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a b s t r a c t 

Sparse Mobile Crowdsensing (MCS) is a novel MCS paradigm which allows us to use the mobile devices 

to collect sensing data from only a small subset of cells (sub-areas) in the target sensing area while 

intelligently inferring the data of other cells with quality guarantee. Since selecting sensed data from 

different cell sets will probably lead to diverse levels of inference data quality, cell selection (i.e., choosing 

which cells in the target area to collect sensed data from participants) is a critical issue that will impact 

the total amount of data that requires to be collected (i.e., data collection costs) for ensuring a certain 

level of data quality. To address this issue, this paper proposes the reinforcement learning-based cell 

selection algorithm for Sparse MCS. First, we model the key concepts in reinforcement learning including 

state, action, and reward, and then propose a Q-learning based cell selection algorithm. To deal with the 

large state space, we employ the deep Q-network to learn the Q-function that can help decide which 

cell is a better choice under a certain state during cell selection. Then, we modify the Q-network to 

a deep recurrent Q-network with LSTM to catch the temporal patterns and handle partial observability. 

Furthermore, we leverage the transfer learning techniques to relieve the dependency on a large amount of 

training data. Experiments on various real-life sensing datasets verify the effectiveness of our proposed 

algorithms over the state-of-the-art mechanisms in Sparse MCS by reducing up to 20% of sensed cells 

with the same data inference quality guarantee. 

© 2019 Published by Elsevier B.V. 
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1. Introduction 

Mobile crowdsensing (MCS) [3] is a novel sensing mechanism,

which allows us to use the ubiquitous mobile devices to address

various urban monitoring needs in environment and traffic mon-

itoring [29] . While the traditional MCS applications usually re-

cruit many participants in order to cover all the cells (i.e., sub-

areas) of the target area to ensure sensing quality. This costs a

lot and may even be impossible (e.g., there is no participant in

some cells) [18,19,28] . To deal with these problems, a new MCS

paradigm, namely Sparse MCS , is proposed recently [21,23] , which

collects data from only a subset of cells while intelligently infer-
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ing the data of other cells with quality guarantee (i.e., the error of

nferred data is lower than a threshold). 

In Sparse MCS, one key issue is cell selection — which cells the

rganizer needs to choose and collect sensed data from participants

21] . To show the importance of cell selection, Fig. 1 (left part)

ives an illustrative example of two different cell selection cases

n a city, which is split into 4 × 4 cells. In Case 1.1, all the selected

ells are gathered in one corner of the city; in Case 1.2, the col-

ected data is evenly distributed in the whole city. As the data of

ost sensing tasks has spatial correlations (i.e., nearby cells may

ave similar data), e.g., air quality [30] , the cell selection of Case

.2 will generate a higher inference quality of the inferred data

han Case 1.1. Moreover, a MCS campaign usually lasts for a long

ime (i.e., sensing every one hour), so that not only spatial corre-

ations, but also temporal correlations need to be carefully consid-

red in cell selection. As shown in Fig. 1 (right part), sensing the

ame cells in continuous cycles (Case 2.1) may not be as efficient

s sensing the different cells (Case 2.2) considering the inference
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Fig. 1. Different cell selection cases. 

q  

v  

a  

t

 

C  

i  

a  

r  

Q  

i  

a  

o  

a  

i  

w  

f

 

c  

i  

s  

s  

s  

r  

‘  

t  

l  

l  

l  

c  

c  

d  

t  

S

 

S  

m  

d  

i  

s  

w  

t  

i  

i  

t  

c  

S

 

w  

a  

i  

a  

r  

t  

t  

f  

p  

a  

a  

t  

f  

i  

d  

s  

p  

t  

i  

t  

f

 

t  

c  

i  

o  

d

 

c  

r  

r  

s  

w  

w  

p  

c  

T  

s  

b  

b  

p

 

q  

p  

o  

t  

M

 

r  

t  

l  

a  

p  

t  

p

2

2

 

s  

m  

a  
uality. Therefore, the data of different MCS applications may in-

olve diverse spatio-temporal correlations, which is hard to model

nd determine, so the proper cell selection strategy is a non-trivial

ask. 

Existing works on Sparse MCS mainly leverage Query-By-

ommittee (QBC) [20,23] in cell selection. QBC first uses various

nference algorithms to deduce the data of all the unsensed cells,

nd then chooses the cell where the inferred data of various algo-

ithms has the largest variance as the next cell for sensing. Briefly,

BC chooses the most uncertain cell considering a committee of

nference algorithms, which deals with the cell selection skilfully

nd has shown its effectiveness as a whole [20,23] . However, QBC

nly chooses the cell which is the most uncertain at that moment,

nd ignores whether the current selection would help the inferring

n the future or not. For example, as shown in Fig. 1 (right part), if

e select one cell at time t k , it would help the inferring not only

or this moment but also for the subsequent instant t k +1 . 

To overcome these limitations, in this paper, we study the criti-

al cell selection problem in Sparse MCS, with reinforcement learn-

ng, which can capture the spatio-temporal correlations in the

ensing data and approximate the global optimal strategy for cell

election. In recent years, reinforcement learning has shown its

uccesses in decision making problems in diverse areas such as

obot control and game playing [11,16] , which can be abstracted as

an agent needs to decide the action under a certain state , in order

o maximize some notions of cumulative reward ’. Reinforcement

earning tries out different actions, observes the rewards and thus

earns the optimal decisions for each state. Our cell selection prob-

em can be actually interpreted as ‘ an MCS server (agent) needs to

hoose the next cell for sensing (action) considering the data already

ollected (state), in order to minimize the number of sensed cells un-

er a quality guarantee (reward)’. In this regard, it is appropriate

o apply reinforcement learning on the cell selection problem in

parse MCS. 

By using reinforcement learning, the cell selection problem in

parse MCS can be well solved. First of all, a model-free reinforce-

ent learning method can record which cell would help most un-

er a certain state through trial and error. In fact, trial and error

s exactly the fundamental idea of reinforcement learning. After

ufficient training, reinforcement learning would record all the re-

ards for each state-action pair and select the action which has

he biggest reward under the state. Moreover, reinforcement learn-

ng adds the reward attainable from the future state to the reward

n its current state, effectively influencing the current selection by

he potential reward in the future. Thus, reinforcement learning

an approximate the global optimal strategy for cell selection in

parse MCS. 
To effectively em ploy reinforcement learning in cell selection,

e face several issues. (1) How to mathematically model the state,

ction, and reward , which are key concepts in reinforcement learn-

ng [17] . Briefly speaking, reinforcement learning attempts to learn

 Q-function which takes the current state as input, and generates

eward scores for each possible action as output. Then, we can take

he action with the highest reward score as our decision. (2) How

o learn the Q-function. Traditional Q-learning techniques in rein-

orcement learning use tables to store rewards for each state-action

air. It works well in the scenarios where the number of states and

ctions is limited. However, in Sparse MCS, the number of states is

ctually quite large. We propose to use a neural network to replace

he table, i.e., leveraging deep reinforcement learning to learn Q-

unction for our cell selection problem. (3) The training data scarcity

ssue. Usually, deep reinforcement learning requires a lot of training

ata to learn Q-function. However, in MCS, we could only obtain a

mall amount of data for training. To deal with this problem, we

ropose to collect a small amount of redundant data to conduct

he effective training by random combination. Moreover, we try to

ntroduce the transfer learning technique, in order to make use of

he well trained Q-function and reduce the required training data

or heterogeneous sensing tasks in similar target area. 

In summary, this work has the following contributions: 

(1) To the best of our knowledge, this work is the first research

hat attempts to leverage the reinforcement learning to address the

ritical cell selection issue in Sparse MCS. We believe that using re-

nforcement learning would be a promising way to solve such kind

f decision making problems, especially when we cannot obtain a

irect solution and the decisions have long-term utilities. 

(2) We propose the reinforcement learning-based algorithms for

ell selection in Sparse MCS. First, we model the state, action , and

eward and propose a tabular Q-learning based algorithm, which

ecords the reward scores for each state-action pair in tables. Con-

idering the extremely large state space, we employ a neural net-

ork instead of tables and learn a Q-function to calculate the re-

ard scores. Since the neural network cannot catch the temporal

atterns and handle partial observability well, we propose a re-

urrent deep neural network structure, which uses a Long-Short-

erm-Memory layer instead of the dense layer. Finally, we collect a

mall amount of redundant data to conduct the effective training

y random combination and propose a transfer learning method

etween heterogeneous sensing tasks, in order to relieve the de-

endence on a large amount of training data. 

(3) Experiments with applications in temperature, humidity, air

uality and traffic monitoring have verified the effectiveness of our

roposed algorithms. In particular, our proposed algorithms can

utperform the state-of-the-art mechanism QBC by selecting up

o 20% fewer cells while guaranteeing the same quality in Sparse

CS. 

The remainder of the paper is organized as follows. Firstly, we

eview related works in Section 2 . The problem formulation are in-

roduced in Section 3 . In Section 4 , we propose the reinforcement

earning-based cell selection algorithms and discuss the training

nd transfer learning method. Then, the performances of the pro-

osed algorithms are evaluated through extensive simulations over

hree real world datasets in Section 5 . Finally, we conclude this pa-

er in Section 6 . 

. Related works 

.1. Sparse mobile crowdsensing 

MCS is proposed to utilize widespread crowds to perform large-

cale sensing tasks [3,29] . Existing works in MCS mainly recruit

any participants to ensure sensing quality [18,19,28] , which costs

 lot and may even be impossible. To minimize sensing cost while
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ensuring data quality, some MCS tasks involve inference algorithms

to fill missing data of unsensed cells, such as noise sensing [12] ,

traffic monitoring [31] , and air quality sensing [20] . It is worth

noting that in such MCS tasks, compressive sensing has become

the de facto choice of the inference algorithm [12,20,23,27,31] . Re-

cently, by extracting the common research issues involved in such

tasks involving data inference, Wang et al. [21] proposed a new

MCS paradigm, called Sparse MCS . Besides the inference algorithm,

Sparse MCS also abstracts other critical research issues such as cell

selection and quality assessment . Later, privacy protection mecha-

nism was also added into Sparse MCS [22] . In this paper, we focus

on the cell selection and aim to use deep reinforcement learning

techniques to address it. 

2.2. Reinforcement learning 

Reinforcement Learning (RL) [17] is concerned with how to map

states to actions so as to maximize the cumulative rewards. It uti-

lizes rewards to guide the agent to do the better sequential de-

cisions, and has substantive and fruitful interactions with other

engineering and scientific disciplines. Recently, many researchers

focus on combining deep learning with reinforcement learning

to enhance RL in order to solve concrete problems in the sci-

ences, business, and other areas. Mnih et al. [10] proposed the first

deep reinforcement learning model (DQN) to deal with the high-

dimensional sensory input successfully and apply it to play seven

Atari 2600 games. More recently, Silver et al. [15] applied DQN

and present AlphaGo , which was the first program to defeat world-

class players in Go. Moreover, to deal with the partially observable

states, Hausknecht and Stone [6] introduced a deep recurrent neu-

ral network (DRQN), and applied it to play Atari 2600 games. Lam-

ple and Chaplot [9] even used DRQN to play FPS Games. 

Although the reinforcement learning has already been used in

a variety of areas, like object recognition, robot control, and com-

munication protocol [17] , MCS researchers just began to apply it

very recently. Xiao et al. [24] formulated the interactions between

a server and vehicles as a vehicular crowdsensing game. Then they

proposed the Q-learning based strategies to help server and vehi-

cles make the optimal decisions for the dynamic game. Moreover,

Xiao et al. [25] applied Deep Q-Network to derive the optimal pol-

icy for the Stackelberg game between a MCS server and the smart-

phone users. As far as we know, this paper is the first research

attempts to use reinforcement learning in cell selection of sparse

MCS, so as to reduce the recruited participants while still guaran-

teeing the data quality. 

3. System model and problem formulation 

First, we define several key concepts, and introduce the com-

pressive sensing for data inference and Bayesian inference for qual-

ity assessment briefly. Then we mathematically formulate the cell

selection problem in Sparse MCS. Finally, a running example is il-

lustrated to explain our problem in more details. 

3.1. Definitions 

Definition 1. Sensing Area. We suppose that the target sensing

area can be split into a set of cells (e.g., 1 km × 1 km grids [23,30] ).

The objective of a sensing task is to get a certain type of data (e.g.,

temperature, air quality) of all the cells in the target area. 

Definition 2. Sensing Cycle. We suppose the sensing tasks can be

split into equal-length cycles, and the cycle length is determined

by the MCS organizers according to their requirements [23,26] . For

example, if an organizer wants to update the data of the target

sensing area every one hour, then he can set the cycle length to

one hour. 
Definition 3. Ground Truth Data Matrix. Suppose we have m cells

nd n cycles, then for a certain sensing task, the ground truth data

atrix is denoted by D m ×n , where D[ i, j] is the true data in cell i

t cycle j . 

Definition 4. Cell Selection Matrix. In Sparse MCS, we will only

elect partial cells in each cycle for data collection, while inferring

he data for the rest cells. Cell selection matrix, denoted as C m ×n ,

arks the cell selection results. C[ i, j] = 1 means that the cell i is

elected at cycle j for data collection; otherwise, C[ i, j] = 0 . 

Definition 5. Collected Data Matrix. A collected sensing data ma-

rix S m ×n records the actual collected data: S m ×n = D ◦ C, where ◦
enotes the element-wise product of two matrices. 

Definition 6. Inferred Data Matrix. In Sparse MCS, when an or-

anizer decides not to collect any more data in the current cycle,

he data of unsensed cells will then be inferred. Then, we denote

he inferred data of the k th cycle as ˆ D [: , k ] , and thus the inferred

ata of all the cycles as a matrix ˆ D m ×n . Note that in Sparse MCS,

ompressive sensing is the de facto choice of the data inference al-

orithm nowadays [12,20,23,27,31] , and we also use it in this work.

Definition 7. (e, p)-quality [23] . In Sparse MCS, the quality guar-

ntee is called (e, p)-quality , meaning that in p · 100% of cycles, the

nference error (e.g., mean absolute error) is not larger than e . For-

ally, 

{ k | er ror (D [: , k ] , ˆ D [: , k ]) ≤ e, 1 ≤ k ≤ n }| ≥ n · p, (1)

here n is the number of total sensing cycles. 

Note that in practice, since we do not know the ground truth

ata matrix D, we also cannot know whether er ror (D [: , k ] , ˆ D [: , k ])

s smaller than e in the current cycle with 100% confidence. This

s why we include p in the quality requirement, as it is impossible

o ensure 100% of cycles’ error less than e . To ensure ( e, p )-quality,

ertain quality assessment method is needed in Sparse MCS to es-

imate the probability of the error less than e for the current cycle.

f the estimated probability is larger than p , then the current cycle

atisfies ( e, p )-quality and no more data will be collected (we will

hen move to the next sensing cycle). In Sparse MCS, leave-one-

ut based Bayesian inference method is often leveraged for quality

ssessment [20,21,23] , and we also use it in this work. 

.2. Data inference 

Compressive sensing is the de facto choice to infer the full sens-

ng matrix from the partially collected sensing values and has

hown its effectiveness in some scenarios [20,23] . It reconstructs

he full sensing matrix ˆ D based on the low-rank property: 

min rank ( ̂  D ) (2)

 . t . , ˆ D ◦ C = S, (3)

here ˆ D ◦ C is the element-wise product of the inferred full sens-

ng matrix and cell selection matrix, and S is the collected data

atrix. 

With the help of the singular value decomposition, i.e ., ˆ D = LR T ,

e convert the above optimization problem as follows [31] : 

in λ(‖ L ‖ 

2 
F + ‖ R ‖ 

2 
F ) + ‖ LR 

T ◦ C − S‖ 

2 
F . (4)

Moreover, in order to better capture the spatio-temporal corre-

ations in the sensing data, we further add the explicit spatiotem-

oral correlations into compressive sensing [8,13] , and the opti-

ization function is denoted by Eq. (5) : 

in λr (‖ L ‖ 

2 
F + ‖ R ‖ 

2 
F ) + ‖ LR 

T ◦ C − S‖ 

2 
F 

+ λs ‖ S (LR 

T ) ‖ 

2 
F + λt ‖ (LR 

T ) T 

T ‖ 

2 
F , (5)

here S and T are spatial and temporal constraint matrices, while

r , λs , and λt are chosen to balance the weights of different el-

ments in the optimization problem. Then we use an alternating
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east squares [8,13] procedure to estimate L and R iteratively, in or-

er to get the optimal ˆ D ( ̂  D = LR T ). 

.3. Quality assessment 

In this paper, the leave-one-out based Bayesian inference is

sed to assess the inference quality. First, we use the leave-one-out

esampling to obtain the set of inferred-true data pairs. Then, com-

aring the inferred data to the true collected data, the Bayesian in-

erence is leveraged to assess whether the current data quality can

atisfy the predefined ( e, p )-quality requirement or not. 

The basic idea of leave-one-out resampling is simple but effec-

ive. Consider that we collect sensing data from m 

′ out of all the

 cells and thus we have m 

′ observations. For each time, we leave

ne observation out and infer it based on the rest m 

′ − 1 observa-

ions by using compressive sensing. After running this process for

ll m 

′ observations, we obtain m 

′ inferred-true data pairs. 

Based on the m 

′ inferred-true data pairs, we can use Bayesian

nference to estimate the probability distribution of the inference

rror E in all the m cells, which can help quality assessment. Ac-

ually, satisfying the ( e, p )-quality can be seen as P (E ≤ e ) ≥ p. We

egard E as an unknown parameter and update the probability dis-

ribution of E based on our observation θ ( m 

′ inferred-true data

airs). Therefore, we can approximate P (E ≤ e ) : 

 (E ≤ e ) ≈
∫ e 

−∞ 

g(E | θ ) dE , (6) 

here g(E| θ ) is the estimated probability distribution of E . For

wo widely used error metrics, mean absolute error (for continu-

us value) and classification error (for classification label), calculat-

ng the g(E| θ ) based on the observation can be seen as the classic

ayesian statistics problem: inferring normal mean with unknown

ariance and Coin Flipping , and then we can calculate the g(E| θ )

y t -distribution [1] and Beta distribution [4] , respectively. 

.4. Problem formulation 

Based on the previous definitions and the brief introduction on

ompressive sensing and Bayesian inference used in this paper, we

efine our research problem and focus on the cell selection. 

Problem [Cell Selection]: Given a Sparse MCS task with m

ells and n cycles, using compressive sensing as data inference

ethod and leave-one-out based Bayesian inference as quality

ssessment method, we aim to select a minimal subset of sens-

ng cells during the whole sensing process ( minimize the num-

er of non-zero entries in the cell-selection matrix C), while sat-

sfying ( e, p ) -quality: 

min 

m ∑ 

i =1 

n ∑ 

j=1 

C[ i, j] 

 . t . , satisfy (e, p) −quality 

We now use a running example to illustrate our problem in

ore details, as shown in Fig. 2 . (1) Consider that the MCS task
Fig. 2. Running example. 
nly have 5 cells and it is currently in the 5th cycle; (2) By using

he cell selection algorithms, we select cell 3 to collect the sensing

ata, and then use the compressive sensing and Bayesian inference

o assess whether the selected cells in this cycle can satisfy ( e, p )-

uality; (3) Since the current cycle cannot satisfy the quality re-

uirement, we continue to select cell 5 for collecting data; (4) The

uality requirement is now satisfied, so the data collection is ter-

inated for the current cycle, and the data of the unsensed cells is

nferred by compressive sensing. In this example, we totally obtain

1 data submissions for these 5 cycles and our objective is exactly

o minimize the number of data submissions while ensuring the

uality. In addition, we should notice that maybe some cells can-

ot be sensed at the current sensing cycle (e.g., there are no users

n these cells). In practical use, we first update a candidate cell set,

n which cells can be sensed in the current sensing cycle, and then

elect the next cell to sense from the candidate cell set. 

. Methodology 

In this section, we propose the reinforcement learning-based

lgorithms to address the cell selection problem in Sparse MCS.

irst, we will mathematically model the state, reward, and action.

hen, with a simplified MCS task example (i.e., there are only a

ew cells in the target area), we explain how traditional reinforce-

ent learning find the most appropriate cell for sensing based on

ur state, action, and reward modeling. Afterward, we elaborate

ow deep learning can be combined with reinforcement learning

o work on more realistic cases of cell selection where the target

rea can include a large number of cells. Finally, we describe the

raining stage and explain how we can collect a small amount of

edundant data to conduct the effective training by random combi-

ation. Moreover, we introduce transfer learning technique to help

s generate a cell selection strategy with only a little training data

nder some specific conditions. 

.1. Modeling state, action, and reward 

To apply reinforcement learning on cell selection, we first

odel the key concepts in terms of state, action, and reward, as

hown in Fig. 3 . Specifically, under the state (consists of the cur-

ent data collection and some additional information), we should

earn a Q-function (will be elaborated in the next few subsections),

hich calculate the reward score for each action (choosing which

ell to collect the sensing data). If an action gets a higher reward

core, it may be a better choice. Next we formally model the three

oncepts. 

(1) State represents the current data collection condition. In

parse MCS, cell selection matrix (Definition 4) can naturally model

he state well, as it records both where and when we have col-

ected data from the target sensing area during the whole task. 
Fig. 3. State, action, reward in cell selection. 
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Fig. 4. An example of state model. 
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In this paper, we keep the recent k cycles’ cell selection ma-

trix and the last-time selection vector instead of the cell selection

matrix, called the recent-cycle selection and the last-time selec-

tion, denoted as [ s −k +1 , . . . , s −1 , s 0 , L ] . s 0 represents the cell selec-

tion vector of the current cycle (1 means selected and 0 means

no), s −1 represents last cycle, and so on; L records how long the

cells have not been selected. The recent-cycle selection only keeps

the recent selections, which avoids that the previous selections of

low value for data inference disturb the results. The last-time se-

lection has gathered more previous selections without missing too

much information. In addition, we should also add some necessary

information into the state, e.g., the time T for the strong temporal

correlations existing in many sensing tasks such as traffic monitor-

ing. 

Fig. 4 shows an example of how we encode the current data

collection condition into the state model. In this example, the re-

cent two cycles, a total of five cycles’ last-time selection, and time

are considered, and the state can be denoted as S = [ s −1 , s 0 , L , T ] .

Note that the value for cell 5 in last-time selection is 6, which

means that the last-time selection for cell 5 is out of range (a to-

tal of five cycles) and we set it as 5 + 1 = 6 . And the time T is set

according to the specific scene. For example, the data is collected

every one hour and the time T can be set as { 0 , 1 , . . . , 23 } , in order

to capture the strong temporal correlations. 

In addition, we use S to denote the whole set of states. As an

easy example, suppose that we only consider the recent-cycle se-

lection (two cycles) and ignore the last-time selection and time.

There are totally five cells in the target area, then the number of

possible states, i.e., | S | = 2 2 ×5 = 1024 , which is such a large state

space. 

(2) Action means all the possible decisions that we may make

in cell selection. Suppose there are totally m cells in the target

sensing area, then our next selected cell can have m choices, lead-

ing to the whole action set A = { 1 , 2 , · · · , m } . In practice, we will

not select one cell for more than once in one cycle, to make the ac-

tion set consistent under different states, we assume that the pos-

sible action set is always the complete set of all the cells under

any states. More specifically, if some cells have already been se-

lected in the current cycle, then the probability of choosing these

cells is zero. 

Note that we select cells one after another, since the multiple

cell selections at a time may lead to the large action space. Also

the reinforcement learning algorithms consider the potential re-

wards in the future. After sufficient training, the one-by-one se-

lection would achieve the largest total reward, which is the same

goal of the multiple selections at a time. 

(3) Reward is used to indicate how good an action is. In each

sensing cycle, we select actions one by one until the selected cells

can satisfy the quality requirement in the current cycle (i.e., in-

ference error less than e Satisfying this quality requirement is the

goal of cell selection and should be reflected in the reward model-

ing. Hence, a positive reward, denoted by R , would be given to an

R  
ction under a state S if the quality requirement is satisfied in the

urrent cycle after the action is taken. In addition, as selecting par-

icipants to collect data incurs cost, we also put a negative score

c in the reward modeling of an action. Then, the reward can be

ritten as R = q · R − c, where q ∈ {0, 1} means whether the action

akes the current cycle satisfy the inference quality requirement. 

While this reward is actually the immediate utility for one

tate-action pair. Considering that the current selection would help

he inferring in the future, we should add the reward attainable

rom the future state to the reward in its current state, which can

e simply denoted as R = R + R 

′ . R 

′ represents the next reward,

hich will be calculated iteratively. Suppose that we have n cycles

nd select m cells for each cycle in average to satisfy the quality

equirement, then we obtain the final reward as R = n (R − m · c) .

he different actions under a certain state would face the same n,

 , and c , while the action which will incur smaller m will achieve

 larger reward. Thus, our reward mechanism would guide the

gent to minimize the number of selected cells while ensuring the

ata quality. We would like to set a positive reward to accelerate

onvergence, i.e., set R ≥ m · c . While the values of R and c would

ot influence the performance after the Q-function has been well

rained, since the difference value between rewards only depends

n the number of selected cells. 

With the above modeling, we then need to learn the Q-function

see Fig. 3 ) which can output the reward score of every possi-

le action under a certain state. In the next subsection, we will

rst use a traditional reinforcement learning method, tabular Q-

earning, to illustrate a simplified case where a small number of

ells exist in the target sensing area. 

.2. Training Q-function with tabular Q-Learning 

In traditional reinforcement learning, the tabular Q-learning has

een widely used to obtain the Q-function. In this method, we can

se a Q-table to represent the Q-function. The Q-table, denoted as

 | S |×| A | , records the reward score for each possible action A ∈ A

nder the state S ∈ S . The objective of learning the Q-function is

hen equivalent to filling all the elements in the Q-table, or called

-value. 

The tabular Q-learning based cell selection algorithm is shown

n Algorithm 1 . Under the current state S , the algorithm first up-

ates the candidate action set A c , in which cells can be sensed

y users in the current sensing cycle and have not been selected.

hen, it checks the Q-table and selects the action who has the

argest value from Q[ S , A ] , ∀ A ∈ A c (in fact, not always the best

ction is selected, will be elaborated later). After the action has

een conducted, i.e . the cell has been selected and the data of the

ell has been collected, the current state will change to the next

tate S ′ . Note that if the current cycle satisfies the quality require-

ent (i.e., inference error less than e ), the next state will shift to

 new cycle. For the selected action, we would get the real reward

 (immediate utility) considering whether the inference quality re-
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Fig. 5. An illustrative example of tabular Q-learning. 

Algorithm 1 Tabular Q-learning based cell selection. 

Initialization: 

Q-table: Q[ S , A ] = 0 , ∀ S ∈ S , ∀ A ∈ A , L , T , A c 

1: while True do 

2: S = [ s −k , . . . , s −1 , s 0 , L , T ] 

3: Update A c , in which cells can be sensed in the current sens- 

ing cycle and have not been selected. 

4: Check Q-table, select and perform A from A c , which has the 

largest Q-value via the ε-greedy algorithm. 

5: if Satisfy the (e, p) -quality then 

6: // Next cycle 

7: s 1 = 0 m ×1 , S 
′ = [ s −k +1 , . . . , s 0 , s 1 , L 

′ , T ′ ] 
8: R = R − c 

9: else 

10: s ′ 0 = s 0 + [0 , · · · , 0 , 1 , 0 , · · · , 0] T (1 is in the A th element), 

S ′ = [ s −k , . . . , s −1 , s 
′ 
0 
, L ′ , T ] 

11: R = −c 

12: end if 

13: Update Q-table via (7) and (8). 

14: end while 
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uirement of the current cycle is satisfied. Then we should add the

ossible reward that we might get in the future iteratively and up-

ate Q-table according to the equations as follows 

[ S , A ] = (1 − α) Q[ S , A ] + α
(
R + γV (S ′ ) 

)
, (7) 

 (S ′ ) = max 
A ′ 

Q[ S ′ , A 

′ ] , ∀ A 

′ ∈ A (8) 

here V ( S ′ ) provides the highest expected reward score of the next

tate S ′ ; γ ∈ [0, 1] is the discount factor indicating the myopic

iew of the Q-learning regarding the future reward; α ∈ (0, 1] is

he learning rate. 

Note that if we always select the action with the largest reward

core in the Q-table, the algorithm may get a local optima. To ad-

ress this issue, we need to explore during training, i.e., sometimes

rying actions other than the best one. We thus use the ε−greedy

lgorithm before selection. More specifically, under a certain state,

e select the best action according to the Q-table with a proba-

ility 1 − ε and randomly select one of the other actions with the

robability ε. Following the existing literature, at the beginning of

he training, we set a relatively large ε so that we can try more;

hen, with the training process proceeds, we gradually reduce ε
ntil the Q-table is converged and then Algorithm 1 is terminated.
Fig. 5 illustrates an example of our proposed tabular Q-learning

ased cell selection algorithm. For simplicity, the discount factor

and the learning rate α are set to 1, and we only consider two

ecent cycles (i.e., the last and current one) as the states in this

xample. We suppose that there are five cells in the target area,

nd hence the state S has the dimension of 2 5 × 2 , as shown in

 0 , S 1 , and S 2 . The value 1 means that the cell has been selected

nd 0 means not. First, we initialize the table, i.e., all the values in

he Q-table are set to 0. When we first meet some states, e.g., S 0 ,

cores of all the actions in the Q-table under S 0 are 0 (Q-table: t 0 
n Fig. 5 ). We then randomly select one action since all the values

re equal. If we choose the action A 3 (select the cell 3), the state

urns to S 1 . Then we update Q[ S 0 , A 3 ] as the current score plus the

aximum score of the next state S 1 (i.e., future reward). The cur-

ent reward is −c since the current cycle cannot satisfy the quality

equirement ( c = 1 in the example). The maximum score for the

tate S 1 is 0 in the Q-table. Hence, we get Q[ S 0 , A 3 ] = −1 + 0 = −1

Q-table: t 1 in Fig. 5 ). Similarly, under S 1 , we choose A 5 . If these

elections could satisfy the quality, we get the current reward is

 − c = 4 ( R is set to 5, i.e., total number of cells). Also, the max-

mum possible reward of the next state S 2 is 0 in the current

-table. Then we update Q[ S 1 , A 5 ] = 5 − 1 + 0 = 4 (Q-table: t 2 in

ig. 5 ). After some rounds, we have met S 0 many times and maybe

electing other actions under S 0 is not good choice. And the Q-

able would be changed to Q-table: t k in Fig. 5 . This time, under

 0 , we check Q-table and find that A 3 has the largest value, so we

hoose and perform A 3 . Then, we update Q[ S 0 , A 3 ] = −1 + 4 = 3 ,

ince the maximum reward score of the next state S 1 is 4 (Q-table:

 k +1 in Fig. 5 ). Therefore, at the next times when we meet S 0 again,

e would probably choose the action A 3 , since it has the largest

eward score, which means that under the state S 0 , the action A 3 

ould give us the most return. 

The tabular Q-learning based algorithm can work well for an

CS task in a target area including a small number of cells, as

hown in the above example, while the practical MCS applica-

ions usually contain a large number of cells. Suppose there are

0 cells in the target area and we only consider recent 2 cycles

o model states, then the state space will become extremely huge,

 S | = 2 2 ×50 = 2 100 , which is intractable in practice. Moreover, if we

dd the last-time selection and some necessary information to give

 more comprehensive representation of the state, the state space

ill be even larger, known as the “curse of dimensionality”. To

vercome this difficulty, in the next subsection we will propose to

everage deep learning with reinforcement learning to train the de-

ision function for cell selection in Sparse MCS. 
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4.3. Training Q-function with deep reinforcement learning 

4.3.1. Deep Q-Network 

To overcome the problem incurred by the extremely large state

space in the cell selection, we then turn to use the Deep Q-

Network (DQN), which combines Q-learning with neural networks.

The difference between DQN and tabular Q-learning is that a neu-

ral network is used to replace the Q-table to deal with the dimen-

sion curse. In DQN, we do not need the Q-table lookups, but cal-

culate Q [ S, A ] for each state-action pair selection. More specifically,

the DQN inputs the current state and action, then it uses a neural

network to obtain an estimated value of Q [ S, A ], shown as 

Q(S , A ) = E 

[
R + γ max 

A ′ 
Q(S ′ , A 

′ ) 
]

(9)

In DQN, how to design the network structure impacts the ef-

fectiveness of the learned Q-function. One common way is using

dense layers to connect the input ( state ) and output ( a reward score

vector of all possible actions ). Actually, the network structure with

dense layers is appropriate for cell selection. It can handle hetero-

geneous inputs (consists of the recent two cycles, the last-time se-

lection, and time) and catch the comprehensive correlations in our

state. Thus, we use a neural network parameterized by θ to calcu-

late the Q-function, which consists of two fully connected layers. 2 

The state is fed into the fully connected layer and a linear layer

outputs the Q-values for all possible actions. 

The DQN-based cell selection algorithm, i.e., D-Cell , is summa-

rized in Algorithm 2 . Same as Q-learning, we first update the cur-

Algorithm 2 DQN/DRQN-based cell selection. 

Initialization: 

t = 0 , D = ∅ , L , T , A c 

Initialize DQN/DRQN with random weights θ
1: while True do 

2: S = [ s −k , . . . , s −1 , s 0 , L , T ] 

3: Update A c , in which cells can be sensed in the current sens-

ing cycle and have not been selected. 

4: Calculate Q-value by DQN/DRQN with θt via (9), select A

from A c with ε-greedy algorithm. 

5: if Satisfy (e, p) -quality then 

6: // Next cycle 

7: s 1 = 0 m ×1 , S 
′ = [ s −k +1 , . . . , s 0 , s 1 , L 

′ , T ′ ] 
8: R = R − c 

9: else 

10: s ′ 
0 

= s 0 + [0 , · · · , 0 , 1 , 0 , · · · , 0] T (1 is in the A th element),

S ′ = [ s −k , . . . , s −1 , s 
′ 
0 
, L ′ , T ] 

11: R = −c 

12: end if 

13: e t = 〈 S , A , R , S ′ 〉 → D 

14: Randomly select some e from D 

15: Calculate θt via (12)/(14) 

16: t++ 

17: if t% RPLACE _ ITER == 0 then 

18: θ ′ = θt 

19: end if 

20: end while 

rent state S . The state S is fed into the neural network and ob-

tain the Q-values. Then, we update the candidate action set A c and

select the action from A c with ε−greedy algorithm, which is also
2 How to design the network structure is an important research problem, while 

it is not the main concern of this paper. Some other network structures could be 

modified for cell selection to deal with the heterogeneous inputs. For example, we 

can use a convolutional neural network to pretrain the recent-cycle selection. Then, 

the results and the rest of our state are fed into the fully connected layers. 

4

 

t  

t  
sed in Q-learning to balance the exploration and exploitation. To

btain the estimation of the Q-value which approximates the ex-

ected one in (9) , our proposed DQN-based algorithm uses the ex-

erience replay technique [11] . After one selection, we obtain the

xperience at current time step t , denoted as e t = 〈 S , A , R , S ′ 〉 , and

he memory pool is D = { e 1 , e 2 , . . . , e t } . Then, the algorithm ran-

omly chooses part of the experiences to learn and update the

etwork parameters θ . The goal is to calculate the best θ to ob-

ain Q θ ≈ Q . The stochastic gradient algorithm is applied with the

earning rate α and the loss function is defined as follow, 

 (θt ) = E 〈 S , A , R , S ′ 〉 
[(

R + γ max A ′ Q θt 
(S ′ , A 

′ ) − Q θt 
(S , A ) 

)
2 
]

(10)

hus 

 θt 
L (θt ) = E 〈 S , A , R , S ′ 〉 

[(
R + γ max 

A ′ 
Q θt 

(S ′ , A 

′ ) 

−Q θt 
(S , A ) 

)∇ θt 
Q θt 

(S , A ) 
]

(11)

For each update, D-Cell randomly chooses part of experiences

rom D , then calculates and updates the network parameters θ .

oreover, to avoid the oscillations (i.e., the Q-function changes

uite rapidly in training), we apply the fixed Q-targets technique

11] . More specifically, we do not always use the latest network pa-

ameter θ t to calculate the maximum possible reward of the next

tate (i.e., max A ′ Q θt 
(S ′ , A 

′ ) ), but update the corresponding param-

ter θ ′ every a few iterations, i.e., 

 θt 
L (θt ) = E 〈 S , A , R , S ′ 〉 

[(
R + γ max 

A ′ 
Q θ ′ (S ′ , A 

′ ) 

−Q θt 
(S , A ) 

)∇ θt 
Q θt 

(S , A ) 
]

(12)

.3.2. Deep recurrent Q-Network 

In DQN-based cell selection, we use a neural network with two

ense layers to catch the correlations in our state. However, the

emporal correlations also exist in our states, but the DQN only fo-

us the single state and thus cannot catch the temporal pattern

ell. Moreover, the real-world tasks often feature incomplete and

oisy state information resulting from partial observability, lead-

ng to a decline in the DQN’s performance. We thus propose to

se LSTM (Long-Short-Term-Memory) layers instead of dense lay-

rs in DQN so as to catch the temporal patterns in our states and

andle partial observability, which is also called Deep Recurrent Q-

etwork (DRQN) [6] . More specifically, in DRQN-based cell selec-

ion, Q-function can be defined as, 

 θt 
(S , H t−1 , A ) (13)

here H t−1 is the extra input returned by the LSTM network from

he previous time step t − 1 . Same as D-Cell, the loss function is

efined as follow, 

 θt 
L (θt ) = E 〈 S , A , R , S ′ 〉 

[(
R + γ max 

A ′ 
Q θ ′ (S ′ , H 

′ 
t−1 , A 

′ ) 

−Q θt 
(S , H t−1 , A ) 

)∇ θt 
Q θt 

(S , H t−1 , A ) 
]

(14)

Different from DQN, DRQN uses a LSTM layer instead of the first

ully connected layer. Sequential states S t−k , ..., S t−1 and S t are pro-

essed through time by the LSTM layer and output the Q-values

fter the last fully connected layer. Note that we use the LSTM

ayer to train our network to understand temporal dependencies,

o we can’t randomly choose experiences from D like DQN. Hence,

e randomly choose some traces of experiences of a given length,

.e., randomly select 2 traces of 2 continuous experiences, such as

 1 , e 2 and e 9 , e 10 . Despite the changes in the neural network, the

RQN-based algorithm, i.e., DR-Cell , is almost same as D-Cell, and

e summarize these two algorithm together in Algorithm 2 . 

.4. Training data and transfer learning 

With deep reinforcement learning, we can get the Q-function

hat outputs reward scores for all the possible actions under a cer-

ain state, then we can choose the cell that has the largest score in
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Table 1 

Statistics of three datasets. 

Sensor-Scope U-Air TaxiSpeed 

City Lausanne Beijing Beijing 

Data temperature, humidity PM2.5 traffic speed 

Cell size 50 ∗30 m 

2 10 0 0 ∗10 0 0 m 

2 road segment 

Cell number 57 36 118 

Cycle length 0.5 h 1 h 0.5 h 

Duration 7 days 11 days 4 days 

Mean ± Std. 
6.04 ± 1.87 ◦C 

79.11 ± 81.21 13.01 ± 6.97m/s 
84.52 ± 6.32 % 
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m  
ell selection. Obviously, the Q-function learning algorithm men-

ioned in the previous sections may need a large amount of train-

ng data, while in MCS, we cannot have an unlimited historical

ata for training. Then, can we reduce the amount of training data

nder certain circumstances? 

The easiest way to deal with this problem is using a small

mount of historical data to conduct the effective training set by

andom combination. The historical data can be obtained by a pre-

iminary study on the target sensing area, i.e., collecting data from

ome cells for a short time before running. We randomly combine

he sensed cells from the same cycles, and obtain many experi-

nces, i.e., e t = 〈 S , A , R , S ′ 〉 , to train our model. Note that we would

ike to select some redundant cells for each cycle, as an extreme

xample, we collect the data from all the cells for a short time. We

se these redundant data to conduct various combinations of se-

ected cells in one cycle which can satisfy our ( e, p )-quality, which

nsures the effectiveness of training. 

In a practical application, we do not need to collect data from

any cells, since the efficient cells under a certain state are finite,

nd thus the effective combinations which can satisfy the quality

re limited. Therefore, we can select 3 a small amount of redundant

ells to conduct a smaller but effective training set, which con-

ains enough experiences for training. We have conducted some

xperiments in the Section 5.4 to show that our method can col-

ect a small amount of redundant data to train our Q-function and

chieve a good enough performance. However, this method still re-

uires a preliminary study, and too much training on the a small

mount of data may get a local optima. 

Moreover, in a practical application, we further consider the pe-

iodic retraining as a supplement to our system. On the one hand,

eriodic retraining makes the system better able to deal with the

nvironment changes. On the other hand, the system has collected

ore data after running a period of time, which can be used in the

ew training and further improve the performance of reinforce-

ent learning. Note that the periodic retraining can be conducted

n an offline manner, without affecting the availability of the on-

ine system. Moreover, our proposed transfer learning/fine-tuning

echniques can be used to significantly reduce the re-training cost.

In order to make better use of the well trained Q-function and

urther reduce the amount of training data, we try to introduce the

ransfer learning technique into our problem. In reality, many types

f data have inter-data correlations, e.g., temperature and humidity

23] . Then, if there are multiple correlated sensing tasks in a tar-

et area, probably the cell selection strategy learned for one task

an benefit another task. With this intuition, we present a transfer

earning method for learning the Q-function of an MCS task ( target

ask) with the help of the cell selection strategy learned from an-

ther correlated task ( source task). We assume that the source task

as adequate training data, while the target task has only a little
3 Without loss of generality, we randomly select cells for each cycle to collect 

ata for training. Actually, the reinforcement learning-based algorithms also ran- 

omly select cells for the early stages as discussed in the previous sections. 

m  

G

(

raining data. Inspired by the fine-tuning techniques widely used

n image processing with deep neural networks, for training the

-function of the target task, we initialize the parameters of its

RQN to the parameter values of the source task DRQN (learned

rom the adequate training data of the source task). Then, we use

he limited training data of the target task to continue the DRQN

earning process ( Algorithm 2 ). In this way, we can make use of

he well trained Q-function and reduce the amount of training data

equired for obtaining a good cell selection strategy of the target

ask. 

. Evaluation 

In this section, we conduct extensive experiments based on

hree real-world datasets, which contain various types of sensed

ata, including temperature, humidity, air quality, and traffic speed.

.1. Datasets 

We adopt three real-life datasets, Sensor-Scope [7] , U-Air [30] ,

nd TaxiSpeed [14] to evaluate the performance of our proposed

ell selection algorithms D-Cell and DR-Cell . These three datasets

ontain various types of sensed data, including temperature, hu-

idity, air quality, and traffic speed. The detailed settings of three

atasets are shown in Table 1 . Although these sensed data in three

atasets are collected from static sensors or stations, the mobile

evices can also be used to obtain them (as in [2,5] ). Thus, we

an treat them as the data sensed by smartphones and use these

atasets in our experiments to show the effectiveness of our algo-

ithms. 

Sensor-Scope [7] : The Sensor-Scope dataset contains the temper-

ture and humidity readings for 7 days collected from the EPFL

ampus with an area about 500 m × 300 m. This target area is di-

ided into 100 cells with the size 50 m × 30 m. The average temper-

ture/humidity readings and their distributions are shown in Fig. 6 .

ince only 57 out of these 100 cells are deployed with valid sen-

ors, we just use the sensed data at the 57 cells to evaluate our

lgorithms. The inference error is measured by mean absolute er-

or. 

U-Air [30] : The U-Air dataset collected the air quality data for

1 days from Beijing by existing monitor stations. Same as [30] ,

e split the Beijing into cells where each cell is 1 km × 1 km . Then,

here are 36 cells with the sensed air quality readings. With this

ataset, we conduct the experiment of PM2.5 sensing, and try to

nfer the air quality index category 4 of unsensed cells. The infer-

nce error is measured by classification error. 

TaxiSpeed [14] : The TaxiSpeed dataset contains the speed infor-

ation in 4 days for road segments in Beijing. The dataset has

ore than 33,0 0 0 trajectories collected by GPS on taxis. Same as
4 Six categories [30] : Good (0–50), Moderate (51–100), Unhealthy for Sensitive 

roups (101–150), Unhealthy (150–20 0), Very Unhealthy (201–30 0), and Hazardous 

 > 300) 
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Fig. 6. The average temperature/humidity readings and their distributions in Sensor-Scope . 
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[31] , we consider the road segments as the cells, and 118 road seg-

ments with the valid sensed values are selected to evaluate our

algorithms. The inference error is measured by measure the mean

absolute error. 

5.2. Baseline algorithms 

We compare D-Cell and DR-Cell to two existing methods: QBC

and RANDOM. 

QBC : Existing works on Sparse MCS mainly leverage Query by

Committee in cell selection [20,23] . QBC selects the salient cell de-

termined by “committee” to allocate the next task. More specifi-

cally, QBC attempts to use some different data inference algorithms

(such as compressive sensing and K-Nearest Neighbors) to infer the

full sensing matrix. Then, it chooses the cell where the inferred

data of various algorithms has the largest variance as the next se-

lection for sensing. 

RANDOM : In each sensing cycle, RANDOM will randomly select

cells one by one until the selected cells can ensure a satisfying in-

ference accuracy. Note that RANDOM actually achieves a competi-

tive performance since the random selection can already provide a

lot of information to the powerful inference technologies as com-

pressed sensing. Hence, we consider that RANDOM is suitable as a

baseline. 

5.3. Experiment process 

To learn our proposed reinforcement learning-based algorithms,

we use the first 10 h to 2 day data of each dataset to train our Q-

function, i.e., we suppose that the MCS organizers will conduct a

10 h to 2 day preliminary study to collect data from the cells. Then

we train our Q-function on the training data set by conducting var-

ious experiences until the Q-function is converged. We also vary

the proportion of selected cells for each cycle, in order to show

that a small amount of data can be conducted to an effective train-

ing set without loss of performance. Besides, we also conduct some

experiments to evaluate our state and reward settings. We set dis-

count factor γ = 0 . 9 and learning rate α = 0 . 05 in Eq. (7) and dy-

namically adjust ε from 1 to 0.1 for whole process of training. 
After the training stage, we obtain the well trained Q-function

nd enter the running stage. For each sensing cycle, we use the

roposed cell selection algorithms to select the cells for sensing

ntil the selected cells can satisfy the ( e, p )-quality. Note that sat-

sfying ( e, p )-quality means that in p · 100% of cycles, the inference

rror is not larger than e , which is practical in real world appli-

ations. Here, p should be set to a large value as 0.9 and 0.95,

nd we set e to a small value according to the sensing tasks, such

s 0.25 ◦C for temperature. These large p and small ε build up a

ore reasonable and realistic scenario for Sparse MCS and could

valuate the effectiveness of our proposed algorithms well. Thus,

ur objective is to select cells as few as possible with the quality

uarantee, and we will compare the number of cells selected by

-Cell, DR-Cell and baseline methods to verify the effectiveness of

ur proposed reinforcement learning-based algorithms. 

.4. Experiment results 

We evaluate the performance by using the temperature and hu-

idity data in Sensor-Scope , the PM2.5 data in U-Air , and the traf-

c speed data in TaxiSpeed , respectively. Without loss of general-

ty, we first evaluate the performance without considering ( e, p )-

uality. We compare our inferred values with the real value to ob-

ain the average inference error, while changing the number of se-

ected cells for each cycle. As shown in Fig. 7 , the results show the

imilar tendencies over four types of sensing tasks. Along with the

ncrease of the number of selected cells, the average errors become

maller, since the more selected cells provide more information to

elp the data inference. Our proposed DR-Cell and D-Cell achieve

he better performance than the other baseline algorithms, espe-

ially when the number of selected cells is small, which proves

he effectiveness of our algorithms. Next, we will evaluate and dis-

uss the performances of our cell selection algorithms considering

 e, p )-quality, which is practical in real world applications. 

.4.1. Number of selected cells 

We consider the recent 5 cycles (the last 4 cycles and the cur-

ent cycle), the last-time selection, and time as our state. The re-

ults are shown in Fig. 8 and Table 2 . 



W. Liu, L. Wang and E. Wang et al. / Computer Networks 161 (2019) 102–114 111 
�

Fig. 7. Average inference error for Temperature, Humidity, PM2.5, and Traffic Speed sensing tasks. 

Fig. 8. Number of selected cells for Temperature, Humidity, PM2.5, and Traffic Speed sensing tasks. 
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For the temperature in Sensor-Scope , we set the error bound e

o 0.25 ◦C or 0.3 ◦C and p to 0.9 or 0.95 as the predefined ( e, p )-

uality. Thus, the quality requirement in this scenario is that the

nference error is smaller than 0.25 ◦C or 0.3 ◦C for around 90%

r 95% of cycles. The average numbers of selected cells for each

ensing cycles have been shown in Fig. 8 (a) and (b), where DR-

ell and D-Cell always outperform two baseline methods. Specif-
Table 2 

Proportion of the cycles which satisfy the ( e, p )-qua

Temperature H

( e, p ) D-Cell DR-Cell QBC ( e

(0.25 ◦C,0.9) 0.906 0.892 0.919 (1

(0.25 ◦C,0.95) 0.957 0.948 0.965 (1

(0.30 ◦C,0.9) 0.910 0.904 0.948 (2

(0.30 ◦C,0.95) 0.976 0.957 0.974 (2

PM2.5 Tr

( e, p ) D-Cell DR-Cell QBC ( e

(6/36, 0.9) 0.901 0.896 0.930 (2

(6/36, 0.95) 0.951 0.957 0.961 (2

(9/36, 0.9) 0.918 0.909 0.925 (2

(9/36, 0.95) 0.968 0.944 0.950 (2
cally, when ( e, p ) = (0.25 ◦C, 0.9), DR-Cell and D-Cell can select

6.8% and 9.7% fewer cells than QBC, and achieve 21.3% and 14.6%

ewer cells than RANDOM. In general, DR-Cell only needs to select

1.93 out of 57 cells for each sensing cycle when ensuring the in-

erence error below 0.25 ◦C in 90% of cycles. When we improve the

uality requirement to p = 0 . 95 , DR-Cell and D-Cell needs to se-

ect more cells to satisfy the higher requirement. Particularly, DR-
lity. 

umidity 

, p ) D-Cell DR-Cell QBC 

.5%, 0.9) 0.861 0.879 0.896 

.5%, 0.95) 0.933 0.957 0.940 

.0%, 0.9) 0.926 0.901 0.956 

.0%, 0.95) 0.969 0.961 0.975 

affic Speed 

, p ) D-Cell DR-Cell QBC 

.0 m/s, 0.9) 0.886 0.861 0.895 

.0 m/s, 0.95) 0.928 0.935 0.977 

.5 m/s, 0.9) 0.852 0.883 0.906 

.5 m/s, 0.95) 0.940 0.947 0.987 
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Fig. 9. State, reward and training data for temperature and humidity sensing tasks ( e = 0 . 25 ◦C / 1 . 5% , p = 0 . 9 ). 
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Cell and D-Cell selects 14.93 and 15.93 out of 57 cells under the

(0.25 ◦C, 0.95)-quality and achieves better performances by select-

ing 12.3%/6.4% and 16.9%/11.3% fewer cells than QBC and RANDOM,

respectively. When we improve the error bound to e = 0.3 ◦C, DR-

Cell and D-Cell need to select less cells since we have a lower

quality requirement. Here, DR-Cell and D-Cell have the closer per-

formances, and the number of sensed cells is reduced by 10.0%

to 16.2%. For humidity in Sensor-Scope , a similar tendency is ob-

served in Fig. 8 (c) and (d), with quality requirement as (1.5%/2.0%,

0.9/0.95). Note that DR-Cell and D-Cell achieve better performances

than QBC and RANDOM and DR-Cell performs better than D-Cell,

since it would better capture the temporal patterns and handle

partial observability in humidity of Sensor-Scope . 

For the other two scenarios, i.e., PM2.5 in U-Air and traffic

speed in TaxiSpeed , we get the similar observations, as shown in

Fig. 8 (e)–(h). For the PM2.5 scenario, we set e as 6/36 or 9/36 and

p as 0.9 or 0.95. When e is 6/36 and p is 0.9/0.95, DR-Cell selects

13.9/16.7 out of 36 cells and reduces 8.8%/5.8%, and 10.3%/6.8% of

selected cells than QBC and RANDOM, respectively. When e is 9/36,

the number of sensed cells is reduced by 8.7% to 18.0%. For traffic

speed, we set e as 2 m/s or 2.5 m/s and achieve a reduced propor-

tion as 6.4% to 20.0%. Note that D-Cell may underperform since the

traffic speed has such a strong correlation with time, which can be

better processed by our DR-Cell. 

Table 2 shows the actual proportion of the cycles which satis-

fies the ( e, p )-quality. We see that most of the values in the table

are larger than its predefined p , which means that our proposed

DR-Cell and D-Cell can provide the accurate inferences most of the

time. Note that some results are slightly less than the predefined

p , since compressive sensing and Bayesian inference in our algo-

rithms have the intrinsic probabilistic characteristics and would

cause some minor errors, which is within the acceptable range.

Based on these results, we could say that our proposed algorithms

can achieve a satisfactory performance. 

5.4.2. State and reward 

Then we evaluate the state and reward settings in reinforce-

ment learning based cell selection, i.e., DR-Cell. We conduct some

experiments on two MCS scenario, i.e., temperature and humidity

monitoring. The state in our work consists of the recent-cycle se-

lection, the last-time selection, and the time. Since the recent-cycle

selection makes up the largest percentage and has the greatest im-

pact on the next cell selection, we vary the last 3–6 cycles while

keeping the others fixed in state, as shown in Fig. 9 (a). We can

see that when we keep the recent 4 or 5 cycles, our algorithms

achieve the better performances, while the less or more cycles (3

or 6) would reduce them. This is probably due to the fact that

the more cycles kept in state provide too much information of low

value, which may disturb the outcome. 
For the rewards, we would like to illustrate that the different

alues of R and c would not influence the performance after the

-function has been well trained. In this paper, we consider all

he costs c are the same and set the cost c as 1, without loss of

enerality. Note the case where the data collection costs of dif-

erent cells are diverse could be considered and modified in the

uture work, by providing a more complex reward function. Then,

e vary the R from 5 to 25, as shown in Fig. 9 (b), where the per-

ormances under different R are very close if the Q-function have

nough training, and the small changes are most likely due to the

andomness in our experiments. 

.4.3. Training data 

Fig. 9 (c) and (d) illustrate that we could use a small amount

f training data to train our Q-function while keep a good enough

erformance. We first study how the change of required cycles for

raining will impact the evaluation results. We collect data from all

he cells and vary the cycles from 20 to 100, i.e., conduct a 10 h to

 day (50 h) preliminary study in temperature and humidity mon-

toring tasks. As shown in Fig. 9 (c), the reinforcement learning-

ased algorithm achieves a better performance with the increase

n the number of cycles. When we have enough cycles for train-

ng, i.e., 80–100 cycles, the performances are very close. The reason

ould be that our proposed algorithms would capture the tempo-

al correlation well by using a 2 day training data, while using the

0 h data cannot behave well. Then we use the 2 day data but ran-

omly select part of cells for each cycle and conduct the training

et. The results are shown in Fig. 9 (d). The numbers of selected

ells are increased along with the reduced proportions of collected

ata in each cycle for training, since the less collected data cannot

onduct a comprehensive training set. However, the performances

y using part of training data are even good enough. The DR-Cell

sing 20% training data still achieves better performances by se-

ecting 8.8%/15.0% and 14.3%/14.9% fewer cells than QBC/RANDOM

n temperature and humidity tasks, respectively. 

.4.4. Transfer learning 

We then conduct the experiments on the multi-task MCS sce-

ario, i.e., temperature-humidity monitoring, in Sensor-Scope to

erify the transfer learning performance. We use DR-Cell to con-

uct 2-way experiments, i.e . temperature as the source task and

umidity as the target task; and vice versa. More specifically, for

he source task, we still suppose that we obtain 2 day data for

raining; but for the target task, we suppose that we only obtain

0 cycles (i.e., 5 h) of training data. Moreover, we add two com-

ared methods to verify the effectiveness of our transfer learning

ethod: NO-TRANSFER and SHORT-TRAIN . NO-TRANSFER is the

ethod that directly uses the Q-function of the source task to the

arget task, and SHORT-TRAIN means that the target task model is

nly trained on the 10-cycle training data. 
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Fig. 10. Number of selected cells for temperature and humidity sensing tasks 

(transfer learning). 
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The quality requirement of temperature is (0.25 ◦C, 0.9)-quality

nd the humidity is (1.5%, 0.9)-quality. Fig. 10 shows the average

umbers of selected cells. When temperature is seen as the tar-

et task, TRANSFER can achieve better performance by reducing

.0%, 6.0%, and 6.4% selected cells compared with NO-TRANSFER,

HORT-TRAIN, and RANDOM, respectively. When humidity is the

arget task, similarly, TRANSFER can select 4.0%, 5.0%, and 3.4%

ewer cells than NO-TRANSFER, SHORT-TRAIN, and RANDOM, re-

pectively. Note that NO-TRANSFER and SHORT-TRAIN even per-

orm worse than RANDOM in this case. It emphasizes the impor-

ance of having an adequate amount of training data for DR-Cell.

y using transfer learning, we can significantly reduce the training

ata required for learning a good Q-function in DR-Cell, and thus

urther reducing the data collection costs of MCS organizers. 

.4.5. Computation time 

Finally, we report the computation time of DR-Cell. Our ex-

eriment platform is equipped with Intel Xeon CPU E2630 v4 @

.20 GHz and 32 GB RAM. We implement our D-Cell and DR-Cell

raining algorithms in TensorFlow (CPU version). In our experiment

cenarios, the training time consumes around 2–4 h, which is to-

ally acceptable in real-life deployments as the training is an off-

ine process. Table 3 shows the running time of the online pro-

ess, i.e., the testing stage in our experiments. Compared with ‘Cell

election’, the ‘Quality Assessment’ costs the most since it needs

o run the ‘Data Inference’ for some times to estimate the current

uality by leave-one-out based Bayesian inference. In ‘Cell Selec-

ion’, although our algorithms need the off-line training, DR-Cell

nd D-Cell only need very little time ( ∼ 0.002s) to decide the next

elected cell during the online processing, while QBC need ∼ 1s

ince it has to run various inference algorithms. We believe that it

s worthy to conduct a ∼ 4 h offline training in order to achieve a

aster and more efficient cell selection strategy. 
Table 3 

Runtime for each stage. 

Temperature Humidity PM2.5 Traffic Speed 

Data Inference 0.49 s 0.50 s 0.35 s 0.97 s 

Quality Assessment 4.43 s 4.46 s 4.75 s 8.01 s 

DR-Cell 0.0015 s 0.0016 s 0.0 0 07 s 0.0026 s 

D-Cell 0.0014 s 0.0018 s 0.0 0 09 s 0.0028 s 

QBC 1.04 s 1.18 s 0.91 s 1.39 s 

 

 

 

 

 

 

 

 

. Conclusion 

In this paper, we propose the novel reinforcement learning-

ased cell selection algorithms to improve the cell selection effi-

iency in Sparse MCS. First, we model the state, reward, and action

or cell selection and propose a Q-learning based cell selection al-

orithm. To deal with the large state space, we use a neural net-

orks to replace the Q-table, which is the DQN-based cell selec-

ion algorithm, and then modify the DQN with LSTM to catch the

emporal patterns in our state and handle partial observability. Fur-

hermore, we collect a small amount of redundant data to conduct

he effective training by random combination and propose a trans-

er learning method to relieve the dependence on a large amount

f training data. Extensive experiments verify the effectiveness of

ur proposed algorithms in reducing the data collection costs. In

he future work, we would like to study how can we conduct the

einforcement learning-based cell selection in a completely online

anner, so that we do not need a preliminary study stage for col-

ecting the training data any more. 
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