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Abstract. This paper presents motion and deformation quantification
results obtained from synthetic and in vitro phantom data provided by
the second cardiac Motion Analysis Challenge at STACOM-MICCAI. We
applied the Temporal Di↵eomorphic Free Form Deformation (TDFFD)
algorithm to the datasets. This algorithm builds upon a di↵eomorphic
version of the FFD, to provide a 3D + t continuous and di↵erentiable
transform. The similarity metric includes a comparison between consec-
utive images, and between a reference and each of the following images.
Motion and strain accuracy were evaluated on synthetic 3D ultrasound
sequences with known ground truth motion. Experiments were also con-
ducted on in vitro acquisitions.

1 Introduction

Estimation of motion and strain gives insight into cardiac function by quantifying
how a given pathology a↵ects global and local deformation of the myocardium.
This provides useful information for diagnosis, treatment, and follow-up of car-
diac diseases. In clinical routine, motion and strain are often obtained from
ultrasound (US) images because it is safe, non-invasive and cost-e↵ective. Al-
though 3D acquisition systems are increasingly used, 3D US images have lower
quality and temporal resolution than the 2D ones, thus making their processing
more challenging. Nonetheless, processing 3D has the advantage of providing the
whole motion and deformation of heart, unlike 2D for which only the projection
of these parameters on the observation plane is available. This is particularly
important for an accurate quantification, due to the cardiac architecture (e.g.,
fiber orientation) which imposes by itself motion and deformation to be 3D.

In this paper, we use the Temporal Di↵eomorphic Free Form Deformation
(TDFFD) algorithm [1, 2] and apply it to the synthetic and in vitro data provided
by the second cardiac Motion Analysis Challenge (cMAC2) with the underlying
purpose of estimating its accuracy and comparing it to the other motion estima-
tion algorithms submitted to the challenge. The TDFFD models the velocities
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continuously in time and space as a sum of B-spline kernels. In contrast to [1], we
use a similarity metric which takes into account the physics of US images. The
rationale behind this new metric is that speckle remains temporally consistent
for small deformations and can be used as a feature for motion tracking, while
tissue and blood pool intensities are globally preserved over the cardiac cycle.
Therefore, the proposed metric includes a comparison both between consecu-
tive images (based on the correlated speckle noise as in [3]) and a comparison
to the first frame (using mean square error as in [1]). We present and discuss
displacement and strain quantification results on the cMAC2 dataset.

In previous work, the accuracy of the TDFFD algorithm was validated (in
addition to be tested on patient data) on ground truth data with normal motion
from synthetic US images [1] and tagged magnetic resonance imaging provided
by the 1st cMAC challenge [6]. Here, the data consists of synthetic images repre-
senting di↵erent configurations observable in the clinical practice, in the context
of cardiac resynchronization therapy (CRT): normal heart, dyssynchronous ones
with left bundle branch block (LBBB) and right bundle branch block (RBBB),
and with di↵erent pacing configurations, for which dyssynchrony is expected to
be reduced or corrected. The objective is to check the ability of our algorithm
to estimate accurate and physiologically meaningful motion (displacement) and
deformation (strain), in both healthy and pathological cases.

2 Methods

2.1 cMAC2 Database

The synthetic images combine the US imaging model described in [4] with the
electro-mechanical model presented in [5]. There are in total 10 sequences sim-
ulating one normal heart as well as RBBB abd LBBB cases with and without
pacing in di↵erent regions of the heart. This data includes ground truth on the
motion field. For the synthetic data, volumetric meshes were provided for each
frame. More details about the database and its contruction are given in the
webpage of the challenge1.

In vitro images were acquired using a polyvinyl alcohol cryogel phantom and
a Philips 3D X5 probe. Ground truth data was generated using microsonometry.
Microsonometry measures distances and hence can be used as ground truth for
radial, circumferential and longitudinal strains. Further details about the in vitro
image generation can be found in the challenge webpage.

2.2 Motion Quantification

We use the TDFFD algorithm described in [1] to reconstruct trajectories in the
cardiac cycle. The velocity field is represented as a continuous and di↵erentiable
4D vector field using B-splines. The temporal smoothness of the velocity field
guarantees to recover temporally smooth transformation. Another advantage is

1 http://www.physense.org/stacom2012/
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Fig. 1: The optimization of velocity at one time point depends on all previous times.

that trajectories are not restricted to the discrete set of imaging time points,
thus can be evaluated for any continuous time.

The di↵eomorphic mapping ' : ⌦ ⇥ T ! ⌦, ⌦ ⇢ IR3, T ⇢ IR+ is related to
the time-varying velocity field v : ⌦ ⇥ T ! IR3 by

'm
n (x;p) = x+

Z m

n
v('t

n(x;p), t;p)dt , (1)

with '0

0

= id, where 'n
m(x) stands for the transport of a coordinate x at time n

to time m, and p is the vector of parameters (i.e., B-spline velocity coe�cients
assigned to all control points). At each time step, the optimization of the velocity
field evaluates image intensities through all previous times, thus providing a more
robust estimation. This is illustrated in Fig. 1.

The similarity metric used in [1] was the squared intensity di↵erences be-
tween each image and the first image in the sequence. This choice was shown to
avoid the accumulation of motion errors leading to drift e↵ects. In [6], the metric
was extended to include also the squared intensity di↵erences between consecu-
tive image pairs with the aim of improving the sensitivity to small incremental
displacements. Here, we propose another approach using a combination of two
similarity terms: the first one compares images over the entire cardiac cycle as
in [1, 6], while the second one compares images at adjacent time points using
an US-specific metric which considers speckle tracking information as proposed
by Cohen et al. in [3]. This second metric has inherent robustness to speckle
decorrelation, which makes it a suitable metric for fully-developed speckle noise.

For the metric computation, we consider two randomly drawn set of samples.
The first one is {xj 2 ⌦

0

, j = 1, . . . , J}, where ⌦
0

is the subdomain of ⌦ at
time t = 0, enclosing the region of interest (e.g., the left ventricle domain). The
second one is {(yk, nk),yk 2 ⌦nk , k = 1, . . . ,K, nk 2 [1, N � 1]}, where ⌦nk

is the subdomain of ⌦ at time t = nk and N is the number of frames in the
sequence. The proposed metric is then defined as
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where � is a constant factor balancing the metric terms, �m
l (·;p) is the intensity

di↵erence between homologous points at t = l and t = m, i.e.,

�m
l (·;p) = Im

�
'm

l (·;p)
�
� Il(·) . (3)

The second term of Eq. 2 is able to make use of speckle tracking information,
whereas the first term of Eq. 2, can ensure that small errors in registration results
do not add up causing significant errors over the entire cardiac cycle.

2.3 Strain Quantification

The strain is estimated from the spatial derivative of the reconstructed displace-
ment field. Letru(x, t) be the spatial gradient of displacement u(x, t), the strain
tensor can then be obtained by

✏(x, t) =
1

2

�
ru(x, t)T +ru(x, t)�ru(x, t)Tru(x, t)

�
, (4)

where superindex T denotes transposition. The strain tensor is then projected
on a set of local directions: radial, circumferential and longitudinal. The strain
data is averaged over 17 regions in accordance with the standard division of
the left ventricle proposed by the American Heart Association (AHA) [7]. The
local directions are defined on the mesh of the first frame (corresponding to end-
systole). Since strain is computed in a Lagrangian space of coordinates, local
directions and AHA segments only need to be defined at the first frame.

We use centered di↵erences on the mesh to approximate the spatial deriva-
tives of the displacement. The radial direction is obtained from the normal to
the mesh at each node of the surface. The longitudinal direction is defined as
perpendicular to the radial direction while maximizing the scalar product with
the apex-base vector. The circumferential direction is then obtained by the cross
product of radial and longitudinal directions.

3 Results

Experiments were performed first on a set of synthetic 3D US sequences to
evaluate the accuracy of the TDFFD algorithm with respect to known ground
truth displacement. For the B-spline grid resolution, we used one control point
per frame in the temporal direction and 5 control points in the short-axis and
long-axis directions. The factor � in Eq. 2 is computed (for each sequence) as
the ratio of the values of the first term of Eq. 2 to the second term, at the first
iteration of the optimization process.

3.1 Synthetic data

For all cases, we computed the error between true and recovered displacements.
The median of the peak magnitude of the di↵erence between the ground truth
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Case Median Peak Error (1st-3rd quartiles)

1 Normal 1.49(1.19 � 1.60)
8 RBBB 0.71(0.62 � 0.83)
12 LBBB 0.66(0.57 � 0.78)
20 LBBB+Pacing 5 0.76(0.65 � 0.85)
22 LBBB+Pacing 6 1.38(1.12 � 1.48)
28 LBBB+Pacing 7 0.80(0.66 � 0.87)
36 LBBB+Pacing 12 0.78(0.60 � 0.92)
44 RBBB+Pacing 9 0.74(0.67 � 0.78)
60 LBBB+Pacing 3+6 0.71(0.63 � 0.82)
88 LBBB+Pacing 7+14 0.71(0.66 � 0.79)

Table 1: Median (with first and third quartiles) of the peak errors (in mm) of the
proposed image registration for each case in the dataset.

displacement field and the one obtained by our algorithm are summarized in
Table 1 for each case. The median peak error was obtained by computing the
median of the maximum error at each AHA segment.

Fig. 2 plots the mean registration error (over all cases) for each segment and
direction. Fig. 3 shows displacement magnitude and circumferential strain for
cases 1 (normal), 12 (LBBB) and 22 (LBBB with pacing at AHA segment 6)
for the AHA segments at the septum and lateral wall. Displacement magnitudes
for case 12 are reduced with respect to the other cases. Moreover, dyssynchrony
can be observed for this case between septal segments (2, 3, 8 and 9) and lateral
segments (5, 6, 11 and 12), which contract about 20% of the cycle later. When
looking at displacements for case 22, this temporal di↵erence in reduced for al-
most 10% of the cycle and displacement results are similar to the ones obtained
for case 1. As for circumferential strain, while rather uniform strain patterns are
observed for the normal case, an overall reduction of its magnitude is found for
case 12, and its value is almost zero for septal segments during the whole cycle
(probably due to the LBBB). In case 22, circumferential strain magnitude is in-
creased with respect to case 12 and more similar to case 1, presenting contraction
at septal segments.

3.2 Phantom data

On phantom data, ground truth was provided as distance between pairs of so-
nomicrometry crystals. These distances give an approximation of radial, circum-
ferential and longitudinal strains. Crystals positions were provided in the image
space of coordinates. We computed the trajectories and the pairwise distances
corresponding to those given by the ground truth.

Fig. 4 plots on the top row the three strains as provided by sonomicrometry
for each acquisition, and on the bottom row the ones obtained by our TDFFD
algorithm. As expected, the magnitude of global deformation is reduced with
compression. Radial strain is almost zero and, unlike in myocardial tissue, the
longitudinal strain takes positive values. One can see that circumferential and
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Fig. 2: Segmental displacement error (in millimiters), average over all cases. From
top to bottom and from left to right: radial, circumferential, longitudinal and overall.
Thick black curve corresponds to the median error for all segments. The horizontal
axis is the normalized cardiac time (from 0 to 1).
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Fig. 3: Displacement (top) and circumferential strain (bottom) for case 1 (normal),
12 (LBBB) and 22 (LBBB with pacing at AHA segment 6) for septum and lateral wall
segments. Thick black curve corresponds to the median strain for all segments. The
horizontal axis is the normalized cardiac time (from 0 to 1).

longitudinal strain curves from ground truth and from our algorithn are similar
in amplitude and shape.

4 Conclusions

In this paper, the TDFFD algorithm was extended to include an US-specific
metric that considers the correlated speckle noise between consecutive images
and has inherent robustness to speckle decorrelation. The use of both this se-
quential metric and the non-sequential one results in a good compromise between
low error values over the contraction period and low temporal drifts in the last
phases. Preliminar motion and deformation results were reported for the phan-
tom data provided by the cMAC2. Overall, mean displacement error was below
1 mm. Uniform strain patterns were observed over all myocardial segments for
the normal case, as physiologically expected. Comparing the normal with the
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Fig. 4: Strain in radial, circumferential and longitudinal directions from sonomicrom-
etry crystals (top) and from tracking on the 3D US sequences (bottom). The horizontal
axis is the normalized cardiac time (from 0 to 1).

LBBB case (with and without pacing), the capability to recover dyssynchrony
as assessed by the ground truth it is shown.
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