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Abstract 

The statistical tolerance analysis has become a key element used in the design stage to reduce the manufacturing 

cost, the rejection rate and to have high quality products. One of the frequently used methods is the Monte Carlo 

simulation, employed to compute the non-conformity rate due to its efficiency in handling the tolerance analysis 

of over-constrained mechanical systems. However, this simulation technique requires excessive numerical 

efforts. The goal of this paper is to improve this method by proposing a probabilistic model of gaps in fixed and 

sliding contacts and involved in the tolerance analysis of an assembly. The probabilistic model is carried out on 

the clearance components of the sliding and fixed contacts for their assembly feasibility considering all the 

imperfections on the surfaces. The kernel density estimation method is used to deal with the probabilistic model. 

The proposed method is applied to an over-constrained mechanical system and compared to the classical method 

regarding their computation time. 

1. Introduction  

In a competitive industrial area, companies work continuously to improve the quality of their products, reduce 

the manufacturing costs and decrease the number of defective products. Tolerance analysis is a key tool 

integrated into the design phase of the manufacturing products, which allows designers to achieve such goals [1, 

2]. Tolerance analysis aims to verify if the individual tolerance specified to each part in the product allows the 

designer to reach the assembly feasibility and the functional requirements. Two methods for the tolerance 

analysis of mechanical assemblies are usually used: the worst-case and the statistical approaches. The worst-case 

tolerancing often leads to tight tolerances and high production costs. The statistical tolerancing is widely used 

because it leads to large tolerances and allows practitioner to get a desire yield and low production cost [3].  

The statistical tolerance analysis can be achieved based on several methods  [3–5]: the root-sum-squares method, 

Croft’s method, extended Taylor series approximation, Hasofer-Lind index method, approximation by numerical 

integration or quadrature technique, Taguchi’s method and the Monte Carlo simulation.  

One of the current challenges in tolerancing is the consideration of the over-constrained mechanical systems with 

gaps. The assembly of such mechanical systems is possible because of the gaps [6], even though the parts exhibit 

geometric imperfections.  

Consequently, the study of over-constrained mechanical systems is more complex than the iso-constrained 

mechanical systems. Several methods to study over-constrained mechanical systems have been proposed. The 

combination of the set point variation, homogeneous transform matrix and Monte Carlo simulation has been 

proposed in [7]. An alternative strategy consists of identifying the contact configurations of the mechanical 

assembly [8, 9]. Thus, some system reliability methods are used to compute the non-conformity rate of the over-

constrained mechanical assemblies. However, for these system reliability methods, even though the gap is 

considered, it is up to the designer to define the possible contact configurations of the mechanical assembly, 

which may be a challenging task.  Moreover, these methods are not able to consider parts’ form defects and are 

globally applied on 2D cases. Furthermore, to overcome these previous limitations, a new method based on the 

Lagrange dual form of the optimization problem and FORM method has been proposed to compute the 

probability of failure with reduced computational efforts and carrying out a preliminary selective search 

algorithm to identify the configurations which contribute mostly to this probability of failure [6]. Though this 

work considers 3D over-constrained mechanical systems with multi-configuration of gaps, it has not considered 

the form defects nor the different types of contacts in the tolerance analysis procedure. 

Therefore, this paper proposes a probabilistic model of gaps in fixed and sliding contacts, applied in a global 

statistical tolerance analysis method. The statistical tolerance analysis is carried out based on constrained 

optimization and Monte Carlo Simulation (MCS). The probabilistic model is proposed to determine the gap 

components in fixed and sliding contacts between non-ideal surfaces, instead of computing these components 

using the MCS combined with an optimization procedure. The Kernel Density Estimation (KDE) method is used 

to define the probabilistic model. A first optimization is carried out on the gap components of each sliding or 

fixed contact. Then the probabilistic model is identified based on these values gathered from this first 



optimization to generate new samples in good agreement with the distribution and the correlation of the original 

gap-values. For the floating contacts a set of constraints is developed to prevent the inferences of the mating 

surfaces. Then, a general optimization is carried out to determine the values of their gap components. Finally, a 

Monte Carlo simulation is carried out based on all the previous developments to determine the probabilities of 

assembly failure and functional failure. 

The paper is structured as follows: Section 2 presents the main algorithm currently used to deal with the 

statistical tolerance analysis and highlights the step at which the probabilistic model of gap is integrated. Section 

3 presents the KDE method used to determine the probabilistic model of gaps, Section 4 describes an application 

of the proposed method to an over-constrained mechanical system, and finally, discussions and conclusion are 

given at the end. 

2. Tolerance analysis of over-constrained mechanical systems 

2.1 Classical tolerance analysis approach 

The statistical tolerance analysis method aims to calculate the probabilities of failure of the assembly 

and functioning requirements of a mechanical system. Generally, three main issues are considered in the 

tolerance analysis procedure: the geometrical deviations modeling, the geometrical behavior modeling of the 

mechanical systems and the mathematical formulation of the tolerance analysis techniques [10].  

The main contribution of this paper concerns the geometrical behavior modeling of assemblies involving form 

defects, where a probabilistic model is proposed for gaps modeling in fixed and sliding contacts. This section 

presents a state of art of the statistical tolerance analysis approach. 

It is necessary to use a realistic model of the surfaces of a mechanical system (i.e. modeled imperfections in good 

agreement with the imperfections observed on the manufactured components) to guarantee accurate results of the 

tolerance analysis. Globally, three models of surfaces are applicable: the nominal surface [11], the substitute 

surface [11], and the non-ideal surface represented by skin model concept [12]. Both, substitute and non-ideal 

surface, have an important role in the tolerance analysis method. Several models have been proposed to 

characterize the geometrical deviations of surfaces [10, 13, 14]. In this paper, the SDT approach [15] is used to 

model surface deviations and gaps between the mating surfaces.  

Thus, each surface is characterized by three components of translation (u, v, w) and three components of rotation 

(α, β, γ). The set of dimension, position and orientation deviations of the mechanical system is denoted by X and 

is randomly generated. González and Sánchez [16] proposed a method for the optimal tolerance allocation using 

the statistical approach with dependent (e.g. correlated) variables; the structure of dependence can be associated 

with the manufacturing process. The non-ideal surface is built by adding form defects to the substitute surface. 

The method used to build the non-ideal surface has been explained in [17, 18]. The vector F used throughout this 

paper, represents the set of form defects amplitudes of the surfaces defined in correlation with the discretization 

of the surfaces. 

The geometrical behavior modeling of an over-constrained mechanical system is obtained through the 

development of a set of constraints [10, 11, 18, 19]: compatibility equations (denoted by  , 0cC X G ), 

interface constraints (denoted by   0iC X,F,G ), and the functional conditions (denoted by   0fC X,F,G ). 

These constraints have been detailed in [20] 

The assembly and functioning problems must be formulated to perform the tolerance analysis of an over-

constrained mechanical system. The formulation of the assembly and functioning problems have been detailed in 

[10, 21] and the mathematical formulations of the probabilities of assembly and functioning failure are given in 

[20]. To perform the computation of these two probabilities, a Monte Carlo simulation combined with a 

constrained optimization is employed. This method has been introduced by Qureshi et al. [10] considering only 

size, position and orientation defects; and further extended to integrate parts’ form defects [17, 18] and to 

consider different contact types [20]. The overall tolerance analysis technique of an over-constrained mechanical 

system is explained in Algorithm 1.  

 

 

 

ALGORITHM 1: Computation of the probability of assembly failure (
naP ) and the probability of functional     

failure (
nfP ) 

Require: Total number of Monte Carlo Samples (Nmc) 

Require: Total number of fixed and sliding contacts in the over-constrained mechanical system (Nct) 

Ensure: total number of Monte Carlo populations and compute the probabilities naP , nfP  

  1: Constraints development:  ,cC X G ,  , ,iC X G F ,  fC X,G,F  

  2: for each iNmc do 



  3:          // Generation: geometrical deviations ( ) ( )1 2 ( ){ ,, , }Nmc X X X X and form defects populations  

( ( ) ( )1) 2, ,   ,{ }Nmc F F F F   

  4:        // Discretization of the mating surfaces in the fixed and sliding contacts 

  5:        for each iNct do  

  6:               min *( )f G  subject to Signed distances (S1, S2) ≥ 0 (S1, S2: the non-ideal mating surfaces) 

  7:        end for 

  8:        // Introduction of 
*

G  in  ,cC X G and  fC X,G,F  

  9:        // Minimization of  ’G and verification of the functional requirements 
fC   

10:        // min  f(G’) subject to  ,cC X G ,  , , 0iC '
X G F ,   0fC X,G,F  

11: End for 

12: Estimation of 
naP  and 

nfP , by using the following equations [22]: 
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      where  DI X,F represents the indicator function; for assembly conditions, it is represented by: 
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Algorithm 1 sums up the local simulation to characterize the fixed and sliding contacts and the general 

optimization carried out on the floating contacts with form defects considered [20]. The steps highlighted in 

Algorithm 1 (framed steps) represent the focus of this paper, and a novel procedure is proposed. This local 

simulation on the fixed and sliding contacts is discussed in detail in the upcoming subsection. 

 

2.2 Mathematical formulation of the assembly feasibility of the fixed and sliding contacts of 

parts with form defects 

The goal of the contact study in this section is to determine the clearance components which allow an 

admissible assembly configuration in case of fixed or sliding contacts.  

Several methods to deal with different contacts fitting (fixed, sliding and floating) have been proposed. Some 

researchers have proposed numerical optimization approaches with several objective functions (convex hull 

volume, Euclidean distance, weighted unsigned distance, weighted signed distance) [23], experimental and 

theoretical investigations using the SDT and clearance domain (gap hull) models [24], the Fast Fourier 

Transform and the Conjugate Gradient Method in case of elastic contact of rough surfaces [25, 26], development 

of an optimization algorithm and geometric interference relationships [27] and some other methods in [28–30]. 

Moreover, some others researchers proposed to study the floating contacts by means of a regularized closure 

function and a constrained optimization problem [31], Virtual Work Principle and a contact model of joints to 

determine the displacements at each node and relative displacements/rotations of the kinematic pairs [32], 

constrained registration techniques and difference surface in a sequential positioning problem [33], Tooth 

Contact Analysis algorithm [2, 34], the Gap Hull estimation [35]. 

Among all the previous methods, the Signed Distance Approach [17, 18, 20, 23] combined with an optimization 

technique is selected to characterize the fixed and sliding contacts assembly in the mechanical system. Thus, this 

subsection presents this local simulation on the gap components of a fixed or sliding contact added to the 

classical tolerance analysis approach. 

Based on the SDT approach [15, 17, 18], the clearance torsor g of a contact can be written as follows: 
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where u, v and w represent the translations in the direction of the x-, y- and z- axes, respectively; α, β and γ 

represent the rotations around the x-, y- and z- axes respectively. Problems involving form defects in the sliding 

and fixed contacts are more complex than problems without form defects and specific procedures are required to 

perform the tolerance analysis.  

Thus, two cases may be considered when a tolerance analysis problem involves fixed or sliding contacts: (1) 

form defects are not considered and only size, position and orientation defects are involved; (2) form defects are 

considered. In the first case, the representation of the clearance torsor depending on the different nature of 

contact is shown in Fig. 1a. The focus of this paper concerns the second case.  

 

 

Fig. 1.  Gap torsor for: (a) perfect planar contact, (b) contact of non-ideal planar mating surfaces 

The second case concerns the contact of planar mating surfaces with form defects (See Fig. 1b). The clearance 

components depend on the form defects amplitudes and the contact configuration becomes non-trivial. The 

values of the clearance components are set to a specific value associated with the contact configuration.  

For instance α=α*, β=β* and w=w* in the case of a sliding planar contact, where α*, β* and w* are non-zero 

even though the two surfaces are in contact. The optimization strategy of g* consists of minimizing the clearance 

components such that the signed distances between the two non-ideal surfaces are respected. This optimization 

technique is well detailed in [17, 18, 20].  

For the fixed contact, the six components of the clearance components are determined during the optimization 

procedure to fully characterize the contact. Regarding the sliding contacts, only three components are identified 

during the optimization (the translation component w, and the two rotation angles α and β) for a planar contact. 

The three remaining components of the clearance torsor are not determined at this stage of the procedure. They 

may be interpreted as “free variables”, i.e. these parameters are computed in the general optimization of the 

tolerance analysis which is associated with the floating contacts (as discussed in section 2.1). The components of 

g* depend on the nature of the contact and they are shown in Fig. 1b. More information about this clearance g* 

and the mathematical formalization of its optimization can be found in [20]. 



The tolerance analysis algorithm combines a MCS and separate optimization methods for each sample. Both 

procedures are numerically demanding and combining them may lead to excessive computational efforts. Hence, 

the probabilistic models are developed to estimate the distributions of the clearance components for fixed and 

sliding contacts.    

3. Probabilistic model for gap modeling in fixed and sliding contacts 

In this section, a probabilistic model is proposed for gap components in fixed and sliding contacts to 

determine their relative positioning without interferences. In the statistical tolerance analysis procedure described 

above, the optimizations for fixed and sliding contacts are carried out for each sample generated during the 

Monte Carlo simulation and that is very time-consuming. Therefore, the joint probability density functions 

associated with the clearance components are identified and subsequently used to generate samples instead of 

using the optimizations carried out on these contacts. The Kernel Density Estimation (KDE) approach is selected 

to calculate these joint probability density functions. The main goal of using the KDE approach is to generate 

new samples from the original gap components optimized in such manner that these new samples have the same 

distribution and features (mean, standard deviation, etc.) as the original values. 

In Section 3.1, the mathematical definition of the KDE approach is given. Section 3.2 presents the method of 

sampling using the original data from the classical optimizations and the Section 3.3 describes how these 

samples from the probabilistic model are used in the tolerance analysis.  

 

3.1 Kernel Density Estimation approach. 

The Kernel Density Estimation (KDE) is a statistical non-parametric method used to estimate the Probability 

Density Function (PDF) of a random variable [36]. This method can be used for univariate and multivariate 

continuous variables. The KDE may be used to estimate a probability density function [37] like some other 

methods: histograms, naïve estimator, nearest neighbor method, variable kernel estimator, orthogonal series 

estimators and maximum penalized likelihood estimators. The KDE approach is applied on the realization of 

random variables of the clearance components to approximate their probability density. The kernel density 

estimator of a univariate continuous variable y is defined as:  

   
1

1 n
i

i

y y
f y K

nh h

 
  

 
        (2) 

  

where K(.) represents the kernel function centered on the observation 
iy , h is the bandwidth or the window 

width. Several kernels are available in the literature and can be used in this kernel estimation [37]: Epanechnikov 

kernel, Biweight kernel, Triangular kernel, Gaussian kernel, rectangular kernel. In our work, we chose to use the 

Gaussian kernel defined as follows:  
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where  = /iu y y h .  

Here, the clearance components are multivariate continuous variables which can be correlated. Therefore, the 

Multivariate Kernel Density Estimation (MKDE) is used. Thus, the MKDE is defined in general by the same 

function [38] as in Eq. (3) (generalized for the multivariate case) but 
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multivariate Gaussian kernel function,  1 2, ,..., dy Y Y Y represents the d dimensional random vector whose 

density is being estimated,  1 2, ,...,
T

i i diY Y Y
i

Y i=1 to n (n representing the total number of sample available to 

construct the KDE estimation) represents the sample value of y and S represents the sample covariance matrix. 

The multivariate Gaussian kernel function [38] is defined as:  
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             (4) 

An important parameter of the KDE approach is the bandwidth h which has a huge impact on the KDE model. 

The bandwidth h is used to control the amount of smoothing of the data in the density estimate [38]. There are 



several techniques used to determine the best h: the cross-validation method, the plug-in method, the Scott’s 

Rule and the Silverman Rule (Rule of thumb) [39, 40]. The cross-validation method and the plug-in method are 

based on an optimization procedure to find the best h value, and require considerable numerical efforts [38]. 

Thus, in this paper, Silverman appropriate h proposed in [37] is used for the Gaussian kernel as the optimal 

bandwidth. The bandwidth h proposed by Silverman is defined as: 

                                                         
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d d

h d n
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where n represents the number of the data points, d the dimension of the set of random variables. After 

describing the KDE approach, the resampling method is detailed in the next section. 

 

3.2 Generation of new KDE based variables using the original data. 

The KDE approach is introduced in this article to determine firstly, the probability density of the 

variables and secondly, to generate new samples or realizations based on the KDE in order to reduce the 

numerical efforts. The process to generate the new samples which are going to be used to replace the repetitive 

optimization is detailed in this section.  

In the classical tolerance analysis method presented above, a sample of variables X is generated in each iteration 

of the Monte Carlo simulation. For each sample X, an optimization is carried out on each fixed and sliding 

contact to determine its corresponding g* (see Section 2). To introduce the KDE simulation method, a 

preliminary Monte Carlo simulation is launched on the optimization of the components of g*. Realizing the 

preliminary Monte Carlo simulation on the optimization of g* from a fixed or sliding contact, allows one to get 

several realizations of each component of g*. These realizations are considered as the original data on which the 

KDE simulation method is applied. Thereafter, the objective is to approximate the joint distribution of these 

realizations of the components from g* by using the KDE simulation method.  

Several experiments on the optimization of g* from a fixed or a sliding contacts have shown that, there is a great 

variability on the marginal distributions of the components from g* and that the structure of dependence between 

them is complex. The standard methods of approximation of marginal distributions which on one hand include 

the use of simple predefined distributions (Gaussian, uniform, beta, gamma, etc.) and on the other hand, the use 

of usual copulas for the dependence structure (Gaussian copula, Archimedean copula …) are not flexible enough 

to describe with accuracy the distribution of each component from g* and their structure of dependence. Hence, 

it is necessary to find an approach that allows designers to generate new samples with various variables’ 

distribution and which respects also to the dependence structure between the new simulated variables. The KDE 

simulation method has been chosen because of its simplicity, flexibility and accuracy to approximate the 

marginal distribution of each component of g* and to model the structure of dependence between these 

components of g*. 

An algorithm is developed to generate new samples of the variables based on the KDE approach. The method to 

generate the KDE simulation data is explained as follows. Let us consider Nmc as the total number of Monte 

Carlo simulation, k the number of components of the clearance parameters and 
KDEN  the total number of the 

preliminary MCS. The local simulation is performed NKDE times and the results are kept in a matrix. After the 

last iteration, the completed matrix is considered as the original values of the clearance components. This 

original data is denoted by D and represents a NKDE-by-k matrix. Then, the probabilistic model based on the 

Kernel density Estimation is launched by using the matrix D. The sampling method is described by Rajagopalan 

et al [38] and summarized in Algorithm 2.  

 

ALGORITHM 2: Sampling of new KDE-based variables 

Step 1: Let us consider D= * * *

1 2,  ,...,  
KDEN

 
 g g g where *

i
g is of size 1 x k, i=1 to NKDE, obtained from the NKDE 

time optimization of the clearance parameters of a fixed or a sliding contact. Pick uniformly 
*

ig  from

*

1 2,  ,...,  
KDEN

 
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* *
g g g  to get a matrix of size Nmc x k. 

Step 2: Simulate new variables from the kernel i.e. simulate multivariate gaussian variables centered on 
*

i
g  of 

the new matrix and have as standard deviation
2 *h S . This simulation N ( *

i
g ,

2x h S ) is a matrix with 

dimension Nmc x k. h  represents the bandwidth whose calculation is explained in the previous section and S  

represents the sample covariance matrix. 

Step 3: These new variables obtained, represent the probabilistic model of the clearance components, which 

are then introduced in the constraints (compatibility equations, interface constraints) developed. 

 



 

Complete algorithm of the overall method for the probabilistic model of the clearance components is 

summarized in the following 

 

ALGORITHM 3: Probabilistic model of the clearance components of a fixed or a sliding contact 

Require: Set the number of Monte Carlo Samples (Nmc) 

Require: Set the total number of the preliminary MCS (NKDE) 

Require: Ideal mating surfaces of a fixed or sliding contact  

Require: An empty matrix D of size NKDE x k 

Ensure: number of the optimization iterations at a contact 

  1: Generate the form defects amplitudes for each surface of the contact, ( )( ( )1) 2, ,{ }  , KDEN
 F F F F  where  

1

(

2

)   ,  ,  , ] [i

nf f f F   

      n=number of the meshing points on each surface 

  2: Apply the amplitudes to the perfect discretized mating surfaces to get the real mating surfaces i.e. surfaces 

with form  defects 

  3: for each iNKDE do 

  4:        min *( )f g   subject to Signed distances (S1, S2) ≥ 0 (S1, S2: the non-ideal mating surfaces) 

  5:        // Change the i
th

 row of D by the components of *g  

  6: end for 

  7: Pick uniformly 
*

i
g from 

2,  ,...,  
KDEN

   
* * *

1
D g g g  to get the matrix M of size Nmc x k. 

  8: Generate a multivariate gaussian variables N centered on 0 and has h
2
xS as the standard deviation, N is a 

matrix of size Nmc x k 

  9: Compute P = M + N. Each column from P represents the probabilistic model of each components from 

the clearance torsor 

                      

 

Algorithm 3 is used to get the probabilistic model for each component from the clearance of each fixed and 

sliding contacts. Therefore, by using this algorithm 3, the distributions of the new samples of the clearance 

components are in good agreement with the original data as well. 

 

3.3 Integration of the KDE based variables in the statistical tolerance analysis approach 

 

The classical approach for tolerance analysis of over-constrained mechanisms involves a probabilistic model of 

the geometry of the parts, i.e. the dimension, orientation, shape or form defects are characterized by a set of 

random variables. Monte Carlo simulation is used to generate samples of the geometry and for each sample, the 

components of the gap torsor are analyzed. This task is non-trivial and requires to perform (1) an optimization of 

the gap components for each fixed and sliding contact to compute the value of the limited degrees of freedom; 

(2) optimizations on the free degrees of freedom of the contacts, which have not been previously identified, in 

order to determine whether the mechanism can be assembled and whether it is functional. This method allows us 

to compute the probability of non-functionality and the probability of non-assembly. 



 

Fig. 2.  Frameworks: (a) classical method, (b) using the proposed method 

 

The proposed method in this paper is focused on the first step described above. It is suggested to investigate each 

sliding and fixed contact individually. Samples of the imperfect geometry are generated using Monte Carlo 

simulation and the corresponding components of the gap torsor are computed. This data is subsequently used to 

identify the joint probability density function of the limited displacements components of the gap torsor using 



the KDE. Once this probability density function is characterized, it is possible to use it in order to directly 

generate samples of the components of the gap torsor without using any numerically demanding optimization 

procedure. The interface constraints of the geometrical behavior of a mechanism, involve solely the floating 

contacts. Therefore, the samples of the proposed KDE based method are not involved in these interface 

constraints. The compatibility equations and the functional conditions are used in the step (2) detailed in the 

geometrical behavior modeling. They represent the constraints of a general optimization procedure. The 

variables in P are involved as inputs of the compatibility equations and the functional requirements. The 

compatibility equations and the functional requirements are concerned about the fixed, the sliding and the 

floating contacts. Thus, at each iteration of the MCS, a sample of gap components from P are introduced in the 

compatibility equations and in the functional requirements inequalities.  

The remaining degrees of freedom of the fixed and sliding contacts which are not limited, are considered as free 

variables in the step (2) described above, i.e. they are adjustable parameters of the optimization performed at this 

step. 

The whole process for the tolerance analysis with the probabilistic models is depicted in Fig. 2b.  

 

4. Application 

In this section, the proposed probabilistic model approach is implemented to model the distribution of the 

gap components of a sliding contact in an over-constrained mechanical system, chosen as case study. In section 

4.1, the mechanical system is presented and then in Section 4.2, the results of the probabilistic modeling are 

given as well as the results of the tolerance analysis. A comparison is addressed between the classical tolerance 

analysis method and the proposed method. 

4.1 Description of the mechanical system 

The case study is a part of an electric engine, see Fig. 3. The mechanical system is composed of a shaft, a 

housing and a body.  

 

Fig. 3.  Studied mechanical system  

The mechanical system is composed of 4 floating contacts (1b/2b, 2c/3c, 1d/3d, and 1e/3e) and one sliding 

contact (1a/2a). The sliding contact is the most important for the approach proposed in this paper because the 

probabilistic models are established on its clearance parameters. The functional requirement characterizes the 

floating contact 1d/3d, where a minimum clearance threshold should be respected between the shaft and the 

housing. The tolerance analysis of this mechanical system is carried out based on the tolerances specifications 



taken from [20, 41]. The tolerance specifications of the different parts of the mechanical system used in these 

studies and more information about the other tolerances used in the overall tolerance analysis method can be 

found in our previous work [20]. Firstly, a preliminary MCS is launched on the optimization of the gap 

components in contact 1a/2a. Then, the KDE method is used to get new samples of these realizations, which are 

after introduced in the overall tolerance analysis method to replace the highlighted steps from algorithm 1.  

The contact 1a/2a is composed of two circular planar surfaces. The form defects are generated according to the z 

axis. The contact 1a/2a is sliding because body is bolted to the shaft and this assembly technique allows slight 

displacement in the direction of the contact plane. Thus, three clearance parameters are identified as shown in the 

following clearance g*:  

  

M
w





 
 

  
  

*
g        (6) 

where α, β are components of the rotations around the x- and y- axes, and w is the translation in the z- axes. 

These components of g* are not trivial and are dependent on form defects. An optimization procedure is used to 

identify them. The probabilistic model method proposed in Section 3 is implemented on these three components.  

The rest of g* components (γ, u, v) are not determined during this optimization or probabilistic model method. 

They are considered as free variables and are included in the optimization of G’. The results for the components 

w, α, β are presented and interpreted in the next section.  

 

4.2 Results  

In this subsection, two categories of simulations have beeen launched to apprehend the different aspects 

of the use of the KDE method in the tolérance analysis such as the reduction of simulation time, the suitable 

meshing to modelize corectly the geometrical behavior of the mechanical system.  

The first categorie concerns the application of two differents distributions of the mating surfaces of 1a/2a in 

order to dertemine the appropriate meshing that modelize properly the geometrical behavior of the mechanical 

system with steady calculated probabilities. The computing time is not the important aspect of the simulations of 

this first categorie. The Gaussian distribution and the uniform distribution are considered here to generate the 

amplitudes of the form defects of the surfaces involved in the sliding contact (contact 1a/2a). These distributions 

are employed with different standard deviations and supports to test the robutness of the proposed method. The 

Gaussian distribution is composed of three different standard deviations with the same mean.  The uniform 

distribution is also composed of three different supports. These two distributions are chosen in order to 

determine whether the distributions of the amplitudes of the form defects have an impact on the distribution of 

the components of g* and if the KDE is capable of approximating the marginal distributions of the clearance 

components and keeping their structure of dependence.  

Three levels of meshing refinement of the mating surfaces are considered: the coarse, the standard and the 

refined mesh with respectively 100, 2500, and 10000 discretization points. The consideration of multiple levels 

of refinement allows us to determine whether the mesh is sufficiently fine to capture the behavior of the 

components of g*, and to detemine whether the probabilities (of assembly failure and functional failure) have 

converged towards their reference value. Table 1 shows the different strategies considered to model the form 

defects. 

 

Table 1: The local simulation parameters 

Distribution Meshing  Standard deviations/ Supports 

 

Gaussian (µ=2.5x10
-3

) 

100 

2500 

10000 

10
-6

 

10
-4

 

10
-2

 

 

Uniform  

100 

2500 

10000 

[2x10
-3

, 3x10
-3

] 

[1.5x10
-3

, 3.5x10
-3

] 

[-7.5x10
-3

, 1x10
-2

] 

 

 

Based on Table 1, all the combinations possible of parameters shown are studied. Two distributions (Gaussian 

and uniform) are available to generate the amplitudes of form defects. For each distribution, the three levels of 

refinement of the mesh are used and for each level of refinement, the three standard deviations (for the Gaussian 

distribution) or the three supports (for the uniform distribution) are used to generate the form defects amplitudes. 



In total, considering the combination between the types of meshing and the standard deviation or support, 18 

types of form defects amplitudes are generated (nine for the Gaussian distribution and nine for the uniform 

distribution). For each distribution of the considered form defects amplitudes the probabilistic model of g* of the 

sliding contact is established and the tolerance analysis of the whole over-constrained mechanical system is 

thereafter carried out. As an example of simulation, the form defects may be generated using 100 discretization 

points and amplitudes following a Gaussian distribution with a mean equal to 2.5x10
-3 

mm and a standard 

deviation equal to 10
-6

. 

After every simulation, some comparisons are carried out between the KDE simulation variables and the original 

variables from the local simulation (i.e. obtained using an optimization procedure). These comparisons aim to 

verify whether the simulated data from the KDE correspond to the original data and if they have the same 

features. They involve the components w, α, β of the clearance parameters, their histograms, and the Probability 

Density Function (PDF). As all the comparison figures of the 18 simulations cannot be shown together, just 

figures from the Gaussian distribution N(2.5x10
-3

, 10
-4

) with 100 discretization points are presented. 

Nevertheless, the results concerning the probabilities (Pnf, Pna) and the time of simulations assessed during the 

tolearance analysis carried out after, are presented for all the 18 simulations (see the Appendix). For each 

simulation, the matrix P defined in the Algorithm 3 can be written as:  

                  

 

1 1 1

2 2 2

3mc mc mc
mc

N N N
N

w

w

w

 

 

 


 
 
 
 
 
 
 

P
M M M

            (7) 

In summary for each simulation the following mathematical characteristics are assumed: 

 Nmc random variables following the Gaussian distribution X ⁓ N(µ, σi)  and the uniform distribution 

U (ai, bi) where µ=2.5x10
-3

,  6 4 210 ,  10 ,  10i
   and  ,  bi ia represent the different supports of the 

uniform distribution in Table 1. The total number samples used in the Monte Carlo Simulation is Nmc = 

100000. 

 3 components of g* (w, α, β) for the first local simulation (optimization) and then after the probabilistic 

model of the data are determined. 

 The number of the optimization constraints (signed distances) depends on the mesh discretization. 

The reference simulation involves Gaussian distribution for the amplitudes of form defects, N(2.5x10
-3

, 10
-4

) 

with 100 as meshing type. Based on the simulation from this example, the data from the local simulation 

(original data) and the data from the KDE simulation are shown respectively in Fig. 4a and Fig. 4b. In these 

figures, the histogram of each component is shown as well as the repartition between the components. It should 

be noticed that the original data have the same histograms as the KDE simulation data. Furthermore, the 

structures of dependence are in good agreement. 

 

 

 



Fig. 4.  Data scatterplot matrices: (a) Original data (b) KDE simulation data  

 

Fig. 4 and some other figures presented in the appendix (Fig. 5 and Fig. 6) compare the data obtained using the 

classical approach (MCS combined with an optimization of the gap torsor components) and the proposed KDE 

method in the particular case where the amplitude of the form defects exhibits a Gaussian distribution with a 

mean equal to 2.5x10
-3

, a standard deviation equal to 10
-4

 and the mesh discretization involves 100 points. The 

same comparison about the distribution of data points was performed for the other configurations described in 

Table 1, and we observed that globally, the KDE samples are in good agreement with the Monte Carlo data; 

however, these comparisons are not shown here and neither in the appendix to keep the paper short and concise. 

The KDE simulation data are collected for each simulation and introduced mainly in the compatibility equations 

already developed. For each kind of distribution of the form defects amplitudes, two tolerance analysis 

simulations are run. The first tolerance analysis simulation is based on the technique explained in Section 2.1 i.e. 

based on the direct optimization of the clearance parameters of the sliding contact at each iteration (local 

simulation) of the Monte Carlo simulation [20]. The second tolerance analysis simulation uses the KDE 

simulation variables as described in Section 3.2. A comparison is then established between these two tolerance 

analysis simulations as shown in the Tab. 2 for one type of simulation (F ⁓ N(2.5x10
-3

, 10
-4

)). For the other 

cases of simulation their results are presented in the tables presented in the appendix (Table 4-Table 8). It is 

important to note that the total simulations time presented in these tables in case of tolerance analysis using the 

KDE simulation samples, includes the time of the preliminary MCS applied to obtain the original data, the time 

to get the joint PDF of the clearance components and the new samples and finally the time to carry out the whole 

tolerance analysis simulation. Thus, 
1T  represents the addition of the time to carry out the preliminary MCS to 

get the original data and the time to generate new samples (matrix P) of gap components based on the KDE 

method; 
2T  represents the time to carry out the tolerance analysis of the mechanical system using the KDE 

simulation samples. This particular example does not imply multiple fixed, sliding and floating contacts during 

simulations. The gain in computation time can be much greater on mechanical systems with more fixed and 

sliding contacts. 

 

Table 2: Results of the simulation F ⁓ N(2.5x10-3, 10-4), NKDE = 100000, Nmc = 100000 

Simulation  Meshing 

100 2500 10000 

Classical tolerance 

analysis 

Pnf = 1.72x10
-2

 

Pna = 1.00x10
-5

 

Pnf = 1.64x10
-2

 

Pna = 1.00x10
-5

 

Pnf = 1.64x10
-2

 

Pna = 1.00x10
-5

 

Total time 10h36min 14h06min 46h32min 

Tolerance analysis 

based on KDE 

simulation 

Pnf = 1.73x10
-2

 

Pna = 2.00x10
-5

 

Pnf = 1.64x10
-2

 

Pna = 1.00x10
-5

 

Pnf = 1.64x10
-2

 

Pna = 1.00x10
-5

 

T1 13min 47min 3h36min 

T2 9h13min 9h39min 9h16min 

Total time (T1+ T2)  9h26min 10h26min 12h52min 
 

 

The first results shown in Tab. 2 and the others from the appendix imply the reduction of the simulation time for 

the tolerance analysis based on the KDE simulation data. The speedup obtained using the KDE increases as the 

mesh is refined. The simulations reduction time is on average 14.50% for the mesh with 100 discretization 

points, 33.55% for the mesh with 2500 discretization points and 73.24% for the mesh with 10000 discretization 

points. Consequently, the tolerance analysis method based on the probabilistic models allows a gain of 

simulation time. 

The second finding concerns the probabilities assessed using the different types of meshing. It is observed that 

the meshes with 2500 and 10000 discretization points have similar values of the probability of assembly failure 

(Pna), whereas its value is significantly different if the mesh with 100 discretization points is used. A similar 

conclusion can be drawn regarding the probability of functional failure (Pnf). Gradually as the mesh refinement is 

increased, the probabilities converge towards their reference value. The choice of the number of the 



discretization points for this tolerance analysis problem is solved in this manner. Based on the results and 

considering the constraints in terms of simulation time and accuracy of the results, the tolerance analysis using 

the meshing refinement of 2500 points can be taken as the best compromise solely for these configurations of 

meshing refinement. 

The third finding concerns the impact of the distributions on the probabilities. For both distributions (Gaussian 

and uniform) chosen to generate the amplitudes of the form defects on the mating surfaces, and for all the types 

of meshing refinement, the probabilities of assembly failure are increasing gradually as the amplitudes are 

increasing. This result is in accordance with engineering experiences. Indeed, as the amplitudes of the form 

defects are increasing, the mating surfaces are more subject to interferences and that can prevent the assembly to 

occur. It is observed then that the probabilities of assembly failure are very sensitive to the choice of the 

distributions, whereas the distributions have a reduced impact on the probabilities of functional failure. 

The final finding concerns the simulation times, which are increasing gradually as the meshing density increases. 

Indeed, the total number of constraints involved in the tolerance analysis increases as the mesh is refined, which 

increases the numerical efforts.  

The second category of simulation concerns the use of reduced number of samples during the preliminary MCS 

in order to gain in computing time. During the first MCS to generate the original data, a small number 
KDEN  of 

samples can be used and it is considered that this number
KDEN of simulation, is sufficient to evaluate a steady 

joint PDF of the original data. This latter can be used to generate a large number
mcN  (

mc KDEN N or

mc KDEN N ) of samples which are going to be used in the tolerance analysis.
mcN samples are sufficient to 

allow the tolerance analysis process to evaluate steady and good probabilities. The numerical efforts are reduced 

because the algorithm of this proposed method and also because a small number of samples is used in the 

preliminary MCS to generate the original data and identify the joint PDF associated with it. Thus, to show the 

advantage of the reduction of samples number in the preliminary MCS and the gain in time associated with it, 

simulations have been launched on the distribution F ⁓ U(1.5x10
-3

, 3.5x10
-3

) with a total number of MCS 
mcN  

= 100000, with discretization type of 2500 and different numbers of 
KDEN . The results are shown in Table 3, 

where it is observed that the probabilities can be fairly estimated by using just 10000 samples to generate the 

KDE data. These results show that it is not necessary to have the number of the preliminary MCS equal to the 

second MCS where the probabilities are calculated. By doing this, there is a gain in computing time about 6.30% 

based on the example shown in Table 3, between the simulation in which 
KDEN  is equal to 10000 and the one 

where it is equal to 100000. 

Table 3: Results of the simulation F ⁓ U(1.5x10-3, 3.5x10-3), Nmc=100000, with different 
KDEN  

Simulations Results 

2500 

NKDE 10000 20000 30000 50000 100000 

Probabilities Pnf  = 1.63x10
-2 

 Pna = 3.00x10
-5

 

Pnf  = 1.64x10
-2 

Pna = 3.00x10
-5

 

Pnf  = 1.63x10
-2 

Pna = 3.00x10
-5

 

Pnf  = 1.63x10
-2 

Pna  = 3.00x10
-5

 

Pnf  = 1.63x10
-2 

Pna  = 3.00x10
-5

 

T1 10min 13min 19min 24min 50min 

T2 9h43min 9h44min 9h42min 9h45min 9h43min 

Total time (T1 + 

T2)  

9h53min 9h57min 10h01min 10h09min 10h33min 

 

To sum up all the results, the first simulations based on the variations of the meshing and the distribution of form 

defects amplitudes, have helped to determine the best meshing choice resulting on steady probabilities of failure. 

The second batch of simulations on the reduction of the number KDEN  have allowed to determine that it is not 

necessary to have the same number of samples in the preliminary MCS as in the second MCS. And that is very 

important to reduce the simulation time. Furthermore, based on the results of Tab 3 and Tab 7 (in the Appendix), 

the simulations based on the computer formatting and development of the algorithm from the proposed method 

are faster than the simulations of the algorithm from the classical method. This explains the important reduction 

of time even if the NKDE is equal to Nmc. 



5. Discussions 

The application of the proposed method has shown in the previous section some of its advantages. However, 

some others can be added.  

 Some mechanical systems are composed of several identic contacts. In this case, the KDE method is 

very suitable because it allows designers to launch just one time, a simulation to determine the original 

data of a contact. Thereafter, this original data can be used in the evaluation of the joint PDF of its 

contact and also for the rest of the identic contacts. This helps the designer to save computational time. 

In fact, the identic contacts have the same elementary defects and the same characteristics. Therefore, 

they will have the same components of clearance for the best configuration allowing the assembly of 

the mechanical system. This gain in time is not possible with the classical method because a local 

simulation should be carried out on each of the identic contacts and at each iteration of the MCS. These 

repetitive simulations would increase the computational time. Furthermore, additional reduction of 

computing time can be obtained by using a reduced number of samples (
KDEN ) during the preliminary 

MCS as shown in Table 3. 

 Moreover, the proposed method allows to study each of the fixed or sliding contacts separately. 

Therefore, a broad spectrum of these fixed and sliding contacts can be studied in advance to determine 

their original data. This will be consuming in time but it will help the designers to earn computational 

time once the design starts. During the design, studies must be carried out very fast to be competitive on 

the market. Thus, the joint PDF of the original data and the new samples will be obtained very fast to 

proceed to the tolerance analysis of the mechanical system. This computational time gain is possible 

because the original data of the contacts already exist and also because the KDE method is faster.  

 The use of the KDE method enables one to use another method than the MCS to study the tolerance 

analysis of over-constrained mechanical systems. This other method can be the First Order Reliability 

Method (FORM) for systems applied in [6] to compute the probabilities of failure. The use of this 

FORM method in not compatible with the classical statistical tolerance analysis method presented in 

Section 2. 

Moreover, some probabilities calculated in the tables are slightly different. Nonetheless, these differences of 

probabilities between the local simulation and the proposed method are not sufficiently low to consider that the 

proposed method converges. Indeed, the probabilities calculated are of the same order of magnitude. It is 

reminded that the results are obtained using MCS which converges slowly. This method relies on the generation 

of pseudo-random numbers, and therefore two independent runs of the simulation lead to slightly different 

results.  

 

6. Conclusion and future work 

In this paper, a probabilistic-based model is proposed to deal with the gap components in fixed and 

sliding contacts. The model is then introduced in the global statistical tolerance analysis method of over-

constrained mechanical system with form defects. This statistical tolerance analysis method is based on the 

Monte Carlo Simulation coupled with multi-scale optimization methods. In this new approach, the contacts 

(fixed, sliding and floating) are considered differently. The probabilistic models are developed to characterize 

the clearance parameters from the sliding and fixed contacts. The kernel Density Estimation (KDE) method is 

used to establish these probabilistic models of the clearance parameters. The main drawback of the Monte Carlo 

simulation is the considerable numerical efforts associated with it. These numerical efforts are reduced by 

proposing this new algorithm and by using reduced number of samples in a preliminary MCS which data are 

employed to get new samples through the KDE simulation method. Thereafter, these new samples are introduced 

in the general tolerance analysis method. Furthermore, simulations have been proposed to get best choice of the 

meshing to get steady probabilities of failure. The amplitudes of form defects have an impact on the probability 

of assembly failure just as the meshing points have an impact on the simulation time.  

The proposed method cannot handle yet the deformations which occur on the different parts due the 

forces applied on them. These deformations can play a significant role in the assembly of the mechanical 

systems as shown in [42]. A possible outlook can be to see in which manner the studies carried out in [42] can be 

integrated in the tolerance analysis method of the present work or in the method addressed in [20]. 
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Nomenclature  

Pna Probability of assembly failure  g’ Clearance components of a floating 

contact 

Pnf Probability of functional failure  Nmc Total number of the Monte Carlo 

simulation 

X Geometrical deviations (random variables) Nct  Total number of the fixed and sliding 

contacts in the mechanical system 

F Set of the form defects amplitudes h The bandwidth of the Kernel Density 

Estimation  

G Set of clearance components from the fixed, 

sliding and floating contacts of the mechanical 

system 

S The covariance matrix of the variables 

involved in the Kernel Density Estimation 

method  

G* Set of clearance components from the fixed 

contacts and the blocked DOFs of the sliding 

contacts in the mechanical system 

P Matrix of the probabilistic model of the 

clearance components 

g* Clearance components of a fixed or sliding 

contact 

MCS Monte Carlo Simulation  

G’ Set of clearance components from the floating 

contacts of the mechanical system 
D Matrix containing the realizations of the 

clearance g* during the preliminary MCS 

PDF  Probability Density Function NKDE Total number of the preliminary MCS to 

get the original data 

 

 

Appendix 

 

A.1 Figures to show the similarity between the original data and the KDE simulation data 

To show the similarity between the original data and the KDE simulation data in more detail, the distributions 

points between the clearance components are presented in the Fig. 5 for the case of simulation F ⁓ N(2.5x10
-3

, 

10
-4

). This Fig. 5 shows that the KDE based data globally correspond to the original data. 

 

Fig. 5.  Comparison of the distribution between the clearance parameters (w, α, β) 

 



Furthermore, the joint Probability Density Function (PDF) between each pair of KDE variables show the match 

between the original data points and the PDF contour plot. As shown in Fig. 6, for every combination of the 

clearance parameters, the density of the original data points is corresponding to the color of the PDF contour 

plot. 

 

 

Fig. 6.  Contour plot of the Probability Density Function of the KDE data compared to the original data points 

 

 

A.2 Tables showing the results of the comparisons proposed in Table 1. 

Table 4: Results of the simulation F ⁓ N(2.5x10-3, 10-6), NKDE = 100000, Nmc = 100000 

Simulation  Meshing  

100 2500 10000 

Classical tolerance 

analysis 

Pnf = 1.38x10
-2

 

Pna = 2.00x10
-4

 

Pnf = 1.42x10
-2

 

Pna = 1.00x10
-5

 

Pnf = 1.41x10
-2

 

Pna = 1.00x10
-5

 

Total time 13h51min 18h39min 46h42min 

Tolerance analysis 

based on KDE 

simulation 

Pnf = 1.58x10
-2

 

Pna = 1.80x10
-4

 

Pnf = 1.63x10
-2

 

Pna = 1.00x10
-5

 

Pnf = 1.62x10
-2

 

Pna = 1.00x10
-5

 

T1 15min 46min 3h28min 

T2 9h37min 9h39min 9h53min 

Total time (T1+ T2)  9h52min 10h25min 13h21min 
 

 

 

 

Table 5: Results of the simulation F ⁓ N(2.5x10-3, 10-2), NKDE = 100000, Nmc = 100000 

Simulation  Meshing 

100 2500 10000 

Classical tolerance 

analysis 

Pnf = 4.45x10
-3

 

Pna = 8.41x10
-1

 

Pnf = 4.39x10
-3

 

Pna = 8.81x10
-1

 

Pnf = 4.38x10
-3

 

Pna = 8.81x10
-1

 

Total time  12h36min 21h22min 66h23min 

Tolerance analysis 

based on KDE 

simulation 

Pnf = 4.54x10
-3

 

Pna = 8.49x10
-1

 

Pnf = 4.39x10
-3

 

Pna = 8.80x10
-1

 

Pnf = 4.39x10
-3

 

Pna = 8.81x10
-1

 

T1 12min 44min 3h30min 

T2 9h20min 9h19min 9h24min 



Total time (T1+ T2)  9h32min 10h03min 12h54min 

 

 

Table 6: Results of the simulation F ⁓ U(2x10-3, 3x10-3), NKDE = 100000, Nmc = 100000 

Simulation  Meshing 

100 2500 10000 

Classical tolerance 

analysis 

Pnf = 1.72x10
-2

 

Pna = 1.00x10
-5

 

Pnf = 1.63x10
-2

 

Pna = 1.00x10
-5

 

Pnf = 1.63x10
-2

 

Pna = 1.00x10
-5

 

Total time  10h33min 13h59min 46h42min 

Tolerance analysis 

based on KDE 

simulation 

Pnf = 1.71x10
-2

 

Pna = 1.00x10
-5

 

Pnf = 1.64x10
-2

 

Pna = 1.00x10
-5

 

Pnf = 1.64x10
-2

 

Pna = 1.00x10
-5

 

T1 13min 39min 3h44min 

T2 9h42min 9h40min 9h42min 

Total time (T1+ T2)  9h55min 10h19min 13h26min 

 

 

Table 7: Results of the simulation F ⁓ U(1.5x10-3, 3.5x10-3), NKDE = 100000, Nmc = 100000 

Simulation  Meshing 

100 2500 10000 

Classical tolerance 

analysis 

Pnf = 1.73x10
-2

 

Pna = 5.00x10
-5

 

Pnf = 1.64x10
-2

 

Pna = 1.00x10
-5

 

Pnf = 1.64x10
-2

 

Pna = 1.00x10
-5

 

Total time 10h36min 14h07min 46h41min 

Tolerance analysis 

based on KDE 

simulation  

Pnf = 1.71x10
-2

 

Pna = 1.00x10
-5

 

Pnf = 1.63x10
-2

 

Pna = 3.00x10
-5

 

Pnf = 1.64x10
-2

 

Pna = 2.00x10
-5

 

T1 12min 50min 3h32min 

T2 9h33min 9h44min 9h36min 

Total time (T1+ T2)  9h45min 10h34min 13h08min 
 

 

 

Table 8:  Results of the simulation F ⁓ U(-7.5x10-3, 1x10-2), NKDE = 100000, Nmc = 100000 

Simulation  Meshing 

100 2500 10000 

Classical tolerance 

analysis 

Pnf = 1.71x10
-2

 

Pna = 2.00x10
-1

 

Pnf = 1.69x10
-2

 

Pna = 2.15x10
-1

 

Pnf = 1.69x10
-2

 

Pna = 2.15x10
-1

 

Total time  10h39min 14h03min 46h51min 

Tolerance analysis 

based on KDE 

simulation 

Pnf = 1.71x10
-2

 

Pna = 2.09x10
-1

 

Pnf = 1.67x10
-2

 

Pna = 2.23x10
-1

 

Pnf = 1.70x10
-2

 

Pna = 2.24x10
-1

 

T1 15min 49min 3h34min 

T2 9h31min 9h47min 9h35min 

Total time (T1+ T2)  9h46min 10h36min 13h09min 
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