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Abstract 
The properties of short fibre-reinforced polymer composites depend on the distribution and the 
orientation of fibres which drastically changes during the forming of composites. During this stage, 
these materials behave as fibre suspensions and usually flow in confined geometries. To analyse their 
flow-induced fibrous microstructures, we previously conducted 3D real-time in situ observations of the 
compression of non-Newtonian dilute fibre suspensions using fast X-ray microtomography 
[T. Laurencin et al., Compos Sci Technol 134 (2016)]. Here, we successfully simulated these 
experiments with a multi-domain Finite Element code and compared them with the predictions of 
Jeffery’s model. Often, the Jeffery’s equations agree with the experimental and numerical data. 
However, for fibres closed to compression platens, important deviations were observed with faster 
simulated and experimental fibre rotation. Adopting the dumbbell approach and revisiting the recent 
work of Perez et al. [J non-Newtonian Fluid Mech 233 (2016)], an extension of the Jeffery’s model is 
proposed to account both for the non-Newtonian rheology of the suspending fluid and confinement 
effects. Despite its simplicity, the new model allows a good description of simulation and experimental 
results. 
 
Keywords: Short fibre-reinforced composites; Fibre suspension; Direct numerical simulation; 
Confinement; Jeffery’s model. 
 

 Introduction 

Knowing the distribution and the orientation in short fibre-reinforced polymer 

(nano)composites is essential to control their physical and mechanical properties [1-3, 57]. 

These materials have fibre volume fractions  � that range from 0.005 to 0.5 and fibre aspect 

ratios � � �/� from 5 to 1000 (� and � being the typical fibre diameter and length). During the 

forming stages, they behave as fibre suspensions with a complex rheology (in particular due 

to the non-Newtonian behaviour of the polymer matrices) and drastic flow-induced changes 

of the distribution and the orientation of fibres. In practice, the suspension usually flows occur 

in confined regions where the typical size � is of the same order of magnitude as the size of 

the fibre length	�, i.e, with a confinement parameter 	∗ � �/�	 � ��1� [4-6]. These confined 
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flow situations conduct to interactions between fibres and solid boundaries that alter the fibre 

kinematics. These effects should be considered to simulate the processing of short fibre-

reinforced polymer composites but are still not very well-understood or modelled, due to 

numerical or experimental difficulties to properly observe the evolving fibrous microstructures 

and to access to flow mechanisms at fibre scale. 

Fibre kinematics under various flow have been widely studied starting from the fundamental 

work of Jeffery [7] focused on the motion of an ellipsoidal particle immersed in an 

incompressible Newtonian fluid flowing at low Reynolds number in an infinite domain. The 

theory assumes that the translation of the considered particle is an affine function of the 

macroscale velocity gradient. In the case of a cylindrical fibre, the evolution of the unit 

tangent vector		� � ����	����	�� + ����	����	�� 	+ ������, characterising the fibre orientation, 

can be predicted from its rate	�� , the macroscale vorticity tensor � and the strain rate 

tensor	�: 

�� � 	�. � + λ��. �	 − ��. �. ����						with							& � 1 − 16.35 ln �4π��  
Eq. (1)  

where λ is a shape factor expressed by Brenner for cylindrical fibres [8]. The relevance of 

Jeffery’s model was experimentally confirmed by several authors [9-12], mostly under shear 

flow. Jeffery’s model has largely been validated and used for dilute Newtonian fibre 

suspensions, i.e., when � ≪ 1/�� 	[13-15]. The model was also enriched for semi-dilute and 

Newtonian fibre suspensions (1 ��⁄ ≪ � ≪ 1 �⁄ ) to take into account for long range 

hydrodynamic fibre interactions [16-20]. In these approaches, the motions of the centres of 

mass of fibres are still affine functions of the macroscale velocity gradients and the fibre 

rotations are restrained thanks to a diffusion-like term depending on the Fibre Orientation 

Distribution Function (FODF) added in the right hand-side of Eq. (1). In the concentrated 

regime, the as-modified Jeffery’s model fails due to short range interactions between fibres 

which play a central role on rheological behaviour of these suspensions [16, 21-23].  

The effects of the non-Newtonian rheology of the suspending fluid on the kinematics of single 

ellipsoidal particle under simple shear flow have been studied only by a few authors [24-30, 



59]. For sheared viscoelastic fluids, experimental observations revealed a departure from 

Jeffery’s orbits with a bistability of particle orientation which depends on the elasticity of the 

fluid. At low Deborah number, fibre aligns along the vorticity direction [24-29], whereas 

increasing the Deborah number leads to an orientation transition to the shear direction [27, 

28, and 30]. Theoretical studies using second order suspending fluids in the limit of low 

Weissenberg number were also developed by Leal [31] for the motion of rod with a Rivlin-

Ericksen fluid model, and Brunn [32] for the motion of transversely isotropic particle with a 

Giesekus fluid model. Also, Borzacchiello et al. [33] developed a simplified model by 

enriching the velocity gradient with a first-order perturbation induced by the particle and the 

non-Newtonian fluid (Giesekus fluid model in the limit of low Weissenberg number). 

Qualitatively, the predictions of the model are in agreement with experimental observations 

[29] and direct numerical simulations [34]. However, very few experimental, theoretical, and 

numerical studies focused on the strain-thinning behaviour of the suspending fluid under 

compressive or elongational flow [15, 21] despite these features are commonly encountered 

in the processing of short fibre-reinforced polymer composites.  

The aforementioned theories were established for a good scale separation, i.e., when 	∗ ≫
1. Confinement effects occurring when 	∗ � ��1� have been much less analysed. 

Departures from Jeffery’s trajectories and orbits were reported for fibres that interacted with 

mould walls in Newtonian [35-38] as well as non-Newtonian suspending fluids [39]. Various 

complex kinematics were observed such as “glancing” [38], “pole vaulting” [39] or “stabilizing 

effect” [37]. The influence on confinement on rheology of fiber suspensions is also studied for 

shear and elongational flows [57, 58]. To the best of the authors’ knowledge, only a few 

authors modelled these effects. Using the heuristic dumbbell model, modifications of the 

Jeffery’s equations [57, 40-42] were proposed by considering physical contacts between rods 

and walls through the introduction of a contact force ensuring wall impenetrability. However, 

confinement effects have rarely been studied in the case of non-Newtonian suspending fluids 

[39], and never for elongational flows. 



Within this context, we recently used real time and in situ synchrotron X-ray 

microtomography to finely assess the 3D fibre kinematics in dilute suspensions with a strain- 

thinning fluid during confined and lubricated compression [43]. Results showed that power-

law index and confinement had minor effects on fibre kinematics only if the fibre/fibre and 

fibre/wall distances remained sufficiently large (approximately above twice the fibre 

diameter). Below, fibres exhibited noticeable departures from Jeffery’s predictions. In this 

paper, we model these experiments using both direct fibre scale numerical simulation and 

analytical predictions. Thus, after briefly recalling the used numerical approach, we extend 

the analytical dumbbell approach to model fibre kinematics in (un)confined flows [41, 42, 44 

and 45] for power law fluids. Experiments that have motivated this work are briefly 

summarized. Theoretical, experimental and numerical results are then compared and 

discussed.  

 Fibre suspensions in lubricated squeeze flow: Methods 

 Numerical approach 

 Boundary values problem to be solved 

We considered a cubic domain Ω		composed of subdomains Ω2 made of 3 fibres		�, the 

suspending fluid 4, the air 5 and the compression platens 6 (Figure 1). Fibre suspensions 

were modelled as cylindrical samples (height � and radius	7) and located between two 

parallel rigid compression platens (die and punch). Each fibre � with an orientation vector �8 
and a centre of mass 98 	located at a position		:;< was placed inside the suspending fluid. 

Compression flow was imposed with a zero stress vector on the external boundaries of the 

domain Ω		and with the motion of the upper platen at a velocity	=�>, @, �� � A0,0, �� C at a 

prescribed compression strain rate	D�� �	�� �⁄ .  



 

 Multi-domain approach used with the immersed domain method to simulate the lubricated 
squeeze flow: subdomains used to describe axisymmetric squeeze flows; each domain was assumed 
to be incompressible viscous body.  

All the phases, namely the platens, the air, the suspending fluid, the fibre and the viscous 

layers were assumed to behave as incompressible power-law fluids with proper viscosities E2 
and kinematic constraints. By neglecting inertia effects, the overall motion in	Ω	was ruled by 

the following momentum and mass balance equations: 

F	G ⋅ 2E� − G6 � JG ⋅ =	 � 0           in 	Ω. Eq. (2)  

where 	E is the viscosity function in	Ω, 6	the incompressibility pressure and	=	the velocity field. 

The proposed monolithic formulation consists in finding	=	and 6 all over the global domain	Ω. 

To close the boundary values problem, the following constitutive equations were made: 

• In the suspending fluid	ΩK, the fluid viscosity	EK	was assumed to follow a power law, i.e., 

EK � LM�NOPQ�		; 		�	 S 1	,	where			L			was the consistency,		�			the power-law index and M�NO �
√2�:� the generalised shear rate. 

• Fibres were considered as rigid bodies. Thus, in the fibre sub-domains	Ω8, the 

viscosities	E8 	were set to a large constant value and an extra term	G ⋅ V∗ was added on the 

right-hand side of the momentum equation Eq. (2) where the stress tensor	V∗	is a 

Lagrange multiplier linked to the rigidity constraint � � J	[46]. Thus, after convergence, 

the first term in Eq. (2) vanished, E8 only playing the role of a penalisation factor.  



• The air and mould viscosities were set to constant values and were adjusted at each time 

step with respect to the fluid viscosity	EK in order to get a plug flow for the suspension, i.e., 

a cylindrical front at the air/fluid interface. Using preliminary simulations, we found that the 

air viscosity EW could be purposely fixed to	10Q�minAEKC, whereas the solid motion inside 

the mould could be properly recovered if the platen viscosity	EY	was around	10�max	�EK�. 
Thin lubricated layers having the same thickness as the size of mixing layer defined 

further were also added at the platen/fluid interfaces in order to get a plug flow 

corresponding to perfect slip boundary conditions [47]. For that purpose, preliminary 

simulations allowed us to adjust the constant viscosity	E\ 	to the same value as the air 

viscosity	EW. 

 Numerical schemes 

From a numerical viewpoint, the momentum equation Eq. (2) was computed in		Ω	 with a 

finite element method. All subdomains were embedded in a unique Eulerian mesh using the 

immersed volume method [46]. Thus, level-sets were used to get (i) implicit representation of 

interfaces between subdomains and (ii) proper definition of the viscosity E as a space 

dependent function [46, 48]. Each level set ]2 was associated with a sub-domain		Ω2. Except 

for the air levelset ]W that was defined as the complementary of all the other ones, a levelset 

]2 representing a positive/negative distance to the subdomain interface Γ2 was introduced: 

]2 � ^+�2�:�			if			:	 ∈ 	Ω2−�2�:�			if			:	 ∉ 	Ω2. Eq. (3)  

 

 

 (a) Iso-values of the truncated fluid level-set �K and adaptive mesh used to run the 

simulation, displayed on platens and fluid domains. (b) Iso-values of the velocity magnitude shown on 
platens and fluid domains. 



Level set functions enabled us to properly ascribe the overall viscosity E to its value E2 in 

sub-domains		Ω2. This	was achieved by using smooth Heaviside functions		b2	: 
E�:� � ∑ b2�:�2 	E2 + A	1 −	∑ b2�:�2 	C	EW. Eq. (4)  

Practically, levelsets were truncated in a narrow interval [−e, e] using hyperbolic filters  

�2 � e tanhA]2/eC (Fig. 2a). Moreover, the functions		b2 also depended on		e, i.e.,  

b2 � 1 2⁄ A1 + �2/e	C in order to ensure smooth transitions of E between subdomains.  

Within this framework, the velocity and the pressure fields were computed by solving 

momentum and continuity equations (Eq. (2)), as illustrated in Fig. 2b. The corresponding 

weak formulation was solved using the augmented Lagrangian method and the Uzawa 

algorithm [49] with mixed finite elements MINI-elements (P1+/P1) [50]. In addition, at a given 

time step, once the velocity field was estimated, the levelset positions in Ω could be updated: 

• Levelsets of compression platens were updated from their given rigid body kinematics.  

• Thanks to an efficient algorithm used to interpolate the velocity and vorticity at the centre 

of fibres [51], the positions :8 and the orientations 	�8 of the 3 fibres were updated by 

integrating the following motion equations: 

g h:<hi � =�:8�h�<hi � 	 ��G × =�:8� ⋅ �8. Eq. (5)  

This was done using a second order Adams-Bashforth scheme. Once the new positions and 

orientations of the particles were determined, their shapes were updated.  

• The truncated levelset associated to the fluid/air interface was transported by the velocity 

solution = of the monolithic system according to the following sets of equations: 

k lmnli + =	. G�K � 0	�K�o � 0, :	� � 	�Kp�:�. Eq. (6)  

A re-initialization step was also proven to be necessary to maintain the geometrical 

properties of this levelset [46]. Thus, giving the evolution of the air/fluid interface, Eq. (6) was 

slightly modified as explained in Ville and al. [52].  



Finally, to solve the above set of equations, optimal meshes were generated using an 

anisotropic mesh adaptation based on an a posteriori interpolation error [46, 53]. This 

meshing procedure enabled to capture high gradients of the flow solution with a good 

accuracy at a very low number of elements. The building of unstructured anisotropic meshes 

was based on local mesh modifications, using a metric which minimised the errors on 

multiple fields (namely the velocity and the levelset functions associated to the platens, 

particles and the fluid). In order to concentrate the mesh in the neighbourhood of the different 

interfaces, the levelset functions were replaced by their tangentially filtered functions with a 

characteristic thickness q � 5	e (e being the characteristic thickness used for mixing law). An 

example of anisotropic mesh is plotted in Fig. 2a. Our computations were made on a unitary 

cube Ω (the equations were scaled with a reference length) with	e � 10Q�. The number of 

nodes ranged from 80 000 to 250 000 according to the number of fibres, the time step being 

equal to 0.5	10Q� (scaled time). For the most suspensions, the calculation time for a 

compression test was around two days on twenty processors until a Hencky compression 

strain	|s��| � 0.8. 

 Theoretical approach 

As mentioned in the introduction, a few authors modelled confinement effects and in 

particular the collision between fibres and walls during the suspension flows. Recently, Perez 

et al. [41] proposed a direct modification of Jeffery’s model in the case of slender cylindrical 

fibres (& � 1) immersed in an incompressible Newtonian fluid submitted to simple shear flow 

in symmetrical contacts with walls. The analysis is based on the rigid dumbbell model 

introduced by Bird et al. [44] and was recently extended to non-symmetrical contacts, 

Poiseuille and squeeze flows [6]. Herein, we revisit and extend it to the case of dilute fibre 

suspensions with power law fluids, with a proper description of contact conditions in confined 

situations. 

Hence, each fibre � of the suspension is idealised as a dumbbell of unit orientation vector		�8, 
centre of mass 98 of position :;< and velocity field =;< and with two beads of diameter � 



separated by a distance � (Figure 3). The upper (+) and the lower (−) beads have respective 

positions :8u and velocities: 

	=8u � 	=;< u \��� 8 	. Eq. (7)  

During the suspension flow, the dumbbell is subjected to hydrodynamic forces which were 

further denoted	v8wu
, and exerted on the upper and lower beads. These forces are assumed 

to depend on the relative velocity Δ=8u between the fluid and the beads: 

	Δ=8u 	� y;< u \�zy ∙ �8 −	=8u	
, Eq. (8)  

where zy is the macroscale velocity gradient and where y;< is the velocity of the fluid 

surrounding the dumbbell at its centre of mass 98.  

 

 Fiber 	�	 modeled by a dumbbell. (a) Unconfined lubricated squeeze flow with hydrodynamic 

forces v8wu
 exerted on the upper and lower beads. (b) Confined lubricated squeeze flow with centred 

dumbbell, hydrodynamic v8wu
 and contact v8|u forces exerted on the upper and lower beads. (c) 

Confined lubricated squeeze flow with only one contact with the lower wall. 

By analogy with the expressions proposed by Bruschke and Advani [54] and Spelt et al. [55] 

for power-law fluids, or more generally by Orgéas et al. [56] for power law fluids, the 

hydrodynamic force v}~ is assumed to be the gradient of a convex viscous dissipation 

potential �~��=� with respect to the relative velocity �=} between the dumbbell and the fluid 

at the considered point: 



v8w � l��
l�=<, Eq. (9)  

and such that 

v8w�−Δ=8� � −v8w�Δ=8�. Eq. (10)  

The convexity of Φw ensures that 

v8w�Δ=8� � v8w �Δ=�′� 				⟺ 						Δ=�′ � Δ=8. Eq. (11)  

The potential Φw is expressed as a function of a norm Δ�NO8�Δ=8� of the relative velocity Δ=8 
[56]: 

v8w � �Φ��Δ�e�� ∂Δ�e����=< � � ∂Δ�e����=< , Eq. (12)  

where the hydrodynamic drag coefficient � is a positive and convex rheological function 

of	Δ�NO8. For example, if Δ�NO8 � ‖Δ=8‖ (as in [41, 42]), Eq. (12) writes as follows: 

v8w � ��Δ=8. Eq. (13)  

For power-law fluids (as considered in this study), the drag coefficient �8 can be expressed 

as: 

�8 � �pΔ�e��PQ�, Eq. (14)  

where �p is a constant and � the power-law index of the suspending fluid.  

 Unconfined lubricated squeeze flows 

If the dilute fibre suspensions are squeezed with unconfined and quasi-static flow situations, 

the first momentum balance equation of the dumbbell � yields: 

v8w� � −v8w�
 Eq. (15)  

According to Eqs. (9-14), and taking into account the expressions of the upper and lower 

relative velocities Eqs. (7-8), the following result was straightforwardly obtained: 

=;< � y;< 	 Eq. (16)  

Thus, as for the Newtonian and isotropic case [41], the translation of the dumbbell in a power 

law fluid follows that of the suspending fluid.	In addition, the resulting torque at the centre of 

the dumbbell is null. Therefore the forces that act on each bead are colinear with the 

orientation vector �8: 



v8w� � ]�� 	⇔ 		 ��+ �\�zy ∙ �� − \��� �� � ]��
	
, Eq. (17)  

where �8� � �8AΔ�NO8	 �Δ=8��C. Multiplying the last equation by �8 and accounting for	�8 ∙ �8 � 1, 

and thus for	�8 ∙ �� 8 � 0, we obtain: 

] �	 ��+ �\�zy:�� ⊗ ���	, Eq. (18)  

Replacing the expression of ] in Eq. (17) gives: 

�� 8 � �� �� � zy ∙ �8 − �zy:�8 ⊗ �8��8	. Eq. (19)  

Hence, regardless of the considered power law suspending fluids, the rotary velocity	�� 8 of the 

dumbbell is equivalent to that given by the Jeffery’s model	�� 8� (with	& � 1). 

 Confined lubricated squeeze flows: centred fibres 

We now consider the case where the dumbbell � is confined and centred between two 

parallel compression platens (	∗ � ��1�). If its beads do not touch the platens and neglecting 

lubrication forces normal to the compression platens as the beads become close to them, the 

problem is identical to the previous unconfined flow situation: =;< is an affine function of zy 

and �� 8 � �� 8�. The problem has to be reconsidered when symmetrical contacts occur between 

the dumbbell and the walls (Figure 3b), i.e., when		:8Q ⋅ �� 	� �/2. Then two flow situations 

occur. The first one corresponds to �� � 0. For this flow configuration (uniaxial tensile flow), 

one recovers again the unconfined situation, i.e., =;< � y;< and	�� 8 � �� 8�. The second case 

occurs when �� � 0 (uniaxial compression). Here, opposite contact forces v8|�	 and v8|�	 are 

introduced [41]. They are exerted along the direction perpendicular to the upper and the 

lower walls, i.e., the direction �� in this study: 

v8|u	 � ∓48|��. Eq. (20)  

where 48| is the norm of the contact forces. The first momentum balance equation projected 

along the compression platens also yields Eq. (15). Taking into account the force properties 

of Eqs. (10-11) finally yields Eq. (16) so that the dumbbell translation follows that of the 

suspending fluid. Furthermore, as the overall torque at the centre of the dumbbell has to 

vanish, forces exerted at the beads are collinear with the dumbbell orientation vector	�8: 



v8w� +	v8|� � ]′��  Eq. (21)  

Multiplying the last equation by the unit orientation vector �8 and keeping in mind that 

	�8 ∙ �� 8 � 0, an expression of the scalar ]′ can be obtained so that Eq. (21) yields the 

following expression of the rotary velocity of the dumbbell: 

�� 8 �	�� �� +	�� �� � zy ∙ �8 −	�zy:�8 ⊗ �8��8 +	24�����+ A6�3�8 − �3	C		 Eq. (22)  

with 68� the component of the dumbbell orientation vector along ��. Using the affine result, 

the last expression as well as the non-penetration conditions of the beads at the walls, e.g., 

=8Q ⋅ �� � 0 for the lower bead, leads to:  

248|��8� 	� 	 6�8�� − 	D��h 68�1 − 68��  Eq. (23)  

where		D��h � D��	�1 +	1 �	6�⁄ �. This yields the following expression of the contact 

contribution �� 8| of rotary velocity of the dumbbell: 

�� 8| � 	6� �3� −	 	D33� 		6�31 − 6�32 A6�3�� − �3	C Eq. (24)  

More precisely the rotation rate of the third component (namely the out-of-plane angle	θ) 

reads 

6�8�| � −		6�8�� 		1 − 3	68�� − 2 �	68�⁄3	A1 − 68�� C  Eq. (25)  

The sign of numerator,	1 − 3	68�� − 2 �	68�⁄ , gives the evolution of the rotation rate (either a 

faster or a slower rotation). For large aspect ratio β, the change of sign occurs around		55°. 
Basic numerical computations show that this angle increases for small value of β.  

In conclusion for this elongational flow, the translation of the dumbbell centre of mass is still 

an affine function of the macroscale fluid velocity. In addition, if the contact condition is 

fulfilled and the contact contribution Eq. (25) becomes effective, the fibre rotation rate is 

higher than that predicted by the Jeffery’s model for fiber having an out-of-plane angle lower 

than	55°. On the other hand, the effect of contact between platen and fiber is less important 



for fiber already aligned with horizontal platens. It is important to mention that these results 

do not depend on the rheology of the considered suspending fluids.  

 Confined lubricated squeeze flows: non-centred fibres 

Lastly, we consider the case where the dumbbell � is positioned asymmetrically with respect 

to the walls, i.e., with its centre of mass 98 closer to one wall, e.g. the lower platen as shown 

in Figure 3c. Here again, as long as the dumbbell does not touch the platens, the dumbbell 

kinematics is the same as in the unconfined case. When	:8Q ⋅ �� 	� �/2, the dumbbell touches 

the lower compression platen and its kinematics is that of the unconfined case if �� � 0. The 

contact force v8|� is exerted on the lower bead when �� � 0. The first momentum balance then 

yields: 

v8w� + v8|� + v8w� � J, Eq. (26)  

leading to the following expression of =;< − y;<: 

=;< − y;< � �2		�8� − �8Q�8� + �8Q AGy ⋅ �8 −�� �C+ 4���8� + �8Q �3 Eq. (27)  

To simplify this expression, we temporarily consider the same problem, but with the dumbbell 

touching the upper platen instead of the lower one (denoted with the symbol “∗” in the 

following). The similarity of the problem with respect to that sketched in Figure 3c is such that 

the orientation �8∗ and the orientation rate �� 8∗ of the dumbbell, the contact force intensity 48|∗ 
as well as the function �8�∗ + �8Q∗ must be identical. Therefore, one easily gets:  

=;<∗ − y;<∗ � �2		��
+∗ − ��−∗
��+∗ + ��−∗ �Gy ⋅ �8 − �� 8� − 48|��+∗ + ��−∗ �� Eq. (28)  

In addition, the vertical fluctuations A=;< − y;<C ⋅ �� and A=;<∗ − y;<∗ C ⋅ �� must be opposite. 

Hence, accounting for the two last equations, this condition is fulfilled when �8� � �8Q (or �8�∗ �
�8Q∗). Consequently, for the flow situation considered in Figure 3c, the following expression is 

obtained:  

=;< � y;< + 48|2��− �� Eq. (29)  



where the vertical fluid velocity �;<� at the center of mass is equal to ��/2	6� + �/2� �� �⁄ . The 

second momentum balance implies that the forces exerted on each bead must be colinear. 

For the upper beads this is expressed as: 

v8w� � ]���8,  Eq. (30)  

As before, this leads to the following expression of the rotary velocity of the dumbbell: 

�� 8 �	�� 8� +	�� 8| � zy ∙ �8 −	�zy: �8 ⊗�8��8 +	 48|��8Q �68��8 − ��	�.		 Eq. (31)  

Combined with the non-penetration condition =8Q ⋅ �� � 0 for the lower bead, this leads to: 

	�� 8| � 6�8�� − 	D33� 		6�32 − 68�� �68��8 − ���		 Eq. (32)  

As in the previous section, the third component expresses the rotation rate, 

6�8�| � −		6�8�� 		1 − 3	68�� − 2 �	68�⁄3	�2 − 68�� �  Eq. (33)  

where only the denominator changes with respect to Eq. (25).  

With the non-penetration condition, an expression of =;< can also be obtained:  

=;< � y;< + �26�8�
� − D�� �68� + 1��2 − 68�� �� Eq. (34)  

Consequently, for asymmetrical configurations, if the contact condition is fulfilled and if the 

compression platens become closer, the two last equations prove that (i) the translation of 

the dumbbell centre of mass is no more an affine function of the macroscale fluid velocity, (ii) 

as in the previous section, the fibre rotation rate is higher than that predicted by the Jeffery’s 

model when the vertical angle is lower than		55°. Here again, it is interesting to notice that 

these results do not depend on the rheology of the considered suspending fluids. 

  Experimental approach 

We briefly recall here the information related to the experiment that have been reported in 

[43], the results which will be compared to the numerical simulation in the next section. Non-

Newtonian dilute fibre suspensions were prepared and subjected to lubricated compression 

experiments using a micro-rheometer mounted in a synchrotron X-ray microtomograph 



(Tomcat beamline, SLS, Villigen, Switzerland). The fluid used to make fibre suspensions was 

a hydrocarbon gel (paraffin). At 50°C, the gel viscosity exhibited a non-Newtonian strain-

thinning power-law close to that of polymer matrices used in the composite industry, with a 

consistency L � 440	�5. ��QP	and a power-law index � � 0.2. Fibres were extracted from 

fluorocarbon (PVDF) elastic fishing wire (diameter	� � 200	μ¡). More details about the 

matrix rheology or the suspension processing are reported in [43]. Fibre suspensions were 

subjected to lubricated simple compression loading at 50°C and constant velocities		�� . The 

suspension flow was considered as confined due to poor scale separation such that			∗ �
�/� � ��1�. The 3D fibrous microstructures and the flow fronts of the suspensions were 

imaged in real-time using fast X-ray microtomography. Nine experiments were performed: six 

samples with one fibre placed in the centre of samples and different initial orientations 

(�8p, �8p), and three samples with five to eight fibres corresponding to a dilute concentration 

regime (� ≪ 1/��), as summarised in Tab. 1. 

¢e�o	�£¡¤e¥ 1 2 3 4 5 6 7 8 9 3 1 1 1 1 1 1 5 8 8 �	�%� 0.013 0.013 0.015 0.013 0.011 0.011 0.11 0.21 0.16 � 16.5 17 19.5 17.5 14.5 14.5 12.6 17.9 17.7 D��p ��Q�� 0.004 0.004 0.03 0.03 0.03 0.03 0.03 0.004 0.03 Δ>©8Pª«Y�%� - - - - - - 2.0 2.1 1.5 Δ>©W«ª«Y �%� 8 7.5 8.2 5.6 7.6 3.9 4.1 7.1 5.9 Δ>©8P¬­©�%� - - - - - - 0.5 0.5 0.3 Δ>©W«¬­©�%� 0.6 0.3 0.15 0.6 0.2 0.7 1.4 3 2.1 

 – Test number with their characteristics: number of fibres 3 and fibre aspect ratio � in the 

suspensions, initial strain rate D��p  used for the compression test, minimal Δ>©8P8  and maximal Δ>©W«8  
recorded dispersion for the position of the fibre centres of mass with respect to the affine assumption. 

 Results and discussion 

 Motion of a single fibre: numerical simulation vs. dumbbell approach  

The kinematics of a single fibre in a squeezed suspending fluid was first analysed (i) to 

investigate the influence of the confinement and the rheology of the suspending fluid, (ii) and 

to check the capability of the analytical dumbbell model to recover simulation results. For that 

purpose, the simulated fibre was idealised as a sphero-cylinder of length � + � (in 

accordance with Fig. 3) with an aspect ratio � ® 15 close to that measured experimentally 



(next subsection). The fibers are put in the reference plane ¯>@	(�8p � 0°.) and the 

suspending fluid had either a Newtonian (� � 1) or a power-law viscosity with high strain-

thinning effects (� � 0.2�. Note that we also performed simulations without confinement, i.e., 

with		p∗ � 10. The corresponding results (not shown here) were identical to those found for 

the confined situation with 	p∗ � 3 in section 3.1.1. Lastly, the velocity	��  of the upper plate 

was arbitrary set to	−100		E¡. �Q�: Here again, the trends described in the sequel were 

identical for other values of ��  (not shown here). 

 Fibre centered between compression platens 

The centre of mass of the fibre was first placed initially at the centre of the fluid domain and 

computations are made for various initial confinement parameters and angles. Fig. 4 gathers 

numerical results, dumbbell model and Jeffery’s predictions. The Figs. 4(a-b) were built to 

give rise to large Hencky deformation and fibres were progressively aligned along the 

plane	perpendicular to the compression direction: the initial angles were �8p � 10°		and		70°, 
whereas the initial heights of the sample �p were 12 and 4 mm, leading to initial confinement 

parameters 	p∗ � �p �⁄ 		equal to 3 and 1.3. For Figs. 4(c-f), parameter ranges were chosen 

close to experimental situations (small strain deformation): the initial angle was �8p � 30° and 

the initial height of the sample �p was varied, being equal to 7, 3 and 2.7 mm, leading to 

initial confinement parameters 	p∗		equal to 2.3, 1 and 0.9, respectively.  

From these figures, we can deduce the following comments: 

• If there is not contact between the fiber and the platens, the evolutions of the out-of-plane 

angle �8 plotted in Figs. 4(a, b, e, f) showed that the predictions of the Jeffery’s model, i.e., 

Eq. (2) and the dumbbell model Eq. (19), were very close to the numerical results when a 

Newtonian fluid was considered. The small differences observed can be related to the 

aspect ratios of the cylinder used in Jeffery’s model which is slightly different from sphero-

cylinder used in simulations. Moreover, a small difference of the rotation between Jeffery’s 

and the dumbbell predictions is due to their relative aspect ratios, & � 0.984 and 1 

respectively. Thus, despite the poor scale separation parameters		p∗ � ��1�, the Jeffery’s 



model is robust enough for these confined situations. For a highly strain-thinning power-

law fluid (� � 0.2), the relevance of the Jeffery’s and the dumbbell model was still very 

satisfactory for the same flow configurations. This result is surprising bearing in mind the 

significant differences reported in the literature when shearing suspensions with other 

fluids such as viscoelastic fluids [28, 29].  

• Secondly, it is also worth noting that fibres also exhibited faster �-rotations as they 

touched the compression platens (Fig. 4b, orange arrow, |s��|	~0.3 and , 	p∗ � 1.3	; Figs. 

4(c-f), |s��|	~0.2 and , 	p∗ � 1.	and 0.9) for both Newtonian and highly strain-thinning 

power-law fluid. These figures also show that (i) this rotation change did not depend on 

the rheology of the suspending fluid, (ii) the Jeffery’s model failed to predict the numerical 

fibre orientation and (iii) the proposed dumbbell approach Eqs. (23, 25) fairly well 

predicted them. 

• During compression, the simulated orientation angle �8 remained unchanged and equal to 

its initial value		�8p, regardless of the values of � and 	∗. This is in accordance with the 

prediction of the standard Jeffery’s model and with the dumbbell approach Eqs. (22, 24). 

• To check whether the fibre translation followed an affine motion with the macroscale 

suspension flow (this assumption is embedded in the Jeffery’s and the dumbbell models), 

the numerical deviation Δ>8P­© � ±:;<P­© − :;<� ±/�²NK was plotted in Fig. 4d as a function of 

|s��|, where :;<P­© is the simulated position of the fibre centre of mass and :;<�  the position 

that was predicted using an affine motion with the macroscale velocity gradient (�²NK was 

set equal to 12	mm to obtain comparable results). The graph proves that the deviation 

Δ>8P­©		remained small (� 1	%). However, this deviation is always slightly higher for the 

power-law fluid than for the Newtonian fluid. Thus, regardless of the investigated power-

law index � and and the (non-)occurrence of contacts, it is fair to conclude that for the 

considered symmetrical configuration, the predicted fibre translation followed the affine 

assumption that was presumed by the Jeffery’s and the dumbbell models. 

  



•  

•  

 
 
 

 Compression of samples with a centred fibre immersed in Newtonian and power-law fluids 
(� � 1	and		0.2) for different initial confinement parameters: (a)			p∗ � 3	; (b)			p∗ � 1.3	 and (c-f)			p∗ �2.3; 1; 0.9. In (a-b) and (e-f), evolutions of the orientation angle �8 with |s��| and comparison between 
numerical computations (marks) the dumbbell model (dotted line) and Jeffery’s predictions (line). The 
evolutions of the fibre/platens distance Ḱ/|Y and the dispersion Δ>8P­© with |s��| are plotted in (c) and 

(d), respectively. 



 Asymmetrical case 

The situations where a fibre was initially located nearer to the lower platen were also 

investigated. For that, an initial sample height �p � 7	mm  (	p∗ � 2.3) was chosen and the 

fibre was positioned such as one extremity was		0.11	mm away from the lower platen. The 

initial orientation was the same as in the previous section. Results are reported in Fig. 5 

where simulated and analytical evolutions of the out-of-plane angle �8 and the dispersion 

µ>8P­©	 are plotted as function of the compression strain	|s��|. 
• Similarly to the symmetrical case, the simulated orientation angle �8		remained constant 

(not shown here), regardless of the considered fluid and in accordance with the Jeffery’s 

and dumbbell models. 

• For the Newtonian fluid, a good accordance between the Jeffery’s predictions and the 

simulation was also noticed while the fibre did not touch the lower platen, i.e., while 

|s��| 	� 0.15: Jeffery’s orbit was well followed by the simulation (Fig. 5a), as well as the 

affine motion of the centre of mass of the fibre (Fig. 5b). As the compression strains 

remained moderate before contact, this result was also valid for the strain-thinning fluid. 

• After the contact indicated by the dotted arrows, this was no more valid. Firstly, the fibre 

rotation was faster than that predicted by the Jeffery’s model (Fig. 5a), but lower than the 

rotation recorded for the symmetrical case (Fig 4c-d). Secondly, noticeable deviations of 

the fibre translation from the affine assumption were observed (Fig. 5b). It is also 

interesting to notice that these tendencies were practically identical for the Newtonian and 

the highly strain-thinning fluid. Lastly, the graphs in Fig. 5 show the fairly good predictions 

of the dumbbell model Eqs. (31-32). 



 

 Compression of samples with a non-centred fibre immersed in Newtonian and power-law 
fluids (� � 1	and		0.2) and with		p∗ � 2.3. Evolutions of the fibre orientation angle �8 (left graphs) and the 
deviation Δ>8P­©		(right graphs) with	|s��|: numerical simulations (marks), predictions of the Jeffery’s 
(line) and the dumbbell (dotted line) models. 

 Comparison with experiments 

The results of the experiments reported in [43], summarised in subsection 2.3 are now 

compared with the predictions of the numerical simulations with cylindrical fibres, the 

Jeffery’s and the dumbbell models. As stated in subsection 2.1, the sample sizes, the fibre 

geometry (with a cylindrical shape), orientations and positions and the punch velocities were 

used as numerical input data for the simulations. Results are shown in Figs. 6 and 7. Those 

obtained with the suspensions with one fibre (samples 1 to 6) are gathered in Fig. 6, whereas 

Fig. 7 refers to dilute fibre suspensions (samples 7 to 9). The graphs a-b in Fig. 6 and a-f in 

Fig. 7 show the evolutions of the angles �8		and �8		of each fibre � with the compression 

strain	|s��|. Graph (c) in Fig. 6 shows the evolution with |s��| of the numerical (resp. 

experimental) deviations Δ>8P­© (resp. Δ>8N«Y � ¶:;<N«Y − :;<� ¶/�p) of the fibre centres of mass 

(corresponding minimal and maximal values are listed in Tab. 1). The following comments 

can be made. 



 

 Compression of sample 1 to 6 (one fibre per sample). Evolutions of the measured (marks), 
analytically (lines, Jeffery’s model) and numerically (dashed lines) predicted angles �8	(a) and	�8 	(b) 

with |s��|. Experimental and numerical evolutions of the deviations Δ>8N«Y and Δ>8P­©	with |s��|. 
• For the samples with one fibre, Fig. 6 shows the fairly good accordance between the 

experimental and simulation results. Indeed, regardless of the considered initial fibre 

orientations, the simulations well captured, i.e., with a maximal difference of 3°, both the 

stagnation of the in-plane angles �8 and the increase in the out-of-plane angles �8 during 

compression. However, the numerical deviations Δ>8P­© remained close to 0 (� 0.5%), 

whereas Δ>8N«Y could reach several percent (� 8%) after experimental compressions (Fig. 

6c). As previously mentioned [43], experimental deviations Δ>8N«Y could probably be 

attributed to undesirable rigid body motions of the compressed samples that altered these 

measurements. Thus, despite this discrepancy, results of Fig. 6 tend to validate the 

numerical approach as a proper method to finely model the kinematics of fibres immersed 

in non-Newtonian suspending fluids. 

• In spite of both the low power law index of the suspending fluid and the flow of the 

suspensions in narrow gaps (	∗ � ��1�), Fig. 6 again shows the robustness and 

relevance of the Jeffery’s model (as well as the dumbbell model). Again the analytical 

predictions of orientation angles show a good accordance with numerical and 

experimental results. Note that this remark is valid because fibres considered here did not 

touch the compression platens. 

• For dilute fibre suspensions (samples 7 to 9), the angles �8 increased during compression 

while the angles �8 remained more or less constant (Fig. 7), in a way similar to the 



samples with one fibre (Fig. 6). However, for some fibres, as indicated by the arrows in 

Fig. 7c-f, the angles �8 slightly varied and the angles �8 increased more rapidly at given 

compression strains. As shown in Fig 7, apart from the simulated angles �8 for the marked 

fibres shown by the arrows, it is interesting to note that the aforementioned experimental 

trends were rather well-captured by the numerical simulation. 

• Also, Fig. 7 proves that predictions of Jeffery’s model are satisfactory, except for the fibres 

shown by the arrow where the predicted angles �8 are noticeably lower than the 

experimental and simulated angles. As the considered concentration regime is dilute, the 

origins of these discrepancies should not be related to fibre-fibre contacts. Both acquired 

3D images and simulation results helped us to check this point. In addition, deviations 

should not be induced by long range hydrodynamic interactions between fibres. Thanks to 

the simulation, this assumption could be verified: the generalised shear rate colormaps in 

Fig. 8 showed that high shear rate zones were located in the vicinity of fibres only, i.e., in 

zones with a thickness close to one fibre diameter	�. This phenomenon should not alter 

the kinematics of other fibres. 

• Note also that for this dilute suspension, the main stress tensor corresponds globally to a 

squeeze flow and the flow motion remains axisymmetric. In particular a plug flow is always 

observed.  



•   

 Compression of samples 7 to 9. Evolutions of the measured (marks), analytically (lines, 
Jeffery’s model) and numerically (dashed lines) predicted angles �8 	(a) and 		�8 	(b) with	|s��|. Black 
arrows denote fibres closed to the walls (less than half one fibre diameter) whereas orange arrows 
show the contact with platen(s) during compression. 



 

 Horizontal slices in the middle of the numerical samples showing colormaps of the 
generalised shear rate M�NO at a compression strain |s��| � 0.4 for samples 7 (a), 8 (b) and 9 (c). 

 

 Evolutions of the angles �8 (a,c) and the deviations Δ>8N«Y and Δ>8P­© (b,d) for two fibres in 

contact with compression platens in samples 8 (a) and 9 (b). The orange arrows (experimental: filled, 
numerical: dotted) denote the first contact of the considered fibre with the upper platen, and the red 
arrows the second with the lower platen. 

• Thus, the observed and simulated contacts of fibres with platens were probably be the 

main reason for the observed discrepancies. More precisely, when contacts with the 

platens occurred, both the numerical fibre orientation and deviation from the affine 

assumption deviated abnormally away from the Jeffery’s prediction. This is shown in Fig. 



9 for the kinematics of two fibres, namely those indicated by the green triangles and pink 

circles in Fig. 7c-d and Fig. 7e-f, respectively. The dotted orange (resp. red) arrows in Fig. 

9 denote the occurrence of the numerical contacts between the considered fibre and one 

(resp. two) compression platen. Fig. 9a-b show that the first contact occurred at	|s��|~	0.2, 

whereas in Fig. 9c-d the fibre extremity firstly entered in contact with the upper platen 

at	|s��| � 0.34. The numerical description could be improved. Indeed, contacts were 

detected a bit earlier in the experiments than in the simulations. Simulation results were 

semi-quantitatively in accordance with the experiments for the deviations Δ>8P­©. 

However, in this case, experimental artefacts could have altered the values of Δ>8N«Y (cf. 

the first point above). A discrepancy between experimental and numerical orientation 

angle �8 was observed in Fig. 9a. On the contrary, the numerical description of the 

orientation angle �8 was very good in Fig. 9c. Lastly, it is worth mentioning that the 

analytical predictions proposed by the dumbbell model were also acceptable and very 

close to numerical results. A small difference was obtained between the analytical and 

numerical results, as the simulated fibres were cylinders (in accordance with the 

experiments) and not sphero-cylinders (underlying assumption of the present dumbbell 

model). 

 Concluding remarks 

To better understand flow-induced fibrous microstructures in short fibre-reinforced 

composites during their forming operations, the kinematics of fibres in fibre suspensions 

were finely investigated. For that purpose, we combined fibre scale FE numerical 

simulations, analytical modelling and rheometry experiments coupled with 3D real time 

observations of their evolving fibrous microstructures. Restraining the study to dilute 

systems, as a first step towards more concentrated regimes, the analysis aimed to answer 

on three major and open questions. What is the effect of the non-Newtonian rheology of the 

suspending fluid on the fibre kinematics? What is the effect of confinement? Is there a 



relevant compact analytical model to describe these effects? The main conclusions drawn 

from this study are given hereafter: 

• From a methodological standpoint, a monolithic and multiphase Eulerian FE formulation 

was used. This FE was able to model, using levelsets, transport and advanced meshing 

algorithms, the motion of rigid fibres immersed in power-law fluids. It was proved that this 

numerical framework could recover the well-known Jeffery’s kinematics of a single fibre in 

a Newtonian fluid under unconfined and homogeneous compression flow. The FE results 

were also compared with 3D images obtained previously [43] in the case of confined 

lubricated compression of power-law strain-thinning suspending fluid containing one or 

several fibres. The original comparison was rigorously achieved, i.e., using the initial 3D 

images as initial conditions as well as the experimental boundary conditions measured 

during compression. The good accordance between simulation and experimental results 

demonstrated the validity of the FE approach to study at the fibre scale the rheology of 

dilute fibre suspensions with power law fluids and confined flow situations. 

• For the considered flows and fluid rheologies, i.e., lubricated compression with Newtonian 

or strain-thinning power-law fluids (� � 0.2) close to industrial polymer matrices, it was fair 

to conclude that fibre kinematics was practically not affected by the fluid rheology. It could 

be interesting to validate this key result for lower values of � → 0, and yield stress or 

viscoelastic fluids, as well as for other fibre aspect ratios. 

• Combining experimental and numerical results, the effects of confinement on fibre 

kinematics was investigated in detail. Astonishingly, while fibres did not touch walls, i.e., 

even for low values of the confinement parameter, numerical simulations proved that the 

fibre kinematics could be considered to be unaffected. Under such circumstances, the 

rotation of fibres could be described using the Jeffery’s equation and the translation of the 

centres of mass of fibres followed affine motion with the macroscale flow field of the 

suspensions. Confinement effects arose when fibres touched the compression platens. 

Then, the affinity of the motion of fibres was lost, and fibres rotation deviated from the 



Jeffery’s orbit, with a faster rotation rate. These numerical trends were supported by 

experimental observations. 

• From these results, we validated an extension of the dumbbell model [41] as a heuristic 

alternative of the Jeffery’s equations to analytically predict the motion of fibres in the 

considered flow situations, i.e., for power-law fluids and elongational confined or 

unconfined flows. Similar results were obtained by using a cell model around a fiber in 

[59]. For unconfined or confined flows without contact between fibres and walls, the 

dumbbell model is equivalent to the Jeffery’s equations for slender fibres, regardless of 

the rheology of the considered fluids. This model provides nice fitting of numerical 

simulations and experiments. When fibres touched the walls, analytical corrections of the 

Jeffery’s equations were found to describe the non-affine translation of contacting fibres 

and their increasing rotation rate. These corrections did not depend on the fluid rheology, 

could well capture the observed numerical and experimental trends. They could also be 

implemented in software used to predict the forming operations of short fibre-reinforced 

polymer composites.    
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