to the kinematic links
and constraints between two assembly parts and not to the
hierarchical organization of an assembly model.

The two methods presented in this section identify assembly
similarities at a global level, even though the adopted descriptors
are able to characterize assembly models at a local level. It means
that adopting other matching approaches, these methods could
theoretically evaluate assembly similarities also at partial or local
levels.

5.2.2. Partial similarity
With the aim of improving the product conceptual design

reuse, Han et al. [59] provide a method to reuse knowledge design
through the retrieval of assembly models according to high-
level of semantic knowledge. Differently from all the methods
examined in this review, this approach does not use a shape
description to represent the constituent parts but it strongly
promotes semantic information derived by text annotations or
component names.

In this approach, an assembly model is described by three dif-
ferent semantic information: part semantic, assembly constraints
semantic and functional semantic. Part semantic includes informa-
tion such as assembly name, part name, part type (e.g. function
or connector) or material. Then, this method makes a large use of
annotations (✓). Assembly constraints semantic describes geomet-
ric mating (i.e. the geometric constraints as coincident, concentric,
distance, tangent, parallel and so on) and connection relationships
(i.e. hard connections that are realized by physical connectors
as screws, nut or pin, or soft connections). This method makes
use of topological information: geometric constraints with the
use of geometric mating, and kinematic links since connection
relationships are interpreted to deduce the degree of freedom
between two parts. The authors state that parts and constraints
information is parsed into standard semantic terms, then these
data are partially computed (PC) because they are supposed to be
available in the CAD model or perhaps extracted by using other
existing approaches. Finally, functional semantic classifies eight
basic functions, i.e. support, signal, channel, connect, control, con-
vert, provision and branch. The functional semantic annotation is
an automatic process that exploits the two previously introduced
semantics. Then the functional classification is achieved by algo-
rithmic reasoning (AR). The information on the parts combined
with the information on the constraints allow describing the
assembly model at both global and local levels.

A novelty of this method relates to the query input, i.e. a text
query that describes the component, the constraints and the func-
tional semantics to be matched in other assembly models. From
the proposed examples, it emerges the possibility to provide
incomplete queries (G#), i.e. the query semantics include part
semantics, assembly semantics and functional semantics, but the
user can specify a combination of these elements leaving unspec-
ified some of them. Once a semantic representation is created for

the query and the target models, a semantic similarity evaluation
is performed by using WordNet [77] and ontology. WordNet is
an English dictionary used to handle synonyms, while ontology
can be viewed as a directed graph [78]. Then the similarity
evaluation is translated into a bipartite graph matching problem
that is solved using the Kuhn–Munkres algorithm [72,73], which
usually runs in time o(n3) [74], where, in this case, n refers to
the maximum number of nodes of the graphs representing the
models to compare. Finally, this matching technique allows to
detect both the global and partial types of similarity.

Li et al. [27,60] address the reuse of previous solutions in the
design of new products to avoid starting from scratch. They aim
to define a geometric reasoning approach independent from any
CAD system or design history. Their method has been conceived
for CAD parts, but they include a generalization for assembly
models as well. In [27], they exploit a hierarchical representation
of CAD models, which is composed of a tree-like structure (TR)
that describes the global similarity, and an adjacent graph (ADJ),
which characterizes local similarity. In this way, the method can
support the assessment of global and partial similarities. Using
this scheme, the root of the TR represents the entire model, the
intermediate nodes represent a set of partial features and the
leaves are associated with detail features, e.g. a single face of
the solid model or a more detailed partition of surfaces. While,
the ADJ encodes relationships between non-leaf nodes, for the
parts it defines if two features have a common edge. This rep-
resentation can be used also for assembly models, anyway the
authors do not suggest directly to use this method, because kine-
matic information is not extracted and described explicitly. The
approach has been applied to assemblies to support the reuse of
mold designs [60]. In case of assemblies, the TR corresponds to
the assembly hierarchical decomposition, while the ADJ captures
kinematic pairs between parts. The similarity is computed by a
subgraph isomorphism on the ADJs, which is based on the VF2
algorithm [79], which usually has time complexity of o(n2) for
the best case and o(n!n) for the worst one [80], where n refers
to the maximum number of vertices of the two graphs. Then, the
similarity is evaluated for each level of the TR in terms of their
shapes and relationships. In particular, the shape similarity Si in
the ith level is evaluated by the following equation:

Si =

∑

j

ωj × D2sim (2)

where ωj is the ratio between the area of the jth matched pair
in the ith level over the area of all the matched pairs in the ith
level and D2sim is the similarity between D2 shape distribution
(SD) of matched pairs. To improve the efficiency of the retrieval, a
coarse filtering is performed in advance. Parts are classified in six
types of models (beam type, block type, round type, cover type,
case type and frame type) based on KNN algorithm [81]. Thus,
this method exploits a functional classification performed by an
artificial intelligent technique (AI).

The way kinematic links are processed is not detailed, thus one
can assume they should be available (A) in the CAD models. The
use of the area of matching components in the similarity evalu-
ation makes this method scale sensitive (✓). In the end, it allows
global and partial similarities assessment, but both are achieved
by exploiting the hierarchical structures (✓). This suggests that
the method is not able to recognize as similar two models us-
ing different sub-assembly organizations to represent the same
product.

Deshmukh et al. [47] have proposed a retrieval method ex-
ploiting outcomes of previous researches [61,62]. In these works
the authors describe a system for extracting information useful
for searching and retrieving assemblies from databases. The func-
tional data are not usually explicitly stored in CAD files and often
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they cannot be inferred from the geometric characteristics of the
assembly either. Thus, in this system, the functional classification,
if not present in the CAD files, has to be specified by the user
(US). The authors take into account many aspects that play a
meaningful role in the description of an assembly model. The
data structure used in this work is a mating graph. For each
assembly in the database, its mating graph is built, where each
node corresponds to a part in the assembly model and each arc
represents a mating condition between two parts. In particular,
for each part in the assembly model, they consider the following
information.

• Category: It describes if the part is standard or custom.
• Geometry: The authors specify two types of geometric in-

formation depending on the category of the parts. If the part
is standard, then its geometric information is referred by a
library of standard parts, otherwise, it is referred by the best
approximation in the assembly database returned by the
approach described in [82], which is based on Face-based
Attributed Applied Vectors (FAAVs).

• Type: This information is defined only for standard parts and
indicates the subcategory of the standard part.

• Degree: Given a part P , its degree represents the total num-
ber of parts that are in contact with P .

Category and type can be unspecified if not provided by the
designer. Considering part relations, the user has the possibility
to select the types of relation between two parts or to leave them
unspecified. This allows defining also incomplete queries, where
not all parameters are defined (G#). The query model is repre-
sented as a mating graph, where parts are represented as nodes
with the four above mentioned attributes (category, geometry,
type and degree) and if two parts are in contact then an arc exists
between the two corresponding nodes. Most of the information
used by the authors to characterize parts are related to attributes
(e.g. category and type), while the geometric information charac-
terize parts by using their B-Rep representation to compute area,
curvature distributions (C) and the type of surface of the part
faces (SI). These data are available in the B-Rep of each part, but
the assembly relationships are not always present.

The proposed algorithm for mating graph-based search is ad-
dressing on graph compatibility problem. It is performed through
a combination of several heuristic approaches. To improve the
results, the search space is reduced assigning a priority score
to each node in the query graph. Then the algorithm attempts
to match each node from the query graph to a node from the
database graph by recursive operations and visiting the graphs
by a depth-first search. This procedure allows addressing partial
similarity but not the local one. In addition the partially similar
assemblies are retrieved using the assembly structure.

Chen et al. [48] propose an approach exploiting the hier-
archy in product structure and the semantics of assembly
interfaces. In addition, they also provide indexing and filtering
mechanisms. The assembly descriptor presented in this work
is a graph, which takes into account different information lev-
els. It includes topological and geometric information of the
assembly. More precisely, the descriptor comprises the following
information:

• Topological structure illustrates how the assembly, the
subassemblies and the parts are connected together, and it
also includes the hierarchical assembly structure.

• Assembly semantics describes the type of the relation-
ships between the parts in an assembly model through the
so-called semantic assembly interface. It is defined as a mul-
tilevel information involving function layer, implementation
layer and geometry layer. The function layer considers the

degrees of freedom (DOFs) between two connected compo-
nents in the assembly. It counts the number of translational,
rotational or composite (i.e. the combination of multiple
DOFs together as the screw joint) degrees of freedom be-
tween two components. The implementation layer defines
and counts the types of kinematic relations between two
components. In the end, the geometric layer contains in-
formation about the geometric-matings typically used in
assembly modeling that can exist between two components
sharing contacts, e.g. if they are concentric, perpendicular,
parallel or at a fixed distance.

• Geometric information is used to describe the shape of
each assembly component. It is stored in the correspond-
ing nodes. In particular, if the component is a part, its
shape distribution vector is computed. If the component is
a subassembly, then the shape distribution vector of the
bounding box of the component is computed.

• Attributes allow to consider other data, such as the func-
tions, i.e. the task that a system or a component is able to
perform; the loads, i.e. the forces, deformations or accel-
erations applied to a structure or its components; and the
environmental conditions.

Thus, this approach makes use of shape distribution (SD) as
shape descriptors for the parts, and it exploits the structure, the
kinematic links and the constraints to characterize the assem-
bly. The geometric information is computed, while the structure
is read (A) from the CAD model. To the best of our knowledge, this
work is one of the first assembly retrieval approaches, which tries
to identify kinematic pairs automatically. Anyhow, the authors
state that some complex kinematic pairs need to be inserted
manually (PC). The authors recognize the importance of semantic
information (e.g. functional component classification), which is
therefore supposed to be manually specified by the user (US).

Since the assembly descriptor contains numerous data, the
matching procedure is divided into two main steps to simplify
the whole retrieval process. The first step takes into account the
topology structure of the multi-level assembly descriptor. The
hierarchical graph matching is carried out using the VF2 sub-
graph isomorphism algorithm [79], which has time complexity
of o(n2) for the best case and o(n!n) for the worst one [80],
where n refers to the maximum number of vertices of the two
graphs. Additional information is used to prune the matching
algorithm. For the algorithm, two nodes are equivalent if the
query node has fewer children than the compared node; while
two arcs are equivalent if they have the same DOF. The second
step refines the obtained matching by considering the assembly
semantics and the geometric information. This last step evaluates
also the arrangement of the assembly components in the 3D
space using an ‘‘assembly bone’’ representation, i.e. a structure
composed of line segments which connect the geometric centers
of two components. Here, the part arrangement information is
not explicitly stored in the assembly descriptor but deduced (C)
and used during the matching process. The use of this type of
matching supports partial retrieval if the two compared assembly
models have the same structure, i.e. only if the query model is
present in the target model as subassembly. This limitation could
be overcome, by slightly changing the process at the price of ad-
ditional computational time, still leaving the user the possibility
to select how important is the structure for his/her purpose.

5.2.3. Local similarity
Zhang et al. [63] have been working on the retrieval of CAD as-

sembly models to reuse the embedded design knowledge and to
improve design efficiency when developing new products. They
propose a generic face adjacency graph (GFAG) to discover com-
mon design structures automatically among assembly models.
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The GFAG can capture the geometric and topological informa-
tion of an assembly model. Therefore, it is suitable for assembly
characterization, where the relationships between components
are encoded through the concept of mating face pair (MFP). In
this graph, nodes correspond to parts of the assembly model and
edges correspond to the MFP between two parts. Each part is
represented by a face adjacency graph (FAG) [83], where nodes
correspond to faces of the B-Rep of the part and arcs correspond
to adjacency edges between faces. Faces are then classified as
planar, convex, concave or transition according to the sign of
the principal curvatures computed for sample points. Similarly,
edges are classified as concave, convex or smooth depending on
the dihedral angle formed at the edge’s sample points by the
tangent planes of the faces sharing the edge. Thus, considering
the criteria of Section 4.2, this descriptor uses geometric infor-
mation, in particular it is based on surface curvature (C), dihedral
angle (DA) and surface information (SI). The relationships and
kinematic links between two parts are assumed to be present in
the model created with a commercial CAD systems (A) and can
have the following values: coincident, contact, offset and angle. A
shape vector descriptor is computed for each part in an assembly
model using sampled points of the FAG of a part and the ones of
its mating parts. In this way, the description of a part is influenced
by its contacts, thus it changes if different parts surround it.

Since, this last characteristic can reduce the portion of com-
mon structure detected (i.e. local similarity), the authors have
extended their work [64] to provide a graph descriptor that
describes independently parts and mating relationships of an
assembly model. Parts are represented by vectors of shape dis-
tributions and contacts are quantified by the following equation:

Lp =
Sp + Sp′

2
(3)

where the vector Lp represents in a single relation the multiple
contacts between two parts p and p′, whose shape vectors are
Sp and Sp′ . Thus, in this revised approach, the descriptor uses
shape distribution (SD) and the available kinematic links (A). No
attribute is encoded and, since no normalization of shape distri-
butions is mentioned, the used information varies under scaling
operations and the descriptor is scale sensitive (✓). Besides the
fact that the mating information has to be available (A) in the
assembly model, there is no information about the semantics
of the relation between two parts, i.e. the type of the involved
contacts. This is a limitation since it does not fully characterize
assembly models regarding how parts are connected. Indeed,
depending on the nature of their contacts, the motions between
two parts can differ.

Lupinetti et al. [65] propose a method which fully character-
izes an assembly model to assess all the three types of similarities
between assembly models described in Section 1, i.e. global,
partial and local similarity. Their approach is based on a multi-
layered description, called Enriched Assembly Model (EAM),
which encodes four different types of information concerning
the structure, the shapes, the interfaces and the statistics of the
assembly. The structural information layer encodes the hierar-
chical sub-assembly organization as specified by the designer,
the type of component (e.g. screw, nut, gear, shaft) and informa-
tion on parts’ arrangement (i.e. the regular patterns of repeated
parts). The considered patterns collect the maximum number of
repeated parts whose barycenters are equidistant and lying on
the same linear and circular paths. To overcome the possible ab-
sence in CAD models of the information on component type and
on patterns, the authors provided tools for their extraction [84–
86]. The shape layer describes parts in terms of their 3D spherical
harmonics [68], their volume and their surface area, which scale
are sensitive (✓). The interface layer encodes the kinematic

links, which describe the type of contacts and degrees of freedom
between two parts. Finally, the statistics layer contains numerical
attributes to allow a quick search and filtering, e.g. the number
of patterns of a specific type.

These data are organized into an attributed multigraph-based
representation allowing to describe and to characterize compo-
nents at the levels of the parts and of the assembly at local as
well as global levels. All the data necessary in their proposed as-
sembly descriptor are automatically extracted exploiting only the
information available in the CAD models and engineering knowl-
edge; no meta-data neither attributes are used (−). In particular,
assembly topological information is extracted by reasoning on
the geometry of the parts (C), while functional classification is
achieved by using a supervised learning algorithm able to provide
a shape-based classification further refined with the use of en-
gineering rules to interpret common design practices (AI). Then,
all the data are computed except the sub-assembly structure that
is supposed to be available (A) from the CAD models. Fig. 10
illustrates an example of the multigraph created from a CAD
model. For readability purposes, only a few attributes are shown:
single line-circled nodes indicate single parts, double-line nodes
(S and N) designate a set of parts belonging to circular rotational
patterns, node labels denote the type of component, straight arcs
connect two parts in contact and the associated label indicates
the DOF, finally wavy arcs represent curve contacts.

In addition, this approach provides the possibility to specify an
abstract query (G#) defining the constituting components and the
related interface links by a graph-based description supported by
a dedicated user interface. Moreover, the user can select the set of
criteria according to which the assembly should be similar. Thus,
the complete EAM is computed for the models in the queried
dataset, while for the query model, only the layers containing the
specified criteria are computed and exploited for the matching
(G#). The similarity between two models is detected solving a
Maximum Common Subgraph (MCS) matching problem [87] on
an association graph created by putting in relation the nodes and
the arcs of the compared EAM according to the selected crite-
ria. The MCS is managed as a Maximum Clique (MC) detection
problem with the use of the simulated annealing method [88]. For
simulated annealing, the time complexity is usually o(n2 log(n)),
where n corresponds to the number of nodes in the graph, which,
in this case, is an association graph that in the worst case is n =

nqnk where nq and nk correspond to the number of nodes of the
graphs representing the models to compare. With this technique,
it is possible to evaluate all the three types of similarity, i.e. global,
partial and local, without using the hierarchical structure of the
assembly. This means that the proposed method is able to identify
as similar two assembly models which represent the same object
but with different structures.

In [89], the authors, differently from the other existing meth-
ods, also investigate how to visualize the retrieved models in a
convenient manner. As a result, the system highlights the dif-
ferent types and criteria of similarity, to allow a better compre-
hension of the results and thus a fast identification of the target
models. This is an interesting research topic arisen by the needs
of comparing models under multiple perspectives.

5.3. Synthesis of the state-of-the-art review

Table 1 summarizes the approaches that address CAD assem-
bly models similarity evaluation and which have been discussed
and characterized in this survey. From the analysis of these works,
it can be observed that almost all of them assume the full avail-
ability of the information necessary to derive their assembly
model descriptors. This may be an important limitation since not
all the necessary data are present in the CAD models. Indeed, sup-
posing users can add all the missing data is not reasonable, as it
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Fig. 10. Example of a CAD model and a part of its EAM descriptor [65].

is time-consuming and tedious for the user. Unlike what happens
for the characterization and recovery of individual parts, no work
uses the shape features to characterize assembly models. For this
reason the Feature criterion does not appear in Table 1. Arguably
having an assembly retrieval method able to manage this type of
data would greatly increase the complexity of the system.

In general, the research regarding the characterization and
the retrieval of CAD assembly models is still in progress and
many issues are still to be addressed. Most works address the
problem of retrieving models partially similar, which anyhow
have solutions only taking into account the hierarchical struc-
ture. However, the limitation is that the similarity of the models’
structure becomes a constraint and the user cannot retrieve an
assembly model included in a bigger assembly if the query is not
represented as a subassembly in the target model. This hypothesis
can affect scenarios whose purpose is the maintenance of assem-
bly components. Indeed, in this situation, a component included
in an assembly model should be identified despite its designed
structure.

Few works address different types of similarities between
assembly models but some of them could probably be extended
in the future to evaluate local similarities. Usually, the geometry,
the size of the components and the different types of their rela-
tionships are used to compare CAD assembly models. However,
in several approaches the extraction of these data is not faced
and the information is supposed to be available or added by the
user. Moreover, the practice of characterizing parts by their shape
does not allow to treat the possible simplified descriptions of
components in assembly models as discussed in Section 2.1.

6. Future challenges

Today, the existing approaches already help designers to im-
prove the efficiency of their work within the PDP by facilitating
the access and the exploitation of existing knowledge. Despite
those achievements, further efforts are still necessary to make
available tools allowing a more powerful retrieval of CAD as-
sembly models according to different similarity criteria. In the
following, some of the challenges that still have to be faced to
reach this goal are discussed.

6.1. Conjugation of semantic and geometric information

Using current tools, it is possible to perform searches using
PDM/PLM systems [90,91] and then to analyze the content of the
filtered models by using retrieval techniques. This two-steps pro-
cess must be improved in the future through a tighter integration
by developing a retrieval system based on a descriptor that uses
both geometric data of the CAD models and semantic information
present in the PDM/PLM systems. The simple merging of the two
types of information is not a big deal, the real challenge is the
ability to extract the implicit knowledge that may derive from the
combination of the two types of information. For instance, a vol-
umetric intersection between two components in a digital model
cannot exist in the corresponding real components, then it should
be solved before components production. Anyhow, sometimes
volumetric intersections are designed on purpose, for instance
when the intersection involves a deformable element, such as seal
ring, gasket or rubber washer. Currently, engineers perform this
decryption by analyzing the information separately. To support
the automation of the processes demanded in the framework of
Industry 4.0, it is crucial to have tools able to complete such
retrieval tasks in a completely automatic way and to assist de-
signers in the decisional process. Designing new processes able to
exploit the combination of semantic and geometric information
is challenging and requires many contributions to be achieved,
such as the interpretation of the assembly relationships (Sec-
tion 6.1.1) and the functional classification of the components
(Section 6.1.2).

6.1.1. Interpretation of assembly relationships
Relationships among components are the backbones to char-

acterize CAD assembly models. Actually, almost all the works
addressing assembly retrieval are based on the hypothesis that
these data are available even if in most cases they are not. Luck-
ily, several works exist for the extraction of assembly contacts
in different application domains. Yang et al. [92] proposed a
simulation system for assembly process based on constraints
recognition. Park and Oh [93] developed an automatic method to
extract kinematic information from assembly models and Lupi-
netti et al. [94] proposed a method for the detection of the mating
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relationships, the computation of their degree of freedom and
the equivalent joint resulting from all the contacts between two
parts.

Besides the extraction of assembly relationships, other meth-
ods have been proposed to identify and exploit the meaning of
these relations. Swain et al. [95] have defined an extended liaison
(joints) to integrate the information between the product model
and the assembly process. This complex approach allows the
identification of the assembly process of riveting, welding, screw
fastening, bolt fastening and gluing. For finite element analysis,
Shahwan et al. [96] described a qualitative reasoning process to
detect and to functionally classify component interfaces. Their
method is based on the definition of conventional and functional
interfaces. It starts from the CAD assembly model and exploits
additional knowledge expressed in an ad-hoc ontology.

Despite these first attempts, the research on the interpretation
of assembly relationships must still face important issues. Among
the possible relationships, clearances between two parts can con-
vey an engineering meaning or can be originated by errors. Since
they do not identify always unrealistic arrangements as for the
volumetric interferences, distinguishing the correct and incorrect
configurations requires specific reasoning. Some reasoning can be
done combining the distance between the faces of two parts and
also the types of involved components (e.g. screws, nuts, brackets,
keys and spacers) to find out if the clearance is a ‘‘real clearance’’
or if it represents a missed contact. In addition to the component
type, this problem could be faced considering also information
about the part features. Indeed, the characterization of holes,
pockets, slots and fillets may help in the clearance interpretation.

6.1.2. Functional classification of assembly components
Recognizing the functionality of a component can be chal-

lenging because components with the same functionality can
have different shapes and vice-versa, then the use of multi-
source information of different nature can facilitate the automatic
classification of 3D models.

In the mechanical field, Ip et al. [81] define a feature space
where they apply decision tree learning and reinforcement learn-
ing to classify solid models. This method allows the automatic
classification of wheels, sockets and housing models. In [97], the
authors present an automatic model classifier for CAD models
integrating machine learning techniques. Using a series of shape
descriptors, their approach aims at learning multiple CAD classifi-
cations and is applied to the classification of prismatic machined
parts and parts with finishing features machined after part cast-
ing. The classification proposed by Pernot et al. [98] also exploits
a series of shape descriptors and classifies products in terms of
characteristics that can affect the simplification process for the
Finite Element Analysis (FEA) of parts. Hence, their categories
are: thin parts, parts with thin portions and normal parts. Qin
et al. [99] present an automatic 3D CAD model classification
approach based on the deep learning technique. Their method
considers 28 different functional classes and combines different
training strategies to simulate engineering manual classification
processes.

However, as highlighted in [100] and [101], the functional
classification of 3D models requires information on the con-
text of use of the parts. Shahwan et al. [43,96] analyze func-
tional interferences from the geometric interferences of parts in
an assembly and identify functional designations, as cap-screw,
tubular rivet, gear. The main limitation of this method is the
complete entrustment in the design methodologies. The exten-
sion of this work [44] uses mechanical equilibrium state analysis
for assigning only one functional interface to several geometric
interfaces. The approach is semi-automatic and users have to
identify the start and the end of the kinematic chain in the

assembly model. Recently, Lupinetti et al. [86] present a prelim-
inary work based on a multi-step approach, which first assigns
a category to each part according to some shape characteristics
and exploiting a machine learning technique, then it assesses the
initial classification by analyzing the context of use of the part in
the assembly. In this way, the authors try to overcome problems
due to idealized designs that make challenging the identification
of the components.

6.2. Definition of assembly similarity

Assembly models may be considered similar under various
and different criteria (e.g. global shape, kinematic links, compo-
nent dimensions), moreover different types of similarity can be
fulfilled (i.e. global, partial and local). To the best of our knowl-
edge, the majority of works, which allow to retrieve assembly
models according to different criteria, combines shape similar-
ity criteria based on the components with relationships criteria
based on the assembly. However, few works allow combining
the functional aspect of similarity (e.g. power transmitter) of
the assembly components together with geometric characteristics
(e.g. round shape). Finally, few works address local similarity and
those that face partial similarity strongly rely on the hierarchical
assembly structure, i.e. two models can be considered partially
similar only if one is present as a subassembly in the other.

Actually, considering the results achieved until now and the
numerous scenarios where retrieval frameworks are useful, an
interesting challenge still remains and is represented by the re-
search of what is similar? and why?.

6.3. Specification of the query

A useful feature of retrieval systems is represented by the
chance of querying databases using different descriptions for the
query model. This practice has already been studied for the parts
model, where there exist systems that allow retrieving 3D digital
models by providing a 2D freehand sketch [102–105]. Considering
assembly models, this functionality may be useful, for instance,
both in the early design stage and considering the scenario of
reverse engineering, when probably a designer may not have an
available CAD model of what he/she wants to retrieve. In these
contexts, a 2D drafting or a scanned model respectively can be
more appropriate as query input of the retrieval system. Being
able to retrieve CAD models similar to a given point cloud could
be of great interest in the scope of the Industry 4.0, and notably
when developing Digital Twins.

Moreover, it is important to allow specifying similarity criteria
in an intuitive way. To this purpose, some works address this
topic giving the possibility of using query model partially defined
or abstract query model not originated from an existing CAD
model, while another one offers a semantic definition of the
query. Anyway, these new ways to specify queries are still in
their infancy and have not been adequately studied. In the future,
it is desirable to develop more intuitive interfaces to meet the
designers’ habits.

6.4. Development of an efficient system

The explosion of digital data has made available 3D CAD
models to designers offering the possibility of reusing existing
solutions. Anyhow, the size of the digital models (also in terms of
the constituent part number) and of the databases make challeng-
ing providing an efficient retrieval system that properly satisfies
users’ needs. To this purpose, retrieval methods often split the
comparison procedure into two steps: a primary similarity as-
sessment extracts candidate models, while a second refinement
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Table 2

Characteristics of the datasets used to evaluate available assembly retrieval
approaches.

Approach Number of
assemblies

Number of
parts

Number of
unique parts

[52,53] 15 – –
[54] 409 6315 –
[55] 160 1135 –
[56] 614 5100 2814
[59] 502 6348 –
[61] 200 – –
[48] 2249 10,062 –
[65] 140 15,057 5343

improves the results of the previous retrieval. This practice is a
first effort to provide an efficient retrieval system to the final
user, but it is not enough, especially since many approaches of the
literature are tested on small datasets, as illustrated in Table 2,
whose sizes are not comparable with those of real company
databases.

Thus, the development of an efficient system is still an open
issue.

6.5. Evaluation of the system effectiveness

Important limitations exist to evaluate and compare the search
effectiveness, i.e. the ability to retrieve the maximum number
of relevant models within a limited number of retrieved mod-
els. Generally, the effectiveness of a system can be evaluated by
precision (the number of retrieved relevant results over the num-
ber of retrieved models) and recall (the number of retrieved rel-
evant results over the number of relevant models in the dataset)
measurements. An ideal system should have the maximum values
for these two measures, but generally, they are inversely propor-
tional, i.e. when the recall increases the precision decreases. Any-
how, not all the considered methods provide this study and
most of them are tested on different datasets not allowing to
properly compare and assess their effectiveness. So far, differently
from what exists with simple parts [101,106,107], an assembly
ground-truth (or more simply a CAD assembly repository), whose
content can be used as benchmarks, does not exist. This lack
derives from the difficulty both to get realistic models and to label
target models properly as relevant or not relevant according to a
given query (especially in case of partial and local matching). To
facilitate the target issue, Chen et al. [48] assumed that a model
is relevant according to a query if there exists a subassembly in
the target model similar to the query model. This practice can
ease the creation of an assembly benchmark, but it raises the
issue of the models considered as false-positive, i.e. two models
that represent the same object can be considered one relevant
and the other not relevant simply according to their hierarchical
structure. Anyhow, this practice can be reasonable only if the user
specifies the structure as a similarity criterion.

These difficulties make challenging the definition of a general
ground-truth, which is essential in order to compare the existing
retrieval systems.

6.6. Visualization and interpretation of the results

Last challenge regards how to visualize the results of a given
query highlighting the different similarities to the user in an
intuitive and clear manner. This aspect becomes crucial when
dealing with partial and local similarities, while it is less essential
in global retrieval. It becomes even more challenging when the
retrieved objects to be analyzed are complex assembly mod-
els. Many works considered in this review test their methods
on assemblies made up of a relatively small number of parts

(approximately 10 parts), then in this situation, the visualization
of the results is not challenging. Anyhow, in real industrial con-
figurations, the visualization of the results should highlight the
multiple information that characterizes the identified similarities.

In the future, results visualization could exploit VR/AR/MR
technologies to provide enrichment of the perceptual information
while browsing in a set of 3D models. For instance, if a user
searches similar components to be replaced in an existing object,
then by the use of mixed reality he/she can virtually add the
digital retrieved solutions in the real object and evaluate the
replacement directly.

7. Conclusion

Accessing previous knowledge associated with existing prod-
ucts and past realizations may drastically improve the efficiency
of the entire product life cycle, from its conception up to its dis-
posal. This is a key issue to develop the competitiveness of com-
panies worldwide. However, knowledge about a product changes
dynamically throughout its life cycle stages, then knowledge-
based searches are still very challenging as it has been highlighted
in Section 6.

This paper analyzes the state-of-the-art of the approaches and
systems for CAD assembly models retrieval clustered according
to some criteria that allow to better highlight the main fea-
tures of the proposed works and to discuss the open issues. The
criteria reflect the characteristics we believe important to sat-
isfy the needs of the identified usage scenario of the retrieval
system. Effective assembly retrieval systems need to consider
the multifaceted information characterizing an assembly, which
is not always explicitly available and thus has to be extracted
through automatic reasoning processes. Various works in litera-
ture are addressing these issues to some extent; however, they
take into consideration only some configurations and product
types. Therefore, additional efforts are still needed to create a
fully functional automatic system dealing with all the possible
configurations. In particular, limits currently exist in interpreting
some types of relations among components, i.e. the clearance and
volumetric interactions. In addition, detection of functional sets in
assemblies, which can be themselves a search key, is still limited
to specific product categories.

Efforts should also be devoted to scalability and efficiency. Cur-
rent systems have been generally tested on limited sets of assem-
bly models consisting of a relatively small number of components
and almost no one is paying enough attention to the indexing
aspect, which can play a critical role in case of a large dataset
with huge models made of several hundreds or even thousands
of components. In addition, the lack of a proper dataset of CAD
assemblies prevents a reliable evaluation and comparison of
the effectiveness of the existing retrieval systems: not all the
works considered include an evaluation of the effectiveness of the
proposed method; furthermore, the methods are however tested
on different datasets, normally not available, thus preventing a
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reliable comparison. Finally, the lack of well-organized datasets
of CAD assembly does not allow the adoption of deep learning
approaches in the matching process, which seem promising when
compared to traditional methods.

In conclusion, even if some important results have been achi-
eved, further research and development are still needed to define
an efficient and comprehensive retrieval system fully satisfying
the range of assembly retrieval usages in the whole product
development process.
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