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NEMYTSKII OPERATORS BETWEEN STEPANOV ALMOST
PERIODIC OR ALMOST AUTOMORPHIC FUNCTION SPACES

PHILIPPE CIEUTAT1

Abstract. We study the superposition operators (also called Nemytskii operators) be-
tween spaces of almost periodic (respectively almost automorphic) functions in the sense
of Stepanov. We state new results on the superposition, notably we give a necessary and
sufficient condition for that these operators are well-defined and continuous.

2010 Mathematic Subject Classification: Superposition operators, Stepanov almost
periodic functions, Stepanov almost automorphic functions, Bochner transform.

Keywords: 42A75, 43A60.

1. Introduction

In this work, we study some properties of superposition operators, also called Nemytskii
operators, on the space of Stepanov almost periodic or Stepanov almost automorphic
functions. Denote by F(R, X) (resp. F(R, Y )) a space of functions from R into a Banach
X (resp. Y ). For a given function f : R×X → Y , the Nemytskii operator associated to
f is the map Nf : F(R, X) → F(R, Y ) defined by the formula Nf (u)(t) = f(t, u(t)) for
u ∈ F(R, X) and t ∈ R. The Nemytskii operators play an important role in the theory of
differential and integral equations. First studies of this kind of operators are presumably
due to Nemytskii (see the preface of [25]); that is why such operators are sometime called
Nemytskii operators.

When F(R, X) (resp. F(R, Y )) designs the space of almost periodic or almost auto-
morphic functions in the sense of Stepanov with values in X (resp. Y ), our aim is to
answer these questions: what assumptions should check f for that

Q1- the Nemytskii operator Nf maps F(R, X) into F(R, Y ), that is to mean [t 7→
f(t, u(t))] ∈ F(R, Y ), for all u ∈ F(R, X) (composition result),

Q2- the Nemytskii operator Nf is continuous?

Many authors have partially answered to the question Q1 in [16, 17, 19, 22]. For that
they use a Lipschitzian condition on f and a compactness condition on the function u.
These results are of the type: when f satisfies a Lipschitzian condition, if u ∈ F(R, X)
and the range of u is relatively compact, then [t 7→ f(t, u(t))] ∈ F(R, Y ). Then in a recent
article [5, Theorem 2.11], Bedouhene et al. have deleted this last compactness condition.
Without the Lipschitz condition, Andres et al. has answered to the question Q1 in the
particular case where f does not depend of t in [4, Lemma 3.2] and in the general case
in [4, Proposition 3.4]. We give an improvement of these two results (Corollary 6.10 and
Theorem 6.6).
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In the almost periodicity case in the sense of Bohr, that is F(R, X) = AP (R, X) and
F(R, Y ) = AP (R, Y ) are spaces of almost periodic functions in the sense of Bohr, the
condition f(·, x) is almost periodic in the sense of Bohr, for all x ∈ X, is not sufficient
to obtain the assertion Q1 (cf. [18, Chapter 2, p. 16]). Yoshizawa has given a definition
of almost periodicity on the function f , the so-called almost periodicity in t uniformly
for x ∈ X. With this definition, when X and Y are of finite dimension, Yoshizawa has
answered to the question Q1 in [26, Definition 2.1, p. 5, Theorem 2.7, p. 16]. Then this
last result is generalized for general Banach spaces by Blot et al. in [6, Theorem 3.5],
and it is also established that the Nemytskii operator is continuous. In [6, Theorem 3.5
& 3.12], it is stated a necessary and sufficient conditions for that the Nemytskii operator
Nf maps AP (R, X) into AP (R, Y ) and it is continuous. Among these necessary and
sufficient conditions, there is firstly the function f is almost periodic in t uniformly for
x ∈ X, secondly the restriction of the Nemytskii to X: Nf : X → AP (R, Y ) with
Nf (x) = f(·, x), is well defined and it is continuous (Theorem 2.2).

The goal of this work is to give a necessary and sufficient condition for that the Ne-
mytskii operator Nf maps F(R, X) into F(R, Y ) and it is continuous where F(R, X)
and F(R, Y ) are spaces of almost periodic functions in the sense of Stepanov (Theorem
4.2). This necessary and sufficient condition is: f(·, x) is almost periodic in the sense
of Stepanov for all x ∈ X and the restriction of the Nemytskii operator to the space of
1-periodic functions in Lploc(R, X), with values in the space of bounded functions in the
sense of Stepanov is well-defined and continuous. The almost automorphic case is also
treated (Theorem 4.1).

Our work is organized as follows: in Section 2 we give some notations and definitions
about almost periodic functions and almost automorphic functions, then we recall known
results on the Nemytskii operators which will be used. In Section 3 we built a left inverse
of the Bochner transform which permits to state that the range of Bochner transform is
closed and admits a topological complement. This left inverse will be used to state the
main result of the following section. In Section 4 we give a necessary and sufficient condi-
tion to obtain the continuity of Nemytskii operators between almost periodic and almost
automorphic spaces in the sense of Stepanov, which permits to generalize some known re-
sults of [5, 17, 19]. In Section 5 we extend some results of Danilov in [11, 12] from Stepanov
almost periodic to Stepanov almost automorphic functions. These results will be used in
the following section. In Section 6 we state two equivalent results (Theorem 6.4 and 6.6)
which improve and generalize all the known results on the composition of Stepanov almost
periodic or almost automorphic functions. We give sufficient conditions to obtain the con-
tinuity of Nemytskii operators between Stepanov spaces. The assumptions are directly on
the function f , unlike of Section 4 where assumptions are on Nemytskii operators built
on f . By giving an example, in Section 7, we explain why Theorem 6.4 and 6.6 provide
an improvement and a generalization of results in [4, 5, 16, 17, 19, 22].

2. Notation and definitions

2.1. Notation. In this section we give the notations and definitions that will be used
and we recall some known results on the Nemytskii operators.

R, Z and N stand for the real numbers, the integers and the natural integers respectively.
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When t ∈ R, we denote by [t] the integer part and {t} the fractional part of t, then
t = [t] + {t} with [t] ∈ Z and 0 ≤ {t} < 1.

When A is a Lebesgue measurable set of R, we denote by meas (A) the Lebesgue
measure of A.

Let X be a Banach space.

When T is a metric space, C(T,X) denotes the space of all continuous mappings from
T into X. If T is compact, then C(T,X) endowed with the supremum norm ‖u‖∞ =
sup
t∈T
‖u(t)‖ is a Banach space.

Let BC(R, X) be the space of all bounded and continuous maps from R into X. En-
dowed with the supremum norm ‖u‖∞ = sup

t∈R
‖u(t)‖, BC(R, X) is a Banach space.

Let 1 ≤ p < +∞. We denote by Lp(a, b;X) the space of all functions from (a, b)
into X p-integrable in the sense of Bochner with respect to the Lebesgue measure on
the bounded interval (a, b), with the convention that any two functions equal almost
everywhere (a.e.) specify the same element of Lp(a, b;X). Endowed with the usual norm

‖ω‖Lp(a,b;X) =

(∫ b

a

‖ω(θ‖p dθ
) 1

p

, Lp(a, b;X) is a Banach space. We denote by ‖·‖Lp the

usual norm of Lp(0, 1;X). For the Bochner integral we reefer to [1, 15]. Lploc(R, X) stands
for the space of all functions u : R → X such that the restriction of u to every bounded
interval (a, b) is in Lp(a, b;X).

We define L∞(R, X) to be the space of X-valued essentially bounded functions.

If F(E,F ) designs a set of maps from E into F , as usual we denote by F(E) the set
F(E,F ) when F = R, for example Lp(0, 1) = Lp(0, 1;R).

2.2. Almost periodic and almost automorphic functions. A set D ⊂ R is said to
be relatively dense in R if: ∃` > 0, ∀α > 0, such that D ∩ [α, α + `] 6= ∅.

A continuous function u : R → X is said to be almost periodic (in the sense of Bohr)
if for each ε > 0, the set of ε-almost periods of u:

P(u, ε) =

{
τ ∈ R ; sup

t∈R
‖u(t+ τ)− u(t)‖X ≤ ε

}
is relatively dense in R. We denote the space of all such functions by AP (R, X). It is a
Banach subspace of BC(R, X). For some preliminary results on almost periodic functions,
we refer to the book of Corduneanu [10].

A continuous function u : R → X is said to be almost automorphic if for all sequence
of real numbers (t′k)k∈N admits a subsequence denoted by (tk)k∈N such that

∀t ∈ R, lim
k→∞

u(t+ tk) = v(t) and lim
k→∞

v(t− tk) = u(t).

Then we have v ∈ L∞(R, X). We denote the space of all such functions by AA(R, X). It
is a Banach subspace of BC(R, X). We have the following inclusions which are strict

AP (R, X) ⊂ AA(R, X) ⊂ BC(R, X).

For some preliminary results on almost automorphic functions, we refer to the book of
N’Guérékata [21].
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Let 1 ≤ p < +∞. For u ∈ Lploc(R, X), we denote by ub the Bochner transform of u
defined by ub(t)(θ) = u(t + θ), for t ∈ R and θ ∈ (0, 1). ub(t) is regarded as a function
with values in the space Lp(0, 1;X). BSp(R, X) denotes the space of bounded functions
in the sense of Stepanov of exponent p which is defined by

BSp(R, X) =
{
u ∈ Lploc(R, X) ; ub ∈ L∞(R, Lp(0, 1;X))

}
.

Note that for every u ∈ Lploc(R, X), the function ub is continuous (by construction), then
the space BSp(R, X) may be also written

BSp(R, X) =
{
u ∈ Lploc(R, X) ; ub ∈ BC(R, Lp(0, 1;X))

}
.

The space BSp(R, X) endowed by the norm

(2.1) ‖u‖Sp = sup
t∈R

(∫ 1

0

‖u(t+ θ‖p dθ
) 1

p

= sup
t∈R

∥∥ub(t)∥∥
Lp

for u ∈ BSp(R, X)

is a Banach space.

Spap(R, X) denotes the space of almost periodic functions in the sense of Stepanov of
exponent p which is defined by

Spap(R, X) =
{
u ∈ Lploc(R, X) ; ub ∈ AP (R, Lp(0, 1;X))

}
.

Spap(R, X) is a Banach subspace of BSp(R, X). We have the following strict inclusion
AP (R, X) ⊂ Spap(R, X). For some preliminary results on bounded or almost periodic
functions in the sense of Stepanov, we refer to the book of Amerio and Prouse [2] and
that of Pankov [24]. We also quote the paper of Andres et al. [3] which discusses the
relationships between various definition of almost periodic functions.

Spaa(R, X) denotes the space of almost automorphic functions in the sense of Stepanov
of exponent p which is defined by

Spaa(R, X) =
{
u ∈ Lploc(R, X) ; ub ∈ AA(R, Lp(0, 1;X))

}
.

Spaa(R, X) is a Banach subspace of BSp(R, X). We have the following strict inclusions
AA(R, X) ⊂ Spaa(R, X) and Spap(R, X) ⊂ Spaa(R, X) ⊂ BSp(R, X). For some preliminary
results on almost automorphic functions in the sense of Stepanov, we refer to the paper
of Casarino [8] or of N’Guérékata-Pankov [23].

2.3. Almost periodic and almost automorphic sequences. Denote by XZ the set
of all two-sided sequences u = (un)n∈Z with values in the Banach space X. `∞(Z, X)
denotes the set of all sequences u = (un)n∈Z of XZ which are bounded. Endowed with the
supremum norm ‖u‖∞ = sup

n∈Z
‖un‖, `∞(Z, X) is a Banach space.

A set D ⊂ Z is said to be relatively dense in Z if: ∃N ∈ N \ {0}, ∀m ∈ Z, such that
D ∩ {m, · · · ,m+N} 6= ∅.

A sequence u = (un)n∈Z ∈ XZ is said to be almost periodic if for each ε > 0, the set of
ε-almost periods of u:

P(u, ε) =

{
p ∈ Z ; sup

n∈Z
‖un+p − un‖X ≤ ε

}
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is relatively dense in Z. We denote the space of all such sequences by AP (Z, X). It is a
Banach subspace of `∞(Z, X). For some preliminary results on almost periodic sequences,
we refer to the book of Corduneanu [10].

A sequence u = (un)n∈Z ∈ XZ is said to be almost automorphic if all sequence of integer
numbers (p′k)k∈N admits a subsequence denoted by (pk)k∈N such that

∀n ∈ Z, lim
k→∞

un+pk = vn and lim
k→∞

vn−pk = un.

Then we have v ∈ `∞(Z, X). We denote the space of all such sequences by AA(Z, X). It
is a Banach subspace of `∞(Z, X). We have the following strict inclusions:

AP (Z, X) ⊂ AA(Z, X) ⊂ `∞(Z, X).

For some preliminary results on almost automorphic sequences, we refer to the book of
Diagana [13].

2.4. Nemytskii operators. Here we recall some known results on Nemytskii operators
which will be used in the sequel. Let be X and Y two Banach spaces, p and q be two real
numbers in [1,+∞).

We become to recall a result on Nemytskii operators between Lebesgue spaces in the
context of separable Banach spaces. We say that a function f : (0, T ) × X → Y (with
T > 0) is a Carathéodory function if:

a) for all x ∈ X, the map f(·, x) is measurable from (0, T ) into Y ;

b) for a.e. t ∈ (0, T ), the map f(t, ·) is continuous from X into Y .

We consider the Nemytskii operator on f defined by

(2.2) Nf : Lp(0, T ;X)→ Lq(0, T ;Y ) with Nf (ω)(t) = f(t, ω(t)) for t ∈ (0, T ).

In the context of separable Banach spaces, the following result is from Lucchetti and
Patrone.

Theorem 2.1. [20, Theorem 3.1] Let be X and Y two separable Banach spaces and
f : (0, T ) × X → Y be is a Carathéodory function. Then the Nemytskii operator Nf

defined by (2.2) maps Lp(0, T ;X) into Lq(0, T ;Y ) if and only if there exist a > 0 and
b ∈ Lq(0, T ) such that for all x ∈ X and a.e. t ∈ (0, T )

‖f(t, x)‖ ≤ a ‖x‖
p
q + b(t).

In this case the Nemytskii operator Nf is continuous.

From a map f : R × X → Y we consider the Nemytskii operator of f in the almost
periodic case

Nf : AP (R, X)→ AP (R, Y )

defined by

(2.3) Nf (u)(t) = f(t, u(t)) for t ∈ R.

According to Yoshizawa [26], a continuous function f : R×X → Y is said to be almost
periodic in t uniformly with respect to x if for for each compact set K ⊂ X and for each
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ε > 0, the set {
τ ∈ R ; sup

t∈R
sup
x∈K
‖f(t+ τ, x)− f(t, x)‖ ≤ ε

}
is relatively dense in R. We denote the space of all such functions by APU(R×X, Y ).

A function f ∈ APU(R×X, Y ) if and only if for all x ∈ X, f(·, x) ∈ AP (R, Y ) and f
satisfies

(2.4)

 For each compact set K ⊂ X, ∀ε > 0, ∃δ > 0,

∀x1, x2 ∈ K, ∀t ∈ R, ‖x1 − x2‖ ≤ δ =⇒ ‖f(t, x1)− f(t, x2)‖ ≤ ε

[9, Lemma 2.6].

Theorem 2.2. [6, 9] Let f : R×X → Y be a map. The following assertions are equivalent.

i) The Nemytskii operator Nf defined by (2.3) maps AP (R, X) into AP (R, Y ) and it
is continuous.

ii) f ∈ APU(R×X, Y ).

iii) For all x ∈ X, f(·, x) ∈ AP (R, Y ) and f satisfies (2.4).

iv) The map Φ : X → AP (R, Y ) defined by Φ(x) = f(·, x) for x ∈ X is well-defined
and continuous.

v) For each compact set K ⊂ X, the map f̃K : R→ C(K,Y ) defined by f̃K(t) = f(t, ·)
for t ∈ R, is almost periodic: f̃K ∈ AP (R, C(K,Y )).

Remark 2.3. Remark that X may be regarded as a Banach subspace of AP (R, X), then
the map Φ defined in iv) is the restriction of the Nemytskii operator Nf on the subspace
X.

i) ⇐⇒ ii) is proved in [6, Theorem 3.5 & 3.12] and ii) ⇐⇒ iii) in [9, Lemma 2.6].
Since X is a metric space, iv) ⇐⇒ the restriction of Φ to each compact set K ⊂ X is
well-defined and uniformly continuous, which is equivalent to iii). ii) ⇐⇒ v) results of
[6, Lemma 3.3].

From a map f : R × X → Y we consider the Nemytskii operator of f in the almost
automorphic case

Nf : AA(R, X)→ AA(R, Y )

defined by (2.3).

According to Blot et al. [6, Section 2], a continuous function f : R×X → Y is said to
be almost automorphic in t uniformly with respect to x if for all x ∈ X, f(·, x) ∈ AA(R, Y )
and f satisfies (2.4). We denote the space of all such functions by AAU(R×X, Y ).

Let f : R × X → Y be a continuous function. From [9, Theorem 3.14], we have he
following statement: f ∈ AAU(R×X, Y ) if and only if for each compact set K ⊂ X and
if for all sequence of real numbers (t′k)k∈N admits a subsequence denoted by (tk)k∈N and
there exists a function g : R×X → Y such that for all t ∈ R

lim
k→+∞

sup
x∈K
‖ f(t+ tk, x)− g(t, x) ‖= 0 and lim

k→+∞
sup
x∈K
‖ g(t− tk, x)− f(t, x) ‖= 0.
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Theorem 2.4. [6, 9] Let f : R×X → Y be a map. The following assertions are equivalent.

i) The Nemytskii operator Nf defined by (2.3) maps AA(R, X) into AA(R, Y ) and it
is continuous.

ii) f ∈ AAU(R×X, Y ).

iii) For all x ∈ X, f(·, x) ∈ AA(R, Y ) and f satisfies (2.4).

iv) The map Φ : X → AA(R, Y ) defined by Φ(x) = f(·, x) for x ∈ X is well-defined
and continuous.

v) For each compact set K ⊂ X, the map f̃K : R→ C(K,Y ) defined by f̃K(t) = f(t, ·)
for t ∈ R, is almost automorphic: f̃K ∈ AA(R, C(K,Y )).

Remark 2.5. i) ⇐⇒ ii) is proved in [6, Theorem 9.6]. Since X is a metric space, iv)⇐⇒
the restriction of Φ to each compact set K ⊂ X is well-defined and uniformly continuous
⇐⇒ iii), which is the definition of f ∈ AAU(R×X, Y ). Then iv) ⇐⇒ iii) ⇐⇒ ii). ii)
⇐⇒ v) results of [9, Theorem 3.14].

3. Bochner transform

In this Section we build a left inverse of the Bochner transform which permits to state
that the range of Bochner transform is closed and admits a topological complement. This
left inverse will be used to state the main result of Section 4. To build a left inverse of
the Bochner transform we begin to give a description of the range under the Bochner
transform of almost periodic or almost automorphic space in the sense of Stepanov.

Let X be a Banach space and 1 ≤ p < +∞. The Bochner transform

B : BSp(R, X)→ BC(R, Lp(0, 1;X)) with Bu = ub

is an isometry which is not surjective. We also have B(Spap(R, X)) & AP (R, Lp(0, 1;X))
and B(Spaa(R, X)) & AA(R, Lp(0, 1;X)).

Now we give a description of ranges of Spap(R, X) and Spaa(R, X) under the Bochner
transform. For that we introduce the discrete Bochner transform:

(3.1) D : BSp(R, X)→ `∞(Z, Lp(0, 1;X)), Du(n) = ub(n) for n ∈ Z.

Remark that D may be also defined by D = R ◦ B where is R the restriction operator
defined by

(3.2) R : BC(R, Lp(0, 1;X))→ `∞(Z, Lp(0, 1;X)) with Ru(n) = u(n) for n ∈ Z.

Proposition 3.1. i) The discrete Bochner transform D defined by (3.1) is an homeo-
morphism of BSp(R, X) onto `∞(Z, Lp(0, 1;X)) (linear, bijective and bicontinuous) with

(3.3) D−1U(t) = U([t])({t}) for U ∈ `∞(Z, Lp(0, 1;X)) and t ∈ R.

ii) The operator D is also an homeomorphism of Spaa(R, X) onto AA(Z, Lp(0, 1;X)):

D (Spaa(R, X)) = AA(Z, Lp(0, 1;X)).

iii) The operator D is also an homeomorphism of Spap(R, X) onto AP (Z, Lp(0, 1;X)):

D
(
Spap(R, X)

)
= AP (Z, Lp(0, 1;X)).
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The main difficulty to proof Proposition 3.1 is to state that AA(Z, Lp(0, 1;X)) is in-
cluded in D (Spaa(R, X)); for that we use the following lemma.

Lemma 3.2. Let w1, w2 ∈ BSp(R, X). For all p ∈ Z, s and τ ∈ R such that |τ | ≤ 1,
one has∥∥(w1)

b(s+ p+ τ)− (w2)
b(s+ τ)

∥∥p
Lp
≤

[s]+2∑
j=[s]−1

∥∥(w1)
b(j + p)− (w2)

b(j)
∥∥p
Lp
.

Proof. From the definition of the Bochner transform, we have∥∥(w1)
b(s+ p+ τ)− (w2)

b(s+ τ)
∥∥p
Lp

=

∫ s+τ+1

s+τ

‖w1(p+ σ)− w2(σ)‖p dσ

and
[s]+2∑
j=[s]−1

∥∥(w1)
b(j + p)− (w2)

b(j)
∥∥p
Lp

=

∫ [s]+3

[s]−1
‖w1(p+ σ)− w2(σ)‖p dσ.

The conclusion results of the following inequality∫ s+τ+1

s+τ

‖w1(p+ σ)− w2(σ)‖p dσ ≤
∫ [s]+3

[s]−1
‖w1(p+ σ)− w2(σ)‖p dσ.

�

Proof of Proposition 3.1. i) For u ∈ Lploc(R, X), we have∫ t+1

t

‖u(s)‖p ds ≤
∫ [t]+2

[t]

‖u(s)‖p ds ≤ 2 sup
n∈Z

∫ n+1

n

‖u(s)‖p ds

where the supremum may be equal to +∞. It follows that

(3.4) ∀u ∈ Lploc(R, X), sup
t∈R

(∫ 1

0

‖u(t+ θ)‖p dθ
) 1

p

≤ 2
1
p sup
n∈Z

(∫ 1

0

‖u(n+ θ)‖p dθ
) 1

p

.

From (3.4) and with ‖Du(n)‖Lp =
(∫ 1

0
‖u(t+ θ)‖p dθ

) 1
p

for n ∈ Z, we obtain

(3.5) ∀u ∈ BSp(R, X), sup
n∈Z
‖Du(n)‖Lp ≤ ‖u‖Sp ≤ 2

1
p sup
n∈Z
‖Du(n)‖Lp .

From (3.5), it follows that the linear operator D is bounded and injective.

We set U ∈ `∞(Z, Lp(0, 1;X)) and consider the function u : R→ X defined by

u(t) = U([t])({t}).
To state that D is surjective and (3.3), we prove that u ∈ BSp(R, X) and Du = U .
For n ∈ Z and t ∈ R such that n ≤ t < n + 1, we have u(t) = U(n)(t − n), then
u ∈ Lp(n, n + 1;X) for all n ∈ Z which implies that u ∈ Lploc(R, X). From (3.4), it

follows sup
t∈R

(∫ 1

0

‖u(t+ θ)‖p dθ
) 1

p

≤ 2
1
p sup
n∈Z
‖U(n)‖Lp < +∞, therefore u ∈ BSp(R, X).

By using definitions of D and u, we have Du(n)(θ) = u(n + θ) = U(n)(θ) for n ∈ Z and
θ ∈ (0, 1), then Du = U . The bicontinuity of D results of (3.5).
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ii) For u ∈ Spaa(R, X), we have Bu = ub ∈ AA(R, Lp(0, 1;X)). A direct consequence
of the definition of an almost automorphic sequence and an almost automorphic function
is that the restriction of an almost automorphic function to the integer numbers is an
almost automorphic sequence, then Du = (R ◦ B)u ∈ AA(Z, Lp(0, 1;X)) where is R the
restriction operator defined by (3.2), consequently D (Spaa(R, X)) ⊂ AA(Z, Lp(0, 1;X)).

For the reciprocal inclusion, let U ∈ AA(Z, Lp(0, 1;X)). By using i), we can assert
the existence and uniqueness of u ∈ BSp(R, X) such that Du = U . Now prove that
u ∈ Spaa(R, X). Let (t′k)k∈N be a sequence of real numbers. Then ([t′k])k∈N is a sequence
of integer numbers. Since (U(n))n∈Z is an almost automorphic sequence and ({t′k})k∈N
is a bounded sequence, there exist V ∈ `∞(Z, Lp(0, 1;X)), τ∗ ∈ R and a subsequence of
(t′k)k∈N, denoted by (tk)k∈N such that

(3.6) ∀n ∈ Z, lim
k→+∞

‖U(n+ [tk])− V (n)‖Lp = 0,

(3.7) ∀n ∈ Z, lim
k→+∞

‖V (n− [tk])− U(n)‖Lp = 0,

lim
k→+∞

{tk} = τ∗.

By using i), we can assert the existence and uniqueness of v ∈ BSp(R, X) such that
Dv = V . We fix t ∈ R. From Lemma 3.2, with w1 = u, w2 = v, s = t, p = [tk] and
τ = {tk}, we obtain∥∥ub(t+ [tk] + {tk})− vb(t+ {tk})

∥∥p
Lp
≤

[t]+2∑
j=[t]−1

∥∥ub(j + [tk])− vb(j)
∥∥p
Lp
.

Since tk = [tk] + {tk}, j and [tk] ∈ Z, ub = U and vb = V on Z, we have∥∥ub(t+ tk)− vb(t+ {tk})
∥∥p
Lp
≤

[t]+2∑
j=[t]−1

‖U(j + [tk])− V (j)‖pLp

and from (3.6), we obtain

lim
k→+∞

∥∥ub(t+ tk)− vb(t+ {tk})
∥∥p
Lp

= 0.

By using the continuity of the Bochner transform of v and limk→+∞{tk} = τ∗, we also
have

lim
k→+∞

∥∥vb(t+ {tk})− vb(t+ τ∗)
∥∥p
Lp

= 0.

Then

(3.8) lim
k→+∞

∥∥ub(t+ tk)− vb(t+ τ∗)
∥∥p
Lp

= 0.

By help of Lemma 3.2 with w1 = v, w2 = u, s = t + τ∗, p = −[tk] and τ = −{tk}, we
obtain ∥∥vb(t+ τ∗ − tk)− ub(t+ τ∗ − {tk})

∥∥p
Lp
≤

[t+τ∗]+2∑
j=[t+τ∗]−1

‖V (j − [tk])− U(j)‖pLp ,

then from (3.7), we have

lim
k→+∞

∥∥vb(t+ τ∗ − tk)− ub(t+ τ∗ − {tk})
∥∥p
Lp

= 0.
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By using limk→+∞{tk} = τ∗ and the continuity of ub, we deduce

(3.9) lim
k→+∞

∥∥vb(t+ τ∗ − tk)− ub(t)
∥∥p
Lp

= 0.

From (3.8) and (3.9), we deduce that ub ∈ AA(R, Lp(0, 1;X)), then u ∈ Spaa(R, X).

iii) For u ∈ Spap(R, X), we have Bu = ub ∈ AP (R, Lp(0, 1;X)). The restriction of
an almost periodic function to the integer numbers is an almost periodic sequence [10,
Theorem 1.27, p. 47], then Du = (R◦B)u ∈ AP (Z, Lp(0, 1;X)) where is R the restriction
operator defined by (3.2), consequently D

(
Spap(R, X)

)
⊂ AP (Z, Lp(0, 1;X)).

For the reciprocal inclusion, let U ∈ AP (Z, Lp(0, 1;X)). By using i), we can assert
the existence and uniqueness of u ∈ BSp(R, X) such that Du = U . Now prove that
u ∈ Spap(R, X). Let n0 ∈ Z. From (3.4), we have

sup
t∈R

∥∥ub(t+ n0)− ub(t)
∥∥
Lp
≤ 2

1
p sup
n∈Z
‖U(n+ n0)− U(n)‖Lp .

It follows that an ε-almost period of the almost periodic sequence (U(n))n∈Z is an ε2-

almost period of ub with ε2 = 2
1
p ε, consequently ub ∈ AP (R, Lp(0, 1;X)), which gives

u ∈ Spap(R, X). This ends the proof. �

From Proposition 3.1 we can build a left inverse of the Bochner transform which permits
to state that the range of Bochner transform is closed and admits a topological comple-
ment. For two Banach spaces E and F , we denote by L(E,F ) the space of bounded linear
operators from E into F . Recall that for B ∈ L(E,F ), a left inverse of B is an operator
L ∈ L(F,E) such that L ◦B = IE.

Theorem 3.3. i) The map L : BC(R, Lp(0, 1;X))→ BSp(R, X) defined by

(3.10) LU(t) = U([t])({t}), for t ∈ R
is a left inverse of the Bochner transform B from BSp(R, X) into BC(R, Lp(0, 1;X)).
Moreover

Im(B) := B(BSp(R, X)) and M = {V ∈ BC(R, Lp(0, 1;X)) ; ∀n ∈ Z, V (n) = 0}
are two closed subspaces of BC(R, Lp(0, 1;X)) and

BC(R, Lp(0, 1;X)) = Im(B)⊕M.

ii) The map L : AA(R, Lp(0, 1;X)) → Spaa(R, X) defined by (3.10) is a left inverse of
the Bochner transform B from Spaa(R, X) into AA(R, Lp(0, 1;X)). Moreover

Im(B) := B(Spaa(R, X)) and M = {V ∈ AA(R, Lp(0, 1;X)) ; ∀n ∈ Z, V (n) = 0}
are two closed subspaces of AA(R, Lp(0, 1;X)) and

AA(R, Lp(0, 1;X)) = Im(B)⊕M.

iii) The map L : AP (R, Lp(0, 1;X)) → Spap(R, X) defined by (3.10) is a left inverse of
the Bochner transform B from Spap(R, X) into AP (R, Lp(0, 1;X)). Moreover

Im(B) := B(Spap(R, X)) and M = {V ∈ AP (R, Lp(0, 1;X)) ; ∀n ∈ Z, V (n) = 0}
are two closed subspaces of AP (R, Lp(0, 1;X)) and

AP (R, Lp(0, 1;X)) = Im(B)⊕M.
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Proof. i) Consider the restriction operator R : BC(R, Lp(0, 1;X)) → `∞(Z, Lp(0, 1;X))
defined by (3.2) and the discrete Bochner transform D : BSp(R, X)→ `∞(Z, Lp(0, 1;X))
defined by (3.1). Obviously R is bounded linear operator and from Proposition 3.1, D is
an homeomorphism with D−1V (t) = V ([t])({t}) for t ∈ R. Then

L = D−1 ◦R : BC(R, Lp(0, 1;X))→ BSp(R, X)

BC(R, Lp(0, 1;X))
R //

L=D−1◦R **

`∞(Z, Lp(0, 1;X))

BSp(R, X)

D

OO

is a bounded linear operator and LU(t) = U([t])({t}) for t ∈ R. We have Lub(t) = u(t)
for u ∈ BSp(R, X), then L ◦ B = IBSp(R,X), which means that L is a left inverse of the
Bochner transform B from BSp(R, X) into BC(R, Lp(0, 1;X)). Then Im(B) is closed and

BC(R, Lp(0, 1;X)) = Im(B)⊕ ker(L),

since L is a left inverse of B [7, Theorem 2.13]. We have also ker(L) = ker(R) since
L = D−1 ◦R, then

BC(R, Lp(0, 1;X)) = Im(B)⊕ {V ∈ BC(R, Lp(0, 1;X)) ; ∀n ∈ Z, V (n) = 0} .

ii) and iii) The proof of ii) (resp. iii)) is similar to i) by considering the restriction
operator R : AA(R, Lp(0, 1;X)) → AA(Z, Lp(0, 1;X)) (resp. R : AP (R, Lp(0, 1;X)) →
AP (Z, Lp(0, 1;X))) defined by RU(n) = U(n) and the discrete Bochner transform D :
Spaa(R, X) → AA(Z, Lp(0, 1;X)) (resp. D : Spap(R, X) → AP (Z, Lp(0, 1;X))) defined by

Du(n) = ub(n). Then we set L = D−1 ◦R. �

4. Characterization of the continuity of Nemytskii operators

In this section we give necessary and sufficient conditions to obtain the continuity of
Nemytskii operators between almost periodic and almost automorphic spaces in the sense
of Stepanov. Then we apply these results to generalize some known results.

Both X and Y are Banach spaces. Let p and q be two real numbers in [1,+∞). From
a map f : R×X → Y we consider the Nemytskii operators of f in the Stepanov almost
automorphic case

Nf : Spaa(R, X)→ Sqaa(R, Y )

and in the Stepanov almost periodic case

Nf : Spap(R, X)→ Sqap(R, Y )

defined by

(4.1) Nf (u)(t) = f(t, u(t)) for t ∈ R.
We denote by Lp1(R, X) the space of 1-periodic functions in Lploc(R, X) which is defined
by

Lp1(R, X) = {u ∈ Lploc(R, X) ; u(t+ 1) = u(t) for a.e. t ∈ R} .
Remark that Lp1(R, X) ⊂ Spap(R, X) ⊂ Spaa(R, X) and for u ∈ Lp1(R, X) we have,

(4.2) ‖u‖Sp = sup
t∈R

(∫ 1

0

‖u(t+ θ‖p dθ
) 1

p

=

(∫ 1

0

‖u(θ‖p dθ
) 1

p

,
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since u is 1-periodic.

Theorem 4.1. The following assertions are equivalent.

i) The Nemytskii operator Nf defined by (4.1) maps Spaa(R, X) into Sqaa(R, Y ) and Nf
is continuous.

ii) The operator G : Lp1(R, X)→ Sqaa(R, Y ) defined by G(u) = Nf (u) for u ∈ Lp1(R, X)
is well-defined and continuous.

iii) For all x ∈ X, f(·, x) ∈ Sqaa(R, Y ) and the operator H : Lp1(R, X) → BSq(R, Y )
defined by H(u) = Nf (u) for u ∈ Lp1(R, X) is well-defined and continuous.

Proof. i) =⇒ ii) results of the fact thatG is the restriction ofNf to the subspace Lp1(R, X).

ii) =⇒ i) Consider the isometry

(4.3) J : Lp(0, 1;X)→ Lp1(R, X) with Jω(t) = ω({t}) for ω ∈ Lp(0, 1;X) and t ∈ R

and B the Bochner transform between the spaces Sqaa(R, Y ) and AA(R, Lq(0, 1;Y )). Then
the map

G1 = B ◦G ◦ J : Lp(0, 1;X)→ AA(R, Lq(0, 1;Y ))

Lp1(R, X)
G // Sqaa(R, Y )

B
��

Lp(0, 1;X)

J

OO

G1// AA(R, Lq(0, 1;Y ))

is well-defined and continuous and

(4.4) G1(ω)(t)(θ) = f(t+ θ, ω({t+ θ})) for ω ∈ Lp(0, 1;X), t ∈ R and θ ∈ (0, 1).

Consider the following function

(4.5) F : R× Lp(0, 1;X)→ Lq(0, 1;Y ) defined by F (t, ω) = G1(ω)(t).

The function F is well-defined and

F : Lp(0, 1;X)→ AA(R, Lq(0, 1;Y )) defined by F (ω) = F (·, ω)

is well-defined and continuous since F = G1. From Theorem 2.4, we can assert that the
Nemytskii operator F built on F :

(4.6) F : AA(R, Lp(0, 1;X))→ AA(R, Lq(0, 1;Y )) with F(U)(t) = F (t, U(t)),

is well-defined and continuous. Now we consider B the Bochner transform between the
spaces Spaa(R, X) and AA(R, Lp(0, 1;X)) and L the left inverse of the Bochner transform
between the spaces AA(R, Lq(0, 1;Y )) and Sqaa(R, Y ) (cf. Theorem 3.3). Then L◦F ◦B :
Spaa(R, X)→ Sqaa(R, Y ) is well-defined and continuous. To conclude, we state

Nf = L ◦ F ◦B :

AA(R, Lp(0, 1;X))
F // AA(R, Lq(0, 1;Y ))

L
��

Spaa(R, X)

B

OO

Nf // Sqaa(R, Y )
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For u ∈ Spaa(R, X) one has (L ◦ F ◦B)(u) = (L ◦ F)(ub) = LV with V = F(ub). From
(4.4)-(4.6), we obtain

V (t)(θ) = F(ub)(t)(θ) = f(t+ θ, ub(t)({t+ θ})) = f(t+ θ, u(t+ {t+ θ})),

then for n ∈ Z we have V (n)(θ) = f(n+ θ, u(n+ θ)).
We deduce that LV (t) = V ([t])({t}) = f([t] + {t}, u([t] + {t})) = f(t, u(t)), then

(L ◦ F ◦ B)(u)(t) = f(t, u(t)). In conclusion Nf = L ◦ F ◦ B is is well-defined and
continuous.

ii) =⇒ iii) The operator H is well-defined and continuous, since Sqaa(R, Y ) is topo-
logically included in BSq(R, Y ). We consider the constant function ux : R → X defined
by ux(t) = x for all t ∈ R. We have ux ∈ Lp1(R, X), then G(ux) = Nf (ux) = f(·, x) ∈
Sqaa(R, Y ) for each x ∈ X.

iii) =⇒ ii) Let A ⊂ (0, 1) be a Lebesgue measurable set and χA its characteristic
function. Before we state

(4.7) If u ∈ Sqaa(R, Y ), then [t 7→ u(t)χA({t})] ∈ Sqaa(R, Y ).

Let f : R × Y → Y be the function defined by f(t, y) = yχA({t}). To prove (4.7),
it suffices to state that the Nemytskii operator Nf defined by Nf (u)(t) = f(t, u(t)) =
u(t)χA({t}) maps Sqaa(R, Y ) into Sqaa(R, Y ). For u ∈ Lp1(R, X), we obtain that Nf (u)
belongs to Lp1(R, X), then the map G : Lp1(R, X)→ Sqaa(R, Y ) with G(u)(t) = f(t, u(t)) =
u(t)χA({t}) is well-defined. Moreover the linear map G is bounded, then G is continuous.
From ii) =⇒ i) we obtain that the Nemytskii operator Nf maps Sqaa(R, Y ) into Sqaa(R, Y ).

To state iii) =⇒ ii), it suffices to state that the range of the function H is in Sqaa(R, Y ),
that is H(Lp1(R, X)) ⊂ Sqaa(R, Y ). Consider the surjective isometry defined by (4.3). Let
us denote by E(0, 1;X) the set of simple functions from (0, 1) to X. Fix u ∈ J(E(0, 1;X)).
There exists ω ∈ E(0, 1;X) such that u = Jω. The function ω can be writing as ω(θ) =
N∑
j=1

xjχAj(θ) for θ ∈ (0, 1), where x1, · · · , xN ∈ X and {A1, · · · , AN} is a partition of

Lebesgue measurable sets of (0, 1). Then u(t) =
N∑
j=1

xjχAj({t}) and it follows

H(u)(t) = f(t, u(t)) = f(t,
N∑
j=1

xjχAj({t})) =
N∑
j=1

f(t, xj)χAj({t}).

From (4.7), we obtain that f(·, xj)χAj({·}) ∈ Sqaa(R, Y ), since f(·, xj) ∈ Sqaa(R, Y ). Then
H(u) ∈ Sqaa(R, Y ) as finite sum of functions of Sqaa(R, Y ). We have proved that

(4.8) H(J(E(0, 1;X))) ⊂ Sqaa(R, Y ).

The isometry J is surjective and E(0, 1;X) is dense in Lp(0, 1;X), then J(E(0, 1;X)) is
dense in Lp1(R, X). Moreover H is continuous and Sqaa(R, Y ) is closed in BSq(R, Y ), then
from (4.8), we deduce that: H(Lp1(R, X)) ⊂ Sqaa(R, Y ). �

In the proof of Theorem 4.1, by replacing the different almost automorphic spaces by
the corresponding the almost periodic spaces; and by using Theorem 2.2 instead Theorem
2.4, we obtain the following result.
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Theorem 4.2. The following assertions are equivalent.

i) The Nemytskii operator Nf defined by (4.1) maps Spap(R, X) into Sqap(R, Y ) and Nf
is continuous.

ii) The operator G : Lp1(R, X)→ Sqap(R, Y ) defined by G(u) = Nf (u) for u ∈ Lp1(R, X)
is well-defined and continuous.

iii) For all x ∈ X, f(·, x) ∈ Sqap(R, Y ) and the operator H : Lp1(R, X) → BSq(R, Y )
defined by H(u) = Nf (u) for u ∈ Lp1(R, X) is well-defined and continuous.

Now we give an application of Theorem 4.1 and 4.2, which permits to generalize some
known results.

Corollary 4.3. Assume that
1

q
=

1

p
+

1

r
for q, p and r ≥ 1. Suppose that there exists

L ∈ BSr(R) such that

(4.9) ‖f(t, x1)− f(t, x2)‖ ≤ L(t) ‖x1 − x2‖
for all x1, x2 ∈ X and a.e. t ∈ R. Then the following assertions hold.

i) If f(·, x) ∈ Sqaa(R, Y ) for all x ∈ X, then Nf maps Spaa(R, X) into Sqaa(R, Y ) and Nf
is continuous.

ii) If f(·, x) ∈ Sqap(R, Y ) for all x ∈ X, then Nf maps Spap(R, X) into Sqap(R, Y ) and
Nf is continuous.

Remark 4.4. In the framework of metric spaces, Bedouhene et al. have shown that Nf
maps Spap(R, X) into Sqap(R, X) with assumption (4.9) when L ∈ Srap(R) in [5, Theorem
2.11]. Recall that before this last result of Bedouhene et al., similar results assume the
additional compactness condition (C1): there exists a compact set K ⊂ X such that
u(t) ∈ K for a.e. t ∈ R. More precisely in the almost periodic case, Long et al. has stated
the following result in [19, Theorem 2.2]: let f be Stepanov almost periodic in t ∈ R
uniformly for x ∈ X, instead of f(·, x) ∈ Sqaa(R, Y ) for all x ∈ X. Under assumption
(4.9), if u ∈ Spap(R, X) and u satisfies the condition (C1), then Nf (u) ∈ Sqap(R, X). For
a Stepanov almost automorphic function in t ∈ R uniformly for x ∈ X, a similar result is
given by Ding Long et al. in [17, Theorem 2.4].

Proof. We proof i) and ii) together. We fix u ∈ BSp(R, X). The function f(·, u(·)) is
strongly measurable on each bounded interval of R since f(·, x) ∈ Lqloc(R, Y ) for all x ∈ X
and f(t, ·) is continuous for a.e. t ∈ R. From (4.9), we obtain

‖f(t, x)‖ ≤ L(t) ‖x‖+ ‖f(t, 0)‖ .
From Minkowski’s inequality and Holder’s inequality with r

q
and p

q
as exponents, it follows

sup
t∈R

(∫ t+1

t

‖f(s, u(s))‖q ds
) 1

q

≤ ‖L‖Sr ‖u‖Sp + ‖f(·, 0)‖Sq + < +∞,

then the Nemytskii operator Nφ defined by Nφ(u) = φ(·, u(·)) maps BSp(R, X) into
BSq(R, Y ). From (4.9), we deduce that the function Nφ is Lipschitzian with constant
‖L‖Sr . Then the restriction H of Nφ to Lp1(0, 1;X), H : Lp1(0, 1;X)→ BSqR, Y ) defined
by H(u)(t) = φ(t, u(t)) is well-defined and continuous. We conclude by using Theorem
4.1 for i) and Theorem 4.2 for ii). �
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5. Some results in Stepanov spaces

In this section we generalize some known results of Danilov in [11, 12] from Stepanov
almost periodic to Stepanov almost automorphic functions. Danilov’s demonstrations are
not adaptable to spaces of almost automorphic functions. We give new proofs that deal
with almost periodic and almost automorphic cases simultaneously. Proposition 5.4 and
5.8 will be used in the following sections.

Let X be a Banach space and 1 ≤ p < +∞.

Let us recall that a subset H of Lp(0, 1;X) is said to be tight if for every ε > 0, there
exists a compact set K ⊂ X such that for every ω ∈ H

meas ({θ ∈ (0, 1) ; ω(θ) /∈ K}) < ε.

A subset H of Lp(0, 1;X) is said to be p-uniformly integrable if for every ε > 0, there
exists δ > 0 such that for every ω ∈ H and for every measurable set A ⊂ (0, 1) with
meas(A) ≤ δ, we have ∫

A

‖ω(θ)‖p dθ < ε

A relatively compact subset H of Lp(0, 1;X) is tight and p-uniformly integrable (see
e.g. [14, Corollary 3.3]).

Definition 5.1. i) A subset H of Lploc(R, X) is said to be Stepanov tight if for every ε > 0
there exists a compact set K ⊂ X such that

∀u ∈ H, sup
t∈R

(
meas ({s ∈ (t, t + 1) ; u(s) /∈ K})

)
< ε.

ii) A function u ∈ Lploc(R, X) is said to be Stepanov tight if the set {u} is Stepanov
tight.

Definition 5.2. For t ∈ R and δ > 0, let us denote by E tδ, the class of measurable sets
E ⊂ (t, t+ 1) such that meas(E) ≤ δ.

i) A subset H of Lploc(R, X) is said to be Stepanov p-uniformly integrable if

lim
δ→0

(
sup
u∈H

sup
t∈R

sup
E∈Etδ

∫
E

‖u(s)‖p ds

)
= 0.

ii) A function u ∈ Lploc(R, X) is said to be Stepanov p-uniformly integrable if the set
{u} is Stepanov p-uniformly integrable.

By using the Bochner transform the tightly and the p-uniformly integrability in the
sense of Stepanov can be reduced to the classical notion of tightly and the p-uniformly
integrability of a subset of Lp(0, 1;X).

Lemma 5.3. Let H be a subset of Lploc(R, X). Denotes by Hb the following subset of
Lp(0, 1;X), Hb =

{
ub(t) ; u ∈ H and t ∈ R

}
.

i) H is Stepanov tight if and only if Hb is tight in Lp(0, 1;X).

ii) H is Stepanov p-uniformly integrable if and only if Hb if p-uniformly integrable in
Lp(0, 1;X).
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Proof. i) We have {s ∈ (t, t+ 1) ; u(s) /∈ K} = t+
{
θ ∈ (0, 1) ; ub(t)(θ) /∈ K

}
and by using

the invariance by translation of the Lebesgue’s measure on R we obtain

meas ({s ∈ (t, t + 1) ; u(s) /∈ K}) = meas
({
θ ∈ (0, 1) ; ub(t)(θ) /∈ K

})
.

From this last equality, we deduce i).

ii) For E ∈ E tδ, we have

∫
E

‖u(s)‖p ds =

∫
E−t

∥∥ub(t)(θ)∥∥p dθ and by using E tδ = t+ E0δ ,

we obtain

sup
E∈Etδ

∫
E

‖u(s)‖p ds = sup
E∈E0δ

∫
E

∥∥ub(t)(θ)∥∥p dθ.
From this last equality, we deduce ii). �

Proposition 5.4. If K is a compact set in Spaa(R, X), then K is Stepanov tight and
Stepanov p-uniformly integrable.

Before proving Proposition 5.4, we make the following remarks.

Remark 5.5. i) Proposition 5.4 also holds if K is a compact set in Spap(R, X).

ii) The assertion ”u is Stepanov tight when u ∈ Spap(R, X)” is contained in a more
general result of Danilov [12, Theorem 3], which assert that if u ∈ Spap(R, X), then there
exist v ∈ AP (R, X) and a measurable set N ⊂ R such that u(t) = v(t) for t /∈ N and

sup
t∈R

(
meas ((t, t + 1) ∩ N)

)
< ε.

iii) The assertion ”u is Stepanov p-uniformly integrable when u ∈ Spap(R, X)” is con-
tained in a more general result of Danilov [11, page 1420], which gives a characterization
of the space Spap(R, X) in term of the so-called Stepanov almost periodicity in Lebesgue
measure and Stepanov p-uniformly integrability. This characterization is the following:
u ∈ Spap(R, X) if and only is u is Stepanov p-uniformly integrable and u Stepanov almost
periodicity in Lebesgue measure, that is for any ε > 0 and δ > 0 the set{

τ ∈ R ; sup
t∈R

meas ({s ∈ [t, t + 1] ; ‖(u(s + τ)− u(s)‖X ≥ ε}) < δ

}
is relatively dense in R.

To prove Proposition 5.4 we use the following lemma.

Lemma 5.6. Let E be a Banach space. If K is a compact subset of AA(R, E), then
S = {U(t) ; U ∈ K and t ∈ R} is a relatively compact in E.

Remark 5.7. In [6, Lemma 3.6], Blot et al., Lemma 5.6 is stated in the case of almost
periodic spaces in the sense of Bohr.

Proof. It suffices to prove that all sequence (Uk(tk))k∈N as at least a cluster point x of
E, where Uk ∈ K and tk ∈ R. The sequence (Uk)k∈N as at least a cluster point U ∈ K,
since K is a compact subset of AA(R, E). The sequence (U(tk)k∈N as at least a cluster
point x ∈ E, since the range of an almost automorphic function is relatively compact [21,
Theorem 2.3, p. 11]. Consequently, there exists a common subsequence of (Uk)k∈N and
(tk)k∈N that we note in the same way such that

lim
k→+∞

sup
t∈R
‖Uk(t)− U(t)‖E = 0 and lim

k→+∞
‖U(tk)− x‖E = 0.
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To ends, we use the following inequality

‖Uk(tk)− x‖E ≤ ‖Uk(tk)− U(tk)‖E + ‖U(tk)− x‖E .
�

Proof of Proposition 5.4. The range
{
ub ; u ∈ K

}
of the compact K by the Bochner

transform is a compact subset of AA(R, Lp(0; 1;X))), since the Bochner transform is an
isometry from Spaa(R, X) into AA(R, Lp(0; 1;X))). Denote by Kb the following subset of
Lp(0; 1;X))

Kb =
{
ub(t) ; u ∈ K and t ∈ R

}
.

By help of Lemma 5.6, we deduce that Kb is a relatively compact in Lp(0; 1;X)). It follows
that Kb is tight and p-uniformly integrable [14, Corollary 3.3]. The conclusion results of
Lemma 5.3 �

Proposition 5.8. Assume that u and uk ∈ BSp(R, X) for all k ∈ N. If {uk ; k ∈ N} is
Stepanov p-uniformly integrable, then lim

k→+∞
‖uk − u‖Sp = 0 if and only if

(5.1) ∀ε > 0, lim
k→∞

sup
t∈R

(
meas ({s ∈ (t, t + 1) ; ‖uk(s)− u(s)‖ ≥ ε})

)
= 0.

Proof. i) =⇒ results of the following Tchebychev’s inequality

meas ({s ∈ (t, t + 1) ; ‖uk(s)− u(s)‖ ≥ ε}) ≤ 1

εp

∫ t+1

t

‖uk(s)− u(s)‖p ds.

ii) ⇐=

Step 1: we assume that u = 0. We fix ε > 0. We want to show that

(5.2) ∃k0 ∈ N, k ≥ k0 =⇒ sup
t∈R

∫ t+1

t

‖uk(s)‖p ds ≤ ε.

By hypothesis, the subset {uk ; k ∈ N} of BSp(R, X) is Stepanov p-uniformly integrable,
then there exists δ > 0 such that

(5.3) sup
k∈N

sup
t∈R

sup
E∈Etδ

∫
E

‖uk(s)‖p ds ≤
ε

2
.

Let us denote by

Atk =

{
s ∈ (t, t+ 1) ; ‖uk(s)‖ ≥

(ε
2

) 1
p

}
.

From Hypothesis (5.1), we have

(5.4) ∃k0 ∈ N, k ≥ k0 =⇒ sup
t∈R

(
meas

(
At

k

) )
≤ δ.

From inequalities∫ t+1

t

‖uk(s)‖p ds ≤
∫
(t,t+1)\Atk

‖uk(s)‖p ds+

∫
Atk

‖uk(s)‖p ds ≤
ε

2
+

∫
Atk

‖uk(s)‖p ds,

and from (5.3) and (5.4), we obtain (5.2), then the claim is proved.

Step 2: general case.
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First we prove (5.1) =⇒ u is Stepanov p-uniformly integrable. We fix t ∈ R and E a
measurable set of (t, t + 1). By assumption (5.1), we deduce that the sequence (uk)k∈N
tends to u in measure on (t, t+ 1), that is

∀ε > 0, lim
k→∞

meas ({s ∈ (t, t + 1) ; ‖uk(s)− u(s)‖ ≥ ε}) = 0,

then there exists a subsequence (uα(k))k∈N of (uk)k∈N such that lim
k→+∞

uα(k)(s) = u(s) for

a.e. s ∈ (t, t+ 1) (cf. [15, Theorem 3, p. 45]). By using Fatou’s lemma, we have∫
E

‖u(s)‖p ds =

∫
E

lim
k→+∞

∥∥uα(k)(s)∥∥p ds ≤ lim inf
k→+∞

∫
E

∥∥uα(k)(s)∥∥p ds,
then ∫

E

‖u(s)‖p ds ≤ sup
k∈R

∫
E

∥∥uα(k)(s)∥∥p ds.
We deduce that {u} is Stepanov p-uniformly integrable, since by hypothesis {uk ; k ∈ N}
is Stepanov p-uniformly integrable.

Secondly we prove (5.1) =⇒ lim
k→+∞

‖uk − u‖Sp = 0. Let us denote by vk = uk − u.

From the inequality ‖vk(t)‖ ≤ ‖uk(t)‖+ ‖u(t)‖, we deduce that {vk ; k ∈ N} is Stepanov
p-uniformly integrable, since {u} and {uk ; k ∈ N} are Stepanov p-uniformly integrable.
We conclude by using step 1 on the sequence (vk)k∈N. �

The following corollary extends a result of Danilov [11, Lemma 1] from the almost
periodic case case to the almost automorphic case case

Corollary 5.9. Suppose that u ∈ Spaa(R, X) and uk ∈ Spaa(R, X) for all k ∈ N. Then
lim

k→+∞
‖uk − u‖Sp = 0 if and only if {uk ; k ∈ N} is Stepanov p-uniformly integrable and

(5.1) holds.

Proof. It is a consequence of Proposition 5.4 and 5.8, since {uk ; k ∈ N}∪{u} is a compact
subset of Spaa(R, X), when uk → u in Spaa(R, X) as k → +∞. �

6. Sufficient conditions for the continuity of Nemytskii operators

Both X and Y are Banach spaces. Let p and q be two real numbers in [1,+∞). From a
map f : R×X → Y we give sufficient conditions to obtain the continuity of the Nemytskii
operators built on f in the Stepanov almost automorphic case

Nf : Spaa(R, X)→ Sqaa(R, Y )

and in the Stepanov almost periodic case

Nf : Spap(R, X)→ Sqap(R, Y )

defined by

(6.1) Nf (u)(t) = f(t, u(t)) for t ∈ R.

In Section 4, we have given necessary and sufficient conditions to obtain the continuity
of Nemytskii operators between Stepanov spaces. The assumptions used are on some
Nemytskii operators built on f (cf. theorems 4.1 and 4.2). In this section, the assumptions
will be directly on the function f .
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6.1. Statement of results. Now we formulate the following hypotheses.

(H1) There exist a constant a > 0 and b ∈ Sqaa(R) such that ‖f(t, x)‖ ≤ a ‖x‖
p
q + b(t)

for all x ∈ X and a.e. t ∈ R.

(H2) For a.e. t ∈ R, the map f(t, ·) is continuous from X into Y .

(H3) For all compact set K ⊂ X, for all r > 0, there exists a measurable set N ⊂ R
such that sup

t∈R

(
meas ((t, t + 1) ∩ N)

)
< r and

∀ε > 0, ∃δ > 0, ∀x1, x2 ∈ K, ∀t ∈ R \N, ‖x1 − x2‖ ≤ δ =⇒ ‖f(t, x1)− f(t, x2)‖ ≤ ε.

Remark 6.1. About Hypothesis (H1). In the context of separable Banach spaces and in
the periodic case: f(t + T, x) = f(t, x), we will see in Corollary 6.12, that an equivalent
hypothesis to (H1) in the periodic case which is denoted (H4), is a necessary condition
for that the Nemytskii operator Nf maps Spaa(R, X) into Sqaa(R, Y ) (resp. Spap(R, X) into
Sqap(R, Y )). Hypothesis (H4) is (H1) where b ∈ Lq(0, T ) and the inequality holds for
t ∈ (0, T ) (cf. page 21).

Remark 6.2. About Hypothesis (H2). To state that the Nemytskii operator Nf maps
Spaa(R, X) into Sqaa(R, Y ) or Spap(R, X) into Sqap(R, Y ), a necessary condition is that the
function f(·, u(·)) is strongly measurable on each bounded interval, for u ∈ Spap(R, X) ⊂
Spaa(R, X). Without Hypothesis (H2), it is difficult to reach this necessary condition.

Remark 6.3. About Hypothesis (H3). i) For a compact K ⊂ X and δ > 0, let us denote
by

(6.2) αKδ (t) = sup {‖f(t, x1)− f(t, x2‖ ; x1 ∈ K, x2 ∈ K, ‖x1 − x2‖ ≤ δ} .

Then Hypothesis (H3) is equivalent to the following assertion: for all compact set K ⊂ X
and for all r > 0, there exists a measurable set N ⊂ R such that

sup
t∈R

(
meas ((t, t + 1) ∩ N)

)
< r and αK

δ (t)→ 0 uniformly on R \ N as δ → 0.

Remark that αKδ (t) → 0 for a.e. t ∈ R as δ → 0, since f(t, ·) is uniformly continuous on
the compact set K, but Hypothesis (H3) is not necessarily satisfied.

ii) Formulate the following condition:

(C2) There exist a ∈ BS1(R) and ε : R→ R with lim
δ→0

ε(δ) = 0 such that

αKδ (t) ≤ a(t)ε(δ)

where αKδ is defined by (6.2).

Let us denote by NR = {t ∈ R ; a(t) > R} for R > 0. From the Tchebychev’s inequality,

we deduce that ‖a‖S1 ≥ Rmeas ((t, t + 1) ∩ NR), then sup
t∈R

(
meas ((t, t + 1) ∩ NR)

)
→ 0

as R → +∞. We also have lim
δ→0

αKδ (t) → 0 uniformly in t ∈ R \ NR. Consequently

Condition (C2) implies Hypothesis (H3).

Evidently Condition (C2) holds if the assumption (4.9) of Corollary 4.3 holds.
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Now we give two theorems which are equivalent.

Theorem 6.4. Suppose that (H1)-(H3) hold.

i) If f(·, x) ∈ Sqaa(R, Y ) for all x ∈ X, then the Nemytskii operator Nf defined by (6.1)
maps Spaa(R, X) into Sqaa(R, Y ) and Nf is continuous.

ii) If f(·, x) ∈ Sqap(R, Y ) for all x ∈ X, then Nf maps Spap(R, X) into Sqap(R, Y ) and
Nf is continuous.

The proof of Theorem 6.4 is given in Subsection 6.2

Remark 6.5. Theorem 6.4 holds if f satisfies Hypothesis (H1) and f ∈ AAU(R ×X, Y )
for i) and f ∈ APU(R×X, Y )) for ii) (cf. resp. Theorem 2.4 and 2.2).

From a function f : R ×X → Y and K ⊂ X a compact set, we consider f̃K the map
defined by

(6.3) f̃K : R→ C(K,Y )) with f̃K(t) = f(t, ·) for a.e. t ∈ R.

Theorem 6.6. Suppose that (H1) holds.

i) If for all compact set K ⊂ X, f̃K ∈ Sqaa(R, C(K,Y )), then Nf maps Spaa(R, X) into
Sqaa(R, Y ) and Nf is continuous.

ii) If for all compact set K ⊂ X, f̃K ∈ Sqap(R, C(K,Y )), then Nf maps Spap(R, X) into
Sqap(R, Y ) and Nf is continuous.

The proof of Theorem 6.6 is given in Subsection 6.2. We will prove that the hypotheses
of Theorem 6.4 are equivalent to those of Theorem 6.6.

Remark 6.7. In [11, Lemma 3], Danilov has stated in the context of metric spaces, that

if u : R → X and f̃ : R → BC(X, Y ) with f̃(t) = f(t, ·) are Stepanov almost periodic
in Lebesgue measure (see the definition in Remark 5.5, iii)), then Nf (u) : R → Y is
also Stepanov almost periodic in Lebesgue measure. Then by using this last result of
Danilov, in the context of Banach space, Andres et al. [4, Proposition 3.4] have shown

that Nf maps Spap(R, X) into Sqap(R, X), when f̃ ∈ Sqap(R, BC(X,X)). In the almost
periodic case, Theorem 6.6 is an improvement of [4, Proposition 3.4]. Even in the linear
case [4, Proposition 3.4] does not allow us to conclude. Indeed if f(t, x) = A(t)x with
A ∈ Srap(R,L(X)) for r ≥ 1, where L(X)) stands for the set of bounded and linear
maps from X in to itself, assumptions of [4, Proposition 3.4] are not satisfied, since
L(X)) * BC(X,X). But Theorem 6.6 permits to conclude for p and q ≥ 1 such that
1

q
=

1

p
+

1

r
.

To apply Theorem 6.6 it is necessary to establish that f̃K ∈ Lqloc(R, C(K,Y )), especially

that f̃K is strongly measurable on each bounded interval, for that we give the following
criterion which will be used to prove Theorem 6.6.

Lemma 6.8. Suppose that (H1)-(H2) hold and f(·, x) ∈ Lqloc(R, Y ) for all x ∈ X. Then

f̃K ∈ Lqloc(R, C(K,Y )) for all compact set K ⊂ X.

Proof. Let K be a compact subset of X. Consider the restriction of f on (a, b)×K. For
each x ∈ K, the function f(·, x) is strongly measurable on (a, b), then f(·, x) is essentially
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separably valued, i.e., there exists a subset Nx ⊂ (a, b) of measure zero such that the
set {f(t, x) ; t ∈ (a, b) \Nx} is separable [1, Lemma 11.36, p. 417]. A a compact set is
separable, then there exists a subset D ⊂ K that is countable and dense in K. If we

denote by N =
⋃
x∈D

Nx, then its measure is null and the set Ax = {f(t, x) ; t ∈ (a, b) \N}

is separable. It follows that
⋃
x∈D

Ax is separable. The function f(t, ·) being continuous

a.e. t ∈ (a, b), we deduce that
⋃
x∈K

Ax ⊂
⋃
x∈D

Ax, it follows that
⋃
x∈K

Ax is separable.

Then there exists a separable closed subspace Ys ⊂ Y such that the values f(t, x) lie in a
separable closed subspace Ys of Y for a.e. t ∈ (a, b) and for all x ∈ K. We can consider
the restriction of f on Ys: f : (a, b) × K → Ys. Since Ys is separable, the notions of
measurability and strong measurability are equivalent [1, Lemma 11.36, p. 417]. The
function f : (a, b) × K → Ys is a Carathédory function: f(·, x) is measurable on (a, b)

for all x ∈ K and f(t, ·) is continuous from K into Ys for a.e. t ∈ (a, b). Then f̃K maps
(a, b) into C(K,Ys) and is Borel measurable, since K is a compact metric space and Ys a
separable Banach space (cf. [1, Theorem 4.54, p. 153]). The Banach space C(K,Ys) is

separable, since Ys is separable [1, Lemma 3.85, p. 120], then f̃K is strong measurable on
(a, b). From (H1), we have

∀t ∈ R,
∥∥∥f̃K(t)

∥∥∥
C(K,Y )

≤ a sup
x∈K
‖x‖

p
q + b(t)

with a sup
x∈K
‖x‖

p
q + b(·) ∈ Sqaa(R) ⊂ Lqloc(R), then

∥∥∥f̃K(·)
∥∥∥
C(K,Ys)

∈ Lqloc(R). The function

f̃K being strongly measurable on each bounded interval of R and
∥∥∥f̃K(·)

∥∥∥
C(K,Ys)

∈ Lqloc(R),

we have f̃K ∈ Lqloc(R, C(K,Ys)) [1, Theorem 11.43, p. 420]. By considering the standard

isometry from C(K,Ys) to C(K,Y ), we obtain the result: f̃K ∈ Lqloc(R, C(K,Y )). �

In the periodic case, we can prove that Hypothesis (H3) holds under (H2), but we will
not use this remark. For T > 0, consider the subspace LpT (R, X) of Spap(R, X) defined by

LpT (R, X) = {u ∈ Lploc(R, X) ; u(t+ T ) = u(t) for a.e. t ∈ R} .

For a map f : R×X → Y , we formulate the following hypotheses.

(H4) There exist a > 0 and b ∈ Lq(0, T ) such that ‖f(s, x)‖ ≤ a ‖x‖
p
q + b(s), for all

x ∈ X and a.e. s ∈ (0, T ).

(H5) For all x ∈ X, f(·, x) ∈ LqT (R, Y ).

Corollary 6.9. We assume that (H2), (H4) and (H5) hold. Then the following asser-
tions hold.

i) The Nemytskii operator Nf maps Spaa(R, X) into Sqaa(R, Y ) and Nf is continuous.

ii) The Nemytskii operator Nf maps Spap(R, X) into Sqap(R, Y ) and Nf is continuous.

Proof. We proof i) and ii) together. For that we use Theorem 6.6. By using (H4)
and the T -periodicity of the function f(·, x), Hypothesis (H1) holds with the function
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t 7→ b

({
t

T

}
T

)
∈ LqT (R, Y ) ⊂ Sqaa(R, Y ). From (H5), we have f(·, x) ∈ LqT (R, Y ) ⊂

Lqloc(R, Y ) for all x ∈ X, then by Lemma 6.8, we have f̃K ∈ Lqloc(R, C(K,Y )) for all

compact set K ⊂ X. Moreover by Hypothesis (H5), we have f̃K(t + T ) = f̃K(t) for

all t ∈ R: f̃K ∈ LqT (R, C(K,Y )) ⊂ Sqap(R, C(K,Y )) ⊂ Sqaa(R, C(K,Y )). The conclusion
results of Theorem 6.6. �

Now we give a direct consequence in the autonomous case of Corollary 6.9.

Corollary 6.10. Suppose that f : X → Y is a continuous map and there exist a > 0 and
b > 0 such that

(6.4) ∀x ∈ X, ‖f(x)‖ ≤ a ‖x‖
p
q + b.

We consider the Nemytskii operator Nf defined by Nf (u) = f ◦ u. Then the following
assertions hold.

i) The Nemytskii operator Nf maps Spaa(R, X) into Sqaa(R, Y ) and Nf is continuous.

ii) The Nemytskii operator Nf maps Spap(R, X) into Sqap(R, Y ) and Nf is continuous.

Remark 6.11. With the same assumptions as those of Corollary 6.10, Andres et al. [4,
Lemma 3.2] have shown that Nf maps Spap(R, X) into Sqap(R, Y ). We will see in Corollary
6.12 that in reflexive spaces, assumption (6.4) is also a necessary condition.

When the Banach spaces X and Y are separable, we can improve Corollary 6.9.

Corollary 6.12. We assume that the Banach spaces X and Y are separable. We assume
that (H2) and (H5) hold. Then the following assertions hold.

i) The Nemytskii operator Nf maps Spaa(R, X) into Sqaa(R, Y ) if and only if (H4) holds.
In this case Nf is continuous.

ii) The Nemytskii operator Nf maps Spap(R, X) into Sqap(R, Y ) if and only if (H4) holds.
In this case Nf is continuous.

Proof. We proof i) and ii) together. When E is a Banach space, Sp(R, E) denotes indif-
ferently Spaa(R, E) or Spap(R, E). By using Corollary 6.9, it suffices to state that

(6.5) if Nf defined by (6.1) maps Sp(R, X) into Sq(R, Y ), then (H4) holds.

Consider the restriction map H : LpT (R, X)→ BSq(R, Y ) of Nf defined by H(u) = Nf (u)
for u ∈ LpT (R, X). Remark that H(u) = Nf (u) = f(·, u(·)) is T -periodic for u ∈ LpT (R, X),
then H(LpT (R, X)) ⊂ LqT (R, Y ). Then the map H1 : LpT (R, X)→ LqT (R, Y ) with H1(u) =
H(u) for u ∈ LpT (R, X) is well-defined. Consider the following isometries

Jp : Lp(0, T ;X)→ LpT (R, X) with Jpω(t) = ω

({
t

T

}
T

)
for ω ∈ Lp(0, 1;X) and t ∈ R,

Jq : Lq(0, T ;Y )→ LqT (R, Y ) with Jpω(t) = ω

({
t

T

}
T

)
for ω ∈ Lq(0, 1;Y ) and t ∈ R.

Obviously Jq is surjective and (Jq)
−1u(s) = u(s) for s ∈ (0, T ). Then the map

g = (Jq)
−1 ◦H1 ◦ Jp : Lp(0, 1;X)→ Lq(0, 1;Y )
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LpT (R, X)
H1 // LqT (R, Y )

(Jq)−1

��
Lp(0, T ;X)

g //

Jp

OO

Lq(0, T ;Y )

is well-defined. Moreover, we have g(ω)(s) = f(s, ω(s)) for s ∈ (0, T ). We obtain (H4)
from Theorem 2.1 applied to the restriction of the function f on (0, T )×X. Then (6.5)
holds and the claim is proved. �

An immediate consequence of Corollary 6.12 is the following result.

Corollary 6.13. We assume that the Banach spaces X and Y are separable. For a
continuous map f : X → Y , we consider the Nemytskii operator Nf defined by Nf (u) =
f ◦ u. Then the following assertions hold.

i) The Nemytskii operator Nf maps Spaa(R, X) into Sqaa(R, Y ) if and only if (6.4) holds.
In this case Nf is continuous.

ii) The Nemytskii operator Nf maps Spap(R, X) into Sqap(R, Y ) if and only (6.4) holds.
In this case Nf is continuous.

6.2. Proof of Theorem 6.4 and Theorem 6.6.

6.2.1. Proof of Theorem 6.4. For that we use the following lemma.

Lemma 6.14. Suppose that (H2)-(H3) hold. Assume that f(·, x) ∈ BSq(R, Y ) for all
x ∈ X. Let (ωk)k≥0 be a sequence in Lp(0, 1;X). If ωk → ω in Lp(0, 1;X) as k → +∞,
then for each ε > 0,

lim
k→∞

sup
n∈Z

(
meas ({θ ∈ (0, 1) ; ‖f(n + θ, ωk(θ))− f(n + θ, ω(θ))‖ > ε})

)
= 0.

Proof. We fix ε > 0. Let us denote by

Ank = {θ ∈ (0, 1) ; ‖f(n+ θ, ωk(θ))− f(n+ θ, ω(θ))‖ ≤ ε} , k ∈ N, n ∈ Z.

It is a Lebesgue measurable subset of (0, 1), since f(n + ·, x) is strongly measurable on
(0, 1) and f(n + θ, ·) is continuous on X. We want to show that for a given r > 0 there
exists k0 ∈ N such that

(6.6) k ≥ k0 =⇒ sup
n∈Z

(
meas ((0, 1)) \ An

k

)
< r.

The set H = {ωk ; k ∈ N} ∪ {ω} is a compact subset of Lp(0, 1;X), since ωk → ω in
Lp(0, 1;X) as k → +∞. It follows that H is tight (see e.g., [14, Corollary 3.3]), then
there exists a compact set K ⊂ X such that

meas({θ ∈ (0, 1) ; ω(θ) /∈ K}) < r

4

and

∀k ∈ N, meas({θ ∈ (0, 1) ; ωk(θ) /∈ K}) < r

4
.

If we denote by

Bk = {θ ∈ (0, 1) ; ωk(θ) ∈ K and ω(θ) ∈ K} , k ∈ N,
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we have

(6.7) meas((0, 1) \ Bk) <
r

2
for all k ∈ N.

If we denote by

Cδ = {t ∈ R ; x1, x2 ∈ K, ‖x1 − x2‖ ≤ δ =⇒ ‖f(t, x1)− f(t, x2)‖ ≤ ε}

and

Cn
δ = {θ ∈ (0, 1) ; x1, x2 ∈ K, ‖x1 − x2‖ ≤ δ =⇒ ‖f(n+ θ, x1)− f(n+ θ, x2)‖ ≤ ε}

for δ > 0 and n ∈ Z, we have (n, n+ 1)∩Cδ = n+Cn
δ . By using Hypothesis (H3), there

exist δ∗ > 0 and a measurable set N ⊂ R such that sup
n∈Z

(
meas ((n, n + 1) ∩ N)

)
<

r

4
and R \ N ⊂ Cδ∗ . We deduce that (n, n + 1) \ Cδ∗ ⊂ (n, n + 1) ∩ N and it follows

sup
n∈Z

(
meas ((n, n + 1) \ Cδ∗)

)
<

r

4
. From (n, n+ 1) \Cδ∗ = n+

(
(0, 1) \ Cn

δ∗

)
and by using

the invariance by translation of the Lebesgue’s measure on R, we obtain

(6.8) sup
n∈Z

(
meas

(
(0, 1) \ Cn

δ∗

) )
<

r

4
.

Let us denote by

Dk = {θ ∈ (0, 1) ; ‖ωk(θ)− ω(θ)‖ ≤ δ∗} , k ∈ N.

Then there exists k0 ∈ N such that

(6.9) k ≥ k0 =⇒ meas ((0, 1) \Dk) <
r

4
,

since ωk → ω in Lp(0, 1;X) as k → +∞.

We have Bk ∩Cn
δ∗
∩Dk ⊂ Ank , then from (6.7)-(6.9) we deduce that (6.6) holds and the

claim is proved. �

Proof of Theorem 6.4. i) For that, we use Theorem 4.1, by proving that the function
H : Lp1(R, X) → BSqR, Y ) defined by H(u)(t) = f(t, u(t)) for t ∈ R is well-defined and
continuous. For u ∈ Lp1(0, 1;X), from Hypothesis (H1) we have

sup
t∈R

(∫ 1

0

‖f(t+ θ, u(t+ θ)‖q dθ
) 1

q

≤ a ‖u‖
p
q

Sp + ‖b‖Sq < +∞,

then the function H is well-defined. Now we state that H is continuous. For that we
consider a sequence (uk)k≥0 in Lp1(R, X) such that uk → u in Lp1(R, X) as k → +∞. We
want to show H(uk)→ H(u) in BSq(R, Y ) as k → +∞, for that we use Proposition 5.8.
From Lemma 6.14, we have

∀ε > 0, lim
k→∞

sup
n∈Z

(
meas ({θ ∈ (0, 1) ; ‖f(n + θ, uk(θ))− f(n + θ, u(θ))‖ > ε})

)
= 0.

By using the invariance by translation of the Lebesgue’s measure on R and the fact that
uk and u are 1-periodic, we deduce that

∀ε > 0, lim
k→∞

sup
n∈Z

(
meas ({s ∈ (n, n + 1) ; ‖H(uk)(s)− H(u)(s)‖ > ε})

)
= 0.
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Moreover for a measurable set E ⊂ R, we have

sup
t∈R

(
meas (E ∩ (t, t + 1))

)
≤ 2 sup

n∈Z

(
meas (E ∩ (n, n + 1))

)
,

then

(6.10) ∀ε > 0, lim
k→∞

sup
t∈R

(
meas ({s ∈ (t, t + 1) ; ‖H(uk)(s)− H(u)(s)‖ > ε})

)
= 0.

From Hypothesis (H1) it follows that for a measurable set E ⊂ (t, t+ 1)

(6.11)

(∫
E

‖H(uk)(s)‖q ds
) 1

q

≤ a

(∫
E

‖uk(s)‖p ds
) 1

q

+

(∫
E

‖b(s)‖q ds
) 1

q

.

The set {uk ; k ∈ N} is relatively compact in Spaa(R, X), since uk → u in Lp1(R, X) ⊂
Spaa(R, X) as k → +∞. Moreover the finite set {b} is compact in Spaa(R, X). Then by
using Proposition 5.4, the sets {uk ; k ∈ N} and {b} are Stepanov q-uniformly integrable.
From (6.11), we deduce that the subset {H(uk) ; k ∈ N} of BSq(R, Y ) is Stepanov q-
uniformly integrable. By using (6.10) and Proposition 5.8, we deduce that H(uk)→ H(u)
in BSq(R, Y ) as k → +∞.

ii) The proof is similar to i) by using Theorem 4.2. �

6.2.2. Proof of Theorem 6.6. For that we use the following lemma.

Lemma 6.15. Let u : R→ X be a map.

i) If v ∈ AP (R, Y ) and u, v satisfy

(6.12) ∀ε > 0, ∃M > 0, ∀t1, t2 ∈ R, ‖u(t1)− u(t2)‖X ≤
ε

2
+M ‖v(t1)− v(t2)‖Y ,

then u ∈ AP (R, X).

ii) If v ∈ AA(R, Y ) and u, v satisfy (6.12), then u ∈ AA(R, X).

Proof. From (6.12), we deduce that if v is continuous, then u is also one.

i) For u ∈ C(R, X), let us denote by P(u, ε) the set of ε-almost periods of u. From

(6.12), we deduce that P(v,
ε

2M
) ⊂ P(u, ε), then i) holds.

ii) By assumption, v ∈ AA(R, Y ), then for all sequence of real numbers (t′n)n∈N admits
a subsequence denoted by (tn)n∈N such that

(6.13) ∀t ∈ R, lim
n→∞

v(t+ tn) = v∗(t) and lim
k→∞

v∗(t− tn) = v(t).

From (6.12) for all ε > 0, there exists M > 0 such that

(6.14) ∀t ∈ R, ‖u(t+ tn)− u(t+ tm)‖X ≤
ε

2
+M ‖v(t+ tn)− v(t+ tm)‖Y .

We deduce that (u(t+ tn))n∈N is a sequence of Cauchy, then there exists u∗ such that

(6.15) ∀t ∈ R, lim
n→∞

u(t+ tn) = u∗(t).

We fix ε > 0. By passing to the limit as m→∞ on (6.14), we obtain

∀t ∈ R, ‖u(t+ tn)− u∗(t)‖X ≤
ε

2
+M ‖v(t+ tn)− v∗(t)‖Y ,
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then by replacing t by t− tn, we have

(6.16) ∀t ∈ R, ‖u(t)− u∗(t− tn)‖X ≤
ε

2
+M ‖v(t)− v∗(t− tn)‖Y .

From (6.13) and (6.16), we deduce that lim sup
n→+∞

‖u(t)− u∗(t− tn)‖X ≤
ε

2
for each ε > 0,

then

(6.17) ∀t ∈ R, lim
k→∞

u∗(t− tn) = u(t).

From (6.15) and (6.17), we have u ∈ AA(R, X). �

Proof of Theorem 6.6. For this, we prove that the hypotheses of Theorem 6.4 are
equivalent to those of Theorem 6.6. Suppose that (H1) hold. We have to prove that the
following assertions are equivalent:

i) For all compact set K ⊂ X, f̃K ∈ Sqaa(R, C(K,Y )) (resp. f̃K ∈ Sqap(R, C(K,Y ))).

ii) (H2)-(H3) and f(·, x) ∈ Sqaa(R, Y ) (resp. f(·, x) ∈ Sqap(R, Y )) for all x ∈ X.

i) =⇒ ii) For each compact set K ⊂ X, f̃K(t) = f(t, ·) ∈ C(K,Y ): f(t, ·) is continuous
on K, then f(t, ·) is continuous on X as continuous function on each compact of X. So
Hypothesis (H2) holds. Let x ∈ X. f(·, x) ∈ Sqaa(R, Y ) (resp. f(·, x) ∈ Sqap(R, Y ))

results of f̃K ∈ Sqaa(R, C(K,Y )) (resp. f̃K ∈ Sqap(R, C(K,Y ))) by setting K = {x}. It

remains to state that (H3) holds. From Proposition 5.4, f̃K is Stepanov tight, then
there exist a compact set K of C(K,Y ) and a Lebesgue measurable set N ⊂ R, such that

sup
t∈R

(
meas ((t, t + 1) ∩ N)

)
< r and f̃K(t) ∈ K for all t ∈ R\N . Then by Ascoli Theorem,

the family
{
f̃K(t) ; t ∈ R \N

}
is equi-uniformly continuous, that is ∀ε > 0, ∃δ > 0, ∀x1,

x2 ∈ K, ∀t ∈ R \N , ‖x1 − x2‖ ≤ δ =⇒ ‖f(t, x1)− f(t, x2)‖ ≤ ε. Therefore (H3) holds.

ii) =⇒ i) Let us denote by αKδ defined by (6.2) in Remark 6.3 where K ⊂ X is a

compact set. From Hypothesis (H1) we deduce that 0 ≤ αKδ (t) ≤ 2

(
a sup
x∈K
‖x‖

p
q + b(t)

)
where a sup

x∈K
‖x‖

p
q + b(·) ∈ Sqaa(R). Then αKδ ∈ BSq(R). From Proposition 5.4, the

function a sup
x∈K
‖x‖

p
q + b(·) is Stepanov p-uniformly integrable, then αKδ is also one. From

the characterization of Hypothesis (H3) given in i) in Remark 6.3, we deduce that

∀ε > 0, lim
δ→0

sup
t∈R

(
meas

({
s ∈ (t, t + 1) ;

∣∣αK
δ (s)

∣∣ ≥ ε
}))

= 0.

Then by using Proposition 5.8, we have

(6.18) lim
δ→0

∥∥αKδ ∥∥Sq = 0.

For x ∈ X, let us denote by fx the function f(·, x). Since fx ∈ Lqloc(R, Y ), the map

F : R×X → Lq(0, 1;Y ) defined by F (t, x) = (fx)
b(t)

is well-defined. If fx ∈ Sqaa(R, Y ) for all x ∈ X, the function F : X → AA(R, Lq(0, 1;Y ))
with F (x) = F (·, x) = (fx)

b is well-defined. For all compact set K ⊂ X, for all δ > 0, for
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all x1 and x2 ∈ K such that ‖x1 − x2‖ ≤ δ, one has

‖F (x1)− F (x2)‖ = sup
t∈R
‖F (t, x1)− F (t, x2)‖Lq ≤

∥∥αKδ ∥∥Sq .
Then by using (6.18), we deduce that F is continuous each compact K ⊂ X, therefore
F ∈ C(X,AA(R, Lq(0, 1;Y ))). From Theorem 2.4, we can assert that for every compact
set K ⊂ X, the function

F : R→ C(K,Lq(0, 1;Y )) defined by F (t) = F (t, ·)

satisfies

(6.19) F ∈ AA(R, C(K,Lq(0, 1;Y )) if ∀x ∈ X, fx ∈ Sqaa(R, Y ).

By using Theorem 2.2, we state in the same way that

(6.20) F ∈ AP (R, C(K,Lq(0, 1;Y )) if ∀x ∈ X, fx ∈ Sqap(R, Y ).

Fix a compact set K ⊂ X. By using Lemma 6.8, we have f̃K ∈ Lqloc(R, C(K,Y )). Fix
ε > 0. From (6.18), one has

(6.21) ∃δ∗ > 0 such that
∥∥αKδ∗∥∥Sq ≤ ε

4
.

Since K is a compact set, there exist x1, x2, · · · , xN such that K ⊂
⋃N
i=1B(xi, δ∗). Let

x ∈ K. There exists j ∈ {1, 2, · · · , N} such that ‖x− xj‖ ≤ δ∗. From the inequality

‖f(t1, x)− f(t2, x)‖ ≤ ‖f(t1, x)− f(t1, xj)‖+
∥∥fxj(t1)− fxj(t2)∥∥+ ‖f(t2, xj)− f(t2, x)‖ ,

we deduce that

sup
x∈K
‖f(t1, x)− f(t2, x)‖ ≤ αKδ∗(t1) + αKδ∗(t2) +

N∑
i=1

‖fxi(t1)− fxi(t2)‖ .

Then ∥∥∥(f̃K)b(t1)− (f̃K)b(t2)
∥∥∥
Lq(0,1;C(K,Y ))

≤
∥∥(αKδ∗)b(t1)

∥∥
Lq

+
∥∥(αKδ∗)b(t2)

∥∥
Lq

+
N∑
i=1

‖F (t1, xi)− F (t2, xi)‖Lq

≤ 2
∥∥αKδ∗∥∥Sq +N sup

x∈K
‖F (t1, x)− F (t2, x)‖Lq .

By using (6.21) and
∥∥F (t1)− F (t2)

∥∥
C(K,Lq(0,1;Y ))

= sup
x∈K
‖F (t1, x)− F (t2, x)‖Lq , we have∥∥∥(f̃K)b(t1)− (f̃K)b(t2)

∥∥∥
Lq(0,1;C(K,Y ))

≤ ε

2
+N

∥∥F (t1)− F (t2)
∥∥
C(K,Lq(0,1;Y ))

.

From Lemma 6.15 and (6.19), we deduce that (f̃K)b ∈ AA(R, Lq(0, 1;C(K,Y )) if fx ∈
Sqaa(R, Y ) for all x ∈ X. Then f̃K ∈ Sqaa(R, C(K,Y )). For similar reasons with (6.20)

(instead of (6.19)) we have f̃K ∈ Sqap(R, C(K,Y )) if fx ∈ Sqap(R, Y ) for all x ∈ X. �
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7. Example

In this section, we explain why the two equivalent theorems 6.4 and 6.6 of the previous
section provide an improvement and a generalization of the known results. For that we
consider the following simple example: X is a Banach space and f : R ×X → X is the
function defined by f(t, x) = sin(a(t)e‖x‖)x where a ∈ Spaa(R) (resp. a ∈ Spap(R)). We
establish that Theorem 6.6 allows us to conclude, then we show that the assumptions of
the known results [4, 5, 16, 17, 19, 22] are not all verified.

First we show that the assumptions of Theorem 6.6 are satisfied for this example. It
is obvious that Hypothesis (H2) holds and that it is the same for Hypothesis (H1) with
p = q ≥ 1. We have also f(·, x) ∈ Lploc(R, Y ). Let K ⊂ X be a compact set. Then from

Lemma 6.8, we have f̃K ∈ Lploc(R, C(K,Y )). From the following inequality

‖f(t1, x)− f(t2, x)‖ ≤ ‖x‖ e‖x‖ |a(t1)− a(t2)|

with R = supx∈K ‖x‖ < +∞, we obtain

sup
x∈K
‖f(t1, x)− f(t2, x)‖ ≤ ReR |a(t1)− a(t2)| .

Then we have ∥∥∥(f̃K)b(t1)− (f̃K)b(t2)
∥∥∥
Lp
≤ ReR

∥∥ab(t1)− ab(t2)∥∥Lp .
By using Lemma 6.15, we deduce that f̃K ∈ Spaa(R, C(K,Y )) (resp. f̃K ∈ Spap(R, C(K,Y )))
if a ∈ Spaa(R) (resp. a ∈ Spap(R)). Then all assumptions of Theorem 6.6 are fulfilled.

Secondly in the literature [5, 16, 17, 19, 22], except Andres et al. [4], the authors use
the Lipschitzian condition (4.9) to state that the operator of Nemytskii maps Spaa(R, X)
into itself or maps Spap(R, X) into itself. In our example the function f does not satisfy
(4.9) if a is not the null function. To see that, we choice t0 ∈ R such that a(t0) 6= 0

and x0 ∈ X such that ‖x0‖ = 1 and we denote by εk = ln

(
1 +

1

2k

)
, sk = ln

(
kπ

|a(t0)|

)
,

xk = skx0 and yk = (sk + εk)x0 for k ∈ N \ {0}. Then for k ∈ N enough large such that
sk > 0, we have

‖f(t0, yk)− f(t0, xk)‖
‖yk − xk‖

=
‖f(t0, yk)‖

εk
= 1 +

sk
εk
→ +∞ ( as k → +∞).

Then f does not satisfy the Lipschitzian condition (4.9).

Here we explain why results [4, Lemma 3.2, Proposition 3.4] of Andres et al. are
unusable on our example. If a(t) 6= 0, we cannot use [4, Proposition 3.4] which is described
in Remark 6.7, since sup

x∈X
‖f(t, x)‖ = sup

x∈X

∣∣sin(a(t)e‖x‖)
∣∣ ‖x‖ = +∞. By using Corollary

6.13, we can assert that the Nemytskii operator associated to the function g : X → R
defined by g(x) = e‖x‖ does not map Spaa(R, X) into Spaa(R) when the Banach space X
is separable. Then in the particular case where a(t) = 1 for all t ∈ R, we cannot use [4,
Lemma 3.2] which is described in Remark 6.11 to conclude.

For theses reasons Theorem 6.6 provides an improvement and a generalization of these
results. It is the same for the equivalent Theorem 6.4.
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