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Abstract. In this paper, we propose a complete framework for the au-
tomatic detection and quantification of abnormal heart motion patterns
using Statistical Atlases of Motion built from healthy populations. The
method is illustrated on CRT patients with identified cardiac dyssyn-
chrony and abnormal septal motion on 2D ultrasound (US) sequences.
The use of the 2D US modality guarantees that the temporal resolution of
the image sequences is high enough to work under a small displacements
hypothesis. Under this assumption, the computed displacement fields
can be directly considered as cardiac velocities. Comparison of subjects
acquired with different spatiotemporal resolutions implies the reorienta-
tion and temporal normalization of velocity fields in a common space of
coordinates. Statistics are then performed on the reoriented vector fields.
Results show the ability of the method to correctly detect abnormal mo-
tion patterns and quantify their distance to normality. The use of local
p-values for quantifying abnormal motion patterns is believed to be a
promising strategy for computing new markers of cardiac dyssynchrony
for better characterizing CRT candidates.

1 Introduction

Cardiac Resynchronization Therapy (CRT) has been shown to efficiently restore
the coordination and relaxation among cardiac chambers, leading to better sur-
vival in patients with advanced heart failure and evidence of ventricular conduc-
tion delays [1]. The main clinical challenge for CRT is currently the understanding
of physiological mechanisms involved behind positive or negative response. Re-
cently, a promising way of finding non-responders for CRT was presented in [2],
who proposed a classification of patients into classes of dyssynchrony patterns, and
evaluated the response of each of these groups. This analysis attempts to relate the
patient to a population with a known electrical or mechanical dyssynchrony de-
fect that is expected to be effectively corrected by CRT. In this perspective, the
computation of distances from a new subject to well identified groups of patients
is a novel strategy for improving CRT response rate.

Recent research in computational anatomy has lead to the design and evalua-
tion of statistical tools that synthesize the average anatomy within a population



as well as the statistical deviation from this average. Recent works used non-rigid
registration techniques to build Statistical Atlases of Motion of the heart from
magnetic resonance image sequences [3], in which the displacement fields reflect
the movement of anatomical structures. The use of 4D transformation models
was presented in [4] for motion tracking over sequences of images. Registration
is performed between frames at time points ¢; and tg (i # 0). Such a strategy
can provide large displacements, which in an atlas perspective would require to
perform statistics on the tangent space of diffeomorphisms, using the methods
described in [5]. In addition, representing the motion in reference to the first
frame does not take advantage of the strong correlation between consecutive
frames, and introduces a lot of redundancy between time steps for statistical
computations.

A diffeomorphic registration scheme using paths between pairs of consecutive
frames was recently presented in [6] for the synchronization of 4D time-series
of cardiac images, and allows spatially consistent comparison of the suppos-
edly temporally aligned sequences. One drawback of this technique is the fact
that the computed transformations are only available at the discrete timepoints
where the frames of the sequences are defined. Combining pairwise matching
terms with the computation of diffeomorphic paths [7] allows to follow the evo-
lution of a shape over a 2D+t sequence, and therefore to track the anatomy
over the continuous timescale. However, this method still needs spatio-temporal
synchronization steps to apply it for atlas construction from various sequences,
and needs to prove its feasability when applied to real ultrasound (US) data.

In this paper we propose a complete and flexible pipeline for the construc-
tion of atlases of motion from sequences of US images, and illustrate its use
for clinically-oriented quantitative comparison. We take advantage of registra-
tion between pairs of consecutive frames to work under a small displacements
hypothesis. Our strategy is motivated by the fact that low correlation exists
between time-distant frames for the US modality, and by the good temporal
resolution of the 2D US modality. While existing atlases of motion are based
on displacement fields, we prefer velocities, directly related to cardiac function.
Working with small displacements allows easier definition of velocities over the
whole continuous timescale, and direct computation of classical statistics on
these velocities, once they have been brought to the same spatio-temporal sys-
tem of coordinates. The structure provided by the atlas is then used for chosen
pathology comparison to a healthy population, in the context of looking for CRT
responders. We apply the method to the characterization of one mechanism re-
lated to Left Ventricle (LV) dyssynchrony, namely Septal Flash (SF), a quick
inward/outward movement of the septum with respect to the LV, which occurs
during the electrical activation of the heart chambers. We chose to work with
2D+t US modality as it is the only one used in clinical practice with sufficient
temporal resolution to accurately identify fast septal motion patterns. However,
the concepts developed in this paper could readily be applied to 3D+t once
the required temporal resolution is accessible in standard clinical acquisition
protocols.



2 Computation of Cardiac Velocities

2.1 Intra-sequence Registration

In the following we will denote S = {S(t1),...,5(t), ..., S(¢tn)} the temporal
series of 2D images for one given patient,which contains N images taken at
time-points ¢;. To track the anatomy along cardiac cycles, pairwise registration
between consecutive frames provides an optimal sequence of transformations
Pti it - @ — ' for each series, which map any point of image S(t;,x) to its
corresponding point in the following frame S(t;y1,«’). Our non-rigid registra-
tion uses the Free-Form Deformation (FFD) method [8], which is made multi-
resolution to improve its robustness to the position and spacing of control points.
We used spacings of successively 26, 13 and 6.5 mm, and mutual information as
matching term.

2.2 Small Displacements Hypothesis and Definition of Velocities

If the displacements are small, the logarithm [5] of a transformation log (¢4, ¢, )
can be approximated at the first order by its corresponding displacement field
@t:,t,., — Id. Velocities are directly obtained at the discrete time-points where
the data is defined using

Vi (ti—i-l - tz) : 'U<tia ) = 1Og (‘pti7ti+1) . (‘pti,ti+1 - Id) (1)

and assumed to be stationary between consecutive time-points ¢; and ¢;1, which
means that:

o(t, i i(®)) = v(ti, @) (2)

where ¢; is the closest time-point that precedes ¢t at which the series .S is defined.
Equation 2 means that trajectories are linearly interpolated to provide @y, +(x),
the position at time ¢ of the anatomical point that was at « at time ¢;. Orientation
and invertibility are preserved at any point (¢, ), as the log-exponential does
with large displacements.

In our t; — ;41 registration approach, we can reasonably assume that the
displacements are small. Such a choice is encouraged by the good temporal res-
olution of the 2D US modality. We validated this assumption by comparing
the computed displacement fields and the logarithm of their relative transfor-

—1
- : _ 1 lpzopy ' —Id| .
mations, using D(p1,p2) = () ) 2, €0 W(wj) as normalized

dissimilarity measure between two transformations ¢1 and 2, where {2 is the
image domain. We previoulsy ensured these transformations are diffeomorphic,
that-is-to-say they are invertible, smooth and with smooth inverse so that the
logarithm can be computed. The results of this experiment are summarized in
Fig.1, which presents the comparison of ¢ and log¢ + Id for all the frames
of one series containing three cycles. To get a range of comparison, this exper-
iment is also done for a 0 — ¢; registration strategy, which works with larger
displacements, and for a SF patient.
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Fig. 1. Left: distribution of the dissimilarity measure Ds,q1 over the set of frames (red
and blue: healthy volunteer, all the frames, ¢t; — t;+1 and 0 — ¢; approaches, green: SF
patient, frames where SF occurs). Average over all the frames is in dashed line, and
summed up in the table on the right. Table also contains Dg.. for the assessment of
logarithm computations accuracy.

2.3 Drift Correction

Drift artifacts from registration between pairs of consecutive frames are solved
by applying for each cycle a correction involving a linear-in-time scaling of the
transformation between frames which begin consecutive cycles, o1, 1, ,, where
T; is the time-point starting cycle j. This transformation aims at correcting
probe motion during the acquisition, and adds robustness towards out-of-plane
motion, as the assumption o7, 7,,, = Id generally made in other works [4] is
not verified in our database of 2D US sequences.

3 Statistics on Cardiac Velocities

3.1 Pre-processing Steps

For each patient, the registration steps provide velocities on which statistics can
be computed directly. They should first be brought into the same system of
spatio-temporal coordinates. In the following we use k index to refer to sample
patient k, and we index variable names accordingly.

Temporal Normalization. On each sequence, two control points related to
the cardiac cycle phases are identified on the corresponding Electrocardiogram
(ECG) and then mapped to a normalized timescale: the onset of QRS complex,
using ECG tools from GE EchoPac software, and aortic valve closure, observed in
left-parasternal long-axis images and located on ECG for the apical 4-chamber
view we use by ECG correspondence. This step will be automated in further
work. Between the control points temporal data is then adjusted linearly to
match the new timescale. Similar synchronization methods [9] also identified a
set of control points over each sequence of MR images, but used image similarity.
We preferred to rely on ECG information, as for US images the identification of
these points using image data can be biased by respiratory or probe motion. In
addition, the use of physiological events as temporal landmarks is believed to be
more extendable to handle pathological subjects.



Spatial Reorientation. Velocities v*(t, z) are initially defined in the system of
coordinates of patient k, but should be reoriented to be embedded in a reference
system of coordinates before computing any statistics. We chose arbitrarily one
series with good image quality as the reference. We first compute the transforma-
tion ¢*—7¢f (t, ) which maps estimated images of patient & and reference ref at
time ¢, using FFD. We ensured that the computed transformation is invertible
by checking that its jacobian has a positive determinant. Using notations of Sec-
tion 2.2, an image S is simply estimated at time ¢ from the image at the closest
preceding time-point #;, with S(¢,.) = @1,.4(S(ti,.)). Reorientation of velocity
fields v* is then achieved at every point (¢,x) using a push-forward action on
vector fields [10]:

Py(v) =D (vog™!) (3)
k

where v = v*, ¢ = ¢* "¢/ and D the jacobian operator. We use the same
computations for the inverse as in [5].

3.2 Statistical Computations

Once these pre-processing steps have been achieved, statistics can be directly
computed on velocities. We first compute their average and variance to char-
acterize the atlas population. Considering K different sample series {Sk | k=
1...K}, we obtain at any desired point (¢, ) the average v = % Zszl v* and
the covariance matrix X, = ﬁVt -V from the set of velocities v*. Here
V' = [(v! =v)|...|(v — )] is the 2 x K matrix whose columns are the centered
velocity samples at (t,x), and  is the matrix transposition operator.

The atlas is then used for the comparison of the velocities of a given patient
to the population used for its construction, through the computation at every
desired point (¢, x) of statistical indexes assessing abnormality. We chose as index
the p-value obtained from Hotelling’s t-square statistic [11]:

t*=a(w-o) X, (v-2)

where « = K/(K + 1), v is the velocity to compare to the atlas, and v and X2,
are the average and the covariance matrix computed for the population atlas.

Healthy SF
(pixels) Sinter |Sintra| Atrack ||Sinter|Sintra| Atrack
1. Basal inferoseptall|| 2.21 | 1.90 1.57 1.29 | 2.43 1.73
2. Mid inferoseptal 2.51 | 3.58 3.84 0.41 | 1.84 1.26

3. Apical septal 1.66 | 3.97 5.11 0.70 | 2.03 2.67
4. Apical 0.97 | 2.17 2.76 0.77 | 2.72 1.67
Average 1.84 | 2.91 3.32 0.79 | 2.26 1.83

Fig. 2. Comparison between automatic and manual tracking: inter- and intra-operator
standard deviation (dinter and dintra), and distance between automatically and manu-
ally tracked points (A¢rack)-



4 Experiments on 2D US Sequences

We acquired 2D+t echocardiographic sequences in an apical 4-chamber view for
two populations of patients, using a GE Vivid 7 machine. The atlas population
was made up of 21 healthy volunteers. The second population included 4 CRT
patients with visually assessed SF. The choice of the apical 4-chamber view is
lead by the fact that it is the one used in clinical routine for the assessment of the
inward/outward movement of the septum related to SF. Physiological differences
between patients constrain the acquisition parameters, that will differ in terms
of temporal resolution and image quality. For the atlas population, we acquired
images with optimized resolution, that corresponds in average to a frame rate
of 60 frames/s and a pixel size of 0.15 x 0.15 mm?. For constraints related to
the therapy, such settings were not reproducible for SF patients, acquired at a
similar spatial resolution but at a lower frame rate (30 frames/s).

4.1 Atlas Construction

We first evaluated the quality of our intra-sequence registration by comparing it
to manual landmarking. Three observers tracked 4 points along the septum that
correspond to basal-inferoseptal, mid-inferoseptal, apical-septal and apical levels.
Measurements were repeated 10 times for each point, and selection was done over
one cycle of one healthy volunteer and one SF patient. Then each landmark was
automatically tracked, starting from its average position in the first frame. Fig.2
presents the average in time of inter- and intra- observer variability, and compares
it to the distance between automatically and manually tracked points. Automatic
and manual tracking show comparable precision over all the selected points.

In order to check the efficiency of the synchronization scheme described in
Section 3.1, we acquired 4 sequences for the same patient and checked that the
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Fig. 3. Repeatability measurement for the spatio-temporal synchronization scheme.
Left: radial (thin blue) and longitudinal (thick red) position of a tracked point at
mid-inferoseptal level. Right: corresponding velocities. \/ Tr(X,) is used as variability
measure.
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Fig. 4. Comparison of SF patients to the atlas, at mid-inferoseptal level. Left: radial
velocity (blue: atlas average, red: SF1), and p-value plot along 1 cycle for SF1. Middle:
p-value for the atlas population (boz plots), and the 4 SF patients (green dots) at time-
points corresponding to maximum inward (left) and outward (right) patterns. Right:
table summarizing these p-values for the atlas (average of the leave-one-out values)
and the 4 SF patients.

estimated velocities overlap after the synchronization. These sequences contain
3 whole cycles, and are made of 204, 189, 209 and 218 frames, respectively, with
varying orientation of the probe. Good repeatability is observed between the
curves, using /T'r(X,) as variability measure (Fig.3).

4.2 Septal Flash Assessment

We built the atlas of motion using the whole set of synchronized healthy volunteers,
and then compared velocity fields for the atlas and the 4 SF patients as described
in Section 3.2. The comparison is shown at mid-inferoseptal level, where the fast
inward /outward motion of the septum takes place (Fig.4). Velocity and p-value
profiles are plotted for one SF patient to see when SF occurs relatively to the ECG.
Low p-value means high degree of abnormality. From both plots we can notice a
very large abnormal inward velocity when the septum is activated, which is almost
immediately followed by a fast outward motion at the time when the infero-lateral
wall contracts. Box plots in the middle and the recapitulative table on the right
compare p-values for the 4 SF patients and p-values for the atlas population, which
were obtained using leave-one-out cross-validation. On SF patient 3 abnormality
is hard to assess, due to the poor image quality of the sequence and the limited
magnitude of the SF. On all the other three SF patients, p-value enables efficient
assessment of abnormality for the SF pattern.

5 Conclusion

In this paper, we proposed to apply atlas quantification techniques to charac-
terize the septal flash mechanism, which proved its interest for understanding



response to CRT. We proposed a complete framework for the construction of
an atlas that represents motion in a standard spatio-temporal system of coordi-
nates and compared cardiac velocities between CRT patients and a population
of healthy subjects. Our experimental results demonstrated the ability of the
atlas to assess local motion abnormalities in time and space. Our pipeline could
easily be extended to strain measurements for a more advanced characterization
of the mechanisms conditioning response to CRT.
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