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ABSTRACT Sparse mobile crowdsensing (MCS) is a promising paradigm for the large-scale urban sensing,
which allows us to collect data from only a few areas (cell selection) and infer the data of other areas (data
inference). It can significantly reduce the sensing cost while ensuring high data quality. Recently, large urban
sensing systems often require multiple types of sensing data (e.g., publish two tasks on temperature and
humidity respectively) to form a multi-dimensional urban sensing map. These multiple types of sensing data
hold some inherent correlations, which can be leveraged to further reduce the sensing cost and improve the
accuracy of the inferred results. In this paper, we study the multi-dimensional urban sensing in sparseMCS to
jointly address the data inference and cell selection for multi-task scenarios. We exploit the intra- and inter-
task correlations in data inference to deduce the data of the unsensed cells through themulti-task compressive
sensing and then learn and select the most effective 〈cell, task〉 pairs by using reinforcement learning.
To effectively capture the intra- and inter-task correlations in cell selection, we design a network structure
with multiple branches, where branches extract the intra-task correlations for each task, respectively, and
then catenates the results from all branches to capture the inter-task correlations among the multiple tasks.
In addition, we present a two-stage online framework for reinforcement learning in practical use, including
training and running phases. The extensive experiments have been conducted on two real-world urban sens-
ing datasets, each with two types of sensing data, which verify the effectiveness of our proposed algorithms
on multi-dimensional urban sensing and achieve better performances than the state-of-the-art mechanisms.

INDEX TERMS Sparse mobile crowdsensing, reinforcement learning, compressive sensing, urban sensing.

I. INTRODUCTION
With rapid development of mobile devices and wireless com-
munications, a practical sensing paradigm, called Mobile
CrowdSensing (MCS) [1], has been proposed to leverage
the large number of mobile devices carried by the users to
perform the large-scale urban sensing tasks, such as moni-
toring of environment [2], [3], infrastructure status [4] and
traffic congestion [5], etc. In order to provide high-quality
urban sensing services, traditional MCS applications need to
recruit a great number of users to cover all the urban subareas
(cells) [2], [4]–[7]. However, in practice, we cannot afford

The associate editor coordinating the review of this manuscript and
approving it for publication was Huan Zhou.

to recruit so many users due to the large cost involved and
sometimes there are no available users in the required sensing
areas. Hence, researchers propose the Sparse MCS [8]–[12],
which can collect data from only a few cells and infer the
data of the rest cells. In this way, the number of required users
can be significantly reduced while high quality urban sensing
services can still be achieved.

Recently, large urban sensing systems require multiple
types of sensing data (e.g., publish two tasks on temperature
and humidity respectively) to form amulti-dimensional urban
sensing map [3], [13], [14]. Under these multi-task scenarios,
there exist both intra-task correlations within the same type of
sensed data (e.g., the closer cells often have the similar sensed
temperature/humidity readings) and inter-task correlations
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among different types of sensed data (e.g., a higher tem-
perature usually leads to a lower humidity reading [15]).
Exploiting the intra- and inter-task correlations can enhance
the Sparse MCS, which further helps to reduce the number of
sensed areas and improve the accuracy of the inferred results.

However, most of existing works in Sparse MCS focus
on the single-task scenarios while ignoring the multi-task
requirements [8], [9], [12], [16]–[18]. Rana et al. [16] used
incomplete and random crowdsourcing data to recover the
urban noise map. Zhu et al. [17] focused on traffic estima-
tion from the periodically collected data by probe vehicles.
Wang et al. [8], [9] presented a Sparse MCS frame-
work which achieved good performances on temperature,
air quality and traffic monitoring datasets, respectively.
He and Shin [18] used Bayesian compressive sensing to
construct the urban signal map. With Sparse MCS, these
works select a few effective cells to sense (cell selection),
and then use the sensed data to infer the full map with
high quality (data inference). However, all of them focus on
the single-task scenarios, without considering the multi-task
requirements on both cell selection and data inference.

In this paper, we propose several approaches to jointly
address the data inference and cell selection in multi-task
scenarios, in order to make full use of the intra- and inter-task
correlations and provide high-quality urban sensing services.
The basic idea is to try out all of the possible 〈cell, task〉
pairs1 to sense, exploit intra- and inter-task correlations to
deduce the unsensed values and record the inferred errors
by using the historical data. Thus, we can sense the 〈cell,
task〉 pairs which can help most through trial and error, and
then use the sensed values from the most effective 〈cell, task〉
pairs to deduce the unsensed values. In fact, trial and error
is exactly the fundamental idea of Reinforcement Learning
(RL) [19], which takes a sequence of actions under certain
states so as to maximize the cumulative rewards. RL learns
and obtains that sequence by trying out different actions
and observes the rewards under each state. In our multi-task
Sparse MCS, we select a sequence of 〈cell, task〉 pairs to
be sensed (actions) considering the data already collected
(states), in order to minimize the average inferring errors
(rewards). In this way, we first exploit intra- and inter-
task correlations in data inference, then compare and select
the 〈cell, task〉 pairs which perform best on data inference,
by applying RL to jointly address the cell selection and data
inference.

In fact, the previous works mainly focus on data
inference, without jointly considering cell selection.
Wang et al. [8], [9] proposed an online method, called
Query-By-Committee (QBC), which uses several inference
algorithms to deduce the data of all unsensed cells, and
then chooses the most uncertain one to sense, in which the
inferred data of various algorithms have the largest variance.

1In this paper, we consider a general case that we select the 〈cell, task〉
pair (taski in cellj) to sense, since not all participants can (or will) perform
multiple tasks in the same cell.

He and Shin [18] and Liu et al. [20] intended to select the
cells with more difference between the last and current cycles
under the same sensing cost. However, the uncertain or hard
to infer cells are not definitely equal to the effective ones.
For example, a central cell may be not hard to infer, but
it usually helps the most on data inference. Also, the cell
selection problem should be more complicated under multi-
task scenarios. By using RL, we can directly connect the cell
selection with data inference, i.e., select the 〈cell, task〉 pairs
which can help most through trial and error, and thus achieve
better performance.

To effectively employ RL to capture intra- and inter-task
correlations in cell selection, we further design a network
structure with multiple branches to approximate the actions’
rewards under a certain state. Each branch can be seen as a
single-task network, which is used to extract intra-task corre-
lations to approximate the reward for each task. Then, we con-
catenate the results from all branches to fuse the information
from the multiple tasks. Finally, we capture the inter-task
correlations among different tasks to estimate the rewards for
all tasks. The network structure with multiple branches deals
with the large action space (〈cell, task〉 pairs) and effectively
captures intra- and inter-task correlations. Moreover, we first
train the branches in parallel and then train the whole network
for multiple tasks, in order to reduce the training workload
and avoid over fitting. Furthermore, new tasks can be easily
added by adding new branches and leveraging the fine-tuning
techniques to train them.

For the training of RL, the traditional way is to collect
a large amount of training data and then conduct an offline
training. In this way, RL can try out all of the possible sensed
〈cell, task〉 pairs and approximate their rewards under certain
states, while it is obviously ineffective. Fortunately, according
to our observations of the selected 〈cell, task〉 pairs, we find
that only a few 〈cell, task〉 pairs are often chosen. These
few 〈cell, task〉 pairs are more effective under most cases.
Thus, we don’t need too much data to train all of the possible
〈cell, task〉 pairs, while we can use a small amount of data
to train these effective ones, which is in fact quite effective
and can achieve good enough performance.2 Based on it,
we further conduct the training of RL in an online manner,
i.e., we design a two-stage framework for RL-assisted Sparse
MCS, including training and running phases. In the training
phase, we use the online method, i.e., QBC used in [8], [9],
to select and sense some effective 〈cell, task〉 pairs to provide
the sensing services with acceptable quality, simultaneously,
provide the training data for RL. QBC selects the approximate
effective 〈cell, task〉 pairs, and we use these data to train
the RL model effectively. After the model is well trained
and achieves better performance than QBC, we move to the
running phase, in which we switch the cell selection method
to the RL-based algorithm.

2We collect data from about 20% cells in the first 100 cycles by QBC,
and then use these data for RL training and can achieve the very close
performances with the well-trained RL model.
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In summary, this work has the following contributions:
• We formalize the joint cell selection and data infer-
ence problem in a multi-dimensional urban Sparse MCS
paradigm, and propose the RL-assisted algorithms to
jointly address data inference and cell selection for
multi-task Sparse MCS. We exploit intra- and inter-task
correlations in data inference and learn to select the
most effective 〈cell, task〉 pairs by RL. We also design
a network structure with multiple branches to capture
intra- and inter-task correlations in cell selection.

• Traditional RL methods need to firstly collect a large
amount of data for training, which is very ineffective for
MCS tasks. Hence, we propose a novel two-stage online
framework to eliminate this costly initial data collection
process. In the first stage, we use QBC to select cells,
while at the same time collect the data for RL training.
After the RL training is finished, we move to the second
stage, i.e., switch to RL-based cell selection method to
perform Sparse MCS.

• We evaluate the proposed algorithms on two typical
urban sensing datasets with multiple tasks, and show the
effectiveness of our proposed algorithms on reducing the
number of sensed values and improving the accuracy
of the inferred results for the multi-dimensional urban
sensing.

II. RELATED WORK
A. URBAN SENSING VIA SPARSE
MOBILE CROWDSENSING
Mobile CrowdSensing becomes a promising paradigm which
uses the mobile devices carried by users to perform the large-
scale urban sensing tasks [1], [2]. Most of the existing works
need to recruit a large number of users to cover all the sensing
areas, in order to provide the sensing services with high data
quality [6], [7]. However, these methods cost a lot and even
sometimes we cannot find participants in some areas. In order
to deal with these problems, some researchers proposed to
sense data in some areas and apply the data inference algo-
rithms to infer the data of unsensed areas from the sensed
data, this mobile sensing paradigm is called Sparse Mobile
CrowdSensing.

Many Sparse MCS systems have been developed for urban
sensing. Rana et al. [16] used compressive sensing to recover
the urban noise map from the incomplete and random crowd-
sourcing data. Zhu et al. [17] proposed an approach for
traffic estimation from the periodically collected locations
and speeds in probe vehicles. Leye Wang et al. [8], [9] pre-
sented a complete framework for Sparse MCS by using the
compressive sensing, Bayesian inference, and active learn-
ing techniques, which achieved very good performances
on temperature, air quality and traffic monitoring datasets.
He and Shin [18] proposed a signal map crowdsensing frame-
work, which uses Bayesian compressive sensing to construct
the urban signal map. All these works used the compressive
sensing as the data inference method, but they focused on the
single-task scenarios. Wang et al. [11] first considered the

intradata and interdata correlations, while they only exploited
the correlations to the data inference without jointly con-
sidering the cell selection. In this paper, we jointly address
the data inference and cell selection for multi-task scenarios,
combining compressive sensing and reinforcement learning.
We use compressive sensing to infer data and use reinforce-
ment learning to select the cells which would perform best
for data inference.

B. REINFORCEMENT LEARNING
Reinforcement Learning (RL) [19] is a technique of machine
learning which learns to make a sequence of decisions via
trial and error. Recently, combining with the deep learning,
RL becomes one of the most popular research topics and
has shown its effectiveness on a wide variety of sequential
decision making tasks. Mnih et al. [21] proposed the first
deep RLmodel and applied it to play seven Atari 2600 games.
Silver et al. [22], [23] applied RL and presented the famous
AlphaGo, which was the first program to defeat world-class
players in Go.

More recently, researchers pay more attention to apply RL
in various areas to solve practical problems. Xiao et al. [24]
formulate the interactions between a server and vehicles
as a vehicular crowdsensing game. Then they propose the
Q-learning based strategies to help server and vehicles make
the optimal decisions for the dynamic game. Moreover,
Liang Xiao et al. [25] apply Deep Q-learning to derive the
optimal policy for the Stackelberg game between a MCS
server and a number of smartphone users. These works
mainly apply RL to deal with the games in MCS, especially
the dynamic and imperfect information games. In this paper,
we introduce RL into a new problem domain, Sparse MCS,
where it is appropriate to apply RL to jointly address the cell
selection and data inference.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we first introduce the system model of the
multi-dimensional urban sensing via Sparse MCS paradigm.
Then, we mathematically formulate the research problem and
provide an example to explain it in more details.

A. SYSTEM MODEL
We consider a multi-dimensional urban sensing scenario
where the requester wants to get the multiple types of data
(e.g. temperature, humidity) in the large-scale urban regions.
The main notations used throughout this paper are illustrated
in Table 1. Specifically, we have k heterogeneous sensing
tasks on the large-scale target sensing areas. These target
sensing areas are split intom cells (subareas) and each sensing
task is divided into n sensing cycles for the whole sensing
campaign. The sizes of cells and the lengths of cycles are
determined according to the requirements of requesters.3

3Note that the k sensing tasks may have different sizes of cells and lengths
of cycles. We can use some numerical interpolation methods to obtain the
unified representation for each task, in order to better capture the inter-task
correlations.
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TABLE 1. Main notations used throughout the paper.

For example, if the requester would like to know the fine-
grained temperature variation in the urban regions, the cells
and cycles should be set to the proper sizes, such as 1km∗1km
for each cell and update data every one hour [11].

We formalize the multi-dimensional urban sensing as the
multi-task Sparse MCS, which allows us to sense only a few
cells and effectively provide the multi-dimensional sensing
services. For each sensing task, we use the ground truth data
matrix Dm×n to record the true data in m cells at n cycles.
The set of ground truth data matrices for k sensing tasks
can be denoted by D = {D1,D2, . . . ,Dk}. At each cycle,
we select li cells out of the total m cells and recruit the
participants in these cells (or steer the nearby participants by
some incentive mechanisms) to perform task i. We study the
multi-task SparseMCS under two constraints in practical use,
e.g., budget constraint and accuracy constraint, respectively.
With the budget constraint, we consider a general budget B =∑k

i=0 li for the selected 〈cell, task〉 pairs at each sensing cycle,
which is practical and implementable.4 With the accuracy
constraint, we should select the 〈cell, task〉 pairs one by one
until the inferred result is expected to achieve the accuracy
requirement.

We mark the cell selection results for each task by the
matrix Cm×n, where C[i, j] = 1 means that the cell i is
selected to be sensed for a certain task and C[i, j] = 0
means not. The set for k sensing tasks is denoted as C =
{C1,C2, . . . ,Ck}. Hence, we have the collected data matrix
Sm×n = D ◦ C and the set S = {S1, S2, . . . , Sk}, where
◦ denotes the element-wise product of two matrices. Using
the set of collected data matrices, we utilize the multi-task
compressive sensing to exploit both the intra- and inter-task
correlations to infer the values in the unsensed cells for all of
the k tasks. The inferred data for certain tasks are recorded
in the inferred data matrix D̂m×n, and the set is denoted by
D̂ = {D̂1, D̂2, . . . , D̂k}. Therefore, we obtain the weighted

4The other cases, such as a total budget, would be easily modified by
reshaping the reward in the RL-based algorithms discussed in Section IV.

inference error rate for all tasks as follow:

Error(D, D̂) =
k∑
i=0

‖(Di − D̂i) ◦ (1/Di)‖1 · ωi, (1)

where Di ◦ Ci = D̂i ◦ Ci represents the collected data and
ωi is the weight of task i. Note that we use the error rate to
deal with the different metrics between multiple tasks, and
other metric conversion algorithms could be easily modified.
Also, we use the weights to balance the importance between
different tasks.

B. PROBLEM FORMULATION
Based on the above system model, we define our research
problem and focus on the multi-task Sparse MCS.
Problem (Multi-Task Sparse MCS): Under the budget con-

straint, given k Sparse MCS tasks with m cells and n cycles,
we select a total of B 〈cell, task〉 pairs at each sensing cycle
and use these collected data to infer the unsensed data for all
tasks, with the objective of minimizing the inference errors
during the whole sensing process:

min Error(D, D̂) (2)

subject to: satisfy B =
∑k

i=0 li for each cycle.5

FIGURE 1. An example of multi-task Sparse MCS.

We now use an example to illustrate our multi-task Sparse
MCS in more details, as shown in Figure 1. Consider that the
multi-task SparseMCS needs to get two types of sensing data,
e.g., temperature and humidity, in the target sensing areas,
which are spilt into 5∗4 cells. For each sensing cycle, we can
select a total of 6 〈cell, task〉 pairs to sense and we need to
infer the other 5 ∗ 4 ∗ 2− 6 = 34 values. (1) At this sensing
cycle, we select 3 cells to sense the temperature readings and
3 cells to sense the humidity readings. (2) We use these col-
lected data to infer the other 34 values at this cycle. Our goal

5Similarly, the problem with accuracy constraint can be formulated as:
select a minimal subset of 〈cell, task〉 pairs (min B) while satisfying the
accuracy requirement (satisfy Error(D, D̂)≥ e, where e represents the accu-
racy constraint). Actually, the problems with budget or accuracy constraints
have the same goal to improve the inference accuracy, which can reduce
the inference errors under the limited sensed values (budget constraint) or
sense less 〈cell, task〉 pairs to satisfy the pre-defined accuracy requirement
(accuracy constraint).
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is to minimize the error rates of these 34 inferred values,
by jointly addressing the data inference and cell selection in
the multi-task urban sensing scenarios, i.e., using multi-task
compressive sensing to infer the unsensed data for all tasks
simultaneously and utilize reinforcement learning-based cell
selection algorithm to select the most helpful 〈cell, task〉 pairs
for data inference, which will be introduced in Section IV.

IV. REINFORCEMENT LEARNING-ASSISTED MULTI-TASK
SPARSE MOBILE CROWDSENSING
In this section, we present the reinforcement learning-assisted
multi-task Sparse MCS to address the data inference and
cell selection. First, we propose the multi-task compressive
sensing, which can exploit the intra- and inter-task corre-
lations to infer the unsensed values for all tasks together.
Then, the reinforcement learning-based cell selection algo-
rithm will be presented with the mathematically modeling of
state, action and reward. We also design a general network
structure with multiple branches for the multi-task scenarios.

A. DATA INFERENCE VIA COMPRESSIVE SENSING
1) COMPRESSIVE SENSING
Compressive sensing is a novel data inference method which
has shown its effectiveness on the large-scale urban sensing
tasks, such as the monitoring of traffic [17], [26], environ-
ment [8], [9], [11] and air pollution [20]. For a certain task,
it can infer the full sensingmatrix D̂ from only a few collected
data, based on the low-rank property:

min rank(D̂) (3)

s.t., D̂ ◦ C = S. (4)

With the help of Singular Value Decomposition (SVD),
i.e., D̂ = LRT , we can convert the above optimization
problem as follow [26]:

min λ(‖L‖2F + ‖R‖
2
F )+ ‖LR

T
◦ C − S‖2F , (5)

where the regularization parameter λ allows a tunable tradeoff
between rank minimization and accuracy fitness. Further-
more, we consider three important correlations in terms of
temporal, spatial and value dimensions in the above optimiza-
tion problem, in order to capture the intra-task correlations as
follow:

min λr (‖L‖2F + ‖R‖
2
F )+ ‖LR

T
◦ C − S‖2F

+ λt‖(LRT )TT ‖2F + λs‖S(LR
T )‖2F + λv‖V(LR

T )‖2F ,

(6)

where T, S and V are temporal, spatial and value constraint
matrices, while λr , λt , λs and λv are chosen to balance the
weights of different elements in the optimization problem.
Then we use an alternating least squares [26] procedure to
estimate L and R iteratively, in order to get the optimal D̂
(D̂ = LRT ). The temporal, spatial and value constraint
matrices are shown below:
• Temporal correlation: We consider a temporal con-
straint matrix T to capture the temporal correlations in

a certain task. We choose a simple temporal constraint
matrix as T = Toeplitz(0, 1,−1), which intuitively
expresses that two continuous sensed values from the
same cell are often similar. Moreover, if we have more
domain knowledge or enough historical data, we should
conduct a more sophisticated matrix to express more
correlations, such as the periodicity in some tasks.

• Spatial correlation: We use a spatial correlation matrix
S to express the spatial correlations in one task. In most
urban sensing scenarios, the closer cells usually have
the similar sensed values. Thus, we use the Euclidean
distance (i.e., distance(i, j) =

√
(xi − xj)2 + (yi − yj)2)

to model the spatial correlations, as follow:

S[i, j] = exp(−distance(i, j)/σ 2
s ), if i 6= j. (7)

Then, we normalize the matrix S as
∑m

j=1,j6=i S[i, j] = 1
and set S[i, i] = −1,∀i = {1, . . . ,m}.

• Value correlation: Besides the temporal and spatial
correlations, in the urban sensing scenarios, some cells
still would have the similar sensed values, since they
have the similar surroundings or some other reasons.
We conduct the value correlation matrix V as follow:

V[i, j] = exp(−|vi − vj|/σ 2
v ), if i 6= j, (8)

where vi is the sensed value of cell i at one sensing
cycle. Similar to S,V is later normalized. Then, we learn
and update the matrix V at each cycle until converge to
capture the value correlations, which directly reflect on
the sensed values, as follow:

V = V+ γv(V′ − V), (9)

where V′ is calculated by Eq. 8 at the current cycle and
γv is the learning rate.

Note that our compressive sensing consider three typical
correlations in urban sensing tasks. As discussed above, other
constraint matrices or metrics characterizing correlations
can be easily applied in this modified compressive sensing.
While we should notice that considering more constraints
may improve the inference accuracy but cost more time to
converge. In this paper, we have tested the running time of
the compressive sensing in Section VI, and it can converge
quickly after a few iterations (less than 20 iterations and
costs ∼ 0.5s), which is totally acceptable in practical use.

2) MULTI-TASK COMPRESSIVE SENSING
Inmodern cities, large urban sensing systems requiremultiple
types of sensing data to form a multi-dimensional urban
sensing map, in order to illustrate the comprehensive state
of the urban scene. In many cases, these multiple types of
sensing data present some inherent correlations. For example,
a higher temperature usually leads to a lower humidity [15]
and the poor air quality may obtain the higher readings
on both PM2.5 and PM10 [27]. Therefore, we propose
using the multi-task compressive sensing to exploit both
the intra- and inter-task correlations, in order to enhance the
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inference performances and simultaneously infer the full
maps for multiple tasks.

Inspired by transfer learning [28], we introduce the col-
lective matrix factorization [29] to the singular value decom-
position. The basic idea is to share part of hyperparameters
between the multiple task, i.e., we share one factor matrix
(L or R) among k tasks during the matrices decomposition.
Assume that we share L among k tasks, we can obtain the
multi-task optimization problem as follow:

min
k∑
t=1

(
λr (‖L‖2F + ‖Rt‖

2
F )+ ‖LR

T
t ◦ C − S‖2F

+ λt‖(LRTt )T
T
‖
2
F + λs‖S(LR

T
t )‖

2
F + λv‖V(LR

T
t )‖

2
F
)
.

(10)

Then, we can calculate the inferred data matrices for k tasks
simultaneously, denoted as D̂L . Similarly, we can share R and
obtain D̂R, and then aggregate them with a weighted ω in
Eq. 11.

D̂ = ωD̂L + (1− ω)D̂R. (11)

Note that the weight ω represents the weighted trade-off
between the shared factor matrix L and R. We also conduct
some experiments to evaluate the setting of the weight ω in
Section VI. In addition, we test the running time of the multi-
task compressive sensing in Section VI. The results show
that it even costs less time than the total running time of all
tasks by single-task compressive sensing, with the help of the
inter-task correlations.

B. CELL SELECTION WITH REINFORCEMENT LEARNING
We use the multi-task compressive sensing to infer the full
sensing matrices from a few collected data. How can we
decide which cells (〈cell, task〉 pairs) to sense so as to improve
the inference accuracy? Note that we cannot obtain the cer-
tain results before we really collect these sensing values,
and also the multiple tasks make the problem more diffi-
cult. In this paper, we propose the model free reinforcement
learning(RL)-based algorithm to deal with the cell selection
problem by trials and errors. Also, we design a general
network structure with multiple branches for the multi-task
scenarios.

1) STATE, ACTION AND REWARD
Before we present the RL-based cell selection algorithm,
three key concepts, i.e., state, action and reward, should be
formulated first, as shown in Figure 2. Briefly, under a certain
state, we can use a Q-table or Neural Network (illustrated in
Section IV) to estimate the rewards for all actions. It means
that under the current condition, we can do some actions, and
each action will give us one reward. We would like to select
the action which will give us the largest reward, and it is the
best choice for us. Next we model these three concepts for
cell selection in details as follow:

(1) State describes the current situation, denoted as s ∈ S,
based on which we can decide our actions. In Sparse MCS,

FIGURE 2. State, action and reward in cell selection.

the current situation can be naturally modeled as the cell
selection matrix C , since it contains both sensing cycles and
sensing cells for the whole sensing process.

However, C would become larger over time. Also the
selections long before are of low value for data inference
and even may disturb the results. Thus, we hold the recent k
cycles of the cell selectionmatrix as the recent-cycle selection
and maintain a last-time selection vector, which records how
long one cell has not been selected, to replace the whole cell
selection matrix C . Moreover, some necessary information
for urban sensing tasks, such as time, should be added into
the state.

A simple example of state is shown in Figure 2. Here
we keep recent 5 cycles of C as the recent-cycle selection.
The last-time selection vector records that how many cycles
one cell has not been selected. Note that cell5 has not been
selected during the recent 5 cycles, so we record 5 + 1 = 6
cycles for it. Also, the time is set as {0, 1, . . . , 23} to represent
the sensing period of 24 hours.6 In the multi-task scenarios,
we design a general network structure withmultiple branches,
and the state for each task will be fed into one branch respec-
tively, then we concatenate the results to obtain the rewards
for all 〈cell, task〉 pairs, i.e., the actions introduced below.

(2) Action is what we decide to do under each state,
denoted as a ∈ A. In Sparse MCS, it is actually the next
selected cell. Note that we select the cell one by one but not
to select a set, in order to avoid the large action space. While
RLwill add the expected rewards attainable from future states
to the current reward, and thus it approximately selects the
optimal set of cells after enough training. In addition, for
a certain task, we won’t select one cell twice at the same
cycle. As shown in Figure 2, cell3 has been selected at this
cycle and thus it won’t be selected again. In the multi-task
scenarios, actions can actually be seen as the 〈cell, task〉 pairs,
i.e., 〈cell5, task1〉.
(3) Reward reflects how good an action is under a cer-

tain state, denoted as r. In our problem, the reward is the
improved inference accuracy by one action, and we formulate
the reward as follow:

r = exp
(
− Error(D, D̂)/σ 2

e
)

(12)

= exp
(
−

k∑
i=0

‖(Di − D̂i) ◦ (1/Di)‖1 · ωi/σ 2
e
)
, (13)

6Time is very important in urban sensing, such as the periodicity in traffic
data. Thus we add it into state, and it can be set according to the specific
tasks.
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whereDi◦Ci = D̂i◦Ci andωi is the weight of task i. In Eq. 13,
the higher accuracymeans the higher reward.We use the error
rate to deal with the different metrics between multiple tasks,
and other metric conversion algorithms could be easily modi-
fied. Moreover, as discussed above, RL will add the expected
rewards attainable from the future states to the current reward,
which can be simply seen as r = r+ r′, where r′ is the next
reward which should be calculated iteratively.

With the modeling of state, action and reward, our cell
selection problem can be formulated as a sequential decision
making problem, and we propose a RL-based algorithm to
solve it, as shown in Figure 2. Specifically, under a certain
state, we use Q-table/neural networks to estimate the rewards
for all cells (〈cell, task〉 pairs) and select cell4 as the next
selected cell, since it has the highest reward under the current
state.

2) REINFORCEMENT LEARNING-BASED CELL SELECTION
Actually, RL is to learn the mappings between state-action
pairs and rewards. Next we introduce how can we estimate
the reward for each action under a certain state.

Q-table: The traditional reinforcement learning algorithm,
such as Q-learning, uses a table to record all the rewards for
the state-action pairs, called Q-table. We denote the Q-table
as QS×A and the rewards are filled into it as Q[s, a]. Under
a certain state s, the algorithm selects the largest Q[s, a],
∀a ∈ A. Then we perform the selected action a, turn to the
next state s′ and update the table according to the following
equations:

Q[s, a] = (1− α)Q[s, a]+ α
(
r+ γV (s′)

)
, (14)

V (s′) = maxa′Q[s′, a′],∀a′ ∈ A (15)

where V (s′) provides the highest expected reward of the next
state s′; γ ∈ [0, 1] is the discount factor indicating themyopic
view of the Q-learning regarding the future reward; α ∈ (0, 1]
is the learning rate.

Note that Q[s′, a′] in V (s′) will be updated when a′ has
been selected under s′. In fact, the values filled in Q-table
will be calculated iteratively. We consider the greedy V (s′) as
the future reward, and eachQ[s, a] holds the expected reward
obtained from the current action a and the future rewardV (s′).
Thus, the RL-based algorithm can approximate the optimal
strategy after enough training.

Neural Network: If the state space is small, the traditional
reinforcement learning algorithm can work well. However,
in our problem, the state space is very large and the Q-table
can hardly deal with it. Suppose that we have 50 cells and only
keep the recent 5 cycles as the state for one task, the state
space achieves |S| = 25×50 = 2250. To overcome this
problem, we turn to use Deep Q-Learning, which uses a
neural network to replace the table Q. Under a certain state
s, we don’t need to search the large table Q but use neural
network to estimate the Q[s, a] directly, as shown in Eq. 16.

Q(s, a) = E
[
r+ γmaxa′Q(s′, a′)

]
. (16)

Specifically, we design a neural network with two dense
layers, in order to deal with heterogeneous inputs and catch
the comprehensive correlations in our state. The current state
s is fed into the neural network and a linear layer outputs the
Q(s, a) for all a ∈ A. Our goal is to train this neural network
parameterized by θ to approximately achieve Qθ (s, a) ≈
Q[s, a], ∀s ∈ S, a ∈ A. Therefore, according to Eq. 15 and 15,
we use the stochastic gradient algorithm and the loss function
is defined as follow:

L(θt ) = E〈s,a,r,s′〉
[(
r+ γmaxa′Qθt (s

′, a′)− Qθt (s, a)
)2]
.

(17)

Thus

∇θtL(θt ) = E〈s,a,r,s′〉
[(
r+ γmaxa′Qθt (s

′, a′)

−Qθt (s, a)
)
∇θtQθt (s, a)

]
. (18)

Algorithm 1 Reinforcement Learning-Based Cell Selection
Initialization:

t = 0, D = ∅, ε, REPLACE_ITER, Initialize two neural
networks with random weights θt and θ ′ = θt

1: while True do
2: Get s
3: Calculate Q(s, a) ∀a ∈ A
4: if isTrain then
5: Select a with ε-greedy algorithm
6: Get r, s′

7: et = 〈s, a, r, s′〉 → D
8: Randomly select some e from D
9: Calculate θt via Eq. 19

10: t++
11: if t%REPLACE_ITER == 0 then
12: θ ′ = θt
13: end if
14: else
15: Select a with the largest Q(s, a)
16: end if
17: end while

The RL-based cell selection algorithm is summarized in
Algorithm 1. First, we get the current state s. Then, we use
the neural network to calculate the Q(s, a) for all a ∈ A.
If neural network has been trained well, we directly select the
action a with the largest Q(s, a) (line 15). For each sensing
cycle, we select a total of B 〈cell, task〉 pairs under the budget
constraint, or select a minimal subset while satisfying the pre-
defined accuracy requirement. Otherwise, we should use the
ε-greedy algorithm for each selection (line 5), in which we
select the best a with a probability 1− ε and select a random
action with the probability ε. This algorithm used here is to
balance the explore and exploit. Then, we obtain the current
reward r and the next state s′. This experience et = 〈s, a, r, s′〉
will be added into the memory pool D. For each training
step, we will randomly select some experiences to learn and
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update the network parameters θt (line 7-8). We also use the
fixed Q-targets [30], which holds a target network with the
parameters θ ′ cloned from the primary network but updates θ ′

periodically (line 12). The target network is used to calculate
the reward of the next state s′ as shown in Eq. 19.

∇θtL(θt ) = E〈s,a,r,s′〉
[(
r+ γmaxa′Qθ ′ (s′, a′)

−Qθt (s, a)
)
∇θtQθt (s, a)

]
(19)

3) NETWORK STRUCTURE FOR MULTIPLE TASKS
In order to better capture the intra- and inter-task correlations
in cell selection and select the most effective 〈cell, task〉
pairs. We then design a general neural networks with multiple
branches to approximate the actions’ rewards under a certain
state, as shown in Figure 3.

FIGURE 3. The network structure with multiple branches.

In our design, we adopt multiple branches to catch the
intra-task correlations first. The goal and process are the same
with the single-task scenario, and thus the network structures
of the branches are the same with the structures in single-task
scenarios. The states of tasks are fed into different branches
respectively, which keep different weights since they deal
with different tasks and extract intra-task correlations to
approximate the reward for each task. Then, we concatenate
the results and employ two dense layers to fuse the informa-
tion and capture the inter-task correlations. Finally, a linear
layer outputs the rewards (Q-values) for all actions (〈cell,
task〉 pairs). The network structure with multiple branches
deals with the large action space (〈cell, task〉 pairs) and
effectively captures intra- and inter-task correlations.

In order to ease the difficulty of training, we first train
the network for each task, respectively. Then, we use the
weights to initialize the branches and train the whole net-
work for multiple tasks. In this way, the network converges
quickly and the new tasks can be easily added by adding new
branches and leveraging the fine-tuning techniques to train
them. In addition, the various metrics in multiple tasks should
be considered. In our model, we simply use the weighted
error rate in the reward shaping, and thus we concatenate the
outputs of multiple branches directly.

V. TRAINING AND ONLINE FRAMEWORK
In this section, we first introduce the training for the
RL-assisted Sparse MCS. According to the observation that
a few cells has been selected frequently, we propose to use a
small amount of data to train ourmodel. Then, we propose our
two-stage online framework with training and running phases
and explain how the framework deal with the online training
for RL in practical use.

A. TRAINING FOR REINFORCEMENT LEARNING
When we have enough historical data or we can conduct a
preliminary study for a long time, we can use these collected
data to train our RL-based algorithm in an offline manner.
In order to enhance the training data, for each sensing cycle,
we randomly select part of values, give a specified order
and calculate the error rates. This process will repeat many
times and thus we can obtain a large number of experiences,
i.e., et = 〈s, a, r, s′〉 in Algorithm 1. Then, we periodically
add the experiences into the memory pool D, and RL ran-
domly selects some experiences for training. In this way,
we can train our model effectively by using enough historical
data.

FIGURE 4. The times of one cell selected per the 100 cycles in
Sensor-Scope dataset (Temperature-Humidity).

However, in many cases, the large amount of training data
is hard to obtain and we cannot have such an unlimited
historical data set for training. Then, can we use a small
amount of data to train our model and achieve a good enough
performance? In most urban sensing systems, the answer is
yes. As shown in Figure 4, we try out all of the possible
〈cell, task〉 pairs and count the times of one cell selected per
the 100 cycles in our experiments over Sensor-Scope [31]
dataset in Section VI. We can see that 30% of cells have been
selected more than 10 times while the others are less than
10 times. Moreover, the central cells have been selected more
frequently than the corner ones, which fits our analysis and
proves the effectiveness of cell selection. Therefore, we con-
sider that a few cells are more important and they can help
more on data inference. We don’t need too much data to train
all of the possible states and actions from all cells. We can
use a small amount of data (part of data from 100 sensing
cycles in our experiments in Section VI.C) to train our model
on the common states and actions from the important cells,
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which is more effective and can achieve a good enough
performance.

B. ONLINE FRAMEWORK
Based on the observations, we design a two-stage online
framework including training and running phase, as shown
in Figure 5. The basic idea is to use an online method to
select 〈cell, task〉 pairs, while at the same time collect the data
for RL training. After the RL training is finished, we move
to the second stage, i.e., switch to RL-based cell selection
method to perform Sparse MCS. Next we introduce the two
stages in details.

FIGURE 5. The online framework including training and running phase.

In the training phase, we use an online cell selection
method, called Query-By-Committee (QBC). The QBC
method has been used in [8], [9], [11], which uses vari-
ous inference algorithms (such as compressive sensing and
K-Nearest Neighbors (KNN) [32]) to infer all the values and
chooses the 〈cell, task〉 pair which has the largest variance.
Note that QBC selects the most uncertain 〈cell, task〉 pair but
not the most effective one, thus some of its selections may not
be the right ones. For example, one corner cell may be hard
to infer, while the sensed data from it can help less on the
inferring for other values. Although the QBC doesn’t select
the best 〈cell, task〉 pairs, it removes the bad ones and collects
data from the approximate effective ones, and then we use
these data to train the RL model effectively. Additionally,
we should notice that in some large-scale urban sensing sys-
tems, the QBC may yield a long running time since it needs
to run various inference algorithms for many times. We may
turn to use the random method instead in our training phase,
which randomly selects a 〈cell, task〉 pair to sense, and the
performances mainly depend on the compressive sensing.

The online method can achieve the acceptable perfor-
mances and provide the training data for our RL-based
method. After sensing and collecting data by QBC for some
cycles (100 cycles in our experiments in Section VI.C),
the RL model is trained well, i.e., the average error rate
obtained by RL is lower than the online method’s in several
testing cycles (5 cycles in our experiments). We then turn
to the running phase and use our RL-based algorithm as the
cell selection method. Note that in practice, we do not know
all the ground truth data in the runtime, and thus we cannot
directly obtain the errors between the ground truth and the

inferred data. In this paper, we use the well known k-fold
cross-validation [33] to estimate the error from the sensed
values. Also, both the data inference and cell selection may
cause some errors, thus we use the average error rate and
periodically judge if the RL is better.Moreover, in the running
phase, we should continue to train the better model for a
period of time, and also we should retrain and update the
model periodically to adapt the possible new changes.

VI. PERFORMANCE EVALUATION
In this section, we conduct extensive experiments over
two real-world datasets, which contains multiple types
of urban sensing data, such as temperature-humidity and
PM2.5-PM10.

A. DATASETS
We adopt two well-known urban sensing datasets, Sensor-
Scope [31] andU-Air [34]. Sensor-Scope contains some envi-
ronment readings (temperature and humidity) and U-Air has
the air quality data (PM2.5 and PM10), which are the repre-
sentative urban sensing datasets. These data were collected
by the fixed sensors, while the mobile devices can also be
used to obtain them. Thus, we can use them to evaluate our
proposed algorithms effectively. The detailed statistics of the
two datasets are listed in Table 2 and the descriptions are
shown as follow:

TABLE 2. Statistics of two evaluation datasets.

Sensor-Scope [31]: The Sensor-Scope dataset contains var-
ious environment readings collected in the EPFL campus.
We select two representative sensing data, temperature and
humidity, to evaluate our methods for multi-dimensional
urban sensing. Actually, temperature and humidity present
some inherent correlations. For example, a higher tempera-
ture usually leads to a lower humidity [15]. Our methods can
capture their intra- and inter-task correlations well.
U-Air [34]: The Sensor-Scope dataset collects the air

quality data, i.e., PM2.5 and PM10, in Beijing. As shown
in Table 2, the air quality readings have the large fluctuations
and we use the air quality index category [34] instead of the
original readings.7 The PM2.5 and PM10 have the strong
inter-task correlations, especially for the bad air quality, both

7Six categories: Good (0-50), Moderate (51-100), Unhealthy for Sensitive
Groups (101-150), Unhealthy (150-200), Very Unhealthy (201-300), and
Hazardous (>300).
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FIGURE 6. Number of selected 〈cell, task〉 pairs on temperature-humidity and PM2.5-PM10.

of them may get the higher readings [27]. Thus, our method
can achieve the better performances.

B. BASELINE ALGORITHMS AND CONFIGURATIONS
We compare our RL-based algorithms to two existing meth-
ods: SPACE-TA and RAND-TA [11]. SPACE-TA selects the
most uncertain cells determined by ‘‘committee’’ (various
data inference algorithms) to sense for multiple tasks in par-
allel. Then, it uses a compressive sensing algorithm to deduce
the full sensing maps. RAND-TA will randomly select cells
and infer the rest by using an inference algorithm. Note that
RAND-TA actually achieves a competitive performance since
the random selection can already provide a lot of informa-
tion to the powerful inference technologies as compressed
sensing.

Furthermore, we study and evaluate the performance of
proposed algorithms in data inference and cell selection,
respectively. For data inference, we use the CS, KNN-S
and KNN-T [11] to evaluate the multi-task compressive sens-
ing (Multi-CS) algorithm. Compressive sensing (CS) has
been described in detail at Section IV.A and K-Nearest-
Neighbors (KNN) is the classic method which infers value by
using one’s weighted average of k nearest neighbors. Similar
with the modified compressive sensing, we also consider
the nearest neighbors on Spatial/Temporal dimensions, called
KNN-S and KNN-T. The weights for KNN-S are set as
the spatial correlation matrix S. The Temporal weights are
simply set as the normalized exp(−|i − j|), where i and j
are the numbers of cycles, since we don’t conduct the more
sophisticated temporal matrix. Besides, we don’t consider the
value correlations, since we cannot find the nearest values
with the one which needs to be inferred.

Since our multi-task RL-based cell selection method
(Multi-RL) can help on data inference, all of the compared
algorithms use it as the cell selection method, in order to
evaluate the performances improved by data inference.We set
λr = 0.3, λs/t/v = 0.1 for Eq. 6 and 10, σs/v/e = 1.5 for
Eq. 7 and 8. We also change the ω to evaluate the weighted
Multi-CS.

For cell selection, we use the RL, QBC and Random as
the baseline algorithms. RL is the reinforcement learning-
based cell selection for single task. QBC uses 4 inference
algorithms, including CS, Multi-CS, KNN-S and KNN-T,
to infer all the values and choose the cell which has the

largest variance. Randomwill randomly select several cells to
sense. Note that the random method actually achieves a com-
petitive performance since the data inference algorithms can
work well based on the sparse and enough random selections.
Similar with data inference, we use Multi-CS as the inference
method for all the cell selection algorithms.

The network structure is shown in Figure 3 in Section IV.B,
which has 2 branches and 2 fully connected layers to fuse
the information from branches. For Sensor-Scope, we keep
recent 5 cycles as recent-cycle selection and the time T in
state is set as {0, 1, . . . , 47} for Sensor-Scope. Thus, the size
of input (state) for each branch is 5 × 57 + 1 × 57 + 1 =
343 and the size of output (action) is 57. Similarly, for U-Air,
we also keep recent 5 cycles, T is set as {0, 1, . . . , 23} and
the sizes are 217 and 36. For the other parameters, we set
discount factor γ = 0.9 and learning rate α = 0.05 in Eq. 15
and dynamically adjust ε from 1 to 0.1 for whole process of
training. At the beginning of the training, we set a relatively
large ε so that we can try more; then, with the training process
proceeds, we gradually reduce ε until the model is converged.
We also set all of the weights/hyper-parameters ω = 1 to
avoid confusion.

C. EXPERIMENT RESULTS
1) RL-ASSISTED SPARSE MCS
We first evaluate the performance of our RL-assisted Sparse
MCS algorithms, which jointly addresses data inference and
cell selection. The existing method, SPACE-TA, focuses on
the task allocation problem with accuracy constraint, which
aims to select a minimal subset of 〈cell, task〉 pairs while
satisfying the accuracy requirement. Thus, we first evaluate
the average number of sensed values per sensing cycle. The
results are shown in Figure 6.

For the temperature-humidity in Sensor-Scope, we set the
accuracy requirements e to 0.25/0.30◦C and 1.5/2.0%. Thus,
for each cycle, we should select users one by one until
the expected inference errors (estimated by k-fold cross-
validation [33]) are smaller than 0.25/0.30◦C and 1.5/2.0%.
The average numbers of selected 〈cell, task〉 pairs per cycle
have been shown in Figure 6 (a) and (b). Our RL-assisted
algorithms can sense 17.3/16.0% and 21.4/25.0% fewer 〈cell,
task〉 pairs than SPACE-TA for the temperature and humidity
tasks, respectively. For the PM2.5-PM10 in U-Air, we obtain
the similar tendency in Figure 6 (c) and (d) under the accuracy
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FIGURE 7. Data inference on temperature-humidity and PM2.5-PM10.

requirements 6/36 and 9/36. These results show that our
RL-assisted algorithms can effectively reduce the sensed val-
ues of Sparse MCS. Next, we will further study and evaluate
the performances of the algorithms in data inference and cell
selection, respectively.

2) DATA INFERENCE
We evaluate the data inference on two datasets and each
with two sensing tasks. For all the compared algorithms,
we use RL-based cell selection algorithm to select the next
sensed cells. In order to reflect the improvement of inference
accuracy in data inference and cell selection respectively,
we change the number of selected cells for each sensing
cycles and evaluate the average error rates for each methods.
The results are shown in Figure 7.

The average error rates over four urban sensing tasks
have the similar tendencies and our Multi-CS achieves the
best performance. Along with the increase of the number of
selected cells, the average error rates become lower, since
the more selected cells provide more information to help the
data inference. The CS andMulti-CS are relatively closer and
achieve better performances when we have less selected cells.
The reason is that the compressive sensing can deal with the
sparse data well. However, when we have sensed many cells
in a cycle, the compressive sensing may lose to the traditional
algorithms, as shown in Figure 7(d).

The Multi-CS can utilize the inter-task correlations and
perform better than CS, especially whenwe have less selected
cells. Note that we want to give the comparisons between
all the tasks with different metrics, thus we display the error
rates with small values. These small values, especially on
the baseline algorithms, can also prove the effectiveness of
our RL-based cell selection. In fact, the Multi-CS and CS
can achieve the 0.238/0.249◦C error in Temperature and
1.67/2.02% in Humidity when we only sense 3 out of 57
cells by RL for each tasks, which are good enough in most
cases. Similarly, the Multi-CS and CS get the average errors
of 0.29/0.30 and 0.30/0.35 on the air quality index.

Moreover, we change theω in Eq. 11, in order to show how
the weight ω impacts the inference accuracy for Multi-CS.
The results are shown in Figure 8. We can see that when
ω = 0, all the tasks achieve the best performances. It means
that the factor L shared in multi-tasks plays an important role
and obtains the smallest inference error.

FIGURE 8. ω on temperature-humidity and PM2.5-PM10.

3) CELL SELECTION
Then, we evaluate the cell selection over two multi-
dimensional urban sensing datasets, Temperature-Humidity
and PM2.5-PM10, as shown in Figure 9. Similar with data
inference, we use Multi-CS for all compared algorithms.
We change the number of selected cells for each sensing
cycles and evaluate the average error rates for each methods.
Note that our Multi-RL selects the 〈cell, task〉 pairs for multi-
ple tasks, which means that we may select more cells for the
task which will help more.

Along with the increase of the number of selected cells,
the results have the similar tendencies with data inference,
since the more selected 〈cell, task〉 pairs may provide more
information to improve the accuracies. Our Multi-RL always
achieves the best performance, especially when we only
select less 〈cell, task〉 pairs. For Temperature-Humidity, since
we set the weight ω = 1, the Multi-RL performs a bet-
ter performance on Temperature while keeps an acceptable
performance on Humidity. Actually, we select 7.52 cells for
Temperature and 2.48 cells for Humidity on average. The rea-
son is that the reward in Multi-RL encourages the algorithm
to select more cells for Temperature, since it has the higher
error rate. Similarly, we select 3.11 cells for PM10 and 2.89
for PM2.5, since their error rates are close, which also have
been reflected in Figure 6.

Similar with the data inference, we display the average
error rates, in order to show the comparisons between the
tasks with different metrics. Thus, the results are relatively
small. Moreover, we use RL as the cell selection methods for
all compared algorithms to evaluate the data inference, and
use compressive sensing to evaluate cell selection. We jointly
address the data inference and cell selection and our proposed
methods always achieve the best performances, which proves
the effectiveness of our methods.
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FIGURE 9. Cell selection on temperature-humidity and PM2.5-PM10.

FIGURE 10. Online training on temperature-humidity and PM2.5-PM10.

4) ONLINE FRAMEWORK
As shown in Figure 4 of Section V.A, a few cells may be
important in the urban sensing scenarios, and these cells will
be selected more frequently. We consider that the training on
these important cells would be effective and thus we propose
the online framework with training and running phases. Here,
we test our online framework and show the changes of error
rates during the training and running phases and illustrate
the transition point of our online framework for Temperature-
Humidity and PM2.5-PM10, as shown in Figure 5.
Note that both data inference and cell selection may cause

some errors, thus we use the average error rate and periodi-
cally judge if the RL-based algorithm is better. We judge if
the RL can perform better in the next 5 cycles than Random
and QBC every 20 cycles. At the 100th cycles, we turn to the
running stage for Temperature-Humidity and PM2.5-PM10,
and their performances are closed to the RL models which
have been trained offline. We can see that when we use only
20 cycles for training, the error rates are very high. The
reason is that our RL has learned that a few cells are good,
and always select them, which makes the data inference so
difficult. In addition, since our datasets are limited as shown
in Table 2, we only use the first 100 cycles for training and the
rest are used for testing. In our future work, we would like to
conduct our experiments on some larger datasets, which may
achieve better performances.

5) RUNNING TIME
Finally, we test the average running time for each method,
as shown in Table 3. Our experiment platform is equipped
with Intel Xeon CPUE2630 v4@2.20GHz and 32GBRAM.
The Muti-CS costs 0.91s and 0.66s to infer the full sensing

TABLE 3. Runtime for each method.

data for Temperature-Humidity and PM2.5-PM10, which are
totally acceptable in real-life deployments. For cell selec-
tion, we implement our RL-based algorithms in TensorFlow
(CPU version) and they obtain the great advantages than
QBC on the running times. RL-based algorithms only need
less than 1ms during the running stage. The training can be
conducted offline/online, which costs around 10−30minutes
to converge, since we design a simple but effective network
structure with multiple branches.

VII. CONCLUSION
In this paper, we investigate the multi-dimensional urban
sensing issue in Sparse Mobile CrowdSensing, which allows
us to sense only a few cells while inferring the data of the rest
of city areas with high data quality. First, we exploit intra-
and inter-task correlations and use themulti-task compressive
sensing to infer the full map of the sensing data with only
a few collected values. Then, we present the reinforcement
learning-based algorithm for multiple tasks to select the 〈cell,
task〉 pairs which would perform best on data inference.
Finally, we present a two-stage online framework including
training and running phase. Extensive evaluations on two
real-world data sets have verified the effectiveness of our
proposed algorithms on multi-dimensional urban sensing,
which achieve better performances than the state-of-the-art
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mechanisms. In the future work, we would like to introduce
the user mobility [6] and data uploading [35], [36] into a
more practical Sparse MCS. Also, the privacy protection
mechanism [10] would also be explored and added into our
reinforcement learning-assisted solutions.
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