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Abstract—Recent years witness the rapidly-growing business of ride-on-demand (RoD) services such as Uber, Lyft and Didi. Unlike
taxi services, these emerging transportation services use dynamic pricing to manipulate the supply and demand, and to improve
service responsiveness and quality. Despite this, on the drivers’ side, dynamic pricing creates a new problem: how to seek for
passengers in order to earn more under the new pricing scheme. Seeking strategies have been studied extensively in traditional taxi
service, but in RoD service such studies are still rare and require the consideration of more factors such as dynamic prices, the status
of other transportation services, etc. In this paper, we develop ROD-Revenue, aiming to mine the relationship between driver revenue
and factors relevant to seeking strategies, and to predict driver revenue given features extracted from multi-source urban data. We
extract basic features from multiple datasets, including RoD service, taxi service, POI information, and the availability of public
transportation services, and then construct composite features from basic features in a product-form. The desired relationship is
learned from a linear regression model with basic features and high-dimensional composite features. The linear model is chosen for its
interpretability – to quantitatively explain the desired relationship. Finally we evaluate our model by predicting drivers’ revenue. We
hope that ROD-Revenue not only serves as an initial analysis of seeking strategies in RoD service, but also helps increasing drivers’
revenue by offering useful guidance.

Index Terms—Ride-on-demand, dynamic pricing, seeking strategy, driver revenue.

F

1 INTRODUCTION

R ECENT years witness the rapidly-growing business of
ride-on-demand (RoD) services such as Uber, Lyft and

Didi around the world. RoD service attracts passengers by
its convenience, affordable prices, and flexible service; it also
attracts drivers by its driving flexibility – drivers do not
have to apply for licenses or medallions to enter the service.
An increasing amount of passengers now take RoD service
as a regular choice in their everyday transportation.

Dynamic pricing is one of the key features making RoD
service attractive to both passengers and drivers, as an effort
to manipulate the supply (i.e., the number of cars on the
road) and demand (i.e., the number of passenger requests).
Specifically, a higher price attracts more drivers and defers
those requests from passengers who are not in hurry; and
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a lower price does just the opposite. In most cases, the dy-
namic prices are represented by a price multiplier, such that
the fare of a trip is the product of a dynamic price multiplier
(dependent on the supply and demand condition) and a
fixed normal price (based on the trip time and distance).

The adoption of dynamic pricing helps to make the
service more responsive and to improve service quality,
but it also gives rise to new problems to both drivers and
passengers. In this study, we mainly focus on the drivers’
side: how to seek for passengers to earn more? Instead of
relying on some personal, ad-hoc experiences as was in taxi
service, in RoD service the price multiplier, a more accu-
rate description of the instantaneous supply and demand
condition, becomes a new indicator for drivers to choose
seeking strategies. But the effective strategies are still yet to
be explored. For example, if all drivers flock to a particular
region with high price multiplier, the supply in this region
becomes more than enough, causing the price multiplier to
drop drastically. This not only generates unstable prices, but
also upsets those drivers with an intention of chasing high
prices. In fact, many news stories, blogs or research papers
have discussed this intuitive “surge chasing” strategy, but
unfortunately they sometimes give contradictory sugges-
tions from one to another [1], [2]. As a result, it is pressing
that drivers should have some concrete guidance as to how
to seek for passengers under dynamic pricing, instead of
intuitive or untenable suggestions.

To our knowledge, seeking strategies receive little atten-
tion in RoD service. In the traditional taxi service, seeking
strategies have been studied from many different perspec-
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tives, e.g., mining patterns of strategies from taxi GPS
trajectories, building models such as the Markov Decision
Process (MDP) model to evaluate certain strategies, etc. In
RoD service, on the other hand, most suggestions are from
news stories or blogs that are not rigorous enough, and
some few existing researches are mostly based on theoretical
models that require a lot of assumptions and approximation.
In fact, the lack of real data in RoD service hinders relevant
studies based on the data-analytical methodology.

Studying seeking strategies in RoD service requires us to
take into account more factors than in taxi service. In our
study, we involve factors from two perspectives:

• Dynamic Prices: As the core and distinctive feature
of RoD service, the dynamic prices should have
impacts on seeking strategies. For example, the ef-
fects of the intuitive “surge chasing” strategy, and
“what to chase” correspondingly, will be discussed.
As another example, the adoption of dynamic pricing
may change the demand patterns of passengers, so
the hours-of-day in which seeking for passengers is
the most profitable is also a problem to explore.

• Status of Other Transportation Services: There are
concerns that the emerging RoD services are compet-
ing, to some extent, with traditional transportation
services such as taxi, bus or metro. In some cases,
these services are also complementary to each other –
for example, one may choose to seek in a region with
more metro or bus stations to provide connecting
services. Hence, the relationship between seeking
strategies and the status of other transportation ser-
vices is also among our targets to study.

In this paper, our goal is to understand the relationship
between driver revenue and seeking strategies, i.e., “what
seeking strategies prove to be more profitable? ”. Based on real
data, we develop ROD-Revenue, a system that learns an
interpretable relationship between drivers’ hourly average
revenue and seeking strategies from the data, and predicts
driver revenue given features relevant to seeking strategies.
For the datasets, our study is based on multi-source urban
datasets including the data of RoD service, taxi service,
points-of-interest (POI), and public transportation services;
as to the model used to learn the desired relationship, we
resort to a linear regression model with high-dimensional
features. The consideration of choosing multi-source urban
data and linear regression model is discussed briefly below.

Multi-source Urban Data. We learn the desired relation-
ship from real data instead of theoretical models, and we
choose multi-source urban data for multiple reasons. Firstly,
the use of multiple datasets helps us to describe the status
of different transportation services, before we can learn the
impacts of this status on drivers’ revenue. Secondly, with
more datasets, we can extract more features, making our
model accurate enough to learn the desired relationship.

Linear Regression Model with High-dimensional Fea-
tures. In addition to describing the above relationship and
predicting driver revenue, we want to interpret quantita-
tively the learned relationship, e.g., “how, and to what extent,
one particular feature influences drivers’ revenue?” or “which
feature is the most important? by how much?”. Hence, the
model should also be interpretable. Complex non-linear

models such as neural network or deep learning models
are generally not interpretable, albeit with high accuracy.
Some simpler models such as decision tree models are, by
its nature, interpretable, but the interpretability is dimin-
ished when training multiple trees at high complexity. A
linear regression model is one of the simplest models with
interpretability – the weight of each feature quantifies its
importance – but it is hard for a linear model to characterize
clearly the non-linear correlation between features. In our
study, we adopt a linear regression model, and compensate
for the lack of non-linear terms by adding product-form
terms of a combination of features (i.e., composite features).
The multiplication of two or more features and using the
corresponding result as a new feature in model training help
to describe the non-linear correlation between features. To
validate the effectiveness of our model, we also implement a
neural network model and compare their evaluation results.

Our contributions are three-fold:

• Our study is one of the very few on seeking strategies
in RoD service. As far as we know, existing stud-
ies mainly use theoretical models such as the MDP
model with assumptions about the supply, demand
and driver behavior because of the lack of real data.
Instead, we are the first to mine the relationship
between driver revenue and seeking strategies by
a learning model from real service data. Thus, our
focus is not only on the learning model itself, but
also on mining and understanding new patterns
and relationship about seeking for passengers in
emerging RoD services and increasing the research
community’s understanding about such a service.

• To the best of our knowledge, we are the first to
involve multi-source urban data in studying seeking
strategies in RoD service. This enables us to take into
account the status of other transportation services as
well as the POI information, instead of considering
only RoD service itself.

• Based on the linear model, ROD-Revenue quantifies
the above relationship and provide concrete heuris-
tics to drivers as to how to earn more under dynamic
pricing in RoD service. Quantifying the relationship
helps to understand “what seeking strategies are more
profitable, and by how much?”. The heuristics are de-
rived from real data, and some of them are counter-
intuitive and may be contradictory to intuition.

The remainder of the paper is organized as follows. §2
reviews related works. We show the system framework of
ROD-Revenue in §3. §4 to §7 elaborate on the three main
parts of ROD-Revenue, i.e., multi-source urban datasets,
feature extraction, and model & prediction. Together with
the model in §7, we also present our evaluation results. §8
provides discussions on feature contribution, seeking strate-
gies and relevant topics. Finally §9 concludes the paper.

2 RELATED WORK

The problem about driver revenue and seeking strategies
has been studied in traditional taxi services from different
perspectives, but receives very limited attention in emerging
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RoD services. We first review some related work in RoD
service, then discuss previous studies on seeking strategies.

RoD Services. RoD service is relatively new, and there
are fewer studies compared to traditional taxi service. Quite
a few compare the differences of the price, waiting time,
incentives, and service quality between taxi and RoD ser-
vice, from a data statistical perspective. For instance, Picchi
pointed out that Uber is not always the economical choice
although it can reduce the waiting time to a great deal [3];
Salnikov conducted a head to head Uber-taxi comparison
study in a reasonable spatio-temporal resolution [4]. In
addition, the market sharing of the taxi service and public
transportation before and after the entering of Uber is also
compared and discussed in [5], [6], [7]. There are also a
number of studies estimating Uber’s market effects such as
“Is Uber a substitute or complement for public transit?” [8],
“Drivers of disruptions?” [9], etc.

As a key feature of RoD service, dynamic pricing re-
ceives a great deal of attention. [10], [11], [12] examine
the effectiveness of dynamic pricing in balancing and re-
distributing the supply and demand in different regions,
increasing driver revenue, reducing passenger waiting time,
etc. [13] tries to evaluate Uber’s surge pricing mechanism
based on the measurement treating Uber as a black-box,
but their evaluation is not accurate enough because of the
lack of data. [14], [15] study and analyze the demand, the
effect of dynamic pricing and passengers’ reaction to prices
in RoD services. [16] focuses on dynamic price prediction
using different data mining techniques. There are also some
works on economic analysis of dynamic pricing [10], the
supply elasticity [17] and consumer suplus [18].

Seeking Strategies. Seeking strategies, together with
seeking route recommendation, have been studied exten-
sively in taxi services. For example, [19], [20] study seeking
strategies by mining GPS trajectories, and identify whether
hunting (i.e., seeking for passengers actively) or waiting
(i.e., staying in popular locations) are more profitable un-
der different circumstances. [21] builds a Markov Decision
Process model to optimize taxi driver revenue efficiency.
[22] discusses the same problem, but with reinforcement
learning. [23] extends the model in [21], incorporates the
charging process, takes into account the battery constraint,
and discusses how to earn more when driving electric
taxis. Alternatively, [24] recommends routes to drivers to
minimize the distance between the taxi and an anticipated
customer request. However, as taxi adopts fixed pricing,
price is not a possible factor that influences seeking strate-
gies. Also, studies on taxi service generally consider the taxi
service itself as an entity that influences driver revenue.

In RoD service, there are much fewer studies on seeking
strategies considering the effects of dynamic pricing. [25]
studies how to optimize earning in on-demand ride-hailing
(i.e., another name similar to RoD service) based on theoret-
ical modelling. It models drivers, cities, and the service itself
with a number of assumptions and approximations, and the
driver strategies mentioned are idealized to a certain extent.

Different from the above works, our study on seeking
strategies and driver revenue is based on real data, and tries
to mine the relationship between driver revenue and seek-
ing strategies using a learning model. We also evaluate the
accuracy of such a model based on ground truth. Besides,

we also offer tenable suggestions for drivers to increase
revenue based on the learned model.

3 SYSTEM FRAMEWORK

In this section, we formalize the problem to study, and then
present briefly the system framework of ROD-Revenue.

3.1 Problem Statement
The problem ROD-Revenue tries to solve is to learn the
relationship between drivers’ hourly average revenue and
seeking strategies, and then predict any driver’s hourly aver-
age revenue based on the learned model and corresponding
seeking strategies.

Definition 3.1 (Timeslot). Our study is on the unit of times-
lots. We divide one day into 4 timeslots of equal length:
timeslot-0 to -3 refers to [4am, 10am), [10am, 4pm), [4pm,
10pm) and [10pm, 4am), respectively.

Roughly speaking, for weekdays, timeslot-0 and -2 corre-
spond to the morning and evening rush hours; timeslot-1 is
the non-rush hours around noon; and timeslot-3 represents
night hours. For weekends, our study and [14] suggest that
human activity remains relatively high and stable during the
day (about [9am, 10pm)), and is lowered during the rest of
the day, so the above partition of timeslots still makes sense.
In determining the length of timeslots, it cannot be too long
to avoid losing useful information of time division; and it
cannot be too short to have fewer than enough passenger
delivery trips to be representative. Our study is based on
real data from Beijing, a major Asian metropolitan city that
accommodates a diversified population and hence diversi-
fied trip patterns – making the length of rush or non-rush
hours longer than normal. In our model and evaluation, we
also try to partition one day into timeslots of 4 hours in
length, and it proves to generate lower accuracy (see §7.3.2).

Definition 3.2 (Hourly Average Revenue). The hourly aver-
age revenue of a driver in one particular timeslot, is defined
as the sum of trip fares of all passenger delivery trips taking
place in this timeslot divided by the length of the timeslot
in hours. We use K to denote the number of trips of a driver
in a timeslot, and use fk(1 ≤ k ≤ K) to denote the trip fare
of the k-th trip, then the hourly average revenue ravg is:

ravg =

∑K
k=1 fk
6

, (1)

given that the length of each timeslot is 6 hours.

Choosing the hourly average revenue as the target of
study is intuitive, as we want to learn the relationship
between driver revenue and seeking strategies. Calculating
the hourly average revenue over a timeslot of multiple
hours helps in dealing outliers or special events.

We use y to denote the hourly average revenue for
one driver during a timeslot, and x ∈ Rm the feature
vector, with m being the dimension of the feature vector.
From our datasets, we can extract N data entries of d-
ifferent drivers or during different timeslots, denoted by
X = {x1, x2, · · · , xN} and Y = {y1, y2, · · · , yN}. Data
entries X and Y are then divided into a training set (Xtrain

and Ytrain) and a testing set (Xtest and Ytest). We then build
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a model based on Xtrain and Ytrain to learn the relationship
f(x) between X and Y such that y = f(x). The validation
of the model is by predicting a Ypredict based on Xtest, and
comparing between Ypredict and Ytest.

3.2 System Framework of ROD-Revenue

RoD DataRoD Data Taxi DataTaxi Data
Public 

Transp. Data

Public 

Transp. Data
POI DataPOI Data

Price and 

Temporal 

Info

Taxi Service 

Status

Public Transp. 

Status
Spatial Info

Datasets

Feature Extraction

Basic Features Composite Features

Model & Prediction

Product

Form

Linear Regression Model with 

High-dimensional Features

Driver Revenue Prediction

Learn the model 
from real data;

Predict based on the 
learned model;

Fig. 1. The system framework of RoD-Revenue.

As illustrated in Fig. 1, ROD-Revenue consists of three
main layers: datasets, feature extraction, model & predic-
tion. We discuss briefly each of them below.

Datasets. We use multi-source urban datasets as the
fundamental component of ROD-Revenue. Datasets are ob-
tained from RoD service, taxi service, POI information, and
public transportation services. These datasets are used to de-
scribe the spatio-temporal information as well as the status
of other transportation services from different perspectives.

Feature Extraction. For each driver during each timeslot,
we extract corresponding feature set. We have two cat-
egories of features, namely basic features and composite
features. Basic features are those extracted from each sin-
gle dataset. Features from RoD service give the temporal
and price information; features from taxi service and other
public transportation services describe the status of these
services around the seeking locations; features from POI
information characterize the function and category of these
locations. Composite features are those combined from basic
features in a product-form. We use composite features to
compensate for the lack of non-linearity in our linear model.

Model & Prediction. Based on the basic and composite
features, we build a linear regression model to learn the
relationship between driver revenue and seeking strategies
based on the training dataset, and use the learned model
to predict driver revenue based on the test dataset. We also
measure the difference between the predicted revenue and
ground truth in test dataset to evaluate model accuracy.

In the following sections, we elaborate on each layer with
more details: §4 for datasets, §5 for the extraction of basic
features, §6 for the extraction of composite features, and §7
for the model and prediction.

4 MULTI-SOURCE URBAN DATA

Multi-source urban datasets are the fundamental compo-
nent of ROD-Revenue. In this section, we explain the RoD
service data, taxi service data, bus & metro distribution data,
and POI data. Tab. 1 summarizes the datasets and fields.

4.1 RoD Service Data

The use of mobile apps for both passengers and drivers
to access RoD services is a key enabler of our research. In
traditional taxi service, most cars are now equipped with
GPS devices that upload GPS trajectories, and in recent
years there are an emerging usage of mobile apps to assist
the matching between drivers and passengers. But in a RoD
service, all communication messages between passengers,
drivers, and the service provider are carried out through
mobile apps, and there is not any other way of matching be-
tween drivers and passengers such as street-hailing. Hence,
in addition to the car GPS trajectories data typically used in
taxi studies, now we have more data to rely on.

Our data is from Shenzhou UCar (http-
s://bit.ly/2MG47xz), a major RoD service provider in
China. Fig. 2 shows the user interface of its app, and we
use it to explain the work-flow of a typical RoD service.
One types the boarding location A and arriving location B
and could also choose “when to ride” and “using coupon”.
After these steps, the app sends relevant information back
to the service provider and obtains (a) the estimated trip
fare and (b) the current dynamic price multiplier, which are
displayed to the user. Note that the service provider often
sets a lower and upper bound on the price multiplier in the
service policy. The user then chooses either to accept the
current price (i.e., “Ride a Car!”) or give up the current fare
estimation if s/he considers the price multiplier too high.

Fig. 2. The user interface of a typical RoD service.

We obtain three different datasets from RoD service:
The Order Data. Each entry represents a single or-

der from a passenger, containing the order’s board-
ing/arriving time and location, the unique ID of the us-
er/driver/car/order, the type of order, etc. We use the data
in Beijing, as it is one of the most representative metropoli-
tan cities and also the biggest market of the service provider.
The dataset lasts for 4 months, from Nov. 2015 to Mar. 2016,
and contains about 2.7 million entries for Beijing alone. All
entries are properly anonymized.

GPS Trajectories. This dataset covers the GPS trajecto-
ries of every single car under the service provider. Each
car uploads its location to the service provider every two
minutes, and the upload period becomes longer (varying
from five to ten minutes) when the car is out of service (e.g.,
the driver is taking a rest, having lunch, etc.). Each entry
represents one particular data upload with information such
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TABLE 1
A summary of datasets and fields.

Dataset Fields
RoD Order: boarding location, boarding time, arriving location, arriving time, user ID, driver ID, car ID, order ID/type.

GPS Trajectories: car location, upload time, car ID, car number plate.
Event-log: event time, event location, estimated fare, price multiplier, user ID.

Taxi GPS Trajectories: taxi location, upload time, speed, full flag, car number plate.
Bus & metro the number of bus stations, bus lines, metro stations, metro lines.

POI the number of POIs of 14 categories mentioned in §4.4.

as the location of the car (i.e., the longitude and latitude),
data upload time, the unique ID and the number plate of
the car, etc. The time range of the dataset is the same to the
order data, and on each day the number of cars on the road
is about 3,500 for the service provider.

The Event-log Data. Each time when the mobile app
sends all the information to the service provider and returns
the current price multiplier and the estimated trip fare, an
EstimateFee event is generated. Our event-log data contains
the record of this event in the same time range. Each entry
corresponds to a single event, and includes fields such as
event time, event location (i.e., the longitude and latitude
when the user triggers the event), estimated fare, price
multiplier, the unique user ID, etc. The dataset contains
14,832,418 entries.

The event-log data gives clues about dynamic prices: it
covers more information than the orders created by pas-
sengers, as those fare estimations that do not lead to order
creations are also recorded. For a particular time period and
a region, we can calculate the average price multipliers of
all events in this region during this period, and it tells “how
different price multipliers could be in different locations or
during different time periods?”. In [16] the authors show
the average price multiplier during different time periods
around Beijing, and a very simple observation is that the
dynamic prices are related to temporal and spatial factors,
so are the drivers’ revenue.

These three datasets help us to obtain information about
both the passenger delivery trip and driver seeking trip. The
feature extraction process in details will be discussed later.

Passenger Delivery Trip. We can extract the following
information about a delivery trip: the boarding/arriving
time and locations are directly from the order data; and
the trip distance and order revenue can also be estimated.
Details will be discussed in §5.1.1.

Driver Seeking Trip. A seeking trip is defined as the
trip from the arriving location of one order to the boarding
location of the next order. The starting and ending points
(time and locations) of a seeking trip are just the arriving
time/location of one order, and the boarding time/location
of the next order.

4.2 Taxi Service GPS Trajectory Data

The motivation of using taxi GPS trajectory data along with
RoD service data is two-fold. Firstly, we envision that the
operation status of RoD service is relevant to taxi service,
as RoD service is similar to taxi service in many ways.
Thus, the profitability of a particular seeking strategy maybe
related to the status of taxi service along the seeking routes.

Secondly, the taxi service GPS trajectories help to character-
ize the general traffic condition of different locations. For
examples, “whether a region is busy during a particular time
period”, “the number of available taxis around a region”, etc.

Our dataset covers the GPS trajectories of about 30,000
taxis in Beijing in November, 2015. Similar to RoD service,
each taxi uploads one GPS entry every 30 seconds during
operation. For each day, the volume of dataset ranges from
45 to 50 million entries. Each entry contains information
such as the location of the car, upload time, speed, full flag
(i.e., whether the taxi is available), the number plate, etc.

4.3 Bus & Metro Distribution Data
We use this dataset to describe the availability of public
transportation around different locations, as the profitability
of a seeking strategy may be related to the status of public
transportation services around.

We count the number of bus & metro lines and stations
within a 500-meter radius of a given location. It is true that
the most accurate description should be the availability of
bus & metro around, but as bus & metro have relatively
fixed time tables, most people decide whether to take public
transportation based on the availability of bus & metro lines
or stations nearby, instead of the exact number of buses or
metro trains. The dataset is crawled from AMap service [26]
(one of the largest digital map service providers in China).
For the whole city, there are more than 7,700 bus stations
and about 380 metro stations.

4.4 POI Data
The goal of using POI (point of interest) information is that
we want to extract some POI features to characterize a par-
ticular location. For example, the average price multiplier is
much higher in some part of the city (e.g., some business
areas) during evening rush hour than in other locations. We
want to find out some features to accurately describe the
differences between locations.

We also crawl POI data from AMap service. It catego-
rizes each POI into 14 coarse categories: car service, restau-
rant, shopping, sports & entertainment, hospital, hotel, scenic
spot, business & residential building, government, education &
culture, transportation facility, finance & insurance, business and
lifestyle. For a location given, we count the number of POIs
of each category within a 500-meter radius of the location,
and use the resulting vector as our POI data.

Essentially, the POI-counts data we collect describes a
particular location with the number of POIs of different
categories that appear around this location. Some previous
work used the nearest POI and its category to describe a
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location, and we do not adopt this idea, as we consider it
not an accurate characterization of a location. For example,
a passenger standing out of a shopping mall may have the
nearest POI as a restaurant, but the reason of waiting here
turns out to be the shopping mall instead of the restaurant.

5 FEATURE EXTRACTION: BASIC FEATURES

Our study is on a weekly basis. For each driver driving on a
particular day-of-week, we gather his/her passenger orders
and seeking trips during each timeslot, and calculate the
corresponding features based on our multi-source datasets.

Basic features are those extracted from each dataset, and
in the following we elaborate on them in more details.

5.1 Features from RoD Service
RoD service features are the most fundamental in our study.
We extract features about both passenger delivery trips and
driver seeking trips. All features are extracted in the unit
of timeslot for each driver on a particular day-of-week.
The common features for delivery and seeking trips are the
temporal features: day-of-week and timeslot-of-day. Below we
elaborate on features related to passenger delivery trips and
driver seeking trips separately.

5.1.1 Features about Passenger Delivery Trips
For passenger delivery trips, the goal is to calculate the
average delivery speed and the hourly average revenue of a
driver in a timeslot.

Average Delivery Speed. We first calculate the trip
distance of each passenger delivery trip of a driver in
a timeslot. The order dataset provides the boarding and
arriving location of an order, but the straight line distance
between these two locations is only a rough estimate of the
trip distance. The RoD service GPS trajectories are used to
approximately calculate the distance. Specifically, the GPS
trajectories of a single car in one day consist of a series
of points (ti, loni, lati)(1 ≤ i ≤ n). n is the total number
of data points, and ti, loni, lati are the data upload time,
longitude and latitude of the i-th point, respectively. For
a single order, we use Tboard and Tarrive to denote the
boarding and arriving time, and find the board L, board R,
arrive L, arrive R-th data points on the GPS trajectories
such that tboard L ≤ Tboard ≤ tboard R and tarrive L ≤
Tarrive ≤ tarrive R. We then use two trajectories with a
slight difference to approach the real distance: one from
tboard L to tarrive L, and another from tboard R to tarrive R.
For each trajectory, the trip distance is approximated by the
sum of straight line distances between adjacent points. The
trip distance of this order is the average of distances of the
two trajectories.

The average delivery speed vavg of a driver in a timeslot
can then be calculated. Assuming that this driver serves
K orders during this timeslot, with boarding time Tboard,k,
arriving time Tarrive,k and trip distance dk (1 ≤ k ≤ K),
then vavg is:

vavg =

∑K
k=1 dk∑K

k=1 Tarrive,k − Tboard,k
. (2)

We use average delivery speed as a feature, as it reflects a driv-
er’s ability to choose faster routes in serving a passenger,

which is an important metric in driver evaluation. It is also
a reflection of the traffic condition along the delivery routes,
when there is no faster routes to choose from.

Hourly Average Revenue. The hourly average revenue of
a driver in a timeslot is the target of our model. Calculating
the hourly average revenue requires the trip fare of every
single passenger delivery trip of a driver, but our order
dataset has a limitation that there is not a total trip fare
or dynamic price multiplier associated with each order. This
limitation may be due to the privacy policy. Hence, we try to
estimate the trip fare as well as the dynamic price multiplier.

Specifically, we divide the map of Beijing into 2500
(= 50∗50) rectangular cells of the same size, so the boarding
location of the order falls in one cell. Then we gather all
EstimateFee events from the event-log dataset in this cell
taking place during the same hour and on the same day-
of-week with the order, and use the average price multiplier
contained in these events to approximate the price multi-
plier of the order. We use pk to denote the estimated price
multiplier for the k-th order (1 ≤ k ≤ K) and fk as the
estimated trip fare of the k-th order, then we have:

fk = pk ∗ (15 + 2.8 ∗ dk), 1 ≤ k ≤ K. (3)

In (3), the service provider sets the flag-fall to be 15 Yuan
in RMB (≈ 2.18 USD), and each additional kilometre costs
2.8 Yuan (≈ 0.41 USD). As an approximation, our estimated
trip fare omits the waiting charge, as it is hard to accurately
estimate the waiting time only from the GPS trajectories.

Visualizations and Analysis. We show some visualiza-
tions of the intermediate quantities mentioned above, as
well as the average delivery speed and hourly average revenue,
based on our RoD service datasets. The goal is provide some
intuitive understanding and insights about these features.

Fig. 3 shows the hourly variation of order distance dk,
order revenue fk and order average speed. The red dot is
the corresponding mean value, and the error bar indicates
the standard deviation. Interesting observations include:

• For order distance, it is significantly higher dur-
ing night, and becomes the lowest during morn-
ing/evening rush hours on weekdays. This agrees to
our intuition that people take longer rides at night.

• For order revenue, the temporal difference is smaller
during the day, compared to that of order distance.
But during morning rush hours the revenue is still
the lowest. The reduced temporal difference is a
result of higher dynamic prices during rush hours.

• The average speed also shows similar patterns with
more obvious fluctuation. It can be regarded as an
indication of the traffic condition, and it is clear that
the speed is much slower during rush hours.

• During weekends, the fluctuation of these three
quantities is much less obvious: during the day (e.g.,
[8am, 8pm]), the order distance, revenue and speed
all remain more stable.

Fig. 4 and 5 show the distribution of hourly average
revenue among all drivers in each timeslot. The y-axis of
these figures is proportional to the probability, and may not
integrate to one. Similarly, Fig. 6 and 7 show the distribution
of average delivery speed among all drivers in each timeslot.
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Fig. 3. The variation of order distance, revenue and speed in one week.
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Regarding the hourly average revenue of drivers, we
have the following observations:

• The distribution is more even during weekends:
drivers make similar hourly revenue during the day.
Comparatively, the hourly average revenue fluctu-
ates more obviously between different timeslots.

• For weekdays, the hourly average revenue is the
highest during the evening rush hours (i.e., timeslot-
2), and then the non-rush hours around noon (i.e.,
timeslot-1), on the average driver level.

• Comparing between morning rush hours (i.e.,
timeslot-0) and night hours (i.e., timeslot-3), the
hourly average revenue distributes more evenly dur-
ing morning rush hours than during night hours. In
other words, only very few drivers can make higher
revenue during night hours, and it is comparatively
easier to earn more during morning rush hours.

• Similar to the order revenue observed in Fig. 3, it is
interesting to find that the hourly average revenue
is higher during the non-rush hours around noon,
than during the morning rush hours. The hourly
average revenue around noon is also very close to
that during the evening rush hours. This is, to some
extent, counter-intuitive to our experience, and we
will validate this later in our model.

Similarly, we have the following observations regarding
the average delivery speed:

• On weekends, the average delivery speed has rough-
ly the same distribution during the day (i.e., timeslot-
1 and 2), and becomes higher during other timeslots.
More accurately, there is not such concepts of rush
hours during weekends; instead, people’s activities
are more evenly spread across the day.

• On weekdays, the average delivery speed is sig-
nificantly lower during morning and evening rush
hours, than during other timeslots. Additionally,
driving at high speed during evening rush hours
requires more careful strategies than during morning
rush hours, as the distribution of delivery speed is
much sharper during evening rush hours, meaning
that fewer drivers can achieve higher speeds.

• Comparing between Fig. 4 and Fig. 6, most drivers
are able to maintain a relatively high speed during
night hours, but only a few can make higher revenue
during this timeslot. This shows that the hourly
average revenue has a rather complex relationship
with average delivery speed – being able to driving
faster or choosing clearer routes does not necessarily
lead to a higher revenue.

5.1.2 Features about Driver Seeking Trips
For driver seeking trip, our goal is to generate features to
describe some high-level characteristics of seeking strate-
gies. Taking the same notations in §5.1.1, if the number of
delivery trips a driver serves during a timeslot isK, then the
number of seeking trips is M = K − 1. In the following, we
first identify the price-chasing strategy, then the price mul-
tipliers around seeking locations. We also extract features
from other datasets to characterize the seeking locations,
and more details can be found in §5.2.

Basically, the characterization of seeking trips is based on
the corresponding starting and ending points. After closing
an order, a driver start a seeking trip at the arriving location
of this order, and this seeking trip comes to an end when
another order starts. We compare the starting and ending
point of a seeking trip from different perspectives, to fully
characterize the seeking strategy represented in such a trip.
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It may be more accurate to dig into more details about
the seeking trip than just the starting and ending points,
for example, the exact GPS trajectories between these points
and how drivers take turns, accelerate, brake, etc. But we
don’t do that in our study due to two reasons. Firstly, going
into that details is over-fitting to some extent, as these driver
behaviors may not be the result of seeking strategies; in-
stead, they may be spontaneous and due to some unplanned
reasons such as traffic condition, events, accidents, etc. Sec-
ondly, an accurate description of these behaviors requires
datasets other than our RoD service datasets currently in
use, such as data obtained from wearable devices.

For one particular driver during a particular timeslot,
there may be more than one seeking trips. The ideal way
is to design some features that describe each of these seek-
ing trips. One possible solution is to divide the city into
a number of pre-defined regions with some pre-defined
characteristics (e.g., business regions, residential regions,
airports, etc.), and then consider the number of seeking
trips that fall in each region. But choosing regions and
corresponding characteristics requires prior knowledge of
the city and thus seems too artificial. Instead, we choose
to describe the starting and ending points of a seeking trip
based on the features extracted from our multi-source urban
datasets. However, the number of seeking trips is not fixed,
and if we describe each of these trips, the dimension of
features will also become variable, adding complexity to our
model. Hence, we choose to describe the collective properties
(e.g., average, minimum or maximum of some properties) of
all seeking trips of one driver during a timeslot, similar to
the way we generate the hourly average revenue and average
delivery speed features. Though losing some information,
collective properties still retain the essence of information
about seeking trips.

Strategy Factor. Strategy factor focuses on whether a
driver is chasing dynamic price multiplier. We first define
the price-chasing strategy of each seeking trip. The rationale
of identifying price-chasing strategy is that we want to see
if strategies such as “surge chasing” work. A seeking trip is
categorized into three different strategies:

• chasing current: in the hour of starting seeking, if the
average price multiplier around the ending point is
higher than that around the starting point;

• chasing future: in the hour of starting seeking, if the
average price multiplier around the ending point in
the next hour is higher than that around the starting
point;

• no chasing: if neither of the above holds.

A seeking trip can be of chasing or no chasing strategy; and
for chasing, it can be either chasing current or chasing future.

The strategy factor vector indicates a driver’s preference
on seeking strategy in a timeslot, and is defined as the num-
ber of seeking trips of each category of a driver in a timeslot.
It is a 3-dimension vector (Ncurrent, Nfuture, Nnon), refer-
ring to the number of seeking trips of each strategy.

Price Multipliers of Seeking Locations. The strategy
factor describes the relative relationship of dynamic prices
between the starting and ending points of seeking trips.
Now we turn to the absolute values of dynamic price
multipliers of the starting and ending points.

We discuss how to define a feature starting points’
price multipliers, and for ending points the procedure is
similar. For the m-th seeking trip (1 ≤ m ≤ M ), we
calculate the average price multiplier around its start-
ing point in the last hour, now, and next hour, denoted
by pm,last, pm,now, pm,next, respectively, from the event-
log data. We then traverse all seeking trips, and calculate
the average, minimum and maximum values among all
pm,last, pm,now, pm,next for 1 ≤ m ≤ M . Thus, we generate
9 different values: pavg last, pmin last, pmax last, pavg now,
pmin now, pmax now, pavg next, pmin next, and pmax next.
They form the vector starting points’ price multipliers. Simi-
larly, we define the vector ending points’ price multipliers.

These two vectors, starting/ending points’ price multipliers,
describe the price multipliers around the seeking trips’ start-
ing and ending points, in the current and neighboring hours.
We consider these vectors as a representation of dynamic
prices of every seeking trip, at a high and average level.

5.2 Features from Other Datasets

Features extracted from other datasets (i.e., taxi service, bus
& metro, and POI) are used to characterize the starting and
ending points of seeking trips, from perspectives such as the
status of taxi service, the traffic condition, the availability of
public transportation services and POI information.

5.2.1 Features from Taxi Service

Features from taxi service data are used to describe the
status of taxi service as well as traffic condition around
the starting/ending points of seeking trips, and they form
feature vectors starting/ending points’ taxi status. We discuss
how to form starting points’ taxi status, and for ending points
the procedure is similar.

From the taxi trip information, we extract two features:

• up/down count: the number of orders starting/ending
around the starting points.

From taxi GPS trajectories, we extract five features de-
scribing taxis around the starting points of seeking trips:

• average speed: the average speed of full taxis (i.e., taxis
with passengers on-board);

• speed variance: the variance of speed among full taxis;
• taxi count: the number of taxis appearing around;
• full taxi count: the number of full taxis;
• full taxi ratio: the ratio of full taxis to all taxis.

Among these features, average speed and speed variance
describe the traffic condition around the starting points of
seeking trips, and other features describe either the avail-
ability of taxis, the popularity of the location, or passengers’
demand for taxis around the starting points. For all these
seven features, we calculate each of them based on the GPS
trajectories that fall in the same hour-of-day (i.e., “hourly
taxi features”), and in the same hour-of-day and day-of-
week (i.e., “daily taxi features”). In this way, we obtain
14 different features from taxi service, and they form the
feature vector starting points’ taxi status. For ending points of
seeking trips, the vector ending points’ taxi status is construct-
ed similarly, but with features around the ending points.
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5.2.2 Features from Bus & Metro, and POI Data
Features from the bus & metro distribution data describe
the availability of public transportation services such as bus
or metro around the starting or ending points of seeking
trips. Specifically, we build a feature vector starting points’
bus & metro, a 4-dimension vector containing the number of
bus stations, bus lines, metro stations, metro lines around
the starting points of seeking trips. We also build the vector
ending points’ bus & metro in a similar way.
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Fig. 8. The histogram of bus sta-
tion counts around ending points of
seeking locations on weekdays.
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Fig. 9. The histogram of metro sta-
tion counts around ending points of
seeking locations on weekdays.

Regarding the driver seeking behavior mined from our
data, Fig. 8 and 9 show the histogram of bus and metro
station counts around ending points of seeking locations
during each timeslot on weekdays. Figures of weekends are
omitted due to the limited space. Observations are:

• On weekdays and weekends, drivers tend to go to
regions with very few bus stations to seek for pas-
sengers during night hours – the lack of bus stations
means higher demand for taxi or RoD service. Things
are similar during the morning on weekends, due to
the lack of human activity in this timeslot.

• On weekdays, the histograms of bus stations during
the day (i.e., timeslot-1 and -2) are more evenly
spread – drivers have fewer specific choices regard-
ing bus stations, but locations with more bus stations
are favoured, as having more bus stations means that
the location has a higher popularity.

• On weekdays, in morning rush hours the average
number of bus stations around seeking locations is
between that during the day and night hours.

• For metro stations, we have the similar observations,
but with fewer number of stations, as metro stations
are much more sparsely distributed in the city than
bus stations. This also shows that drivers take into
account bus or metro stations in the same way in
determining their seeking strategies.

Features from the POI data help to describe the starting
and ending points of seeking trip by characterizing the
usage of these locations – the number of POIs of different
categories around these locations. Our POI data categorizes
POIs into 14 categories (see §4.4), and these 14 values form
the feature vector starting/ending points’ POI counts.

6 FEATURE EXTRACTION: COMPOSITE FEATURES

The need to introduce composite features comes from the
lack of non-linearity in a linear regression model. Without
non-linear terms, a linear regression model is unable to

involve the non-linear relationship between features, and
thus has a relatively lower accuracy in fitting the data.

Adding product-form terms into a linear model trans-
forms the model into a non-linear one, while the model
still retains the same level of interpretability. For example,
assuming we have two features x1 and x2 and the target
variable is y, a simple form of a linear regression model can
be written as

y = ω1x1 + ω2x2 + b. (4)

If we multiply x1 and x2 and use x3 = x1x2 to denote the
resulting feature, and then use x1, x2 and x3 to build the
linear regression model, the result becomes:

y = ω′1x1 + ω′2x2 + ω′3x3 + b′. (5)

In (4) and (5), ω1, ω2, b, ω′1, ω′2, ω′3 and b′ are the model
parameters learned. Changing from (4) to (5) with the in-
troduction of x3 makes the model non-linear, but we can
still use ω′i(i = 1, 2, 3) and b′ to interpret the model. Hence,
product-form terms are equivalent to non-linear terms.

The composite features in our study are just the multi-
plicative product of multiple basic features.

6.1 Normalization of Basic Features

It is necessary to normalize basic features for fast con-
vergence of SGD (stochastic gradient descent) regression,
and for unifying the units and meanings of different basic
features.

There are two different kinds of feature: numerical and
categorical feature. For a numerical feature (e.g., average
delivery speed, the number of bus stations of starting points’
bus & metro, etc.), we apply the min-max normalization [27]
to make it between 0 and 1. For a categorical feature (e.g.,
day-of-week), we apply one-hot extension to transform it into
a vector, the dimension of which is the number of categories.
There is nothing to normalize for a categorical feature, as the
maximum value of any component is 1.

6.2 Combination of Basic Features

We have already defined composite features as the combi-
nation of basic features in a product form. Specifically, now
we show how to perform this combination under different
circumstances, i.e., whether the basic features are numerical
or categorical features.

We use x1 and x2 to denote two basic features, and x3
to denote the resulting composite feature. The calculation of
x3 can be one of the following three circumstances:

• if x1 and x2 are numerical features, then x3 is also a
numerical feature, and x3 = x1x2;

• if x1 is a numerical feature and ~x2 is a categorical
feature, then x3 is also a vector and ~x3 = x1 ~x2.

• if ~x1 = (x11, x12, ..., x1n1) and ~x2 =
(x21, x22, ..., x2n2) are categorical features of
dimension n1 and n2, then the resulting vector ~x3 has
a dimension n3 = n1n2 and can be written as ~x3 =
(x11x21, x11x22, ..., x11x2n2 , x12x21, x12x22, ..., x12
x2n2 , ..., x1n1x21, x1n1x22, ..., x1n1x2n2).



1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2921959, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXXX 2018 10

TABLE 2
Feature extraction: some selected composite features.

Type Datasets Examples of combinations
Same RoD+RoD (day-of-week, timeslot-of-day), (strategy factor, starting points’ price multipliers),

dataset (average delivery speed, ending points’ price multipliers)...
Taxi+Taxi (starting points’ taxi status, ending points’ taxi status)

Different RoD+Taxi (timeslot-of-day, starting/ending points’ taxi status)...
dataset RoD+Bus&metro (timeslot-of-day, starting/ending points’ bus & metro)...

RoD+POI (strategy factor, starting points’ POI counts), (day-of-week, starting points’ POI counts)
Taxi+POI (starting points’ taxi status, ending points’ POI counts)...
Taxi+Bus&metro (starting points’ taxi status, ending points’ bus & metro)...

6.3 Examples of Composite Features

It is possible to combine virtually any two basic features to
form composite features, and judge the effects of the com-
bination (i.e., whether this composite feature is necessary)
by the corresponding weight in the trained linear model.
Because of limited space, we give some illustrative examples
below. More examples can be found in Tab. 2.

Combining features from the same dataset. Combina-
tion of this kind tries to express the correlation between
features in the same dataset. For example, a composite
feature (day-of-week, timeslot-of-day) tries to correlate the day-
of-week feature with timeslot-of-day feature, and its weight
shows the joint impact of both day-of-week and timeslot-of-
day on the hourly average revenue.

Combining features from different datasets. Combin-
ing basic features from different datasets not only helps
to express the correlation between these features, but al-
so shows the relationship between different datasets. For
example, (timeslot-of-day, ending points’ taxi status) reflects
how RoD service interacts with the status of taxi service.
As another example, the weight of (timeslot-of-day, ending
points’ bus & metro) indicates different levels of profitability
of finding bus or metro stations during different timeslots.

In fact, the use of composite features combined from
different datasets enables us to quantify and interpret the
relationship between driver revenue and relevant features
extracted from other datasets, such as the status of taxi, bus
and metro service, POI information, etc. These composite
features also tell us, when coupled together, the importance
of features under different circumstances.

6.4 The Growing Dimensions of Features

The dimension of features grows tremendously with the
introduction of composite features. When combining two
basic features of dimension n1 and n2, the resulting com-
posite feature has a dimension of n1n2. The growth is much
faster if we combine more than two basic features to form
composite features. To be more concrete, our basic features
account for a dimension of 97, and when combining any
two basic features, the resulting dimension of both basic
and composite features climbs to 3, 730. If we choose some
groups of three basic features to form composite features,
the dimension will be higher than 13, 000.

In our study we only combine any two basic features to
form composite features. There are multiple considerations
of not using more than two basic features in combination:

• We actually try to combine three basic features to
form composite features, and our evaluation shows
that while the training time is more than tripled, the
model’s accuracy does not improve significantly.

• Composite features combined from three or more
basic features have a reduced interpretability. It be-
comes harder to quantify and interpret the joint
effects of three or more features as well as the rela-
tionship between driver revenue and these features.

Generating composite features with only any two basic
features does not bring huge challenges to our model’s
performance because:

• When only combining two basic features, the total
dimension of our basic and composite features is
3, 730. This is not a very high dimension and we can
directly apply our linear model on the features.

• At this dimension of features, it takes about 12
minutes to train the model based on the complete
training set (taking about 70% of data, as discussed
in §7) on an ordinary Intel Core i7-8700K personal
computer. Though this seems to be a long time, the
mini-batch training paradigm of a linear regression
model can help to significantly reduce the training
time. With mini-batch SGD (stochastic gradient de-
scent) incremental model training, a batch is much
smaller than the whole training set, and it takes less
than 15 seconds to train.

7 MODEL & PREDICTION

“Model & Prediction” sits on the highest level of RoD-
Revenue’s framework. Basically, we build a model to learn
the relationship between driver revenue and seeking strate-
gies, and use the model to predict driver revenue based on
their seeking strategies. The prediction part serves as an e-
valuation of the model’s accuracy: we split our dataset into a
training set and a test set, and the model is learned based on
the training set, and then is evaluated by predicting driver
revenue based on the test set. Undoubtedly, the prediction
can also be performed on new or incoming data, as long as
they share similar characteristics with the training set.

In the following, we first present the model we use, then
the evaluation metrics, followed by our experiment results
in predicting driver revenue based on the learned model.

7.1 The Linear Regression Model
The choice of the model to mine the relationship between
driver revenue and seeking strategies and solve the problem
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defined in §3.1 is actually a trade-off between accuracy and
interpretability. Complex, non-linear models such as neural
network and deep learning models may give highly accu-
rate results when carefully tuned, with a relatively small
dimension of features; but these models are generally hard
to interpret, and even quantifying the feature contribution at
a high level sometimes requires complicated methodologies.
Some simpler, linear models such as the decision tree family,
though interpretable by nature, require a complex structure
to improve accuracy, and these derivatives such as random
forest or GBRT thus have a diminished interpretability. On
the other hand, a linear regression model is one of the
simplest models with interpretability – the weight of each
feature or rather, each component of a multi-dimensional
feature, shows how important this feature or feature com-
ponent is on the target variable. But an increased level of
interpretability leads to a decreased accuracy: the lack of
non-linear terms in a linear regression model makes it hard
to characterize non-linear correlations between features.

In ROD-Revenue, we want to quantify and explain the
relationship between driver revenue and seeking strategies
specifically, so that it is possible to offer concrete suggestions
to drivers about how to earn more. Hence, we choose to use
the linear regression model. To deal with the inaccuracies
due to the lack of non-linear terms, we introduce composite
features, a product-form term based on basic features, to
add non-linear terms into the linear regression model.

Following the notations in §3.1, y denotes the hourly
average revenue of one driver during a timeslot, and x ∈ Rm

denotes the feature vector corresponding to y, with m as
the dimension of the feature vector. As discussed in §5 and
§6, x contains the basic and composite features extracted
from multi-source urban data, and m is 3, 730. We write our
raw feature dataset as D = {(xi, yi)|i = 1, 2, . . . , N}, where
(xi, yi) represents the i-th sample. For N , we compress
the 4-month data into one week as we only consider the
differences between days-of-week, and obtain N = 802, 600
data entries for drivers in timeslots. We train the linear
model batch-by-batch, andD also represents the raw feature
dataset in each batch.

The parameters to be learned is a parameter vector, ω,
of the same dimension of x, and an intercept b. The output
of the model, pi, with the input of xi, can be written as
pi = ωTxi+b. In training the model, the goal is to calculate ω
and b such that the sum of the squared differences between
yi and pi is minimized. Specifically, we use a simple form of
linear regression: the squared error loss objective function
with L1 and L2 regularization. The objective function can
be written as:

obj(ω, b) =
∑

(xi,yi)∈D

(yi − pi)2 + λ1||ω||1 + λ2||ω||2. (6)

In (6), the first term is the squared error loss, and the latter
two terms are for L1 and L2 regularizations, with λ1 and
λ2 as the trade-off parameters. The L1 regularization uses a
L1-norm of ω to control the sparsity of the learned param-
eter ω, so that there are more components of ω becoming
zero or close to zero. Controlling the sparsity is for better
interpretability, as it makes fewer features have a strong
influence on the driver revenue, while a lot others get a zero
weight in the learned model, meaning that these features are

irrelevant to the driver revenue. On the other hand, using
L2 regularization is a common practice in machine learning
to avoid over-fitting, so that there will not be a huge gap
between the model’s performance on the training and on the
test set. It controls the L2-norm of ω so that any component
of ω (and features in x) should not have an overwhelming
influence on the driver revenue.

With the objective function (6) to minimize, we then
use the stochastic gradient descent (SGD) to minimize the
function based on the training set, and obtain a linear
regression model with parameters ω and b.

7.2 Evaluation Metrics
In our evaluation in this section, we first examine the cor-
relation between driver revenue and different features, then
evaluate the performance of our model in describing the
relationship between driver revenue and seeking strategies.
Finally we will provide both qualitative and quantitative
discussions on feature contribution in §8.

To examine the correlation between driver revenue and
the extracted features about seeking strategies, we use the
Pearson correlation coefficient (PCC) to measure the correla-
tion between driver revenue and extracted features. Higher
PCC means higher correlation, and the corresponding fea-
ture is more relevant to driver revenue. For a particular
numerical feature (i.e., a numerical feature or a compo-
nent of a multi-dimensional numerical feature) with values
ri(1 ≤ i ≤ N), its PCC, denoted by PCC(r, y), with the
hourly average revenue yi, can be calculated as:

PCC(r, y) =

∑N
i=1(ri − r)(yi − y)√∑N

i=1(ri − r)2
√∑N

i=1(yi − y)2
(7)

In evaluating the performance of the model, we random-
ly choose 70% and the remaining 30% entries as the training
and test set, out of our raw feature dataset containing
802,600 entries with a dimension of 3, 730. The random
selection is performed for 10 times and the average metric
is used for our evaluation. As to the evaluation metric of
model performance, we use MAE (mean absolute error) to
evaluate model accuracy. We useNtest to denote the number
of data entries in the test set, and MAE is defined as:

MAE =
1

Ntest

Ntest∑
i=1

|yi − pi| (8)

The target variable, i.e., the hourly average revenue (in RM-
B), is already a quantity easy to interpret and understand;
and the absolute error itself also has significant meaning.
Thus, it is not necessary to use a scale-independent eval-
uation metric such as sMAPE (symmetric mean absolute
percentage error).

7.3 Experiment Results
7.3.1 Correlation Analysis
We calculate the Pearson correlation coefficient (PCC) be-
tween driver revenue and features relevant to seeking s-
trategies to see the effectiveness of our extracted features.
Tab. 3 shows the PCC between driver revenue and some
selected numerical basic features. Basically, we select some
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TABLE 3
The PCC between driver revenue and some selected numerical basic

features, on weekdays.

Feature PCC in timeslot-0/-1/-2/-3
average delivery speed 0.3290, 0.2207, 0.2119, 0.4065
ending points’ price multipliers:
pmax now 0.3203, 0.3148, 0.3599, 0.2746
pmax next 0.3530, 0.3412, 0.3783, 0.3119
ending points’ bus & metro:
the number of bus stations 0.3472, 0.3818, 0.3944, 0.3338
the number of metro stations 0.3302, 0.4200, 0.4585, 0.3692
ending points’ taxi status:
full taxi ratio, daily 0.3304, 0.2577, 0.2896, 0.2312
down count, daily 0.3175, 0.2199, 0.2627, 0.2411
ending points’ POI counts:
business POI count 0.0121, 0.0317, 0.0335, 0.0047
shopping POI count 0.0088, 0.0245, 0.0323, 0.0051

(2 or 3) basic features extracted from each of our multi-
source urban datasets that have the highest PCC. For sim-
plification, we only consider the ending points of seeking
trips when choosing relevant features. Features relevant to
the starting points of seeking trips have similar but slightly
smaller PCCs, and are now shown in Tab. 3. For temporal
differences in PCC, we show the PCC of each feature in each
timeslot on weekdays.

We have the following observations regarding Tab. 3:

• Except for features in ending points’ POI counts, top
features from other datasets show relatively close
PCCs. In other words, all these features are correlat-
ed, to some extent, with the hourly average revenue
of a driver, but non of them is purely linearly corre-
lated with the hourly average revenue – indicating
that a linear regression model with only basic fea-
tures is not enough to characterize the relationship
between driver revenue and seeking strategies.

• The PCCs of one particular feature may vary sig-
nificantly in different timeslots-of-day. For example,
The highest PCC between hourly average revenue
and average delivery speed (i.e., in timeslot-3) is 91.84%
more than the lowest corresponding PCC (i.e., in
timeslot-2). This is another perspective showing that
it is not enough to consider only basic features: a
composite feature from timeslot-of-day and average
delivery speed should add useful information to our
model.

• Features extracted from POI information (i.e., ending
points’ POI counts) have much smaller correlation
coefficients, compared with other features. This indi-
cates that POI counts features are less correlated with
driver revenue – we hypothesize that the reasons
are the inability of POI counts to accurately describe
location characteristics and the fact that location
information is also revealed by features from other
datasets such as the status of taxi, bus and metro. We
will discuss them later.

In summary, results from correlation analysis verify that
simply calculating the Pearson correlation coefficients is not
enough to describe the complex relationship between driver
revenue and seeking strategies. A linear regression model

with only basic features is not enough neither. It is thus
necessary to use a linear regression model with composite
features to mine the desired relationship.

7.3.2 Evaluation of the Linear Model
Statistics show that among the test set, the average of
the target variable (i.e., hourly average revenue), is y =

1
Ntest

∑Ntest

i=1 yi = 29.113. In other words, the average of
“hourly average revenue” among all data entries in the test
set is 29.113 Yuan.

Our linear regression model tries to predict the hourly
average revenue given the input feature vectors in the
test set, and finally calculates the difference between the
predicted revenue and ground truth. The model gives a
mean deviation of about 3.478 Yuan on the test set. Roughly
speaking, the linear model can predict the hourly average
revenue at an accuracy of 88.05%. For the prediction error
(i.e., deviation) of individual test set entries, Fig. 10 and
11 show the distribution (i.e., a continuous version of his-
togram) of absolute and relative prediction errors.

We have the following observations:

• For absolute prediction error, during timeslot-3 the
errors are smaller compared to other timeslots. Al-
so, the distributions of absolute prediction errors of
other timeslots very similar shapes.

• For relative prediction error, during timeslot-2 the
relative errors are the smallest, followed by the the
whole day, timeslot-1, -3 and -0. This agrees to earlier
observations with Fig. 4: the hourly average revenue
is probabilistically higher during timeslot-2, followed
by timeslot-0 and -3.

• For absolute prediction error, the probability decreas-
es steadily between 1 to 7 RMB. For timeslot-3, the
decrease rate is faster, and for other three timeslots
and the whole day, the decrease rate is slower. More-
over, for error larger then 7 RMB, the probability
drops sharply, with very rare cases having an error
greater than 8.5 RMB.

• For relative prediction error, the distributions of all
timeslots have a long-tailed shape, and most relative
prediction errors are between 5% and 20%.

To justify our choice of 6-hour timeslots, we also evaluate
the prediction error when we choose 4-hour timeslots. It is
shown that the mean deviation becomes 4.136, about 18.91%
higher. This proves that our choice leads to better results.

7.3.3 Linear v.s. Non-linear Model
To compare between linear and non-linear model, we also
build a neural network model to perform the exactly the
same task. Neural network is a typical non-linear model,
and the existence of non-linear correlation makes it enough
to use basic features only. Our neural network model uses
a four-layer structure. There are three hidden layers, with
ReLU activation function, between the input and output
layer. The input data fed to the input layer is a feature
vector of 97 dimensions, containing only basic features.
After careful tuning, our neural network model gives a
mean deviation of about 2.977 Yuan on the test set – roughly
an accuracy of 89.77%.
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Fig. 10. The distribution of absolute prediction errors.
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Fig. 11. The distribution of relative prediction errors.

The goal of comparing linear and non-linear model is to
justify our model choice. The above results show that a non-
linear model, even as simple as a four-layer neural network,
achieves a higher (though slightly) accuracy than our linear
model with composite features. But the differences are not
only on the model accuracy and we give some discussions
on other differences below, which justify our model choice:

The need for hyper-parameter tuning. A non-linear
model such as neural network always requires careful tun-
ing to perform well – our above-mentioned neural network
model is tuned by trying different sets of hyper-parameters,
but it is hard to determine whether our resulting set of
hyper-parameters is the optimal one. The need for human
experience in parameter tuning makes the model not stan-
dardized enough. Moreover, when the feature set changes,
these hyper-parameters need to be re-tuned; in the linear
model, on the other hand, it is only necessary to reconstruct
composite features and re-train the linear model – a much
easier task. Hence, a linear model works better in the case
where features are updated constantly.

The interpretability of results. Most importantly, it is
easy and natural to interpret the results in a linear regression
model – simply inspecting the weight of each feature or
feature component is enough. This allows us to judge “what
factors and what seeking strategies lead to a higher revenue,
and by how much?”. A neural network model, on the other
hand, does not offer this level of interpretability with simple
inspection.

7.3.4 Basic v.s. Composite Features

In the correlation analysis, we observed that only using
basic features in a linear regression model is not enough to
describe the relationship between driver revenue and seek-
ing strategies. In this section we validate this by comparing
the MAE of using different combinations of features.

As mentioned in §7.3.2, with all composite features and
basic features, our linear regression model gives a mean
deviation in the predicted hourly average revenue of 3.478
Yuan on the test set. We train another linear regression
model with only basic features, and the resulting deviation is
6.231 Yuan. This shows that using composite features from
multi-source urban datasets can reduce the MAE of hourly
average revenue by 44.18%.

Regarding the effects of generating composite features
from different datasets, we also train linear regression mod-
els using both basic and composite features, with features
coming from different combinations of datasets. The corre-

TABLE 4
The MAE of using different combinations of datasets and composite

features.

Feature sources Resulting MAE
all datasets 3.478
RoD + bus & metro 4.276
RoD + taxi 4.358
RoD + POI 4.823
RoD only 4.874

sponding MAEs are shown in Tab. 4. If we only use the RoD
data, but with composite features, the MAE is 4.874, and
involving the additional taxi data, or bus & metro data, or
POI data further reduces the MAE by 10.59%, 12.27%, 1.05%,
respectively. When using all of the datasets, the reduction is
28.64%. This is a rough representation of the importance of
multi-source urban datasets – “how much the model’s accuracy
can be improved with the introduction of specific datasets”.

We also try to combine more than two basic features
to form composite features. Combining some groups of
three basic features makes the dimension of feature vector
more than 13, 000. We train a linear regression model corre-
spondingly, and the resulting MAE is 3.336. Considering the
significant increase in memory usage and a training time 3.8
times that of the original model, the slight improvement in
the MAE is not worthwhile.

7.3.5 Effects of L1 and L2 Regularizations

The goal of using L1-regularization is to increase the num-
ber of zero weights in the trained model. In our linear
regression model with L1-regularization, we have 514 zero
weights out of the 3, 730-dimension weights. We also train a
linear regression model without L1-regularization, and the
resulting model has 216 zero weights, with a MAE of 3.476.
These results show that, at a relatively the same accuracy,
using L1-regularization almost doubles the number of zero
weights, leading to better interpretability of the model.

L2-regularization, on the other hand, is used to avoid
over-fitting, and we compare the MAE on the training and
test set with and without L2-regularization. To do this, we
use the model learned from the training set to predict the
hourly average revenue based on the feature vectors in the
training set. With L2-regularization, the model achieves a
MAE of 3.478 on the test set, and 3.365 on the training
set; withoutL2-regularization, the corresponding figures are
3.765 on the test set, and 3.298 on the training set. These
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results verify that using L2-regularization indeed reduces
the difference of prediction accuracy between the training
and test set.

7.3.6 A Summary of Experiment Results
In §7.3, we go through every aspect in training and eval-
uating our linear regression model. Basically, we train a
linear regression model, with squared-error loss function
and L1/L2-regularizations, based on the training set, and
predict the hourly average revenue given feature vectors in
the test set. In short, our results show that:

• The linear model can achieve a MAE close to a non-
linear model, with basic and composite features. In
the meantime, the linear model have interpretable
results.

• Using composite features can indeed significant-
ly improve prediction accuracy. Also, using multi-
source urban datasets also improves prediction re-
sults, and we can quantify the improvement with the
introduction of different datasets.

• We combine any two basic features to form com-
posite features, and do not combine more than two
basic features. Our results show that combining three
or more basic features does not lead to significant
improvement on prediction accuracy while having a
much longer training time.

8 FEATURE CONTRIBUTION AND DISCUSSIONS

In §7 we mainly discuss the model and its evaluation. In
this section, we take a different perspective, and dig into the
learned model itself, trying to inspect feature contribution
– “what features are more important in determining hourly
average revenue?” – and seeking strategies – “what seeking
strategies lead to a higher revenue?”. Besides, we also provide
discussions on miscellaneous relevant topics.

8.1 Feature Contribution
As mentioned earlier, a very important reason of choosing
a linear regression model is its interpretability – it allows a
quantitative analysis of feature contribution, so that we can
identify the seeking strategies leading to a higher revenue.

We study feature contribution by inspecting the weight
ω learned in the model. Specifically, features, either basic
or composite, may be one-dimension (e.g., average delivery
speed) or multi-dimension (e.g., timeslot-of-day or starting
points’ price multipliers). For a multi-dimension feature, we
inspect the weight of each component of this feature. The
weight of a feature or a feature component quantifies the
contribution of this feature or component. We rank features
or feature components according to the absolute values of
their weights, and in Tab. 5 we show some selected features
(for one-dimension features) or feature components (for
multi-dimension features) from the top-100 weights.

The interpretability of our model is justified by the
distribution of weights. The largest weight shown in Tab. 5
is 8.84512. Among the absolute values of all the weights,
statistics show that there are about 42% falling in between
[0.00, 0.05), 18% in [0.05, 0.10), 10.5% in [0.10, 0.15), 8% in
[0.15, 0.20), 6% in [0.20, 0.25), etc. In other words, about

84.5% weights have an absolute value smaller than 0.25, a
value far smaller than any one listed in Tab. 5 – this means
only a small number of features are significant. Hence, the
number of significant features, or those that are worth anal-
ysis, is much fewer than the number of non-zero weights.
In our study, we only show top-100 weights due to the
limited space, and these weights are already enough to give
us enough findings and insights on the desired relationship.

In Tab. 5, we group these top features/feature compo-
nents into 6 categories according to the key factor in each
feature. Taxi, and bus & metro are two categories representing
the respective datasets; and we divide the top features from
RoD data into other four categories: delivery speed, dynamic
prices, timeslot, and strategy factor. Because of the limited
space, for each category we only list at most the top-3 basic
features, and one or two composite features’ components
that fall in the top-100 among all. Below we discuss our
findings regarding feature contribution.

From the level of datasets, the RoD service data has an
overwhelming influence on the driver revenue: there are
more than 90 features out of top-100 that are either from
RoD service data, or combined from at least more than one
basic features from RoD data. This figure becomes 4 and 5
for the bus & metro data and taxi data, respectively. Even
with smaller impact, the status of taxi, bus and metro ser-
vices all have a non-negligible influence on driver revenue.

In the following we discuss feature contribution from the
level of individual features.

Delivery speed. Among all the features, average delivery
speed has the highest impact on a driver’s revenue. Its
weight, being 8.84512, is much higher than other features
or feature components. As a result, a number of composite
features derived from average delivery speed also have higher
weights, but the fact that average delivery speed itself has
a much higher weight diminishes the importance of these
composite features. We thus do not list these composite
features in Tab. 5.

The importance of average delivery speed shows that driv-
ing faster or choosing faster or clearer routes in delivering
passengers leads to a higher revenue. This is natural, as it
saves more time for the driver to seek for more opportuni-
ties. This result also holds in the traditional taxi service, as
suggested in [19].

Increasing the delivery speed is important to increase
driver revenue, but how to operate so that the delivery
speed is maximized is out of the scope of this study – it
should be a job left to navigation systems or applications,
including route planning, real-time traffic information anal-
ysis, avoiding congestion, etc.

Dynamic prices. This is the unique part of RoD service,
and is also the second most influential category of features
on driver revenue. For a seeking trip, the ending point (i.e.,
where to seek for passengers) is more important, but the
starting point (i.e., where a driver drops the last passenger
and starts seeking) also plays a role. This may be due to the
fact that a significant proportion of seeking trips have close
starting and ending points. In fact, our data shows that more
than half seeking trips have a straight line distance between
the starting and ending points smaller than 5km.

It is shown that seeking for passengers in regions with
higher price multipliers increases driver revenue. More
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TABLE 5
Selected top features/components ranked by weights in the trained model.

Category Feature (:feature component) Weight Rank
delivery speed average delivery speed 8.84512 1
dynamic prices ending points’ price multipliers: pmax now 4.26815 22

ending points’ price multipliers: pmax next 2.92965 33
ending points’ price multipliers: pmax last 2.46655 42
starting points’ price multipliers: pmax now 2.49441 41
starting points’ price multipliers: pmax last 1.83793 56
starting points’ price multipliers: pmax next 1.53844 79

timeslot timeslot-of-day: 1 2.11808 51
timeslot-of-day: 2 1.44048 85
timeslot-of-day: 0, ending points’ taxi status: full taxi ratio (daily) 1.40173 95

strategy factor strategy factor: chasing future 2.06670 52
strategy factor: no chasing 1.63245 73
strategy factor: chasing current 1.42835 89
strategy factor: chasing future, ending points’ price multipliers: pmax now 1.79426 59

bus & metro ending points’ bus & metro: the number of metro station 1.72366 65
ending points’ bus & metro: the number of bus station 1.39342 98

taxi ending points’ taxi status: full taxi ratio (daily) 1.42848 88
ending points’ taxi status: down count (daily) 1.40559 94

specifically, during one timeslot, the driver should always
try to find some seeking locations with higher price mul-
tipliers so that the maximum price multipliers among all
seeking trips’ ending points gets larger. As to the weights,
both the maximum price multipliers around the seeking
locations during the hour of starting seeking and the next
hour have higher weights, being 4.26815 and 2.92965.

Timeslot. The timeslot-of-day of seeking trips is also
a key role in the profitability. We observe in §5.1.1 and
Fig. 4 a counter-intuitive fact that the non-rush hours around
noon are more profitable than the morning rush hours. The
weights listed in Tab. 5 agree to previous observations. The
weights of timeslot-1 (i.e., [10am, 4pm)) and timeslot-2 (i.e.,
[4pm, 10pm)) are higher, followed by timeslot-0 (i.e., [4am,
10am)). In other words, seeking for passengers during the
non-rush hours around noon, as well as during the evening
rush hours, helps the driver to earn more; seeking during
morning rush hour is not as profitable as one may intuitively
guess, and night hours are even less profitable.

This phenomenon can be understood by combining in-
formation from §5.1.1 and Tab. 5. During non-rush hours,
the average delivery speed is faster, so that a driver may
have more orders during the whole timeslots. Also, the
lower price multipliers are compensated by the longer or-
der distance during the non-rush hours. In morning rush
hours, things are just the opposite: even though the price
multipliers are high, the driving speed is much lower, and
sometimes drivers need a very long time to find the next
passenger after dropping the last one in busy regions.

For morning rush hours (i.e., timeslot-0), the relevant
weight suggests that a driver should go to locations where
the full taxi ratio is high, in order to earn more. This is also
an interesting result, considering the concerns on the compe-
tition between RoD and taxi service. The reason may be that
during morning rush hours the supply of cars is not enough
to meet demand, so a high full taxi ratio signifies that the
corresponding location is highly popular, thus having more
unfulfilled demand. More potential demand brings a higher
revenue to drivers.

Strategy factor. This is about chasing the price multi-
pliers or not. Weights in Tab. 5 show that chasing higher
price multipliers indeed has positive impacts on driver
revenue, but the target of chasing should be the future price
multipliers instead of the current ones. Specifically, “future”
price multipliers means the prices in the next hour – and this
requires a driver to have a clear picture or estimate about
how the dynamic price multipliers may change over time,
so that s/he can chase for a higher one. Another interesting
result is that “no chasing” is better than “chasing current”,
which agrees with the observations from [25] and some blog
articles [2] – they generally propose that “surge chasing” is
not a good way to earn more money.

The profitability of “chasing future” strategy makes
dynamic price prediction important. In [16], the authors
have discussed dynamic price prediction in RoD service
and pointed out that it is useful to improve passenger
experience. Our results show that dynamic price prediction
is also beneficial for drivers: if a third party is able to predict
the variation of dynamic price multipliers, drivers can use
the results in chasing for future higher prices. The method-
ologies to perform price prediction has been discussed in
[16] and are not the scope of our study here.

Bus & metro. The influence of the status of bus and
metro services on the driver revenue can be studied in our
paper because of the introduction of multi-source urban da-
ta. Our regression results verify that the distribution (or the
availability) of bus and metro services is also an important
factor. According to the weights of top features shown in
Tab. 5, drivers should go to locations with more metro or
bus stations to look for passengers, and that metro station
is much more important than bus station. “The number
of metro stations” already has a higher weight, and its
importance is further amplified considering the relatively
smaller number of metro stations compared to bus stations.

Similar to previous discussions of the effects of the status
of taxi service during morning rush hours, the number of
bus or metro stations is a representation of a location’s
popularity: the more stations, the more potential RoD ser-
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vice demand. We hypothesize the reason behind this is that
people may take a car service to home after leaving a metro
or bus station, so providing this transit service becomes
profitable for drivers. Similarly, such transit service can also
happen when people take a car ride to work after leaving a
metro or bus station.

Taxi service. In a similar fashion, we find that the status
of taxi service is an indication of a location’s popularity,
rather than a reflection of the competition between taxi
and RoD service. In seeking for passengers, drivers should
choose locations with higher full taxi ratio, and with more
passengers getting off taxis. These two indications actually
reflect the popularity of locations, and thus drivers should
go to these more popular locations.

Another interesting observation is that the status of taxi
service is not as crucial as that of bus or metro service,
according to the weights in Tab. 5. In other words, drivers
should pay more attention to providing transit service to
those passengers from public transportation services. It is
true that both the status of taxi service and that of public
transportation services are indicative of a location’s popu-
larity, but people from bus or metro may take a RoD ride
then; comparatively, people from taxis may not take such a
ride immediately.

Heuristics for drivers to earn more. Discussions above
justify the following heuristics for drivers under dynamic
pricing in a RoD service. Note that our work is not on
recommending seeking routes step-by-step to drivers, so
these heuristics are more a suggestion for drivers to keep
in mind than a real-time guidance to choose directions and
intersections. They are tenable as they are from real-data:

• Most importantly, try to increase the average deliv-
ery speed by choosing better routes or driving faster.

• Seek for passengers in regions with higher price
multipliers; and try to increase the maximum of
price multipliers among all seeking locations in one
timeslot.

• Counter-intuitively, the morning rush hours is not
the most profitable timeslot. Instead, seeking for
passengers during the non-rush hours around noon
is helpful to earn more. Evening rush hours is the
second most profitable timeslot.

• During morning rush hours, go to regions with high-
er full taxi ratio – this means highly popular regions.

• Don’t do “Surge chasing”. Instead, try to get a pre-
diction or estimate about the price multiplier in the
next hour in neighboring regions, and chase for that.

• The status of taxi, bus and metro services are impor-
tant signals in choosing seeking locations. Try to seek
for passengers in locations with more metro stations,
bus stations, higher full taxi ratio, and with more
passengers getting off taxis. In particular, pay more
attention to bus and metro services than taxi service.

8.2 Discussions
The influence of POI features. It is clear from Tab. 5 that
POI counts are not influential as one may anticipate – they
don’t appear in top-100 weights. Characteristics of seeking
locations definitely have impacts on driver revenue, and we
hypothesize that there are two reasons for this phenomenon.

Firstly, the location information is also partly revealed by
features from other datasets, though implicitly. For example,
the number of full taxis around, the average speed of taxis,
the number of passengers getting on/off taxis, the number
of bus/metro stations all help to describe a picture about
the supply, demand, traffic condition, location popularity
that can characterize the location.

Secondly, the POI counts features we design may not
be representative enough. We have pointed out in §4.4 that
using the POI and its category that is nearest to a location is
not enough to characterize a location, but our results suggest
that our description may not be enough neither. An example
around the airport terminal can clearly illustrate this. A
passenger is standing in the airport terminal and requests
for a ride. Clearly the “transportation facility” property is
the reason why s/he is here. The POI counts, on the other
hand, may not suggest this. The number of “transportation
facility” POIs may be only one – the terminal; but there may
be a number of shops, restaurants or hotels around, and the
number may far exceed that of “transportation facility”. In
other words, the POI counts features emphasize the number
of POIs, but in some cases POIs’ “importance” is the key.

There are multiple solutions to describe a POI’s “impor-
tance”. For example, we can calculate the TF-IDF statistics
of each POI category, so that the more common a category of
POI is, the more its count gets diminished. In other words,
a POI category that is more common turns out to be less
important. Specifically, for the i-th POI category, we use
pi to denote the number of POIs around. For the whole
city, we use N to denote the total number of POIs and
use Ni to denote the total number of POIs of this category.
Then, instead of using pi as the POI counts, now we use
ptfidf,i = pi ∗ log( N

1+Ni
) to involve the importance of this

category of POIs. The replacement of POI features results
in a MAE of 3.477 (very close to the original one), and
features relevant to the TF-IDF features have the largest
weight about 13 times than features related to POI counts.
Another example is about obtaining new datasets. If we can
obtain, say, the check-in data of a location-based service, we
are able to claim that the more check-ins a location receives,
the more important it is. We want to compare the effects of
these solutions, and this task is left as future work when we
obtain such check-in data.

Sources of inaccuracies. In §7.3 we show that our linear
regression model can achieve an accuracy of 88.05% in pre-
dicting driver revenue. In the following we discuss sources
of inaccuracies and possible ways to improve our model.

The first source is the lack of comprehensive urban
data. For example, hourly weather data can help us study
whether bad weather brings higher revenue to drivers; large
scale check-in data can help in making POI information
more effective; the distribution of buses and metro trains,
possibly from smart-card data, instead of the distribution
of bus and metro stations or lines, can help to describe
the status of public transportation services more accurately.
All these possible improvements require further research
collaboration or new methodologies of data collection.

Another source of inaccuracies is in the estimation of
dynamic price multipliers and trip fares. We approximate
the price multiplier of one trip using the average price mul-
tipliers of all trip fare estimation events taking place around
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this trip in the same hour, losing some information about
sudden unplanned price changes such as events or traffic
accidents. The estimation of trip fare also omits waiting
charge as it is hard to estimate precisely the total waiting
time from GPS trajectories. The first problem may not be
solved easily, as price information is always sensitive and
the core secret in the service provider. The solution of the
second problem requires techniques with finer granularity
to estimate the waiting time during a trip.

The last source has been discussed in §5.1.2: when de-
scribing the starting/ending points of seeking trips in one
timeslot, we use collective properties instead of describing
each location. The reason is that we cannot use a fea-
ture vector of fixed dimension to accommodate a varying
number of seeking trips, unless we reserve a space for
each city cell, which is unrealistic because the number of
cells is prohibitively large. Dividing a city into fewer cells
makes the results artificial and not convincing enough. Our
methodology is thus a compromise, and hence a possible
solution is to consider this trade-off between artificiality and
feature dimension and choose a reasonable division of city
cells in trying to describe each of all seeking locations.

Generalizability of models and results. We claim that
our study is generalizable and could be applied to other
cities. It is true that the results (i.e., the quantitative rela-
tionship between driver revenue and seeking strategies and
feature contributions) may differ across cities, as different
cities have varying characteristics such as size, demographic
patterns, distributions of functional areas, etc., leading to
different profitable seeking strategies. But the models and
methodologies (i.e., the linear regression model for learning
and predicting, the methodologies to construct features and
the way to analyze feature contribution) are not specific
to any city, and could be generalized and applied to other
cities, or to similar problems that require both accuracy and
a certain level of interpretability. In other words, as long as
one can collect similar datasets, s/he can perform feature
extraction, model building, relationship mining and feature
contribution analysis, in a similar way to our study, and
obtain corresponding results, for, maybe, other cities.

Even for the results, we try our best to make them
representative enough, so that it may not be too special
to be considered in further studies. Real operational data
from RoD service is still rare, considering our requirement
that the information of dynamic prices and trips must be
involved. We currently choose Beijing as the target, and
it is one of the most representative metropolitan cities in
China, East Asia or even around the world, in terms of size,
demographic patterns, operational status of different trans-
portation services, distribution of functional areas, etc. Also,
as one of the major service cities, the RoD service provider
has invested enough resources (e.g., car fleet management,
drivers, algorithm design, etc.), which is the premise for
drawing realistic, representative and tenable results.

Regarding the datasets, researchers interested in RoD
service are also able to obtain similar datasets. It may be
difficult to obtain datasets with perfect coverage, precision
or accuracy, but there are possible ways to approximate such
datasets. For example, synthetic data could be generalized
by utilizing APIs released by service providers and combin-
ing results from multiple runs; crowdsourcing applications

could be developed to encourage passengers of different
RoD services to report their trips and experiences; etc.

As an extension, studying how the results may change
across cities is one of our future work. It is thus possible
to gain insights about different seeking strategies across
different cities, and to understand how profitable seeking
strategies are related to characteristics of cities. These topics
would be studied as soon as we obtain the required datasets.

9 CONCLUSION

In this paper we focus on driver revenue under dynamic
pricing in RoD services. Basically, we propose a system,
RoD-Revenue, to mine the relationship between driver rev-
enue and seeking strategies, and to predict driver revenue
based on features extracted from multi-source urban data.
We go through each level in the RoD-Revenue’s framework,
including the datasets, feature extraction, and model &
prediction. As to the learning model in RoD-Revenue, we
choose a linear regression model with high-dimensional
composite features for its interpretability.

Our linear regression model has a feature dimension of
3, 730, and can predict driver revenue based on features
relevant to seeking strategies at an accuracy of 88.05%. In
our evaluation, we use correlation analysis to show the need
to involve composite features, compare between linear and
non-linear models, evaluate the effects of using composite
features and discuss the effects of regularization terms.

Our findings suggest that the average delivery speed, the
timeslot of seeking, the way of chasing price multipliers and
the status of taxi, bus and metro services all have significant
impacts on driver revenue in RoD service. Correspondingly,
increasing delivery speed, seeking in non-rush hours, chas-
ing future price multipliers, and seeking in locations with
busier taxi and public transportation services all are tenable
heuristics for drivers to earn more.
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