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ON THE SECOND LYAPUNOV EXPONENT OF SOME MULTIDIMENSIONAL CONTINUED FRACTION ALGORITHMS

We study the strong convergence of certain multidimensional continued fraction algorithms. In particular, in the two-and three-dimensional case, we prove that the second Lyapunov exponent of Selmer's algorithm is negative and bound it away from zero. Moreover, we give heuristic results on several other continued fraction algorithms. Our results indicate that all classical multidimensional continued fraction algorithms cease to be strongly convergent for high dimensions. The only exception seems to be the Arnoux-Rauzy algorithm which, however, is defined only on a set of measure zero.

Introduction

In the present paper we study strong convergence properties of multidimensional continued fraction algorithms. In particular, we give results and numerical studies for the second Lyapunov exponent of such algorithms. One of our main objects is Selmer's algorithm, which attracted a lot of interest in the recent years, mainly because of its relation to an (unordered) continued fraction algorithm defined by Cassaigne in 2015. This algorithm, now called Cassaigne algorithm, was studied in the context of word combinatorics by Cassaigne, Labbé, and Leroy in [START_REF] Cassaigne | A set of sequences of complexity 2n + 1, Combinatorics on words[END_REF] where it was shown to be conjugate to Selmer's algorithm. Other properties of Selmer's algorithm have been studied in [AL18, BFK15, BFK19, Tor09, FS19, [START_REF] Schweiger | Invariant measure and exponent of convergence for Baldwin's algorithm GCFP, Österreich[END_REF][START_REF]Ergodic and Diophantine properties of algorithms of Selmer type[END_REF].

The first results on the second Lyapunov exponent of Selmer's algorithm A S in dimension d = 2 are due to Schweiger [START_REF] Schweiger | Invariant measure and exponent of convergence for Baldwin's algorithm GCFP, Österreich[END_REF][START_REF]Ergodic and Diophantine properties of algorithms of Selmer type[END_REF], who proved strong convergence (see Section 2 for a definition) almost everywhere. Nakaishi [START_REF]Strong convergence of additive multidimensional continued fraction algorithms[END_REF] strengthened this result by showing that the second Lyapunov exponent λ 2 (A S ) satisfies λ 2 (A S ) < 0. Negativity of λ 2 (A S ) was conjectured already by Baldwin [START_REF] Baldwin | A convergence exponent for multidimensional continued-fraction algorithms[END_REF], where Selmer's algorithm is called generalized mediant algorithm, GMA for short (see also [START_REF]A multidimensional continued fraction and some of its statistical properties[END_REF]; in particular, e λ 2 (A S ) is numerically calculated in [Bal92a, Table I on p. 1522]). Labbé [START_REF] Labbé | 3-dimensional continued fraction algorithms cheat sheets[END_REF] heuristically calculated the Lyapunov exponents for the Cassaigne and Selmer algorithms (for d = 2); it is actually the equality of these values that indicated the conjugacy of the algorithms. We mention that Bruin, Fokkink, and Kraaikamp [START_REF] Bruin | The convergence of the generalised Selmer algorithm[END_REF] give a thorough study of Selmer's This work was supported by the Agence Nationale de la Recherche through the project Codys (ANR-18-CE40-0007). The third author was supported by the projects FWF P27050 and FWF P29910 granted by the Austrian Science Fund and by project FWF/RSF I3466 granted by the Austrian Science Fund and the Russian Science Foundation. Part of this work has been done while the three authors were visiting the Erwin Schrödinger Institute in Vienna.

1 algorithm for dimensions d ≥ 2; however, their proof of the fact that λ 2 (A S ) < 0 is incomplete [START_REF]The convergence of the generalised Selmer algorithm[END_REF]. The simplicity of the Lyapunov spectrum of the Cassaigne algorithm is proved by Fougeron and Skripchenko [START_REF] Fougeron | Simplicity of spectrum for certain multidimensional continued fraction algorithms[END_REF]; see also [START_REF] Torres | Simplicity of the Lyapunov spectrum of multidimensional continued fraction algorithms[END_REF]. Heuristic calculations for the second Lyapunov exponent of other algorithms are also provided by Baladi and Nogueira [START_REF] Baladi | Lyapunov exponents for non-classical multidimensional continued fraction algorithms[END_REF]; see also [START_REF] Nakaishi | Exponentially strong convergence of multidimensional continued fraction algorithms[END_REF].

The proof of the negativity of the second Lyapunov exponent of Selmer's algorithm in dimension d = 2 provided by Nakaishi [START_REF]Strong convergence of additive multidimensional continued fraction algorithms[END_REF] is intricate. In the present paper we provide a simple proof for the fact that λ 2 (A S ) < 0 for d = 2 which is based on ideas going back to Lagarias [START_REF] Lagarias | The quality of the Diophantine approximations found by the Jacobi-Perron algorithm and related algorithms[END_REF] as well as Hardcastle and Khanin [START_REF] Hardcastle | The three-dimensional Gauss algorithm is strongly convergent almost everywhere[END_REF][START_REF]The d-dimensional Gauss transformation: strong convergence and Lyapunov exponents[END_REF]. Moreover, we show that the matrices associated with the two-dimensional Selmer algorithm are Pisot whenever they are primitive, and we give a strictly negative upper bound for λ 2 (A S ). For d = 3, using extensive computer calculations (which yield exact results due to an appropriate error handling) we are able to prove that the second Lyapunov exponent is negative as well. Again, we even provide a strictly negative upper bound for it. For higher dimensions we provide heuristic results. These results indicate that Selmer's algorithm is no longer strongly convergent for dimensions d ≥ 4.

Another aim of the present paper is to provide numerical calculations in order to obtain heuristic estimates for the second Lyapunov exponent of other well-known continued fraction algorithms. In particular, we consider the Brun algorithm, the Jacobi-Perron algorithm, the triangle map, and a new algorithm which is "in between" the Arnoux-Rauzy algorithm and Brun's algorithm. It is interesting to see that apart from the Arnoux-Rauzy algorithm, which is strongly convergent in each dimension d ≥ 2 (see [START_REF] Avila | Some monoids of Pisot matrices[END_REF]), all algorithms seem to be no longer strongly convergent for high dimensions. Since the Arnoux-Rauzy algorithm is defined only on a set of zero measure (the so-called Rauzy gasket, see [START_REF] Arnoux | The Rauzy gasket, Further developments in fractals and related fields[END_REF][START_REF] Avila | On the Hausdorff dimension of the Rauzy gasket[END_REF]), we are not aware of any multi-dimensional continued fraction algorithm such as defined in Section 2 which acts on a set of positive measure and is strongly convergent in all dimensions. It was widely expected that the uniform approximation exponent, when it can be expressed in terms of the first and second Lyapunov exponents of the algorithm A as 1 -λ 2 (A) λ 1 (A) (see [Lag93, Theorem 1]) would be larger than 1 (and strictly smaller than Dirichlet's bound 1 + 1 d ) for all d ≥ 2; see e.g. [START_REF] Lagarias | The quality of the Diophantine approximations found by the Jacobi-Perron algorithm and related algorithms[END_REF]. Our experimental studies indicate that this conjecture might not be true.

Let us sketch the contents of this paper. The formalism of multidimensional continued fraction algorithms considered in the present paper is recalled in Section 2 together with the conditions given by Lagarias [START_REF] Lagarias | The quality of the Diophantine approximations found by the Jacobi-Perron algorithm and related algorithms[END_REF]. The second Lyapunov exponent is discussed in Section 3. We deal with the connections with the Paley-Ursell inequality in Section 4. After that we consider the Selmer algorithm in Section 5, the Brun algorithm in Section 6, the Jacobi-Perron algorithm in Section 7, a new algorithm inspired by the Arnoux-Rauzy algorithm in Section 8, and the triangle map in Section 9. Comparisons between these algorithms are provided in Section 10. In the appendix we comment on the error handling needed for the floating point calculations used for the estimation of λ 2 (A S ) for d ∈ {2, 3}.

Multidimensional continued fraction algorithms

We first introduce the formalism of multidimensional continued fraction algorithms that will be used in the sequel. Observe that the algorithms we are dealing with in this paper mainly act on sets of vectors whose entries are ordered (the only exception being the Jacobi-Perron algorithm considered in Section 7). A d-dimensional algorithm acts on a subset of the real vector space R d for its renormalized version and on a subset of the real projective space P d for its homogeneous version. More precisely, for given d ≥ 2 let

Λ = {(y 0 , y 1 , . . . , y d ) ∈ R d+1 \ {0} : y 0 ≥ y 1 ≥ • • • ≥ y d ≥ 0}, ∆ = {(x 1 , . . . , x d ) ∈ R d : 1 ≥ x 1 ≥ • • • ≥ x d ≥ 0},
and the mappings

ι : ∆ → Λ, (x 1 , . . . , x d ) → (1, x 1 , . . . , x d ), κ : Λ → ∆, (y 0 , . . . , y d ) → y 1 y 0 , . . . , y d y 0 . (2.1)
Let the multidimensional continued fraction algorithm

A : ∆ → GL(d + 1, Z)
be defined in a way that the homogeneous version of the (ordered) multidimensional continued fraction algorithm (y = (y 0 , . . . , y d ))

L : Λ → Λ, y → yA(κ(y)) -1 = yA y 1 y 0 , . . . , y d y 0 -1
is well defined (i.e., L maps Λ into itself). The projective version of the (ordered) multidimensional continued fraction algorithm T is then defined by the commutative diagram

Λ L ---→ Λ   κ   κ ∆ T ---→ ∆
We work with row vectors in the definition of the mappings L and T because this entails that

A (n) (x) = A(T n-1 x) • • • A(T x) A(x)
is a linear cocycle which we shall call the cocycle associated with A (or just the cocycle A). Indeed, A (n) fulfills the cocycle property

(2.2) A (m+n) (x) = A (m) (T n x)A (n) (x).
This cocycle produces the d+1 sequences of rational convergents that are aimed to converge to x. Indeed, writing

(2.3)

A (n) (x) =       q (n) 0 p (n) 0,1 • • • p (n) 0,d q (n) 1 p (n) 1,1 • • • p (n) 1,d . . . . . . . . . . . . q (n) d p (n) d,1 • • • p (n) d,d       and p (n) i = (p (n) i,1 , . . . , p (n) 
i,d ), we consider the convergence of lim n→∞ p

(n) i /q (n) i to x, 0 ≤ i ≤ d. The convergence is said to be weak if lim n→∞ p (n) i /q (n) i = x for all i with 0 ≤ i ≤ d, and strong if lim n→∞ |p (n) i -q (n) i x| = 0 for all 0 ≤ i ≤ d.
Since we focus on the action of the matrices produced by the algorithm on the orthogonal space ι(x) ⊥ of ι(x), we use left-multiplication for the description of the linear action in order to simplify notation and to avoid the use of the transpose.

Throughout this paper we suppose that a multidimensional continued fraction algorithm satisfies the following conditions which go back to Lagarias [START_REF] Lagarias | The quality of the Diophantine approximations found by the Jacobi-Perron algorithm and related algorithms[END_REF]. Similar to [START_REF] Fougeron | Simplicity of spectrum for certain multidimensional continued fraction algorithms[END_REF] we just explain them briefly and refer to Lagarias' paper for details.

(H1) Ergodicity: The map T admits an ergodic invariant probability measure µ that is absolutely continuous with respect to Lebesgue measure on ∆. (H2) Covering Property: The map T is piecewise continuous with non-vanishing Jacobian almost everywhere. (H3) Semi-weak convergence: This is a mixing condition for T which implies weak convergence. If T admits a Markov partition it can be checked by making sure that the cylinders of the Markov partition decrease geometrically. For some examples this is worked out in [START_REF] Lagarias | The quality of the Diophantine approximations found by the Jacobi-Perron algorithm and related algorithms[END_REF]. See [START_REF] Fougeron | Simplicity of spectrum for certain multidimensional continued fraction algorithms[END_REF] for a sufficient condition expressed in terms of the existence of a special acceleration providing a simplex on which the induced algorithm is uniformly expanding. (H4) Boundedness: This is log-integrability of the cocycle A, i.e., finiteness of the expectation of log(max( A , 1). This is necessary in order to apply the Oseledets Theorem. (H5) Partial quotient mixing: This condition says that the expectation of the number n for which A (n) (x) becomes a strictly positive matrix is finite.

Throughout the paper the Lyapunov exponents of the cocycle A are denoted as

λ 1 (A) ≥ λ 2 (A) ≥ • • • ≥ λ d+1 (A).
Our motivation for studying the second Lyapunov exponent is due to the fact that it is related to the uniform approximation exponent, a quantity that estimates the rate of convergence of a continued fraction algorithm. We recall the definition of this object; see also [START_REF]Multidimensional continued fractions[END_REF]Definition 38] or [Lag93, Section 1].

Let A be a multidimensional continued fraction algorithm with cocycle A (n) given as in (2.3). For x ∈ ∆ and i ∈ {0, . . . , d} set (for an arbitrary norm

• in R d ) η * A (x, i) = sup δ > 0 : ∃ n 0 = n 0 (x, i, δ) ∈ N s. t. ∀ n ≥ n 0 , x - p (n) i q (n) i < (q (n) i ) -δ . Then η * A (x) = min 0≤i≤d η * A (x, i
) is called the uniform approximation exponent for x using the algorithm A.

The following result links the second Lyapunov exponent with the uniform approximation exponent; see [HK00, Theorem 1] for a variant of this result and [Bal92a, Proposition 4].

Proposition 2.1 ([Lag93, Theorem 4.1]). Let η * A be the uniform approximation exponent of a d-dimensional multidimensional continued fraction algorithm A satisfying conditions (H1) to (H5). We have λ 1 (A) > λ 2 (A) and

η * A (x) = 1 - λ 2 (A) λ 1 (A)
holds for almost all x ∈ ∆. In particular, if λ 2 (A) < 0 then A is a.e. strongly convergent.

We wish to show that λ 2 (A) < 0 for various classical multidimensional continued fraction algorithms A. To apply Proposition 2.1 we need to make sure that these algorithms satisfy conditions (H1) to (H5). As we will see in the subsequent sections, these conditions are known to hold for most of the algorithms we discuss (and will be treated for the remaining ones in a forthcoming paper).

The second Lyapunov exponent

The action of a continued fraction algorithm is given by a matrix A acting by leftmultiplication on some direction. To understand the quality of approximation, it is useful to work on the orthogonal of this direction. The action on the orthogonal is then given by the matrix A acting by right-multiplication. We are thus interested in the action of the matrix A and of the associated cocyle on a restricted hyperplane. By choosing a suitable basis of this hyperplane, the action of the algorithm is then described as a matrix that involves the usual differences that have the form q n x -p n in the one-dimensional case, where p n /q n are the convergents of x.

In order to give estimates of the second Lyapunov exponent of a multidimensional continued fraction algorithm we follow the ideas of Hardcastle and Khanin [START_REF] Hardcastle | The three-dimensional Gauss algorithm is strongly convergent almost everywhere[END_REF][START_REF]The d-dimensional Gauss transformation: strong convergence and Lyapunov exponents[END_REF] who built on the work of Lagarias [START_REF] Lagarias | The quality of the Diophantine approximations found by the Jacobi-Perron algorithm and related algorithms[END_REF].

Since T is ergodic by (H1), the Lyapunov exponents of A are the same for almost all x ∈ ∆ w.r.t. the invariant measure of T . Under the conditions of Proposition 2.1, the Oseledets Theorem gives, for generic x ∈ ∆,

lim n→∞ 1 n log A (n) (x) v ≤ λ 2 (A) if and only if v ∈ ι(x) ⊥ ,
where y ⊥ = {v ∈ R d+1 : yv = 0}; see [START_REF] Lagarias | The quality of the Diophantine approximations found by the Jacobi-Perron algorithm and related algorithms[END_REF]Theorem 4.1] for more details. Note that A (n) (x) ι(x) ⊥ = ι(T n x) ⊥ . Using the notation in (2.3), the matrix D (n) (x) defined by (3.1)

D (n) (x 1 , x 2 , . . . , x d ) =    p (n) 1,1 -q (n) 1 x 1 • • • p (n) 1,d -q (n) 1 x d . . . . . . . . . p (n) d,1 -q (n) d x 1 • • • p (n) d,d -q (n) d x d    is a cocycle of T [HK02, Proposition 4.1] satisfying λ 2 (A) = λ 1 (D) [HK02, Lemma 3.1].
For the sake of self-containedness, we prove the cocycle property here (see (2.2)) and the equality of the Lyapunov exponents in Remark 4.5 below. We have

(3.2) D (n) (x) = Π A (n) (x)H(x), with Π =      0 1 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . 1 0 0 • • • • • • 0 1      , H(x 1 , x 2 , . . . , x d ) =        -x 1 -x 2 • • • -x d 1 0 • • • 0 0 1 . . . . . . . . . . . . . . . 0 0 • • • 0 1       
.

and we also have that

(3.3) H(T n x) Π A (n) (x)H(x) = A (n) (x)H(x).
Indeed, the matrix I d+1 -H(T n x) Π is zero except for the first row, which is ι(T n x), and we have ι(T n x)A (n) (x)H(x) = ι(x)H(x) = 0. Using (3.2), (3.3), and (2.2) we obtain that

D (m) (T n x)D (n) (x) = Π A (m) (T n x)A (n) (x)H(x) = D (m+n) (x), thus D (n) (x) is a cocycle of T .
Therefore, it suffices to estimate the first Lyapunov exponent of the cocycle D (n) (x). This is convenient because it is usually easier to obtain estimates for the first Lyapunov exponent of a cocycle than for the second one. As observed by Hardcastle and Khanin [START_REF] Hardcastle | The three-dimensional Gauss algorithm is strongly convergent almost everywhere[END_REF][START_REF]The d-dimensional Gauss transformation: strong convergence and Lyapunov exponents[END_REF], the Subadditive Ergodic Theorem yields that

(3.4) λ 2 (A) = λ 1 (D) = inf n∈N 1 n ∆ log D (n) (x) dµ(x)
for any matrix norm, see [HK02, Lemma 3.3]. We note that the matrices D (n) (x) were first studied by Fujita, Ito, Keane, and Ohtsuki [START_REF] Fujita | On almost everywhere exponential convergence of the modified Jacobi-Perron algorithm: a corrected proof[END_REF][START_REF] Ito | Almost everywhere exponential convergence of the modified Jacobi-Perron algorithm[END_REF]. Observe also that strong convergence at a point x is equivalent to lim n→∞ D

(n) (x) = 0. Indeed, lim n→∞ D (n) (x) = 0 means that lim n→∞ |p (n) i,j -q (n) i x j | = 0 for i, j ≥ 1,

and we then use the orthogonality of the columns of

A (n) (x)H(x) to ι(T n x) to deduce that lim n→∞ |p (n) 0,j -q (n) 0 x j | = 0 for j ≥ 1.
There exist several methods for providing numerical estimates for the computation of the second Lyapunov exponent. The approach of [START_REF] Baladi | Lyapunov exponents for non-classical multidimensional continued fraction algorithms[END_REF], which is inspired by [START_REF] Johnson | Ergodic properties of linear dynamical systems[END_REF], is based on the decomposition of matrices as a product of a unitary matrix Q and an upper triangular matrix R. For low dimensions d, we can also evaluate the integrals in (3.4) symbolically (using polylogarithms) with a computer algebra software such as Mathematica or use estimates for the measure µ to show that λ 2 (A) < 0 for some continued fraction algorithms, in particular for the Selmer algorithm. Indeed, the densities of invariant measures have simple particular forms; see e.g. (5.1) below. For higher dimensions, these calculations take too much time and we can only make simulations of the behaviour of D (n) (x) for randomly chosen points x. According to these simulations, it seems that we have λ 2 (A) > 0 for all known continued fraction algorithms when d gets large, contrary to conjectures of e.g. [START_REF] Lagarias | The quality of the Diophantine approximations found by the Jacobi-Perron algorithm and related algorithms[END_REF][START_REF] Hardcastle | The three-dimensional Gauss algorithm is strongly convergent almost everywhere[END_REF].

On the Paley-Ursell inequality

We recall that the notation f n ≪ g n means that there exists C > 0 such that f n ≤ Cg n for all n. Let A be a multidimensional continued fraction algorithm and let D (n) be as in (3.1). For certain algorithms A we have (4.1)

D (n) (x) ≪ 1 uniformly for all x,
which is a form of the Paley-Ursell inequality, going back to Paley and Ursell [START_REF] Paley | Continued fractions in several dimensions[END_REF]. This inequality essentiall says that the second Lyapunov exponent of the algorithm is nonpositive. This inequality can be formulated in terms of an inequality for D (n) as in (4.1), or for the minors of size 2 of the matrices A (n) (see Proposition 4.1 below).

Recall that (4.1) means that |p

(n) i,j -q (n) i x j | ≪ 1 for all i, j ∈ {1, .
. . , d} uniformly in x. Thus the Paley-Ursell inequality is a statement on the quality of the approximation of a sequence of convergents. In this section we discuss the relations between different forms of the Paley-Ursell inequality. In particular, we show that (4.1) implies an inequality bounding the norm of the second exterior product of A (n) in terms of the norm of A (n) .

We will see in Section 5 that (4.1) holds for Selmer in dimension d = 2. It also holds for Brun in dimension d = 2 and for Arnoux-Rauzy for arbitrary dimension d ≥ 2 according to Avila and Delecroix [START_REF] Avila | Some monoids of Pisot matrices[END_REF] and Remark 4.4 below. The original version in [START_REF] Paley | Continued fractions in several dimensions[END_REF] is proved for Jacobi-Perron in dimension d = 2. In the form we state it below, it is contained in Broise and Guivarc'h [START_REF] Broise-Alamichel | h, Exposants caractéristiques de l'algorithme de Jacobi-Perron et de la transformation associée[END_REF].

Contrary to the results we discussed in the previous section, the results of this section are true for all x ∈ ∆ (except pathological cases when the algorithm terminates and is not defined). The price we have to pay for getting a result that is valid everywhere is that it is weaker than the metric results we expect to be true. Indeed, while Section 3 is tailored to be the starting point for proving that λ 2 (A) < 0 almost everywhere, inequality (4.1) implies that λ 2 (A) ≤ 0 everywhere. Moreover, (4.1) is true for each time n in an orbit and not only in the limit.

In the following proposition ∧ 2 denotes the second exterior product.

Proposition 4.1. Consider a multidimensional continued fraction algorithm satisfying conditions (H1) to (H5). If D (n) (x) ≪ 1 holds uniformly in x, then

(4.2) ∧ 2 A (n) (x) ≪ A (n) (x)
holds uniformly in x.

This result implies that A (n) (x) maps the unit sphere in R n to an ellipsoid whose second largest semi-axis δ 2 (A (n) (x)) is uniformly bounded in x ∈ ∆ and n ∈ N. Moreover, since the elements of ∧ 2 A (n) (x) are the 2 × 2 minors of A (n) (x) this inequality shows that the 2 × 2 minors of A (n) (x) cannot be much larger than its elements.

To prove this result we need the following preparatory lemma. We write δ i (M) for the i-th largest singular value of a k

× k matrix M (1 ≤ i ≤ k, k ∈ N).
Lemma 4.2. The inequality

δ 2 (A (n) (x)) ≪ δ 1 (D (n) (x))
holds uniformly for all x ∈ ∆.

Proof. Recall that D (n) (x) = ΠA (n) (x)H(x).
In order to estimate the singular values of D (n) (x), we map the unit ball S d-1 in R d step by step by the matrices H(x), A (n) (x), and Π, and keep track of the length of the semi-axes of the ellipsoids which are deformed. The ellipsoid H(x)S d-1 is a subset of the hyperplane ι(x) ⊥ whose semi-axes a

(1) i satisfy 1 ≪ a (1) i ≪ 1 (1 ≤ i ≤ d). By the definition of the singular values δ i (A (n) (x)) (1 ≤ i ≤ d + 1), this implies that the ellipse A (n) (x)H(x)S d-1 ⊂ ι(T n x) ⊥ has semi-axes a (2) i satisfying (4.3) a (2) i ≫ δ i+1 (A (n) (x)) (1 ≤ i ≤ d).
It remains to apply the projection Π. Since ι(T n x) = (1, y 1 , . . . , y d ) with

|y i | ≤ 1 (1 ≤ i ≤ d)
, the angle between the hyperplanes ι(T n x) ⊥ and (1, 0, . . . , 0) ⊥ of R d+1 is greater than c > 0 for some constant c not depending on n. Thus the projection Π shrinks each vector v ∈ ι(T n x) ⊥ by a factor which is greater than or equal to sin c. Thus, because A(x)H(x)S d-1 ⊂ ι(T n x) ⊥ we get from (4.3) that

δ 2 (A (n) (x)) ≪ δ 1 (ΠA (n) (x)H(x)) = δ 1 (D (n) (x)).
We can now finish the proof of Proposition 4.1.

Proof of Proposition 4.1. Suppose that D (n) (x) ≪ 1 holds. Lemma 4.2 implies that

∧ 2 A (n) (x) 2 = δ 1 (∧ 2 A (n) (x)) = δ 1 (A (n) (x))δ 2 (A (n) (x)) ≪ δ 1 (A (n) (x))δ 1 (D (n) (x)) = δ 1 (A (n) (x)) D (n) (x) 2 ≪ A (n) (x) 2 ,
where the implied constants do not depend on x and n. The estimate in (4.2) follows from this by the equivalence of norms.

We note that the converse of Proposition 4.2 is not true in general. In particular, to get the converse, assumptions on the sequence of matrices (A (n) (x)) n are needed in order to guarantee that all the quantities q (i) n (0 ≤ i ≤ d) are roughly of the same size for each n (as is true for instance for the Jacobi-Perron algorithm, see [BAG01, Section 5.2]); see also Proposition 4.3 below. More precisely, one says that the balancedness condition holds for the sequence (A (n) (x)) n if the (vector) norms of the lines of A (n) (x) are comparable (up to multiplicative constants) with the (matrix) norm of A (n) (x), with these constants being uniform in n.

Proposition 4.3. Assume that the balancedness condition hods for (A (n) (x)) n . Then

D (n) (x) A (n) (x) ≪ ∧ 2 A (n) (x) .
Proof. By definition, ι(x) is equal to ι(T n x)A (n) (x) divided by its first coordinate. In other words, for 1 ≤ i ≤ d,

x i = p (n) 0,i + p (n) 1,i x (n) 1 + • • • + p (n) d,i x (n) d q (n) 0 + q (n) 1 x (n) 1 + • • • + q (n) d x (n) d .
Hence, for all 1 ≤ i, j ≤ d, one has

x i - p (n) j,i q (n) j = p (n) 0,i q (n) j -q (n) 0 p (n) j,i + x (n) 1 (p (n) 1,i q (n) j -q (n) 1 p (n) j,i ) + • • • + x (n) d (p (n) d,i q (n) j -q (n) d p (n) j,i ) (q (n) 0 + q (n) 1 x (n) 1 + • • • + q (n) d x (n) d )q (n) j
, which implies together with the balancedness assumption that

D (n) (x) ≪ d ∧ 2 A (n) (x) (d + 1) A (n) .
Remark 4.4. A condition similar to (4.1) is used in Avila and Delecroix [START_REF] Avila | Some monoids of Pisot matrices[END_REF], namely

A (n) | ι(T n x) ⊥ ≪ 1
uniformly in x. This implies (4.1) and, hence, by Proposition 4.1 also (4.2) .

Remark 4.5. For a multidimensional continued fraction algorithm satisfying conditions (H1) to (H5), we recover the fact that λ 1 (D) = λ 2 (A) from Propositions 4.1 and 4.3, by using that the denominators q (n) i grow at the same exponential rate, as observed in [START_REF] Lagarias | The quality of the Diophantine approximations found by the Jacobi-Perron algorithm and related algorithms[END_REF].

Selmer algorithm

5.1. Definition. In its (ordered) homogeneous form, Selmer's algorithm is defined by subtracting the smallest element of a vector from the largest one and reordering the elements in the resulting vector; see Selmer [START_REF] Selmer | Continued fractions in several dimensions[END_REF] or Schweiger [Sch00, Chapter 7]. Formally,

T S : ∆ → ∆, T S (x 1 , . . . , x d ) = κ(ord(1 -x d , x 1 , x 2 , . . . , x d )),
where κ is defined in (2.1) and ord : R n → R n orders the entries of its argument descendingly. Let

A S (x) = S a if x ∈ ∆ Sa := {(x 1 , . . . , x d ) ∈ ∆ : 2x d > 1}, S b if x ∈ ∆ S b := {(x 1 , . . . , x d ) ∈ ∆ : 2x d < 1 ≤ x d-1 + x d },
with

S a =       0 1 0 • • • 0 . . . . . . . . . . . . . . . 0 • • • 0 1 0 1 0 • • • 0 1 1 0 • • • 0 0       , S b =       0 1 0 • • • 0 . . . . . . . . . . . . . . . 0 • • • 0 1 0 1 0 • • • 0 0 1 0 • • • 0 1       .
Since for almost all x ∈ ∆, we have T n S x ∈ ∆ Sa ∪ ∆ S b for all sufficiently large n (see [Sch00, Theorem 22]), it suffices to consider the absorbing set ∆ Sa ∪ ∆ S b . In all that follows, we do not care about the behaviour of T S on the boundary of ∆ Sa and ∆ S b because we are interested only in metric results. The invariant measure of T S is

(5.1) dµ S = c dx 1 x 1 dx 2 x 2 • • • dx d x d on ∆ Sa ∪ ∆ S b , with normalizing constant c such that µ S (∆ Sa ∪ ∆ S b ) = 1; see [Sch00, Theorem 22].
As shown in [Lag93, Section 6], Selmer's algorithm satisfies the assumptions of Proposition 2.1 (in particular, it satisfies the assumptions (H1) to (H5)).

Observe that a multiplicative version of Selmer's algorithm can also be considered; see e.g. [START_REF] Kops | Selmer's multiplicative algorithm[END_REF][START_REF]Ergodic and Diophantine properties of algorithms of Selmer type[END_REF]. This algorithm is not an acceleration of the additive version. Moreover, it does not behave well in terms of convergence; see [Sch04, Section 2]. 5.2. Second Lyapunov exponent, d = 2. As mentioned before, Nakaishi [START_REF]Strong convergence of additive multidimensional continued fraction algorithms[END_REF] gave an intricate proof of the fact that λ 2 (A S ) < 0 for d = 2; see also [START_REF] Schweiger | Invariant measure and exponent of convergence for Baldwin's algorithm GCFP, Österreich[END_REF]. We provide a very simple proof of this fact and, on top of this, we are able to bound λ 2 (A S ) away from 0. The following result should be compared to Labbé [START_REF] Labbé | 3-dimensional continued fraction algorithms cheat sheets[END_REF], who conjectures on the basis of computer experiments that -0.07072 is a good approximation to λ 2 (A S ) (and to Table 1, where we confirm this value by our computer estimates).

Theorem 5.1. For d = 2, the second Lyapunov exponent of the Selmer algorithm satisfies λ 2 (A S ) < -0.052435991.

In particular, for d = 2 the Selmer algorithm is a.e. strongly convergent.

Proof. We have

S 2 a =   1 0 1 1 1 0 0 1 0   , S a S b =   1 0 0 1 1 1 0 1 0   , S b S a =   1 0 1 0 1 0 1 1 0   , S 2 b =   1 0 0 0 1 0 1 1 1   ,
and the corresponding matrices D

(2)

S (x 1 , x 2 ) are 1 -x 1 -x 2 1 0 , 1 -x 1 1 -x 2 1 0 , 1 0 1 -x 1 -x 2 , 1 0 1 -x 1 1 -x 2 . Since x 1 + x 2 > 1 > x 1 > x 2 > 0, we have thus D (2) 
S (x) ∞ = 1 for all x ∈ ∆ Sa ∪ ∆ S b . This already implies that λ 1 (D S ) ≤ 0 by (3.4).

Moreover, this implies that

D (4) S (x) ∞ ≤ 1 for all x ∈ ∆ Sa ∪ ∆ S b . We have (S a S b ) 2 =   1 0 0 2 2 1 1 1 1   , thus D (4) S (x 1 , x 2 ) = 2 -2x 1 1 -2x 2 1 -x 1 1 -x 2 for (x 1 , x 2 ) ∈ ∆ S b ∩ T -1 S ∆ Sa ∩ T -2 S ∆ S b ∩ T -3
S ∆ Sa , i.e., (x 1 , x 2 ) in the triangle with corners (3/4, 1/2), (3/5, 2/5), (2/3, 1/3). We have thus

D (4) S (3/4 -ε, 1/2 -ε) ∞ = 3/4 + 2ε, hence, λ 1 (D S ) ≤ 1 4 ∆ log D (4) 
S (x) ∞ dµ S (x) < 0. To get better upper bounds for λ 1 (D S ), note that

A (n) S (x) = M ∈ {S a , S b } n for all x in the triangle (5.2) ∆ M = {x ∈ ∆ : ι(x) ∈ R ι(∆ Sa ∪ ∆ S b ) M}.
We have thus

(5.3) λ 1 (D S ) ≤ 1 n M ∈{Sa,S b } n µ S (∆ M ) max x∈∆ M log D (n) S (x) ∞
for all n ≥ 1. The measure of ∆ M can be calculated using dilogarithms; here we only need to bound it by

(5.4) µ S (∆ M ) ≥ 12 π 2 min x∈∆ M 1 x 1 x 2 Leb(∆ M ) ≥ 12 π 2 min x∈∆ M 1 x 1 min x∈∆ M 1 x 2 Leb(∆ M );
note that c = 12/π 2 in the definition of µ S for d = 2. Since log D

S (x) ∞ ≤ 0 for all x ∈ ∆ Sa ∪ ∆ S b , we obtain, by using (5.4) to estimate µ S (∆ M ) in (5.3) and taking even powers of matrices, that (5.5)

λ 1 (D S ) ≤ 6 π 2 n M ∈{Sa,S b } 2n min x∈∆ M 1 x 1 min x∈∆ M 1 x 2 Leb(∆ M ) max x∈∆ M log D (2n) S (x) ∞ .
As noted in [HK02, Lemma 4.5], the function

x → D (2n) S (x) ∞ is convex on ∆ M , hence, the maximum max x∈∆ M log D (2n) S (x)
∞ is attained in one of the corners of ∆ M . This makes (5.5) amenable for estimating λ 1 (D S ) with help of computer calculations. Indeed, taking n = 25 in (5.5) we gain λ 2 (A S ) = λ 1 (D S ) < -0.052435991. We refer to the appendix for details on how we handle the numerical issues of this computer calculation.

In view of Proposition 4.1 we can formulate a result that is true uniformly for all x ∈ ∆. Proposition 5.2. For the Selmer algorithm with d = 2 there exists C > 0 such that for all x and all i, j ∈ {1, . . . , d} we have |p

(n) i,j -q (n) i x j | ≤ C. Moreover, the inequality ∧ 2 A (n) (x) ≪ A (n) (x)
holds. Here the implied constant does not depend on x and n ∈ N.

Proof. In the proof of Theorem 5.1 we showed that D (2n) (x) ≤ 1. By submultiplicativity this implies that D (n) (x) ≪ 1 holds uniformly for all x ∈ ∆ and all n ∈ N. The result thus follows from Proposition 4.1.

Avila and Delecroix [START_REF] Avila | Some monoids of Pisot matrices[END_REF] proved that primitive Brun matrices for d = 2 and primitive Arnoux-Rauzy matrices with d ≥ 2 are Pisot, i.e., all eigenvalues except the Perron-Frobenius eigenvalue have absolute value less than 1. We prove the analogous result for Selmer with d = 2.

Theorem 5.3. Let d = 2 and M ∈ {S a , S b } n for some n ≥ 1. The following are equivalent.

(1) M is a primitive matrix.

(2) M is a Pisot matrix.

(

) M 2 ∈ {S a S b , S 2 b } n ∪ {S b S a , S 2 b } n . Proof. Let first M ∈ {S a , S b 3 
} n be a primitive matrix. By taking a suitable power of M if necessary, we may assume w.l.o.g. that M is a positive matrix. Let v ∈ Λ be the left eigenvalue of M corresponding to the Perron-Frobenius eigenvalue and set (v 1 , v 2 ) = κ(v). Then from (3.2) (cf. [HK02, Section 3]) we easily derive that, up to a change of basis, D (2n) (v 1 , v 2 ) is the restriction of M 2 to v ⊥ . We gain from the proof of Theorem 5.1 that (5.6)

D (2n) (x 1 , x 2 ) ∞ ≤ 1 for each (x 1 , x 2 ) ∈ ∆ M 2 .
Since • ∞ is a consistent matrix norm this implies that each eigenvalue of M, except its Perron-Frobenius eigenvalue, has modulus less than or equal to 1. Suppose that M and, hence, M 2 = (m i,j ) 0≤i,j≤2 has an eigenvalue of modulus 1. Then, by the compatibility of the norm, we have D (2n) (v 1 , v 2 ) ∞ = 1. By (3.1) we have (5.7)

D (2n) (x 1 , x 2 ) = m 1,1 -m 1,0 x 1 m 1,2 -m 1,0 x 2 m 2,1 -m 2,0 x 1 m 2,2 -m 2,0 x 2 for each (x 1 , x 2 ) ∈ ∆ M 2 .
Since M is positive, by the definition of ∆ M in (5.2) the point (v 1 , v 2 ) is contained in the interior of ∆ M 2 ; indeed, a positive matrix maps each (closed) positive cone into its interior. Let U ⊂ ∆ M 2 be a neighborhood of (v 1 , v 2 ). Since D (2n) (v 1 , v 2 ) ∞ = 1, we see from (5.7) and the definition of • ∞ (noting that the entries m i,0 of M 2 are nonzero for 1 ≤ i ≤ 2) that there is (x 1 , x 2 ) ∈ U with D (2n) (x 1 , x 2 ) ∞ > 1, a contradiction to (5.6). Thus, save for the Perron-Frobenius eigenvalue, each eigenvalue of M has modulus less than 1. Since M is regular, this entails that the characteristic polynomial of M is the minimal polynomial of a Pisot number, hence, M is a Pisot matrix. Conversely, it is well known that Pisot matrices are primitive (see e.g. [Fog02, Theorem 1.2.9]), i.e., we have (1) ⇔ (2).

If M 2 ∈ {S a S b , S 2 b } n , then the first line of M 2k equals (1, 0, 0) for all k ≥ 1, hence, M is not primitive (and 1 is an eigenvalue of M). Similarly, for each product of the matrices S b S a and S 2 b , the second line equals (0, 1, 0), hence

M is not primitive if M 2 ∈ {S b S a , S 2 b } n . Finally, when M 2 ∈ {S a S b , S 2 b } n ∪ {S b S a , S 2 b } n , then M 2 contains a product of the form S a S 2k
b S a for some k ≥ 0. Note that the diagonals of S 2 b , (S a S b ) 2 and (S b S a ) 2 are positive, hence multiplying a nonnegative matrix by one of these matrices does not decrease any of its elements. Therefore, we find that M 5 contains a factor that is at least as large as S 5 a , S 4 a S b , S 3 a S b S a or (S 2 a S b ) 2 , which are all positive matrices. This shows that M is primitive, thus (1) ⇔ (3). 5.3. Second Lyapunov exponent, d = 3. In this case the situation is more intricate than for d = 2. Firstly, S a has now a pair of complex eigenvalues outside the unit circle, hence, D (n) S (x) ≤ 1 cannot hold for all x ∈ ∆ Sa ∪ ∆ S b . Secondly, the conjectured value of λ 2 (A S ) is approximately -0.02283 (see Table 1) and therefore much closer to zero than in the case d = 2. Nevertheless, we are able to establish the following convergence result.

Theorem 5.4. For d = 3, the second Lyapunov exponent of the Selmer algorithm satisfies λ 2 (A S ) < -0.000436459.

In particular, for d = 3 the Selmer algorithm is a.e. strongly convergent.

Proof. In the same way as in the proof of Theorem 5.1 we derive the estimate

λ 2 (A S ) = λ 1 (D S ) ≤ 1 52 M ∈{Sa,S b } 52 µ S (∆ M ) max x∈∆ M log D (52) S (x) ∞ .
However, since max x∈∆ M log D (52) S (x) ∞ can be positive as well as negative we have to split this sum accordingly. In particular, we write

λ 1 (D S ) ≤ 1 52 µ S (∆ S 52 b ) max x∈∆ S 52 b log D (52) S (x) ∞ + + µ S (∆ M ) max x∈∆ M log D (52) S (x) ∞ + - µ S (∆ M ) max x∈∆ M log D (52) S (x) ∞ .
Here

+ ranges over all M ∈ {S a , S b } 52 \ {S 52 b } satisfying max x∈∆ M log D (52) S (x) ∞ ≥ 0 and -ranges over all M ∈ {S a , S b } 52 \ {S 52 b } satisfying max x∈∆ M log D (52) S (x) ∞ < 0. The summand corresponding to M = S 52
b has to be treated separately because the density of µ S is not bounded in ∆ S 52 b . We now use the estimates

c min x∈∆ M 1 x 1 min x∈∆ M 1 x 2 Leb(∆ M ) ≤ µ S (∆ M ) ≤ c max x∈∆ M 1 x 1 max x∈∆ M 1 x 2 Leb(∆ M ),
where, in view of (5.1), we have

c = ∆ Sa ∪∆ S b dx 1 dx 2 dx 3 x 1 x 2 x 3 -1 = 8 ζ(3)
, with ζ(s) being the Riemann zeta function. We therefore arrive at

λ 1 (D S ) ≤ 1 52 µ S (∆ S 52 b ) max x∈∆ S 52 b log D (52) S (x) ∞ + 8 ζ(3) + max x∈∆ M 1 x 1 max x∈∆ M 1 x 2 Leb(∆ M ) max x∈∆ M log D (52) S (x) ∞ + 8 ζ(3) - min x∈∆ M 1 x 1 min x∈∆ M 1 x 2 Leb(∆ M ) max x∈∆ M log D (52) S (x) ∞ .
(5.8)

The right hand side of (5.8) can be bounded from above by -0.000436459 using extensive computer calculations. This yields the result. Details on the computer calculations are given in the appendix; we note already here that -0.000436459 is really an upper bound for λ 2 (A S ) because our programs are provided with an appropriate handling of the occurring floating point errors.

Note that D

(n) S (x) is not bounded by 1. Also, there is no reason for (4.1) and a Paley-Ursell inequality to hold, although the algorithm A S satisfies λ 2 (A S ) < 0. 

S (x) =       0 1 0 • • • 0 . . . . . . . . . . . . . . . 0 • • • 0 1 0 -x 1 -x 2 • • • -x d-1 1 -x d -x 1 -x 2 • • • -x d-1 -x d       if x ∈ ∆ Sa ,
and the last two lines are exchanged for x ∈ ∆ S b . (In dimension d = 2, we have

D (1) S (x) = -x 1 1 -x 2 -x 1 -x 2 if x ∈ ∆ Sa , D (1) S (x) = -x 1 -x 2 -x 1 1 -x 2 if x ∈ ∆ S b .) Evaluat- ing 1 n log A (n) S (x) and 1 n log D (n)
S (x) for randomly chosen points x and n = 2 30 gives the estimates listed in Table 1 for λ 1 (A S ) and λ 1 (D S ) = λ 2 (A S ) (without guaranteed accuracy; compare [START_REF] Labbé | 3-dimensional continued fraction algorithms cheat sheets[END_REF] for the value in the case d = 2). See the end of the Appendix for details on the computation. 

d λ 2 (A S ) 1 -λ 2 (A S ) λ 1 (A S ) 2 -0.
C a =   1 0 0 1 0 1 0 1 0   , C b =   0 1 0 1 0 1 0 0 1   , set ∆ ′ = {(x 0 , x 1 , x 2 ) ∈ R 3 + : x 0 + x 1 + x 2 = 1}, and 
A C : ∆ ′ → GL(3, Z), x → C a if x ∈ ∆ ′ Ca = {(x 0 , x 1 , x 2 ) ∈ ∆ ′ : x 0 > x 2 }, C b if x ∈ ∆ ′ C b = {(x 0 , x 1 , x 2 ) ∈ ∆ ′ : x 0 < x 2 }. Then the Cassaigne map is T : ∆ ′ → ∆ ′ defined by T C (x) = x A C (x) -1 x A C (x) -1 1 .
From [CLL17, Section 5], we know that the Cassaigne algorithm is conjugate to the semisorted Selmer algorithm (defined e.g. in [CLL17, Section 4]) on the absorbing set, which differs from the sorted version of the Selmer algorithm defined in Section 5.1 only by the order of the elements. Therefore, all these algorithms have the same Lyapunov spectrum.

Brun and modified Jacobi-Perron algorithms

For the homogeneous version of the Brun algorithm [Bru19, Bru20, Bru58], the second largest element of a vector is subtracted from the largest one and the resulting vector is ordered descendingly, i.e., for its projective version we have

T B : ∆ → ∆, T B (x 1 , . . . , x d ) = κ(ord(1 -x 1 , x 1 , x 2 , . . . , x d ))
with κ as in (2.1). To get the associated matrix valued function A B , we define 

B 0 =         1 0 • • • • • • 0 1 1 . . . . . . 0 0 . . . . . . . . . . . . . . . . . . 1 0 0 0 • • • 0 1         , B k =             1 1 0 • • • • • • • • • • • • 0 0 0 1 . . . . . . k-
0 0 • • • • • • • • • • • • 0 1             , 1 ≤ k ≤ d.
Setting x 0 = 1, x d+1 = 0, and

∆ B k = {(x 1 , . . . , x d ) ∈ ∆ : x k+1 < 1 -x 1 < x k } (0 ≤ k ≤ d) we have A B (x) = B k if x ∈ ∆ B k (0 ≤ k ≤ d).
In view of [Lag93, Section 6], Brun's algorithm satisfies the assumptions of Proposition 2.1 (in particular, it satisfies the assumptions (H1) to (H5)). Evaluating 1 n log A

(n) B (x) and

1 n log D (n)
B (x) for randomly chosen points x and n = 2 30 gives the estimates listed in Table 2 for λ 1 (D B ) = λ 2 (A B ) and for the uniform approximation exponent. The modified Jacobi-Perron algorithm (or d-dimensional Gauss algorithm), which goes back to Podsypanin [START_REF] Podsypanin | A generalization of the continued fraction algorithm that is related to the Viggo Brun algorithm[END_REF], is an accelerated version of the Brun algorithm, defined by the jump transformation x → T n B (x) with the minimal n ≥ 1 such that T n-1 B (x) / ∈ ∆ B 0 ; see [Sch00, Section 6.2]. Its second Lyapunov exponent is thus negative if and only if λ 2 (A B ) < 0. In particular, the conjecture of [START_REF] Hardcastle | The three-dimensional Gauss algorithm is strongly convergent almost everywhere[END_REF] that the second Lyapunov exponent is negative for all d ≥ 2 seems to be wrong in view of Table 2. We mention that for d = 2 negativity of λ 2 (A B ) is proved in [START_REF] Ito | Almost everywhere exponential convergence of the modified Jacobi-Perron algorithm[END_REF][START_REF] Fujita | On almost everywhere exponential convergence of the modified Jacobi-Perron algorithm: a corrected proof[END_REF] by heavy use of computer calculation. Later, Meester [START_REF] Meester | A simple proof of the exponential convergence of the modified Jacobi-Perron algorithm[END_REF] found a more elegant proof by deriving a Paley-Ursell type inequality for this setting and adapting Schweiger's argument from [Sch00, Chapter 16]. Avila and Delecroix [START_REF] Avila | Some monoids of Pisot matrices[END_REF] gave a simple proof by showing that the ∞-norm of the restriction of A (n) B (x) to ι(x) ⊥ is bounded by 1; see Remark 4.4. Schratzberger [START_REF] Schratzberger | The quality of approximation of Brun's algorithm in three dimensions[END_REF] gave a proof of the strong convergence of Brun algorithm in dimension d = 3. Hardcastle [START_REF] Hardcastle | The three-dimensional Gauss algorithm is strongly convergent almost everywhere[END_REF] even shows that λ 2 (A B ) < 0 holds for d = 3. The dependence of the entropy of the Brun algorithm with respect to the dimension is studied in [START_REF] Berthé | The Brun gcd algorithm in high dimensions is almost always subtractive[END_REF].

d λ 2 (A B ) 1 -λ 2 (A B ) λ 1 (A B ) d λ 2 (A B ) 1 -λ 2 (A B ) λ 1 (A B ) 2 -0.

Jacobi-Perron algorithm

We now consider the Jacobi-Perron algorithm; see [Sch00, Chapter 4 and 16], earlier references are [START_REF] Bernstein | The Jacobi-Perron algorithm-Its theory and application[END_REF][START_REF] Schweiger | The metrical theory of Jacobi-Perron algorithm[END_REF]. A projective version of this algorithm is given by

T J : [0, 1] d → [0, 1] d , (x 1 , x 2 , . . . , x d ) → x 2 x 1 - x 2 x 1 , . . . , x d x 1 - x d x 1 , 1 x 1 - 1 x 1 .
Its matrix version is therefore

(x 0 , x 1 , . . . , x d ) → x 1 , x 2 - x 2 x 1 x 1 , . . . , x d - x d x 1 x 1 , x 0 - x 0 x 1 x 1 ,
and we have

A J (x 1 , . . . , x d ) =        ⌊ 1 x 1 ⌋ 1 ⌊ x 2 x 1 ⌋ • • • ⌊ x d-1 x d ⌋ 0 0 1 0 0 . . . . . . . . . . . . 0 0 . . . . . . 1 1 0 • • • • • • 0       
. This is a multiplicative algorithm in the sense that divisions are performed instead of subtractions, hence the coordinates are multiplied by arbitrarily large integers, and there are infinitely many different matrices A J (x). It is proved in [Lag93, Section 5] that the Jacobi-Perron algorithm satisfies the assumptions of Proposition 2.1 (in particular, it satisfies the assumptions (H1) to (H5)). The Jacobi-Perron algorithm is not ordered, thus it is defined in the whole unit cube.

It is known that the second Lyapunov exponent of the Jacobi-Perron algorithm is negative for d = 2. A proof of this fact, based on an old result by Paley and Ursell [START_REF] Paley | Continued fractions in several dimensions[END_REF], is given in Schweiger [Sch00, Chapter 16]. Table 3 contains numerical estimates for the Lyapunov exponents of the Jacobi-Perron algorithm for low dimensions. This table indicates that, like for the Brun algorithm, the second Lyapunov exponent of the Jacobi-Perron algorithm is negative for all d ≤ 9 and positive for all d ≥ 10. This gives evidence that [Lag93, Conjecture 1.2] does not hold. From [AD15], we know that the second Lyapunov exponent of the Arnoux-Rauzy algorithm is negative for all d ≥ 2, but this algorithm is only defined on a set of Lebesgue measure zero. We propose an algorithm that is in some sense between Arnoux-Rauzy and Brun: We subtract as many of the subsequent elements of a given vector from the first one (which is also the largest one) as possible. (In the Arnoux-Rauzy algorithm, we always subtract all but the largest element from the largest one.) The matrix version of this algorithm is (with

d λ 2 (A J ) 1 -λ 2 (A J ) λ 1 (A J ) d λ 2 (A J ) 1 -λ 2 (A J ) λ 1 (A J ) 2 -0
x d+1 = x 0 ) (x 0 , x 1 , . . . , x d ) → ord x 0 - k j=1 x j , x 1 , . . . , x d if k j=1 x j < x 0 < k+1 j=1 x j (1 ≤ k ≤ d).
Denote by ∆ I k,ℓ , 1 ≤ k < d, k ≤ ℓ ≤ d, the set of (x 1 , . . . , x d ) ∈ ∆ with k j=1 x j < 1 < k+1 j=1 x j and x ℓ > 1 -k j=1 x j > x ℓ+1 (where x d+1 = 0), and denote by ∆ I d,ℓ , 0 ≤ ℓ ≤ d, the set of (x 1 , . . . , x d ) ∈ ∆ with d j=1 x j < 1 and x ℓ > 1 -d j=1 x j > x ℓ+1 (where x 0 = 1, x d+1 = 0). Then we have 

A I (x) = I k,ℓ if x ∈ ∆ I k,ℓ , with I k,ℓ =                 1 1 0 • • • • • • • • • • • • • • • • • • 0 k . . .
0 0 • • • • • • • • • • • • • • • • • • 0 1                 if 1 ≤ k ≤ ℓ ≤ d, I d,ℓ =           1 1 0 • • • • • • • • • 0 ℓ . . .
1 0 • • • • • • • • • 0 1           if 0 ≤ ℓ ≤ d.
The Arnoux-Rauzy algorithm is the special case where T n x ∈ ∆ I d,ℓ , 0 ≤ ℓ ≤ d, for all n ≥ 0. It seems that the second Lyapunov exponent of our intermediate algorithm is negative for all d ≤ 10 and positive for all d ≥ 11. The according heuristic estimates are listed in Table 4. [START_REF] Fougeron | Simplicity of spectrum for certain multidimensional continued fraction algorithms[END_REF] one can show that the assumptions of Proposition 2.1 hold also for this algorithm. This will imply that negativity of the second Lyapunov exponent is a sufficient condition for strong convergence also for this algorithm. We will come back to this in a forthcoming paper. 9. Garrity's triangle algorithm A similar algorithm to the one in Section 8 was proposed by Garrity [START_REF] Garrity | On periodic sequences for algebraic numbers[END_REF], called the triangle algorithm (or simplex algorithm for d ≥ 3), with the difference that the smallest coefficient is subtracted as many times as possible from the largest one when all other coefficients have already been subtracted. Similarly as in the case of Selmer's algorithm (see [Sch04, Section 2]), convergence properties are altered by taking divisions instead of subtractions. This will be seen on the second Lyapunov exponent below. Observe that this cannot be considered as a real acceleration (as in the regular continued fraction case, or as in the Brun or in the Jacobi-Perron cases), since taking divisions instead of subtractions yields a completely different algorithm (similarly to the Selmer case).
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The matrix version of this algorithm is thus

(x 0 , x 1 , . . . , x d ) →            ord x 0 -k j=1 x j , x 1 , . . . , x d if k j=1 x j < x 0 < k+1 j=1 x j , 1 ≤ k ≤ d -2, x 1 , . . . , x d , x 0 -d-1 j=1 x j -ℓx d if d-1 j=1 x j + ℓx d < x 0 < d-1 j=1 (ℓ + 1)x d , ℓ ≥ 0. We have A I (x) = G k,ℓ if x ∈ ∆ G k,ℓ , with G k,ℓ = I k,ℓ and ∆ G k,ℓ = ∆ I k,ℓ for 1 ≤ k ≤ d -2, ℓ ≤ k ≤ d, G d-1,ℓ =         1 1 0 • • • 0 . . . 0 . . . . . . . . . 1 . . . . . . 1 0 ℓ . . . . . . 1 1 0 • • • • • • 0         for ℓ ≥ 0, ∆ G d-1,ℓ = (x 1 , . . . , x d ) ∈ ∆ : d-1 j=1 x j + ℓx d < 1 < d-1 j=1 (ℓ + 1)x d .
Here we have the curious situation that the second Lyapunov exponent seems to be negative if and only if 7 ≤ d ≤ 10. The according heuristic estimates are listed in Table 5. Again using methods from [START_REF] Messaoudi | Ergodic properties of triangle partitions[END_REF] and [START_REF] Fougeron | Simplicity of spectrum for certain multidimensional continued fraction algorithms[END_REF] one can show that the assumptions of Proposition 2.1 hold also for this algorithm in any dimension (although this is a bit more involved in this case because the algorithm is multiplicative). The case d = 2 is handled in [START_REF] Fougeron | Simplicity of spectrum for certain multidimensional continued fraction algorithms[END_REF], and the general case will be addressed in a forthcoming paper. 

d λ 2 (A G ) 1 -λ 2 (A G ) λ 1 (A G ) d λ 2 (A G ) 1 -λ 2 (A G ) λ 1 (A G ) 2 

Appendix: Comments on the floating point calculations

In this appendix we discuss the computational issues of the calculations leading to the estimate of the Lyapunov exponent λ 2 (A S ) for the Selmer algorithm in Theorem 5.1 (d = 2) and Theorem 5.4 (d = 3). As these calculations are extensive we had to execute them using a GPU. All calculations were performed on an Apple MacBook Pro 2019 with an Intel Iris Plus Graphics 655 1536 MB card using the XCode environment. The language we used is Objective C, where the code executed on the GPU is implemented in Apple's Metal language.

We start with Selmer's algorithm for d = 3; the easier case d = 2 will be treated after that. In order to estimate the second Lyapunov exponent λ 2 (A S ) of the Selmer algorithm, d = 3, we use inequality (5.8). Since x → log D 52 S (x) ∞ is convex (cf. [HK02, Lemma 4.5]), for each M ∈ {S a , S b } 52 it is sufficient to compare the values at the vertices of ∆ M to compute the maximum over ∆ M in (5.8).

We first deal with the case M ∈ {S a , S b } 52 \ {S 52 b }, i.e., with the sums + and - of (5.8). For each of the summands it is possible to calculate the rational numbers D 52 S (x) ∞ for all x being a vertex of ∆ M with M ∈ {S a , S b } 52 \ {S 52 b } by using integer arithmetics and treating the denominator and the numerator separately. Also Leb(∆ M ), max x 2 Leb(∆ M ), respectively, we are forced to switch to floating point arithmetics. The software we use, namely Metal and Objective C, complies with the IEEE 754 standard for floating point arithmetics.1 For relevant facts on floating point arithmetics and details on this IEEE standard, we refer e.g. to [START_REF] Goldberg | What every computer scientist should know about floating-point arithmetic[END_REF]; the language specification of Metal is laid out in [START_REF]Metal shading language specification[END_REF].

Using floating point arithmetics entails rounding errors. Because we want an exact upper bound in the estimate of λ 2 (A S ) provided in Theorem 5.4 we need to make sure that the error we produce by using floating point arithmetics yields a result which is not smaller than the exact result would be. To guarantee this, after each floating point operation we use the function2 float nextafterf( float x, float y ).

Setting y=INFINITY and y=-INFINITY this function returns the smallest floating point number which is greater than x and the largest floating point number which is smaller than x, respectively. Using this function makes the estimate for λ 2 (A S ) in Theorem 5.4 exact (at the price that the modulus of the upper bound we gain is about 0.5% to 1% larger than it would be without applying this function). Our calculations yield x 1 x 2 x 3 ≤ 0.004776713 follows if one evaluates the integral using polylogarithms (which we did with the help of Mathematica). Since it is easy to see that max Inserting this in (5.5) yields the estimate stated in Theorem 5.1.

+ max x∈∆ M 1 x 1 max x∈∆ M 1 x 2 Leb(∆ M ) max
For the other dimensions and algorithms, we do not calculate upper bounds for the second Lyapunov exponent. Instead, we get heuristics for λ 2 (A) by calculating D (n) (x) for n = 2 30 and ten randomly chosen points x ∈ ∆, using a C program with double precision floating point arithmetic. In order for the matrices not to become too small or too large, we renormalize after each k = 2 10 steps by dividing by the top left coefficient of the matrix. This means that we calculate iteratively 

D (jk) 1,1 (x) 
.

5. 4 .

 4 Second Lyapunov exponent, d ≥ 4. Recall that, for arbitrary dimension d, the cocyle D

x∈∆ M 1 x 1 x 2 x 1 max x∈∆ M 1 x 2

 11212 max x∈∆ M 1 x 2 , and min x∈∆ M 1 x 1 min x∈∆ M 1 Leb(∆ M ) can be calculated using integer arithmetics. Thus these calculations are exact. When taking the logarithm and multiplying it by max x∈∆ M 1 Leb(∆ M ) and min x∈∆ M 1 x 1 min x∈∆ M 1

S

  (x) ∞ ≤ -0.004845689, (10.1) where + and -are defined as in (5.8).The summand in (5.8) corresponding to M = S 52 b has to be treated separately as follows. First note that the estimateµ S (∆ S 52 b ) = 8 ζ(3) ∆ S 52 b dx 1 dx 2 dx 3

SS

  (x) ∞ ≤ 0.009553426. Inserting (10.1) and (10.2) in (5.8) we end up with λ 2 (A S ) ≤ -0.000436459, which is the upper bound for λ 2 (A S ) stated in Theorem 5.4. To treat the case d = 2 our starting point is (5.5) with n = 25. Since we always have max x∈∆ M log D (2n) S (x) ∞ ≤ 0 the whole sum in (5.5) is of the type -and, hence, also the contribution of ∆ S 2n b does not need to be treated separately. By the same strategy as the one outlined for d = 3 we gain the estimate M ∈{Sa,S b } 2n min (x) ∞ ≤ -2.06343104875.

D

  (jk) (x), for 0 ≤ j < n/k, where D (ℓ) 1,1 (x) denotes the top left coefficient of the matrix D (ℓ) (x). Keeping track of the normalisation factors, we have log D(n) (x) = log D (n) (x)

Table 1 .

 1 Heuristically estimated values for the second Lyapunov exponent and the uniform approximation exponent of the Selmer Algorithm 5.5. Cassaigne algorithm. In 2015, Cassaigne defined an (unordered) continued fraction algorithm that was first studied in[START_REF] Cassaigne | A set of sequences of complexity 2n + 1, Combinatorics on words[END_REF][START_REF] Arnoux | On some symmetric multidimensional continued fraction algorithms[END_REF] where it was shown to be conjugate to Selmer's algorithm. The motivation for defining this new algorithm came from word combinatorics. Define the two matrices

	07072	1.3871
	3 -0.02283	1.1444
	4 +0.00176	0.9866
	5 +0.01594	0.8577

Table 2 .

 2 Heuristically estimated values for the second Lyapunov exponent and the uniform approximation exponent of the Brun Algorithm

	11216	1.3683	7 -0.01210	1.0493
	3 -0.07189	1.2203	8 -0.00647	1.0283
	4 -0.04651	1.1504	9 -0.00218	1.0102
	5 -0.03051	1.1065	10 +0.00115	0.9943
	6 -0.01974	1.0746	11 +0.00381	0.9799

Table 3 .

 3 Heuristically estimated values for the second Lyapunov exponent and the uniform approximation exponent of the Jacobi-Perron Algorithm8. An intermediate algorithm between Arnoux-Rauzy and Brun

	.44841	1.3735	7 -0.02819	1.0243
	3 -0.22788	1.1922	8 -0.01470	1.0127
	4 -0.13062	1.1114	9 -0.00505	1.0044
	5 -0.07880	1.0676	10 +0.00217	0.9981
	6 -0.04798	1.0413	11 +0.00776	0.9933

Table 4 .

 4 Heuristically estimated values for the second Lyapunov exponent and the uniform approximation exponent of the intermediate algorithm Using methods from Messaoudi, Nogueira, and Schweiger [MNS09] as well as from Fougeron and Skripchenko

	13648	1.3606	7 -0.02033	1.0729
	3 -0.10803	1.2430	8 -0.01175	1.0468
	4 -0.07540	1.1817	9 -0.00563	1.0246
	5 -0.05035	1.1388	10 -0.00114	1.0054
	6 -0.03263	1.1034	11 +0.00224	0.9886

Table 5 .

 5 Heuristically estimated values for the second Lyapunov exponent and the uniform approximation exponent of Garrity's simplex algorithm10. Heuristical comparison between the algorithmsWe conclude with a table that allows to compare the (heuristically estimated) uniform approximation exponents of the algorithms considered in this paper. In this table we also indicate Dirichlet's bound 1 + 1/d.

	+0.34434	0.6859	7 -0.00644	1.0225
	3 +0.37673	0.5798	8 -0.00768	1.0304
	4 +0.25232	0.6286	9 -0.00435	1.0189
	5 +0.10677	0.7778	10 -0.00074	1.0035
	6 +0.01859	0.9468	11 +0.00237	0.9880
	d Selmer Brun Jacobi-Perron Intermediate Garrity 1 + 1/d
	2 1.3871 1.3683	1.3735	1.3606	0.6859 1.5
	3 1.1444 1.2203	1.1922	1.2430	0.5798 1.3333
	4 0.9866 1.1504	1.1114	1.1817	0.6286 1.25
	5 0.8577 1.1065	1.0676	1.1388	0.7778 1.2
	6 0.7442 1.0746	1.0413	1.1034	0.9468 1.1667
	7 0.6437 1.0493	1.0243	1.0729	1.0225 1.1429
	8 0.5561 1.0283	1.0127	1.0468	1.0304 1.125
	9 0.4810 1.0102	1.0044	1.0246	1.0189 1.1111
	10 0.4173 0.9943	0.9981	1.0054	1.0035 1.1
	11 0.3636 0.9799	0.9933	0.9886	0.9880 1.0909

Table 6 .

 6 Synopsis of the uniform approximation exponents 1 -λ 2 (A)

	λ 1 (A)

In Metal, float is the most precise data type for floating point calculations. For the part of the code written in Objective C we use the data type long double to gain higher precision.

See for instance https://en.cppreference.com/w/c/numeric/math/nextafter for a documentation of this function as well as its sibling long double nextafterl( long double x, long double y ).
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