
HAL Id: hal-02321041
https://hal.science/hal-02321041

Submitted on 20 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Equivalences Between Categories Of Representations
Alexander Zimmermann

To cite this version:
Alexander Zimmermann. On Equivalences Between Categories Of Representations. The 8th SEAMS-
UGM 2019 Intrenational Congress on Mathematics and its Applications, Jul 2019, Yogyakarta, In-
donesia. �hal-02321041�

https://hal.science/hal-02321041
https://hal.archives-ouvertes.fr


On Equivalences Between Categories Of Representations

Alexander Zimmermann1

1LAMFA (UMR 7352 du CNRS)
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Abstract. We explain some of the goals of modern representation theory, aiming at categorical methods. We develop one of the
most astonishing invariant, Hochschild (co-)homology and we explain on the example of the recent solution of a question due to
Rickard how it is possible to reduce fairly abstract questions to explicit methods finally solved by computers.
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INTRODUCTION

Representation theory deals with realising abstract structures, such as groups, algebras, Lie algebras, as group of
matrices, algebra of matrices, or Lie algebras of matrices over a fixed base ring. Any such realisation is called a
module, or synonymously a representation. We will consider here representations of algebras.

It is immediately clear that the concept is most fruitful if not only one single representation is considered, but if
all representations at once, possibly subject to certain restrictions such as being finite dimensional, are object of study,
and moreover including the relations between them. We are lead automatically to the concept of a module category,
denoted A −mod in case of an algebra A.

Two algebras A and B are called Morita equivalent whenever the categories A−mod and B−mod are equivalent
as abstract categories. Morita’s theorem gives a quite precise description of this situation, and it turns out that it is
highly restrictive. A basic example is that the category of vector spaces over a field K is equivalent with the category
of modules of an n × n matrix algebra over K. Morita’s theorem states basically that in some sense this is the model
for the general case, and in some sense all cases look like this.

In order to be able to include more interesting cases, when representations of two algebras behave similar but are
not equivalent, it became desirable to consider weaker equivalences. The general procedure is to form A − mod, the
category of modules, and then apply a general procedure to this category, not depending of the underlying algebra,
but only on the abstract category. One obtains a new category C(A), and in case C(A) is equivalent to C(B) we can
consider properties of A which are encoded in C(A), and hence are shared by B.

This general procedure was applied by Auslander, Reiten and their school in the 1970’s to what we call the stable
category A − mod. Except in special cases properties encoded in A − mod are rare, and the concept was not carried
too far, except when A is self-injective and in this case A − mod is a so-called triangulated category, carrying a rich
structure. A most prominent example of this situation comes from group representations. Starting from a finite group
G and a field K, we may form the so-called group algebra KG, which is then a self-injective algebra and quite a
number of properties of G are encoded in KG −mod if K is a field of characteristic p dividing the order of G.

In the general setting it was in the 1980’s when Sheila Brenner and Michael Butler discovered what they called
tilting of algebras, a special case of what will then later be called derived equivalence. Jeremy Rickard motivated by
Dieter Happel’s work discovered that a most interesting case appears when one forms C(A) = Db(A), the bounded



derived category. Again, this is a triangulated category, as it was introduced by Grothendieck and Verdier in the context
of their revolutionary renewal of algebraic geometry. Algebras A and B with equivalent derived categories Db(A) and
Db(B) are called derived equivalent. Rickard’s first main theorem give an appealing necessary and sufficient criterion
when two algebras are derived equivalent.

Derived equivalent algebras share many properties, and, at least philosophically, in particular those of so-called
homological nature. Rickard’s second main theorem gives the necessary tool for this, showing that if A and B are
derived equivalent, then there is an equivalence of a specially nice shape, called of standard type. In case A and B
are self-injective, then derived equivalences of standard type induce equivalences between the stable categories of A
and of B of a similar particularly nice nature, named stable equivalences of Morita type. This concept was introduced
by Michel Broué, mainly motivated by applications to representations of groups, but was then carried further by
ChangChang Xi and his school in the general abstract setting.

However, not all stable equivalences of Morita type are induced by derived equivalences. Therefore, one natural
question is to ask for those homological properties which are invariant under derived equivalences, and which stay
invariant under stable equivalences of Morita type.

We will introduce the reader to this theory and give an overview of some of the relevant questions in more detail.
We also explain some invariants, and focus mainly on Hochschild homology and cohomology, together with their rich
structure. We explain how degree 0 Hochschild cohomology then allowed us in joint work with Yuming Liu, Guodong
Zhou and Serge Bouc to settle a question of Rickard. Finally we answer a question posed in Marco Armenta’s 2019
thesis using a number theoretical approach from class field theory.

We made an effort to start most elementary and increase complexity during the text. We do not give any proof,
in order to avoid to become technical. Nevertheless, we always give references where to find a complete treatment.

REPRESENTATIONS

Our basic object of study are K-algebras over a field K. In general the field K is left as broad as possible, and could be
Q, the rational numbers, R the real numbers, but most often C the complex numbers. The latter is appropriate since C
is algebraically closed, meaning that all non constant polynomials with coefficients in C have roots. The field K may
also be a field of finite characteristic, such as Z/pZ for some prime p, or any extension. It is a well-known result that a
finite field K has q = pn elements, for some integer n > 0 and some prime p. Moreover, for any field K there is an up
to isomorphism unique field K containing K and which is algebraically closed. When we speak of a ring we always
mean a unital, associative ring, but we do not assume commutativity in general.

Definition 1 A K-algebra A is a (not necessarily commutative) ring, equipped with a ring homomorphism

ε : K → Z(A) := {a ∈ A | ∀b ∈ A : ba = ab}.

Morally, a K-algebra is a ring, equipped with an additional and compatible K-vector space structure. In order
to shorten notation we write λa instead of ε(λ)a for any a ∈ A and any λ ∈ K. Algebras can be very complicated.
However, there is a particularly well understood example.

Example 2 For any integer n the set of n × n matrices over K form a K-algebra. We denote this algebra by
Matn×n(K), or shorter by Matn(K) The ring structure is given by addition of matrices coefficient-wise, and multiplica-
tion is given by multiplication of matrices. The homomorphism is given by

K 3 λ 7→
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∈ Matn×n(K).

Now, comparing two algebras is done by an algebra homomorphism.

Definition 3 Given two algebras A and B an algebra homomorphism α : A → B is a ring homomorphism α such
that in addition α(λa) = λα(a) for any a ∈ A and any λ ∈ K.



We now come to the fundamental

Definition 4 Let K be a field and let A be a K-algebra. A representation of A of dimension n is an algebra
homomorphism µ : A→ Matn(K).

Let V = Kn. Then Matn(K) acts on V by simple multiplication of matrices. If µ : A → Matn(K) is an A-module,
then A acts on V by a · m := µ(a)(m) for all a ∈ A,m ∈ V . We say that V is an A-module in this case. The notions of
A-module and representation of A are somewhat parallel, and it is not useful to distinguish between these concepts.
An A right module is given by a map µ : A → Matn(K) such that transpose ◦ µ is an algebra homomorphism. Here
transpose : Matn(K)→ Matn(K) is the map on matrices given by transposing the matrix. Note that the concept of an A
right module M is equivalent with giving an action of A on the right of M: for all m ∈ M and a ∈ A let m ·a := µ(a)(m).
Using the transpose then ensures that for all a, b ∈ A and m ∈ M we get (ma)b = m(ab). Given two K-algebras A and
B, an A − B-bimodule is a K-vector space M which is an A left module, a B right module and such that the action of
K on the left and on the right coincides.

Fixing a K-algebra A a homomorphism of A-modules V to W is given by a K-linear map ϕ : V −→ W such that
ϕ(a ·m) = a ·ϕ(m) for all a ∈ A,m ∈ V . Isomorphisms are bijective homomorphisms, as usual, and for two A-modules
M and N we write M ' N if we want to express that there exists an isomorphism M → N. In this case we say that M
and N are isomorphic. Finally, let HomA(M,N) be the set of all A-module homomorphisms M → N.

If A is a K-algebra, then A itself is an A-module with µ(a)(b) = ab. This module is called the regular module.
Similarly for any n ∈ N we have An is an A-module, where the above µ is now taken componentwise. We call An the
rank n free A-module. Given two A-modules M and N we can form by the same procedure M × N as K-vector space.
This becomes an A-module as above and is denoted M ⊕ N.

Definition 5 An A-module P is called projective if there is another A-module Q such that P ⊕ Q is isomorphic to
a free module.

Example 6 The setting of a module over an algebra applies also to representations of finite groups. Let G be
a finite group and let K be a field. The group ring KG is the K-vector space with basis G. The structural law of a
group can be extended K-bilinearly to a multiplicative structure on all of KG. Altogether this produces a K-algebra.
A KG-module is, by definition, the same as what is classically known as a representation of G over K.

As the algebra Matn(K) is very easy to understand, compared to an abstract algebra A, it is unlikely to be able to
obtain a lot of information by just looking at one module only. We consider A − mod, the class of all A-modules of
finite dimension together with the data of all A-module homomorphisms V → W for any two fixed finite dimensional
A-modules V,W. This data now has a richer structure, it is a so-called category.

CATEGORIES

We will give in this section some elements of the concepts in category theory needed for the rest of the paper. All what
is sketched in this section can be found in many textbooks. We suggest [26, Chapter 1, Chapter 3] for more details on
the concepts in this section.

Some general theory
A category is a rather abstract and very general gadget. However, it can be equipped with a lot of additional structure,
and then it is very much part of even classical mathematics. In particular, categories are the appropriate setting to work
with as it concerns our question.

Definition 7 A category C consists in a class of objects ob j(C), and for all two objects V,W a set C(V,W) called
morphisms, and a for all three objects U,V,W a map

◦ : C(V,W) × C(U,V) −→ C(U,W),

called composition, satisfying the following axioms:

• composition is associative



• For each object V there is an object 1V ∈ C(V,V) such that for all objects U,W and all α ∈ C(V,W) and all
β ∈ C(U,V) we have 1V ◦ β = β and α ◦ 1V = α.

For each field K a category C is called K-linear if for each V,W the set C(V,W) is a K-vector space and composition
is K-bilinear.

Occasionally we denote by HomC(V,W) the set C(V,W) of a category C and objects V,W of C.
It is easy to see that A −mod is a K-linear category. It is actually more, an abelian category. We will not go into

detail to this technical statement since it would lead us much too far.
Nevertheless, now we can describe our first modification of A −mod. Recall that for a vector space V and a sub

vector space W we denote by V/W the quotient space.

Definition 8 Let K be a field and let A be a K-algebra. The stable category A − mod is the category with objects
being finite dimensional A-modules (just as those of A − mod). For any two A-modules M and N let

PHomA(M,N) := {α ∈ HomA(M,N) | ∃P projective and β ∈ HomA(M, P), γ ∈ HomA(P,N) : α = γ ◦ β}

and morphisms in A − mod are then

(A −mod)(M,N) := HomA(M,N)/PHomA(M,N).

Composition is given by composition of A-module homomorphisms.

Note that we need to show that the composition is actually well-defined, i.e. does not depend on the representative
taken. But this is clear, since if α ∈ PHomA(M,N), then for all σ ∈ HomA(N, L) and τ ∈ HomA(S ,M), also σ ◦ α ∈
PHomA(M, L) and α ◦ τ ∈ PHomA(S ,N).

We still need a concept to compare categories. This concept is called a functor.

Definition 9 Let C andD be two categories. A functor F : C → D is given by associating for each object X of C
an object F(X) ofD and for any two objects X,Y of C a map C(X,Y)→ D(F(X), F(Y)) such that F(1X) = 1F(X) for any
object X of C and for any objects X,Y,Z of C and any α ∈ C(Y,Z) and any β ∈ C(X,Y) we have F(α◦β) = F(α)◦F(β).

The identity functor idC on a category C is the functor being the identity on the objects and the identity on the
morphisms. If F : C → D and G : D → E are functors, then the composition G ◦ F in the obvious way is again a
functor.

Examples of functors are legendary. For any K-algebra A and any fixed A-module M we define F = HomA(M,−) :
A − mod → K − mod the functor defined by mapping any A-module N to the K-vector space HomA(M,N) and any
morphism α ∈ HomA(N, L) to the map HomA(M,N) 3 β 7→ α ◦ β ∈ HomA(M, L). We denote the above map by
HomA(M, α). This type of functor is important for structural reason, and is called representable. Similarly, one has
what we call a contravariant functor associating to any N the vector space HomA(N,M) and and any morphism
α ∈ HomA(N, L) the map HomA(L,M) 3 β 7→ β ◦ α ∈ HomA(N,M), denoted HomA(α,M).

We sometimes need to compare functors.

Definition 10 Let C and D be two categories and let F : C → D and G : C → D be two functors. A natural
transformation η : F → G consists in the following data: For every object X of C an element ηX ∈ D(FX,GX) such
that

C(X,Y) F //

G
��

D(FX, FY)

D(FX,ηY )
��

D(GX,GY)
D(ηX ,GY)

// D(FX,GY)

is a commutative diagram.
A natural isomorphism is a natural transformation η : F → G such that ηX is an isomorphism for each object X.

We denote in this case η : F
'
→ G, or for short F ' G.

Definition 11 Let C and D be two categories. Then C is equivalent to D if there is a functor F : C → D and a
functor G : D → C such that F ◦G ' idD and G ◦ F ' idC. We call G a quasi-inverse to F.



Example 12 Let A be a K-algebra. Then we get a natural functor ΠA : A −mod→ A −mod given by associating
an A-module M to the same A-module M, and mapping an A-module homomorphism α : M → N to its class
α + PHomA(M,N) in (A −mod)(M,N).

If B is another K-algebra, then we get again a functor ΠB : B −mod → B −mod. Suppose now F : A −mod →
B − mod is a functor, and suppose that for any projective A-module P again F(P) is a projective B-module. Then
F : A − mod → B − mod which is defined by F(X) := F(X) for any A-module, and for any α ∈ HomA(M,N)
let F(α + PHom(M,N)) := F(α) + PHomB(F(M), F(N)). This is well-defined and yields a commutative diagram of
functors between categories as follows:

A −mod F //

ΠA

��

B −mod

ΠB

��
A −mod

F
// B −mod

However, given a functor, or even an equivalence G : A−mod→ B−mod, then it is in general not true that there
is a functor F : A −mod→ B −mod such that F ' G. We will see examples in Theorem 46 below.

Finally we will need the concept of a full subcategory. Given a category C. A subcategory S of C consists in a
subclass of objects, and for any two objects X, Y of S a subset S(X,Y) ⊆ C(X,Y) such that S is again a category with
composition of morphisms being the restriction to S of the composition of morphisms in C.

A subcategory is full if S(X,Y) = C(X,Y) for any two objects of X,Y of S.

(Co-)homology
Let A be a K-algebra for a field K, and let M be an A-module. A submodule of M is just a subvector space N of M
such that for all a ∈ A and n ∈ N we have a · n ∈ N. In other words, the action of A on the subspace N gives a module
structure on N. The quotient vector space M/N is again an A-module with action of a ∈ A on m + N ∈ M/N defined
to be a · (m + N) := (a · m) + N, if N is an A submodule of M. A non zero A-module M is called simple if the only
submodules of M are {0} and M. If M is a finite dimensional A-module, then there is a maximal submodule N1, in the
sense that M/N1 = S 1 is simple. Since N1 is again finite dimensional, there is again a maximal submodule N2 of N1
with S 2 := N1/N2 simple, and continuing this way we obtain for every finite dimensional A-module M a set of simple
modules S which are obtained as U/V = S for submodules V ⊆ V ⊆ M of M. We call the set (keeping multiplicities
of isomorphism classes of modules!) {S 1, S 2, . . . S k} of these simple submodules composition factors of M and the
above constructed sequence of submodules M ⊃ N1 ⊃ N2 ⊃ · · · ⊃ Nk = S k ⊃ {0} with Ni/Ni+1 =: S i simple is called
a composition series. Of course, a priori the composition factors depend on the composition series.

Theorem 13 (Jordan-Hölder) Let K be a field and let A be a K-algebra. Let M be a finite dimensional A-module.
Then the composition factors, as set of isomorphism classes of simple modules, keeping track of the possible multi-
plicity of the isomorphism class of a simple module occurring several times in a composition series, is independent of
the chosen composition series.

The situation is even better. If A is a finite dimensional K-algebra, then there are only finitely many isomorphism
classes of simple A-modules. So, imagine we know these, and consider them as ‘bricks’ to build our ‘house’, i.e. our
module. What we need is the ‘mortar’. This is what will be considered now.

So, try the converse procedure. Given two finite dimensional A-modules U and V . What are the possible A-
modules M such that U is isomorphic to a submodule U′ of M, and such that M/U′ is isomorphic to V? There is
always at least one such module, namely M = U ⊕ V , but in general this is not the only one. Consider the set of
schemes

0→ U
ι
→ M

π
→ V → 0

such that M is an A-module, such that ι and π are A-module homomorphisms, such that ker(π) := π−1(0) = ι(U), such
that ι is injective and such that π is surjective. Two such schemes

0→ U
ι
→ M

π
→ V → 0

and
0→ U

ι′

→ L
π′

→ V → 0



are called equivalent if there is an A-module homomorphism α : M → L such that α ◦ ι = ι′ and π′ ◦ α = π.
The important observation is the following statement.

Theorem 14 The equivalence classes Ext1A(V,U) of such schemes form a group, actually a K-vector space.

Given a K-algebra A over a field K, and a (finite dimensional, to simplify) A-module V , we can fix a K-basis
B of V , and obtain a surjective homomorphism π : A|B| → V by mapping a sequence (ab)b∈B to

∑
b∈B abb ∈ V . Let

Ω(V) := ker(π). We may define inductively Ωi(V) := Ω(Ωi−1(V)) for all i ≥ 1, with Ω0(V) = V .

Definition 15 Given a field K and a finite dimensional K-algebra A. Then, for all finite dimensional A-modules V
and all A-modules U let ExtiA(V,U) := Ext1A(Ωi−1(V),U) for all i ≥ 1.

It can be shown that this definition does not depend on the basis B, and, being slightly more careful, can also be
used without the hypothesis on the dimension of A and V .

Can we understand the vector spaces ExtiA(V,U) in a systematic fashion? This is done in the next subsection.

Derived categories
We want to construct a category such that Ext1A(V,U) are just homomorphisms in this category. Consider the schemes

0→ U
ι
→ M

π
→ V → 0

as above. Observe π ◦ ι = 0. We consider more generally schemes

· · · → Cn
δn−1
→ Cn−1

δn−2
→ Cn−2

δn−3
→ · · ·

δm
→ Cm

δm−1
→ Cm−1 → · · ·

such that all Ci are A-modules, all δi are A-module homomorphisms, and such that δi−1 ◦ δi = 0 for all i. Such
schemes are called complexes, the maps δi are called differentials, and mostly we will assume that there is n0 ∈ Z
such that Cm = 0 for all m < n0. The homology of this complex (C•, δ•) is the sequence of A-modules Hi(C•) :=
ker(δi−1)/δi(Ci+1). An easy procedure can be applied to such complexes. Let (C•, δ•) be a complex. Then denote by
(C•, δ•)[1] the complex with (C•[1])i := Ci+1 and (δ•[1])i := δi+1. This is again a complex, ‘shifted by 1 to the left.’

Let
· · · → Cn

δn−1
→ Cn−1

δn−2
→ Cn−2

δn−3
→ · · ·

δm
→ Cm

δm−1
→ Cm−1 → · · ·

et
· · · → Dn

dn−1
→ Dn−1

dn−2
→ Dn−2

dn−3
→ · · ·

dm
→ Dm

dm−1
→ Dm−1 → · · ·

be two complexes of A-modules. A homomorphism of complexes C• → D• is a sequence αi : Ci → Di of A-module
homomorphisms such that αi ◦ δi = di ◦ αi+1 for all i ∈ Z. The notion of isomorphism is the obvious one.

It is not difficult to show that a homomorphism of complexes induces a homomorphism of the homology of
the complexes. The converse is false in general, and even worse, the homomorphism of complexes may not be an
isomorphism even though the homomorphism on the homology of the complexes may be an isomorphism.

There is a rather sophisticated procedure to modify the homomorphism sets of complexes to get that any homo-
morphism of complexes, inducing an isomorphism on the homology of the complexes is actually an isomorphism.

Definition 16 (sketch) The derived category of A-modules D(A) is the category with objects being complexes,
and morphisms being some classes of morphisms of complexes, modified in such a way that an isomorphism on the
homology of the complexes is actually an isomorphism.

The bounded derived category of A-modules Db(A) is the subcategory of D(A) with objects being complexes
(D•, δ•) such that there is n0 with Ci = 0 for all i with |i| > n0.

For a more precise definition see e.g. [26, Chapter 3]. A precise definition would go much too far here. However,
the above “Definition 16” is precise enough for our purpose. We note however that any A-module M can be considered
as an object in Db(A). Indeed, M can be identified with the complex M• where M0 = M, Mi = 0 for all i , 0, and
of course all differentials 0. This actually gives a functor L : A − mod → Db(A). It has nice properties such as that it
induces an isomorphism

HomA(M,N) ' HomDb(A)(LM, LN).



Theorem 17 Consider two A-modules U and V. Then, for all i ≥ 1 we get

ExtiA(V,U) ' HomDb(A)(LV, LU[i]).

Already this property convinces us that the derived category is an interesting object. It encodes our ‘mortar’
in a structural fashion. Moreover, it is precisely the long term project we were aiming at. Starting from the module
category we form another one, the derived category by some universal procedure, having different, somehow less rigid
properties.

We should emphasize that the derived category has a rich structure. It is a triangulated category. This highly
sophisticated property goes far beyond our introduction. The interested reader may like to look up these details from
e.g. [26, Chapter 3].

Some astonishing homological invariant: Hochschild homology
The derived category is well-suited to define some of the most important and most used invariants which are of
relevance for us.

First, for a K-algebra A we denote by Aop the K-vector space A equipped with a multiplicative structure

a ·op b := b · a.

Here we denote by ·op the multiplicative structure of Aop and by · the multiplicative structure of A.
Then for any two K-algebras A and B we get that B ⊗K Aop is a K-algebra again, and the B ⊗K Aop-modules are

precisely the B − A-bimodules, in the sense that such a bimodule M is an A right module and a B left module, and
the field K acts the same way on the left and on the right. If B = A, then A is clearly an A ⊗K Aop-module. But also
HomK(A,K) is an A ⊗K Aop-module by putting for any f ∈ HomK(A,K) and any a, b, c ∈ A

(a · f · b)(c) := f (bca).

Definition 18 • The degree n Hochschild cohomology HHn(A) of A is ExtnA⊗K Aop (A, A).
• The K-dual of the degree n Hochschild homology HHn(A) of A is ExtnA⊗K Aop (A,HomK(A,K)).

The slightly cumbersome definition of the Hochschild homology is valid for finite dimensional algebras over a
field, and follows by some expression due to Cartan-Eilenberg. In general Hochschild homology is defined by some
torsion group and would need some more preparation. I learned the definition of Hochschild homology as above from
the thesis of Marco Antonio Armenta.

Remark 19 Note the degree 0 cases. First, HH0(A) = Z(A) = {b ∈ A | ∀a ∈ A : ba = ab} is the centre of
the algebra A. Second, HH0(A) = A/[A, A] where [A, A] is the K-subvector space of A generated by the expressions
ab − ba for all a, b ∈ A.

Hochschild cohomology and homology have stunning properties. It is a very rich and quite rigid structure in
itself.

First, let
HH•(A) :=

⊕
n∈N

HHn(A).

This is clearly a Z-graded vector space. Recall that a commutative K-algebra is a K-algebra which is a commutative
ring. A graded K-algebra is a K-algebra G such that we have a decomposition as vector spaces

G =
⊕
n∈Z

Gn

such that for any a ∈ Gn and b ∈ Gm we have a · b ∈ Gn+m. A graded K-algebra is graded commutative if for any
a ∈ Gn and b ∈ Gm we have a · b = (−1)nmb · a. Hence graded commutative K-algebras are almost commutative in the
sense that it is commutative up to a sign. The sum of all even degree subspaces give a commutative algebra.

Theorem 20 (Gerstenhaber [7]) The vector space HH•(A) is a graded commutative K-algebra. The multiplica-
tive structure is called cup product, and denoted as, the ∪ product.



Actually, the cup product is not complicated. It is basically the composition of maps in the derived category.
But this is not all. There is an additional graded Lie algebra structure. Recall that a Lie algebra is a K-vector

space g and K-bilinear law
[ , ] : g × g −→ g

such that
[x, y] + [y, x] = 0 and [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for all x, y, z ∈ g. A graded Lie algebra g is a Z-graded vector space g =
⊕

n∈Z gn such that for all x ∈ gn, y ∈ gm, z ∈ gp
we get

• [x, y] ∈ gn+m,
• [x, y] + (−1)mn[y, x] = 0
• (−1)np[x, [y, z]] + (−1)mn[y, [z, x]] + (−1)pm[z, [x, y]] = 0

Theorem 21 (Gerstenhaber [7]) Let K be a field and let A be a finite dimensional K-algebra. Then the vector
spaces gn := HHn+1(A) allow a graded Lie algebra structure [ , ] such that in addition

[x ∪ y, z] = [x, z] ∪ y + (−1)(m+1)px ∪ [y, z]

for all x ∈ gn, y ∈ gm, z ∈ gp.

Definition 22 A Gerstenhaber algebra is a graded vector space G• :=
⊕

n∈ZGn together with a multiplicative
structure ∪ such that (G,∪) is a graded commutative K-algebra, a bracket [ , ] : G• × G• −→ G• such that with
gn := Gn+1 and g :=

⊕
n∈Z gn we get (g, [ , ]) is a graded Lie algebra satisfying in addition

[x ∪ y, z] = [x, z] ∪ y + (−1)(m+1)px ∪ [y, z]

for all x ∈ gn, y ∈ gm, z ∈ gp.

And it is still not finished. HH•(A) acts on HH•(A) in the sense that HH•(A) is an HH•(A)-module. Not only
this, the action respects the associative and the Lie structure.

More precisely, there is a K-bilinear map

∩ : HH•(A) × HH•(A) −→ HH•(A)

such that for all x ∈ HHn(A) and for all z ∈ HHm(A) we get x∩ z ∈ HHm−n(A) whenever m ≥ n and x∩ z = 0 if m < n.

EQUIVALENCES OF DERIVED, STABLE, MODULE CATEGORIES

In the previous section we had three levels.

• We considered the category of modules over an algebra,
• we considered the stable category,
• and we considered the derived category.

What can we say when for two algebras A and B we have equivalences of the categories on one of these levels. We
shall give a brief introduction in the present section.

Morita equivalences
The most rigid case is the case of equivalences between the module categories of A and of B. We already have seen
the concept of a projective module. We need the concept of a generator.

Definition 23 An object G of a category C is a generator if for every two objects X and Y of C and all morphisms
f , g ∈ C(X,Y) there is a morphism h ∈ C(G, X) such that h ◦ f , h ◦ g.



In case of K-linear categories, replacing f by f − g the condition is equivalent to finding for any f ∈ C(X,Y) an
h ∈ C(G, X) with h ◦ f , 0. For module categories a slightly more complicated argument shows that a generator is an
object G such that for each object X there is an index set IX and a surjective homomorphism GIX → X.

The most famous Morita theorem characterises equivalences between module categories completely. We formu-
late the result in a way suitable for our text, though the theorem is much more general.

Theorem 24 (Morita; cf e.g. [26] Chapter 4) Let K be a field and let A and B be finite dimensional K-algebras.
Then A−mod ' B−mod if and only if there is a projective A-module M, which is a generator for A−mod, such that
EndA(M) ' Bop. In this case M is naturally a projective B-right module, a generator for B−mod, and EndB(M) ' Aop.
Moreover, M ⊗B − : B −mod→ A −mod is an equivalence.

Definition 25 We say that A and B are Morita equivalent if A − mod ' B − mod. and a bimodule M as in
Theorem 24 is called a Morita bimodule.

This is our model. We cannot expect a better situation.

Example 26 Consider the case of a skew field D with centre containing K, (and being finite dimensional over K
to stay in our setting). Then D is a K-algebra. As for fields, there is a basis theorem also for skew fields and hence a
finitely generated D-module is isomorphic to some Dn for some n ∈ N. Hence, D is Morita equivalent to Matn(D) for
any integer n > 0. We shall come back to this observation in Proposition 48 below.

In general however, there are more sophisticated possibilities. For example for indecomposable ring direct factors
of the group ring of symmetric groups over algebraically closed fields of characteristic p > 0 Morita equivalence
classes are given by involved combinatorial data by work of Scopes [22].

Derived equivalences
Rickard showed a classification result similar to the Morita Theorem 24. Again we will stay in our restricted frame-
work of finitely dimensional algebras over some field K. The results hold in a larger generality, but need more prepa-
ration then.

Definition 27 Let A be a finite dimensional K-algebra for some field K. A complex T in Db(A) is called a tilting
complex if

• T is isomorphic to some bounded complex of finitely generated projective modules.
• HomDb(A)(T,T [n]) = 0 for every n , 0.
• the smallest triangulated category containing T and all its direct sums and direct summands also contains L(A).

Recall that the derived category is a triangulated category. With this notation we get

Theorem 28 (Rickard [18]) Let K be a field and let A and B be two finite dimensional K-algebras. Then Db(A) '
Db(B) as triangulated categories if and only if there is a tilting complex T in Db(A) such that EndDb(A)(T ) ' Bop.

Observe that we do not get a functor yet. This is the purpose of the following result in a version due to Keller,
generalising a result of Rickard. Again the result holds much more generally, but in order to stay in our setting, and in
order to simplify technical difficulties we restrict the presentation to some special case.

Theorem 29 (Rickard [20], Keller [11]) Let K be a field and let A and B be two finite dimensional K-algebras.
Let T be a bounded complex of finitely generated projective B-modules and let α : A → EndDb(B)(T ) be an algebra
homomorphism. Suppose that HomDb(B)(T,T [n]) = 0 for all n > 0. Then there is a complex X in Db(B⊗K Aop) and an
isomorphism ϕ : T −→ resB⊗K Aop

B X in Db(B), where res denotes the restriction of the complex of B − A-bimodules to a
complex with action of B only,

T
ϕ //

α(a)
��

X

·a
��

T
ϕ
// X

is commutative for all a ∈ A. In this case (left derived) tensor product with X over A gives an equivalence Db(A) →
Db(B). We call such an equivalence an equivalence of standard type.



The result above just implies that given a tilting complex T in Db(B) with endomorphism algebra A, then we may
replace T by an isomorphic copy X, admitting an action of A on each component, such that each endomorphism of T
can be realised as a multiplication on each homogeneous component of the complex. Hence, if there is an equivalence
between derived categories of algebras, then there is a derived equivalence of standard type. Nevertheless, it is not
known if in general every equivalence Db(A) ' Db(B) is an equivalence of standard type. Recent work of Xiao-Wu
Chen shows that this is true for some small class of algebras.

With respect to many aspects, except the last mentioned ambiguity, this situation is a quite satisfactory replace-
ment of Morita’s theorem, and has similar implications.

Stable equivalences
The stable category is a very loose invariant. Only few properties are encoded in the stable category. A striking
example was given by Auslander and Reiten.

Example 30 (Auslander, Reiten [3]) Since projective modules are isomorphic to 0 in the stable category, and
since any module over Matn(K) is projective for any n ∈ N, we get for any algebra A

A −mod ' (A ×Matn(K)) −mod

for any n ∈ N.
The situation is even worse. Let K be a field, and let

A =

 K K K
0 K K
0 0 K


be the K-algebra of upper triangular 3 × 3 matrices with coefficients in K. This algebra has a two-sided ideal

I =

 0 0 K
0 0 0
0 0 0


as is readily verified. Let B = A/I. Let

C :=
(

K K
0 K

)
be the algebra of 2 × 2 upper triangular matrices with coefficients in K. Then

B −mod ' (C ×C) −mod.

In other words, B and C × C are stably equivalent. In particular, B is indecomposable, C × C is not, and hence the
stable category does not even preserve indecomposability of an algebra. An indecomposable algebra may be stably
equivalent to a product of two algebras, each of which is stably non trivial.

Nevertheless, there is a very nice result due to Reiten. The result deals with the notion of self-injectivity. In order
to introduce this notation, let K be a field and let A be a finite-dimensional K-algebra. Then the K-space of K-linear
forms HomK(A,K) on A is an A-module again. Indeed, let f : A→ K be a linear form, and let a ∈ A. Then a · f is the
linear form given by (a · f )(b) := f (ba) for all b ∈ A.

Definition 31 Let K be a field, and let A be a finite dimensional K-algebra. Then A is called self-injective if
HomK(A,K) is a projective A-module. The algebra A is symmetric if A ' HomK(A,K) as A − A-bimodules.

Note that symmetric algebras are self-injective. The converse is false, and it is easy to find examples.
Let A be a finite dimensional algebra over some field. Let rad(A) be the intersection of all maximal left ideals of

A. Recall that for two ideals I and J of A we denote by I · J the smallest ideal of A containing all elements of the form
xy where x ∈ I and y ∈ J. Denote, I2 := I · I and

In := I · . . . · I︸   ︷︷   ︸
n terms

for each integer n ≥ 2. Then rad(A) is nilpotent in the sense that there is an integer n such that radn(A) = 0, and we
get the following result.



Theorem 32 (Reiten [17]) Let K be a field, let A be a finite dimensional K-algebra, and let B be an algebra such
that A −mod ' B −mod. Suppose that for each indecomposable direct factor S of B we have rad2(S ) , 0. Then, if A
is self-injective, also B is self-injective.

However, success like this result is rare, and disappointment about the properties of stable equivalences prevails.
Fortunately there is a concept due to Broué which is more promising, and actually there are many properties which
were shown to be invariants.

Definition 33 (Broué [5]) Let K be a field and let A and B be finite dimensional K-algebras. Let M be an A − B-
bimodule, and let N be a B−A-bimodule. The pair (M,N) induces a stable equivalence of Morita type if the following
conditions are satisfied:

1. • M considered as A left module is finitely generated projective,
• N considered as A right module is finitely generated projective,
• M considered as B right module is finitely generated projective,
• N considered as B left module is finitely generated projective,

2. • there is a projective A − A-bimodule P such that M ⊗B N ' A ⊕ P as A − A-bimodules,
• there is a projective B − B-bimodule Q such that N ⊗A M ' B ⊕ Q as B − B-bimodules.

We say that A and B are stably equivalent of Morita type if there is a pair of bimodules (M,N) inducing a stable
equivalence of Morita type.

It is easy to see that if P is a projective A − A-bimodule, then P ⊗A X is a projective A-module for all A-modules
X, and likewise if Q is a projective B − B-bimodule, then Q ⊗B Y is a projective B-module for all B-modules Y .

Hence if (M,N) induces a stable equivalence of Morita type between A and B, then M⊗B− : B−mod −→ A−mod
is an equivalence with quasi-inverse N ⊗A − : A − mod −→ B − mod. In other words, a stable equivalence of Morita
type is an equivalence between stable categories of a particularly nice form.

Links between the three types of equivalences
First, it is somewhat clear that Morita equivalent algebras are derived equivalent, stably equivalent and stably equiva-
lent of Morita type.

Proposition 34 (folklore; cf e.g. [26] Chapter 3) Let K be a field, and let A and B be finite dimensional K-
algebras. Then

A −mod ' B −mod⇒ Db(A) ' Db(B)

and
A −mod ' B −mod⇒ A −mod ' B −mod.

Moreover, for a Morita A − B-bimodule M as in Definition 25 there is a B − A-bimodule N such that (M,N) induce
a stable equivalence of Morita type. The equivalence given by tensoring with M is a derived equivalence of standard
type.

For triangulated categories in general, and derived categories in particular there is an important construction,
called Verdier quotient construction. This can be applied to triangulated categoriesT and so-called thick subcategories
S, and produces a triangulated category denoted T /Swhich has the property that all objects in S become 0, and which
is universal in some sense. Moreover, there is a canonical functor T → T /S. We refer to [26, Chapter 3] for some
introduction and to Verdier [24] for a detailed exposition.

The following result was proved by Keller and Vossieck, and independently by Rickard. For a finite dimensional
K-algebra A denote by Kb(A − pro j) the full subcategory of Db(A) formed by the bounded complexes of finitely
generated projective A-modules.

Theorem 35 (Keller-Vossieck [9], Rickard [19]) Let K be a field, and let A be a self-injective finite dimensional
K-algebra. Then

Db(A)/Kb(A − pro j) ' A −mod.

The main motivation for Broué to have given Definition 33 is the following result.



Theorem 36 (Broué [5]) Let K be a field, and let A and B be self-injective finite dimensional K-algebras. Then
any derived equivalence of standard type induces a stable equivalence of Morita type.

More precisely, if X is a complex of A − B-bimodules such that X ⊗LB − : Db(B)→ Db(A) is an equivalence, then
the canonical functor Db(A⊗K Bop)→ Db(A⊗K Bop)/Kb(A⊗K Bop − pro j) maps X to an A− B-bimodule M to which
there is a B − A-bimodule N such that (M,N) induce a stable equivalence of Morita type.

We therefore get the following scheme.

Morita equivalence +3

��

derived equivalence of standard type

stable equivalence of Morita type derived equivalence

∃

KS

For self-injective algebras A and B we get a little more, as indicated below.

Morita equivalence +3

��

derived equivalence of standard type

ow
stable equivalence of Morita type derived equivalence

∃

KS

SOME INVARIANTS FROM HOCHSCHILD THEORY

A rather trivial fact is the following. Hochschild cohomology and Hochschild homology are invariant under Morita
equivalence. But even the Gerstenhaber structure is invariant, and also the Hochschild cohomology algebra module
structure of Hochschild homology is invariant. But even more is true.

Theorem 37 Let K be a field and let A and B be a finite dimensional K-algebras. If Db(A) ' Db(B), then

• (Rickard [20]) the Hochschild cohomology algebras (HH•(A),∪) and (HH•(B),∪) are isomorphic as graded
algebras via an isomorphism κ.

• (Keller [12]) the Hochschild cohomology Lie algebras (HH•+1(A), [ , ]) and (HH•+1(B), [ , ]) are isomorphic
as graded Lie algebras.

• the Gerstenhaber algebra structures (HH•(A),∪, [ , ]) and (HH•(B),∪, [ , ]) are isomorphic,
• (Keller [10]; see also [25]) the Hochschild homology structures HH•(A) ' HH•(B) are isomorphic via an

isomorphism λ,
• (Armenta and Keller [1]) the (HH•(A),∪) module structure on HH•(A) is isomorphic to the (HH•(B),∪) mod-

ule structure on HH•(B) in the sense that the diagram

HH•(A) × HH•(A) ∩ //

κ×λ

��

HH•(A)

λ

��
HH•(B) × HH•(B) ∩ // HH•(B)

is commutative.

Remark 38 It is important to note that the invariance of Hochschild (co-)homology follows from a derived equiv-
alence of standard type. An abstract equivalence is not enough. However, for algebras over fields if there is a derived
equivalence, then there is also a derived equivalence of standard type.

The situation is much less satisfactory in the case of stable equivalences. Since we have seen in Example 30
that stable equivalences do not even preserve indecomposability of algebras, the centre is not an invariant. Indeed, in
Example 30 we get Z(B) = K and Z(C ×C) = K × K. Note that Remark 19 shows that

HH0(B) = Z(B) = K , K × K = Z(C ×C) = HH0(C ×C).

Nevertheless, for degrees different from 0 we get at least for self-injective algebras the following



Proposition 39 Let A and B be a finite dimensional self-injective K-algebras over a field K. Then, for any two
finite dimensional A-modules U and V we have Ext1A(U,V) ' HomA(ΩU,V). In particular, if there is an equivalence
F : A −mod −→ B −mod, then Ext1A(U,V) ' Ext1B(F(U), F(V)).

The situation is even better for stable equivalences of Morita type and symmetric algebras.

Theorem 40 (Linckelmann [14], König-Liu-Zhou [13]) Let A and B be a finite dimensional symmetric K-
algebras over a field K. If (M,N) induces a stable equivalence of Morita type between A and B, then the self-injective
algebras A ⊗K Aop and B ⊗K Bop are stably equivalent of Morita type with a functor

F : (A ⊗K Aop) −mod −→ (B ⊗K Bop) −mod

satisfying F(A) ' B. In particular, HHn(A) ' HHn(B) for all n ≥ 1.

The degree 0 is more subtle. For cohomology, i.e. the centre, this was nevertheless the case first studied by Broué.

Definition 41 Let K be a field and let A be a finite dimensional K-algebra.

• (Broué [5]) Z st(A) := EndA⊗Aop (A) is the endomorphism algebra of A in the stable category of A⊗K Aop-modules.
The projective centre is Zpr(A) := ker(Z(A) −→ Z st(A).

• (Liu-Zhou-Zimmermann [15]) The stable degree zero Hochschild homology is HHst
0 (A) :=⋂

P projective A-module ker(traceP : HH0(A) → K) where trace is the trace map of the K-linear map given
by multiplication by a ∈ A on P.

Clearly, Z st(A) is a K-algebra and Zpr(A) is an ideal of Z(A). An easy consequence, almost by definition is the

Proposition 42 (Broué [5]) Let K be a field and let A and B be two K-algebras which are stably equivalent of
Morita type. Then

Z st(A) ' Z st(B)

as K-algebras.

Theorem 43 (Liu-Zhou-Zimmermann [15]) Let K be an algebraically closed field and let A and B be two finite
dimensional K-algebras. If A and B are stably equivalent of Morita type, then

HHst
0 (A) ' HHst

0 (B).

APPLICATION: A QUESTION DUE TO RICKARD

We shall now give an application of the Hochschild (co-)homology invariance to a question posed by Rickard in [21].
In order to formulate the question we first cite a result due to Rickard.

Theorem 44 (Rickard [20]) Let K be a field, and let A1, A2, B1, B2 be finite dimensional K-algebras. If A1 is
derived equivalent to A2, and if B1 is derived equivalent to B2. Then A1 ⊗K B1 is derived equivalent to A2 ⊗K B2.

Rickard posed the question if this holds true if we replace the concept ‘derived equivalence’ by ‘stable equiva-
lence of Morita type’, and this in particular when all the algebras involved are self-injective.

The non self-injective counterexample
In this direction we obtained

Theorem 45 (Liu-Zhou-Zimmermann [16]) Let K be a field and let A and B be two finite dimensional self-

injective K-algebras. Suppose that neither A nor B have a matrix ring over a skew field as a direct factor. If
(

A 0
A A

)
is stably equivalent to

(
B 0
B B

)
, then A and B are actually Morita equivalent.



Note that this gives a counterexample to Rickard’s question, even for abstract stable equivalence, since(
A 0
A A

)
' A ⊗K

(
K 0
K K

)
and likewise for B. Moreover, there are many examples of self-injective algebras A and B which are stably equivalent
but not Morita equivalent. We will encounter one example below in Theorem 46, but there are much simpler examples
known (cf e.g. [26, Chapter 6]). The proof of this result is not terribly complicate but uses not very complicated parts
of some more involved theory, known as Auslander-Reiten theory.

The symmetric counterexample

However,
(

K 0
K K

)
is not self-injective. Hence Rickard’s question is not completely solved by Theorem 45. In order

to do so, in joint work with Serge Bouc we used the computer algebra program GAP [6].
We first need some preparations on group representations. Let G be a finite group and let K be an algebraically

closed field of characteristic p > 0. The field K is a simple KG-module when we define g · x = x for all x ∈ K and
g ∈ G. This is called the trivial module. Then the group algebra KG decomposes into indecomposable ring direct
factors

KG ' B0(G) × . . . × Bs(G)

and we call Bi(G) for i ∈ {0, . . . , s} the blocks of G. For each simple KG-module S there is a unique block Bi(S ) such
that S is a Bi(S )(G)-module. We say S belongs to Bi(S )(G). The trivial module belongs to the principal block B0(G).

Now, let P be a Sylow p-subgroup of G, and let H := NG(P) := {g ∈ G | g · P · g−1 = P} be the normaliser of P in
G. Suppose moreover that P ∩ g · P · g−1 = {1} is the neutral element of G for each g ∈ G \ H. We say in this case that
G has TI Sylow p-subgroups. Then the classical Green correspondence [26, Chapter 2] gives a stable equivalence of
Morita type between B0(G) and B0(H).

Now we consider a quite particular group. Classical field theory gives that for every integer s > 1 there is an up
to isomorphism unique field Fq of cardinal q = ps. The field Fq2 has a field automorphism of order 2 given by

Fq2 3 x 7→ xq =: x ∈ Fq2 .

Then consider the group GL3(q2) of invertible 3 × 3 matrices with coefficients in Fq2 . For a matrix M =
(
mi, j

)
1≤i, j≤3

∈

GL3(q2) denote by Mtr the transpose of the matrix M, and let M be the matrix obtained by applying the automorphism

to each coefficient, i.e. M :=
(
mi, j

)
1≤i, j≤3

. Consider the special matrix C :=

 0 0 1
0 1 0
1 0 0

 ∈ GL3(q2). Let then

U(q) := {g ∈ GL3(q2) | gtr ·C · g = C}

and
S U(q) := {g ∈ U(q) | det(g) = 1}.

Finally, for a group Γ let Z(Γ) := {g ∈ Γ | ∀x ∈ Γ : xg = gx} be the centre of Γ. This is a normal subgroup and

PS U(q) := S U(q)/Z(S U(q)).

It is a fact that PS U(q) has TI Sylow p-subgroups (cf e.g. [8, II, §10, 10.12]).

Theorem 46 (Bouc-Zimmermann [4]; Jürgen Müller for q ∈ {9, 11}) Let K be an algebraically closed field of
characteristic p > 0 and let G(q) := PS U(3, q), let P(q) be a Sylow p-subgroup of G(q) and let H(q) = NG(q)(P(q)).
Then for q ∈ {3, 4, 5, 7, 8, 9, 11} the centres of the principal blocks of KG(q) and of KH(q) are not isomorphic, i.e.
Z(B0(G(q))) ; Z(B0(H(q))).

We proved this result by comparing the dimensions over K of the quotients of the centres modulo increasing
powers of the radical of the centres. This was possible abstractly for all q for the group H(q), but the group G(q) is



quite complicated and there we used GAP. The size of the group is rapidly increasing, as is shown by the following
table:

q size of PS U(q) size of the normalizer of a p-Sylow

3 5616 216
4 20160 960
5 372000 1000
7 1876896 16464
8 16482816 10752
9 42456960 58320

11 212427600 53240

How does this answer Rickard’s question? This is a corollary to a result from [15].

Corollary 47 Let p be a prime, let q = ps for some integer s > 0, and let K be an algebraically closed field of
characteristic p > 0. Let Cp be the cyclic group of order p. Then for all symmetric finite dimensional K-algebras A
we have

Z st(A ⊗K KCp) = Z(A ⊗K KCp) = Z(A) ⊗K KCp.

Luckily, principal blocks of group rings are symmetric algebras, and

Z(B0(G(q))) ; Z(B0(H(q)))⇒ Z(B0(G(q))) ⊗K KCp ; Z(B0(H(q))) ⊗K KCp.

This then gives a counterexample to Rickard’s original question.

THE BRAUER GROUP

We have seen that for a finite dimensional K-algebra over a field K the Hochschild (co-)homology structure is a very
rich algebraic gadget. Could it be that the Hochschild structure already determines the algebra up to, say, derived
equivalence? The question was posed by Marco Armenta in his thesis [2]. This is very false, as we will see in this
section. We note that Marco Armenta produced in collaboration with Claude Cibils another example, namely the tame
hereditary algebras of tree class A4 and D4.

The key observation for our general approach is the following.

Proposition 48 (folklore; cf e.g. [26] Chapter 6) Let K be a field and let D be a skew field with centre containing
K. Let A = Matn(D). Then each tilting complex T in Db(A) is isomorphic to M[n] for some n ∈ N and Morita bimodule
M. In particular, if D1 and D2 are skew fields with centres containing K such that D1 and D2 are finite dimensional
over K, then Db(D1) ' Db(D2) if and only if D1 and D2 are Morita equivalent. The skew fields D1 and D2 are Morita
equivalent if and only if there are integers n1 and n2 such that Matn1 (D1) ' Matn2 (D2).

Proposition 48 indicates that the following definition is appropriate.

Definition 49 Let K be a field. A finite dimensional K-algebra A is called central simple if there is some skew
field D and an integer n such that A ' Matn(D) and Z(D) = K.

We note first that if K is a field of characteristic 0, and if A1 and A2 are central simple K-algebras, then A1 ⊗K A2
is again a central simple K-algebra.

Definition 50 Two central simple K-algebras A1 and A2 are called similar, denoted A1 ∼ A2, if there are integers
m1 and m2 such that Matm1 (A1) ' Matm2 (A2).

Clearly similarity is an equivalence relation. Moreover, by Proposition 48 similarity classes are precisely the
derived equivalence classes, and are moreover precisely the Morita equivalence classes. By definition, for any central
simple K-algebra A there is a skew field D with centre K such that A ' Matn(D). Hence similarity classes of central
simple K-algebras are represented by skew fields D with centre K.

Definition 51 The similarity classes [A] of central simple K-algebras form a group, the Brauer group Br(K) with
group law being [A1] · [A2] := [A1 ⊗K A2].



The neutral element is [K] and the inverse of [A] is [Aop]. Note that since we are dealing with finite dimensional
K-algebras, the Brauer group is actually based on the set of similarity classes, rather than a class. It is not hard to
verify that the group law on the Brauer group is well-defined.

Recall that for any prime p we can fix an ultra-metric on Q. This is defined as follows. For any x ∈ Q there is a
unique integer sx such that x = psx ·

n(x)
d(x) and such that n(x) and d(x) are integers, both relatively prime to p. We then

put vp(x) := 2−sx . Then, δ(x, y) := vp(x − y) defines a metric, and completion of Q with respect to this metric yields
the field Qp of p-adic numbers.

The following result is a fairly deep consequence of class field theory.

Theorem 52 ([23], Theorem 1 and Corollary) Br(Qp) ' Q/Z, where Q/Z is equipped with the additive group
law of Q.

We infer that there are many non trivial skew-fields with centre Qp. Any skew field D with centre Qp satisfies
HH•(D) = HH0(D) = Qp and HH•(D) = HH0(D) = Qp since skew fields are clearly symmetric algebras. Hence the
Hochschild cohomology and the Hochschild homology does not depend on D.
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