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Abstract

Let (M,g) be a complete Riemannian manifold. Assume that the Ricci
curvature of M has quadratic decay and that the volume growth is strictly faster
than quadratic. We establish that the Hardy spaces of exact 1-differential forms
on M, introduced in [4], coincide with the closure in LP of R(d) N LP(AYT*M)
when 1 < p < v, where v > 2 is related to the volume growth. The range of
p is optimal. This result applies, in particular, when M has a finite number of
Euclidean ends.
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1 Introduction

1.1 Motivation

Let n > 1 be an integer. It is a well-known fact that, for all j € [1,n], the Riesz
transform 9;(—A)~Y2 is H'(R")-bounded, where H'(R") denotes the real Hardy
space. If one seeks for a version of this result in a complete Riemannian manifold
(M, g) endowed with its Riemannian measure p, one has to take into account that
the Riesz transform, given by dA~'/2 in this context, is 1-form valued. Motivated by
this observation and relying on the connection between Hardy spaces and tent spaces
([13]), Auscher, McIntosh and the second author introduced, in [4], a family of Hardy
spaces of exact (resp. co-exact) differential forms on M, namely HY(A*T*M) (resp.
HE (AFT*M)) for 1 < p < oo and 0 < k < dim M. Denote A, = dd* + d*d the
Hodge Laplacian acting on differential forms of degree k; in particular, Ag = A, the
usual Laplacian acting on scalar functions on M. In [4], it was proved that, under a
doubling volume condition for geodesic balls of M, the Riesz transform dA,;l/ 2 acting
on exact differential k-forms is bounded from HE. (A*T*M) to HL(A*1T*M) for all
ke [0,dim M — 1] and all 1 <p < 0.

With the issue of LP-boundedness of the Riesz transform in mind, one may wonder
if HY(A*T*M) coincides with the closure in LP of R(d) N LP(A*T*M) for 1 < p < oo,
as well as the corresponding statement for HY, (A*T*M), as in the Euclidean case.
In the case of O-forms (that is, for functions), it was proved in [4, Theorem 8.5]
that the answer is positive for HY. (A°T*M) if the heat kernel associated with the
Laplace-Beltrami operator satisfies Gaussian pointwise upper estimates. A similar
statement holds for HY(A'T*M) if one assumes analogous Gaussian bounds for the
heat kernel associated with A;, the Hodge Laplacian on 1-forms; this is however a
much stronger assumption. In particular, it implies the LP-boundedness of dA~1/?
for all 1 < p < +oo ([14, 23]). Gaussian bounds for the heat kernels associated with
Ay and A; hold, in particular, if (M, g) has nonnegative Ricci curvature ([22] 5, [6]).
In the present work we want to compare HP and LP, avoiding the use of Gaussian
bounds for the heat kernel on 1-forms. A general fact proved in [4] is that if the
measure 4 is doubling, then for all p > 2 and all 0 < k& < dim M, the closure in
LP of R(d) N LP(A*T*M) is included in HY. (A*T*M). But the inclusion may be
strict, as the following example demonstrates: consider the manifold M made of the
connected sum of two copies of R™. It is well-known that the heat kernel of Ag on M
has Gaussian estimates, but that the heat kernel of A; does not, despite M having
vanishing Riemannian curvature outside a compact set. If n > 3 (resp. n = 2), it was



proved in [I0] that dA~"/? is LP-bounded if and only if 1 < p < n (resp. 1 < p < 2).
and it follows that, on M, HY(A'T*M) and the closure in LP of R(d) N LP(A'T*M)
never coincide if p > n (resp. p > 2). However, as a consequence of the main result
in the present paper, we shall prove that for the connected sum of two copies of
R", n > 3, HY(A'T*M) is equal to the closure in LP of R(d) N LP(A'T*M) for all
p € (1,n). Thus, in this particular example, HY(A'T*M) is equal to the closure in
LP of R(d) N LP(A'T*M), if and only if p € (1,n).

More generally, following [9], we consider complete Riemannian manifolds (M, g)
with a quadratic decay of the Ricci curvature, and, under suitable assumptions on
the volume growth of balls in M, we prove that H)(A'T*M) and the closure in L?
of R(d) N LP(A'T*M) coincide for 1 < p < v, where v is an exponent related to the
volume growth of balls in M. In particular, if n := dim M > 2 and M has a finite
number of Euclidean ends, the conclusion holds with v = n. Moreover, in the latter
situation, we also prove that, for p > n, the closure in LP of R(d) N LP(A*T*M) is
a strict subspace of HY(A'T*M), unless M has only one end, in which case the two
spaces are equal.

1.2 The geometric context

Throughout the paper, if two quantities A(f) and B(f) depend on a function f
ranging over some space L, the notation A(f) < B(f) means that there exists C' > 0
such that A(f) < CB(f) for all f € L. Moreover, A(f) ~ B(f) means that A(f) <
B(f) and B(f) < A(f).

Let (M, g) be a complete Riemannian manifold. Denote by p the Riemannian measure
and by d the Riemannian distance. For all z € M and all » > 0, B(z,r) stands for
the open geodesic ball with center x and radius r, and V(z,7) := pu(B(x,r)). We
assume that the measure p is doubling: for all x € M and all » > 0,

V(x,2r) S Vi(e,r). (D)

By iteration, this condition implies at once that there exists D > 0 such that for all
r € M and all 0 <r < R,

V(e R) < (?) TV, (VD)

We also consider a reverse doubling volume condition: there exists v > 0 such that,
forallz € M and all 0 < r < R,

<§)V Viz,r) <V(x,R). (RD)

r

When M is connected, (RDI) follows from (D)) (see [I8, Chapter 15, p. 412]); further-
more, the exponent v is related to lower bounds for the p-capacity of geodesic balls,
see [I7, Theorem 5.6]. Fix o € M and set r(z) := d(o, z) for all x € M. We make the
following assumption on the Ricci curvature of M: denoting Ric, the Ricci tensor at



the point z and g, the Riemannian metric at x, we assume that there is n > 0 such

that
2

Ric, > ———g,, Vo€ M (QD)

r#(z)
r(x

in the sense of quadratic forms. We say that a ball B(x,r) is remoteif r < T) A ball
B(o,r) will be called anchored. The assumption on the Ricci curvature implies
by the Bishop-Gromov theorem and a simple scaling argument that if B(x,2r) is
remote, then V(x,2r) < V(z,r); hence, by [19, Prop. 4.7], (D) holds if and only if
M satisfies the so-called volume comparison condition, which writes as follows: for

every x € M,

Vio,r(z)) < Vi, @) (VCO)

We notice also (see [9]) that (D) implies that M has a finite number of ends. Moreover,
according to [§], (QD]) implies that remote balls satisfy the scale invariant L' Poincaré
inequality: if B is remote and has radius r then

Lf = fellee STV Albe, feC™(B), (F1)
where fg denotes the average of f on B, that is fz:=V(B)™" [, [.
For 0 < k < dim M, denote by Ay = dd* + d*d the Hodge-Laplacian acting on
k-forms (here d stands for the exterior differential and d* for its adjoint). Recall that
—A}, generates a holomorphic semigroup on L?(A¥T*M), and the associated heat
kernel, namely the kernel of e *2* is denoted by p¥. One denotes p;(z,y) the scalar
heat kernel, i.e. the kernel of e7*2°. We consider the Gaussian upper-bounds for the
heat kernel:

1 d*(z,y)
< - _ ! M E
pe(T,y) < V() exp ( o ) , Vt>0,Vr,ye M. (UE)

Under (QD) and (W), according to [9] there is a simple geometric condition ensuring
that (UE]) holds:

Definition 1.1. We say that (M, g) with a finite number of ends satisfies the Relative
Connectedness in the Ends (RCE) condition, if there is a constant 6 € (0,1) such
that for any point x with r(x) > 1, there is a continuous path ¢ : [0, 1] — M satisfying

o ¢(0) =x.

the length of ¢ is bounded by %.
c([0,1]) € B(o,07"r(x)) \ B(o,0r(x)).

e there is a geodesic ray vy : [0, +00) — M \ B(o,r(x)) with v(0) = ¢(1).

In simple words, the condition (RCE) says that any point x in M can be connected
to an end by a path staying at distance approximately r(z) from the origin o. With
this definition, [9, Theorem 2.4] asserts that under (QD), (VC) and (RCE), the
Gaussian upper-estimate ([UE]) for the scalar heat kernel holds.
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1.3 Tent and Hardy spaces

Let us briefly recall here the definitions of Hardy spaces of differential forms on (M, g)
introduced in [4]. These definitions rely on tent spaces, which we first present. For
all x € M and a > 0, the cone of aperture o and vertex z is the set

La(2) = {(y.1) € M x (0,+00); y € B(x,at)}.

When a = 1, we write I'(z) instead of I';(z). For any closed set F' C M, let R(F)
be the union of all cones with aperture 1 and vertices in F'. Finally, if O C M is an
open set and F' = M \ O, the tent over O, denoted by T'(O), is the complement of
R(F)in M x (0,+00).

Let F' = (F})i~0 be a family of measurable functions on M. Write F(y,t) := Fy(y)
forall y € M and all ¢ > 0 and assume that F' is measurable on M x (0, 400). Define

then, for all x € M,
dy dt\'*
SF(z) = // F(y,t 2 —)
0= [P

(here and after, integration with respect to u will often be denoted by dz, dy... instead
of du(z),du(y)...) and, if 1 < p < +o0, say that F' € TP?*(M) if

1 r2any = ISF | poary < +o00.

Denote by d the exterior differentiation and by d* its adjoint. Define

HI(AYT*M) := {du € L2(A'T*M);u € L2(M)}.
The definition of HY(A'T*M) for p # 2 relies on two operators, which we now present:
Definition 1.2. Let N > 1 be an integer.

1. For all F' € T*?(M), let

+ee dt
Sy(F) = / tde_mFt7 € L*(A'T*M).
0
2. For all w € L*(A'T*M) and all ¢ > 0, let
(QYw); == td*(PAy) Ve M1 € T*2(M).
The spectral theorem shows that, on H3(A'T*M),
S,Qf = cld (1.1)

for some constant ¢ > 0.
We now turn to the definitions of Hardy spaces:

Definition 1.3. Let NV > 1 be an integer and p € (1, 00).

D



1. Define
EP(AMT* M) = {w € HYA'T*M); td*(2A)Ve 21w e TP (M)},
equipped with the norm

||w||H5(A1T*M) - th*(tQAl)Ne_t2AIW)

TP2(M)

2. Let HY(A'T*M) be the completion of EY(A'T*M) under the norm ||- |2 ar 7 any:

Remark 1. As shown in [4, Section 5|, these spaces do not depend on N provided
that NV is large enough (only depending on the parameter D in (VD). Actually,
we would still get the same spaces if (t2A1)Y e A1 was replaced by a more general
function of A;.

1.4 Statement of the results

With these definitions settled, our main result states as follows:

Theorem 1.4. Assume that (M,g) satisfies (QD), (VC), (RCE) and (RD) with
some v > 2. Then, HY(A'T*M) C LP(A'T*M) for allp € (1,v).

Corollary 1.5. Let M be a complete Riemannian manifold of dimension n > 2 with
a finite number of Euclidean ends. Then, HY(A'T*M) ~ R(d) N Lp(AlT*M)L for
all p € (1,n). Moreover, if p € [n,+00), then HY(A'T*M) ~ R(d) N LP(AlT*M)L

if M has only one end, and R(d)N LP(AlT*M)Lp S HJ(A'T*M) if M has two or
more ends.

Proof. The statement for 2 < p < n follows from Theorem [[L4] and [4, Corollary
1.2]. The statement for 1 < p < 2 follows from (UEl) and [4, Theorem 8.5]. It thus
remains to discuss the case p € [n,+00). For p > n, according to [4, Corollary 1.2],
the inclusion

R(d) N LP(ATM)" € HE(A'T* M)
holds true. Moreover, by [4, Theorem 5.16], the Riesz transform is bounded from
HY (AYT*M) to HY(AYT*M). By the argument in [I6, p. 12-13], (D)) and (UE)
imply that HY. (A°T*M) ~ LP(M), hence the Riesz transform dA, 2 is bounded
from LP(M) to HY(A'T*M). Since it is known that dAal/Q is not bounded on LP,

p > n, in the case M has several Euclidean ends (see [10]), one concludes that in this
case, for p € [n,+00),

R(d) N L (NT=M)" S HE(A'T* M),

If M has only one end, (RCE is the more familiar (RCA) condition (Relative Con-
nectedness of Annuli) from [19], hence by [19] Corollary 5.4] M satisfies the scaled



L? Poincaré inequalities. According to [I0], the Riesz transform on M is bounded on
LP, for every p € (1,400); hence, by [10], for every p € [n, +00),

P

HY(A'T* M) ~ R(d) N LP(AYT*M)
O

More generally, for manifolds with conical ends one can fully answer the question
whether H? is equal to the closure in L? of R(d) N L? for the Hardy spaces of exact
differential 1-forms. Recall that an end E of M is called conical, if there exists
a compact Riemannian manifold (¥, gx) and R > 0, such that F is isometric to
(R,+00) x 3 endowed with the metric

g =dr* +1gs.
The precise result writes as follows:

Corollary 1.6. Let M be a complete Riemannian manifold of dimension n > 2 with
a finite number of conical ends. Define a number p, as follows: p. is equal to n
if M has two ends or more, whereas if M has only one end which is isometric to
[R,+00) X X, one lets
n
P = = >,

-Vt ()
where Ay > 0 is the first non-zero eigenvalue of the Laplacian on 3 (by convention,
ps =400 if \y > n—1). Then, for allp € (1,p.),

HY(A'T* M) ~ R(d) 0 Le (AT M),
whereas for all p € [p., +00),

R(d) N L (NT=M)" S HE(A'T* M),
Remark 2. The same result holds for asymptotically conical manifolds in the sense
of [20].
Proof. The proof is the same as for Corollary [T taking into account that the Riesz
transform on M is bounded on L?, if and only if p < p, (see [20]). U

1.5 Strategy of the proof

Our strategy is as follows. Observe first that the conclusion of Theorem [[L4]is already
known when 1 < p <2 ([, Corollary 6.3]). We will therefore assume that 2 < p < v.
The duality of Hardy spaces implies:

Proposition 1.7. Let p € (2,00), and denote ¢ = p' the conjugate exponent of p.
Then, HY(A'T*M) C LP(A'T*M) if the following inequality is satisfied:

th*e‘tmlw)

S lelly, € LA M), (1.2)

T92(M
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Proof. Assume that (L2) holds. Let p € (2,v), n € HY(A'T*M) N H3(A*T*M) and
w € LYAN'T*M) N H3(AYT*M). Then, using the duality pairing between 77 and
T%? ([13, Section 5, Theorem 2]) and (I]ﬂ]), we get

/M (n(a) w@)dp(z) = | (S:QYn(x),w(@))du(z)
/7M Q). Qu)dute =

cth* (A ) —t Aln’ tdre M ’
P2

||77||H5(A1T*M) ||W||Lq(A1T*M) J

<
Ta2
S

where we have used the hypothesis, as well as Definition (L3]). Dividing both sides
by [[w|[ 74 (a17+ sy and taking the supremum in w # 0 belonging to LY (A'T*M), one
obtains that for every n € HL(AYT*M) N H3(A'T*M),

[nllzearraan S ||71||H5(A1T*M)'

By density, this inequality extends to all n € HY(A'T*M), which in turns implies
that HY(AYT*M) C LP(A'T*M).
O

According to Proposition [T, in order to prove Theorem [[4] it is enough to
establish that for all p € (ﬁ, 2),

th*e‘tmlw)

S el - (1.3)

TP:2(M)

We now introduce the inequality ([L3]), in restriction to ezact forms:

S ldrll, (1.4)

The following lemma shows that (L3]) follows from (L)) if the Riesz transform is
bounded in appropriate Lebesgue spaces:

th*e_tQAl (df))

TP2(M)

Lemma 1.8. Let p € (1,2), and assume that the Riesz transform is bounded on LP
and on L9, % + % = 1. Then, ([IL4) implies (L3]).

Proof. 1t follows from the assumption that the Riesz transform and its adjoint are
bounded on LP. Therefore, the Hodge projector on exact forms,

M= dAy'd" = (dAg %) (dAg )",

is bounded on LP. Let w € LP(AYT*M), then using (C4) with Ilw (which is exact)
and the boundedness on L? of II, one obtains

x —12A\q < <
et S ), £ [l

Therefore, noticing that td*e 21w = td*e "1 Tw, [I3) holds.



The key technical result in this work is the following:

Proposition 1.9. Assume that (M, g) satisfies (QD]), (VC), (RCE) and (RDI) for
some v > 2. Let p € (-5,2), where v is the reverse doubling exponent from (RD)).

Then, (L)) holds.

The remaining of the article will be devoted to the proof of Proposition
Assuming for the moment the result of Proposition [L9 let us give the proof of
Theorem [ 4

Proof of Theorem[1.4): recall ([9, Theorem A]) that, under the assumptions of The-
orem [[4] the Riesz transform dA~'/? is L%-bounded for all ¢ € (1,v). This implies,
according to Lemma [[[8, that (L3]) holds. The result then follows from Proposition
L7 O

In what follows, we establish (TZ)[]
Our strategy for (IL4) is as follows. This inequality amounts to

AN, < Nlafl, (1.5)

Avle) = (//F(m)

The spectral theorem implies that

where

G| vy
Z?

}2 dz dt)é 16)

lMawllz S [lwlle,  w € LAA'T*M).
We express

e Sz = [ ks v
M

where k; is the kernel of td*e="»1, and plug this expression into (L6). Following
ideas of [9], we then split the integration domain into three parts, involving different
conditions on t,y, z.

The first one, called “long-to-short”, is defined by the conditions (z,t) € I'(z) and
r(y) > kr(z). We establish the part of inequality (L3 corresponding to this regime
thanks to pointwise bounds on |k;|, which in turn follow from pointwise Gaussian type
bounds on the heat kernel on functions and its gradient. More precisely, we obtain
in this way a weak type (1,1) inequality, and the required LP bound is obtained
by interpolation between this weak type (1,1) inequality and a strong type (2,2)
inequality.

LOur proof of (L) relies on the L” and the L boundedness of dA; /2 A variation on our
argument for (4] (with square vertical functionals instead of non-tangential ones) will show that

701 1/Q(du)||p < |ldullp. This is equivalent to
||d*A1_1/2Hw||p < |[Mw]|,, where IT = dA;'d* is the Hodge projector. It is not clear how to get

from this the boundedness of the Riesz transform on LP. It would be more satisfying to recover
directly the boundedness of the Riesz transform from our result on HY(A'T*M).

for every p € ( 2) and every function w, ||d*A;



The second one, called “short-to-long”, is defined by the conditions (z,t) € I'(x),
kr(z) > r(y) and d(z,y) > k'r(z), and the corresponding part of (L) is proved by
similar arguments. Note that the part of (L4 corresponding to these two regimes
holds even if the form w is not exact.

The last part of the splitting is the so-called “diagonal regime”, defined by (z,t) €
['(z) and d(z,y) < k~'r(z). The proof of the corresponding part in (LH) is more
involved. We use a covering of M by a suitable collection of balls (B, )aeca which are
either remote or anchored, and localize in some sense the operator A in the balls B,.
When t > r,, a pointwise bound for |k;| is still sufficient. When ¢ < r,, we use the
fact that w is an exact form and, writing w = df, decompose

w=Y d(xa(f = f5.) = D _(f = fo.)dXa = Y _dfa = D> 1,
acA acA acA acA
where (Xa)aca is a special partition of unity associated with the covering (By)aca-
The part corresponding to df, is treated by arguments similar to those used in [2],
and relies on L' — L? estimates for the heat semigroup of the Hodge-Laplacian acting
on ezact 1-forms (see Lemma below). Roughly speaking, these estimates hold
since
e B dy = de *Moy

and pointwise estimates on the gradient of the heat kernel on functions can be used
again (note that pointwise bounds on the heat kernel on 1-forms do not hold in the
context of the present paper).

Finally, to treat the terms arising from 7,, we write

* _—sA —sAg J*
d e n, = e 70 n,,

and we conclude using pointwise bounds for e*2¢, the inequality |dxa| < 7
the fact that, due to L' Poincaré inequalities on remote balls,

-1

o )

and

1
1nall 2oy S = I = Frallirsa) S Ndfllas,) -

The paper is organized as follows. Section [ first presents the covering of M by
remote and anchored balls, as well as the associated partition of unity. We also
gather (and give proofs for) various pointwise or integrated estimates involving the
heat semigroup on functions or 1-forms. The proof of ([IL4]) is presented in Section [3]
where the three regimes are successively considered.

Acknowledgements: this work was partly supported by the French ANR project
RAGE ANR-18-CE40-0012. The authors thank the department of mathematics at
the Technion - Israel Institute of Technology and the Institut Fourier at the Grenoble
Alpes University for their hospitality.

2 Preliminary estimates

2.1 A good covering by admissible balls

For convenience, let us first gather definitions about balls of M (the first two ones
were already introduced before):

10



Definition 2.1. Let z € M and r > 0.

1.
2.
3.

The ball B(z,r) is called remote if r < 7"(2”6),
(

The ball B(x,r) is called anchored if x = o,

The ball B(z,r) is admissible if and only if B is remote or B is anchored and
r(B) < r(Byp), where the ball By will be defined in the construction of the
covering below.

We now explain how the assumption on the Ricci curvature allows one to construct
a good covering of M by remote and anchored balls, as well as a good partition of
unity associated to it. Following [9, Sections 4.3 and 5.3], consider a special covering
of M by a countable collection of admissible balls (B,)aen, With the finite overlap
property. Let us briefly recall the construction, for the sake of completeness:

1.

2.

define By := B(o, 1),
for all integer N > 0, since

B (0, 2N+1) \ B (0, 2N) C U B (:E,ZN_lg) ,
2N <p(z)<2N+1
the “5r” covering lemma ([2I, Theorem 1.2]) provides a collection of points
(TN+1,i)ier, € B (0, QNH) \ B (0, 2N), where the set Iy is at most countable,

such that the balls B ($N+17z‘, 2N*13) are pairwise disjoint and
B (0, 2N+1) \B (0, 2N) - U B (IL‘N+17Z',2N710) .
i€ln

Since, for all i € Iy, B(zyi1:,2V%) C B (0, 2N+2) and the balls
B(zyy1.4,2V713) are pairwise disjoint, the doubling property shows that, for
all finite subset J C Iy,

(81)V (0,27F?) < Z V (SL’NH,z‘, 2N+3) S Z V (SL’NH,z, 2N_13) <V (0, 2N+2) ,
ieJ ieJ

hence the set Iy is actually finite and #/y < C with C' independent of N.

For all N > 0 and all ¢ € Iy, denoting By41; = B (xNHJ,ZN_g), the balls

Bn41,; and 7By, are remote and satisty

297”(BN+1,i) <r(ryt1i) < 2107”(BN+1,i)-

We have constructed a countable family (Bg)a>0 of balls covering M; actually the
family of balls (1 B, )a>0 also covers M and this will be relevant later. Up to increasing
the radius of By and deleting balls included in By, we assume that B, is the unique
ball containing the origin o. Denoting the family of balls by (B, )aen, by 7 the radius
of B, and by =z, its center, then for a # 0,

2710 (2,) < 1o <27 (24). (2.7)

11



In particular, for @ # 0, the balls B, and 7B, are remote. Also, note that by
construction, if v # 8 such that B, N Bz # ), then

To ™ T3 (2.8)

Another consequence of the construction is that there exists C' > 1 such that, for all
r e M,
t{a eN; z € B,} <C.

In the sequel, if B C M is a ball with radius r(B), say that B is admissible if and
only if B is remote or B is anchored and r(B) < r(By). We also state for future use

(see ([P):

Lemma 2.2. For all admissible balls B C M with radius r(B) and all C* functions
u € L'(B):

1. if B is remote,
Ju— uBHLl(B) Sr(B) ||du||L1(B) , (2.9)

2. if B is anchored, (2.9) holds, as well as
[ = us2pl 12y S 7(B) lldull a5
for all C* functions u € L'(2B).
Let us now construct a suitable partition of unity adapted to the covering (B, )aen-

Lemma 2.3. There is a partition of unity (Xa)aca subordinate to (By)aen, satisfying,
for a € N,

ldxa| S |Axa| S (2.10)

ro + 1 r2+1

Proof. Tt is clearly enough to prove the estimates (ZI0) only for @ # 0. By [11}
Theorem 6.33] and a scaling argument, for every «, there exists a smooth function
Yo : M — [0, 1] such that:

() pelin, =1,
(ii) The support of ¢, is included in the (remote) ball B,,
(iii) [Vl < 7o)

() |Apal S &

Let

© =) Pas

12



then ¢ > 1 on M since the family of balls (B,)a>0 covers M. As a consequence of
[23), of the fact that the covering has the finite overlap property, and of (iii) and
(iv) above,

Vol Sraty A Sry? on B, (2.11)
We let
Pa
Xa (= —.
2

Obviously, > xa = 1, and the support of x, is included in B,. Hence, (Xa)aca is
a partition of unity, subordinate to (Ba)aca. Let us check that y, has the desired
properties. One has

oV Vi,
Vi = Py e
¥ ¥
which implies that |Vyx.| < v ! by using 2I0) and ¢ > 1, 0 < ¢, < 1. Next,
Apy, _ Vo -V
AX@ = i +§0aA(§0 1)+2¥
¥ ¥
Ao, A Vol|? VoV
- = +s0a(——;p+4‘ f|)+2 Po VP
¥ ¥ ¥ ¥
and it follows from ([ZII) and ¢ > 1, 0 < ¢, < 1 that [Ax,| <72 O

2.2 Heat kernel estimates

Recall that p, denotes the kernel of e #2°. The hypothesis (QD]) on the Ricci curva-
ture together with the Li-Yau gradient estimate imply the following estimate for the
gradient of p; (see [9, Section 3.2-3.3]):

Lemma 2.4. Assume that (QD]|) holds. Then,

1 1 7cd2(?y)

1
el S (4 ) o

(for r(z) < 1, we use the fact that the Ricci curvature is bounded from below
on M). By duality, Lemma 2.4 has consequences for the heat kernel on 1-forms; let
ki(x,y) be the kernel of td*e 21, Then,

t>0,z,ye M.

Lemma 2.5. One has, for allt >0 and all x,y € M,

1 2 (x,y
(o, 9)] < (1 - ) ool
Vi(y,t) r(y) +1

13



Proof. For all g € C°(A'T*M) and h € C*(M),

' /M tdr e "M g(z)h(z)da

_ /M D1 g(7) - tdh(z)dx
_ /M g(z) - te "2 dh(z)dx
_ / 2) - tde " AOh( \do

t d2(a,y)
< 1+ P
> / 9 s ( @) 1)

x |h(y)| dydz,

where the last line follows from Lemma 2.4] O

The following lemma deals with heat kernel estimates for complex time. Before
stating the result, define, for all 6 € (0, g),

Yo :={z€C; |arg z| < 0}.

Lemma 2.6. Let 0 < 7 and § > 0. The operator V(- |2])Pe =2V (- |2])~° has
L? — L? off-diagonal estimates for = € Xg. More precisely, for every x,y € M, and
every z € Yy,

< e_CdQ\iTéy)

_22 —
XV C 220V () X[, S

Proof. For a fixed z € ¥y, let us consider a covering of M by balls B; := B(x;, |z]),
1 € N with the following property: there exists N > 1 independent of z such that,
for all x € M, at most N balls B; intersect B(z, |z|)E

Denote d;; := d(z;,z;), and x; := xp,. Then, by the properties of the covering, it
is easy to see that it is enough to prove:

VG Ja)e = 20v (- 2) 70

By doubling and Davies-Gaffney estimates for complex times (see [2 Prop 2.1], the
proof of which only relies on uniform ellipticity of the operator under consideration),

2—2

?Indeed, by the “5r” covering theorem, for any fixed z there is a covering of M with balls B; =
B(x;, |2|) such that the balls £ B; are pairwise disjoint. Now, if # € M, I, := {i; B; N B(x,|z]) # 0}
and ¢ € I, then by doubling V(z,|z|) =~ V(B;). Thus, if we call N, := #I,., then

Viz,|z)<CY V(B)<C YV (%Bi) < C'V(x,|2|),

i€l, ic€l,

where the constant C' > 0 only depends on the doubling constants. It follows that N, < C”.
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- - Ve, 12D\ 11 .
zV . ) zQA()V . ) . < A\ I ‘ i z<Ag .
v I 2wl S (Tt el
J
< V(l‘], |Z| + d($za xj)) *C‘?‘JQ
d2 oD a2
J— e Iz
~ |2[?
2.
< e*C\zé

We now turn to a lemma concerning Gaussian kernels. Let

1 7cd2(z,y)
e 2
V(z,t)

be a Gaussian kernel, and K; be the associated integral operator

Ki(z,y) =

Kyv(x) ::/MKt(x,y)v(y)dy,

defined for all measurable functions v such that the integral converges.

Lemma 2.7. Let 1 < p < g < 400, and denote vy, , = % — %. Let E and F be two
measurable sets in M. Then, for some positive constants ¢; and cs, independent of

the sets E and F', and for all t > 0,

o d2(E,F) N
et e ||V )M Ky | pepy—par) < c2

as well as

d2(

E,F)
e || KV ()™ | Lo(gy—Lar) < Ca.

Proof. We first claim that K, satisfies

sup ||V (-, 1)1 K| pyq < +00, (2.12)

t>0

Indeed, let us denote A(z,t,0) = B(x,t) and A(z,t, k) = B(x, (k+ 1)t) \ B(x,kt),
k > 1. Let g € M. Then, for all £ > 2, all measurable functions v supported in
A(zo,t, k), and x € B(xo,t), one has by doubling and Holder

15



e
Ko@| = [ el
A(zo,t,k) V(i’, t)
1 2
< - —ck A t k 1-1/p
1 2
< —Ck
~ V(.Z‘O,t)l/pe Hv”p :
Therefore,
|| K| LaBao,y) < V(!Eo,t)l/q||KtU||Loo(B(xo,t))
1 2
< —Ck
~ V(l‘o, t)yp,qe ||’U||p
Consequently,
o—Ch?

< -
||XB(mo,t) Kt XA(mo,t,k)Hp—)q ~ V(.I‘O, t)"{p,q .

Hence, the proof of [1l, Prop. 2.9] applies, and gives (212). This implies the result,
in the case d(E, F) = 0. If now d(E, F') > 0, then for every u with support in E and
every x € F

_cd?(F.E)

Kuls) < 552 [
E

1 _c dQ(x,y)

2 +2 d
e ) dy

¢ d*(F,E)

. / Ki(w,y) [u(y)| dy,
E

where

1 _c d2(z,y)

f(t<x7y>: V(SL’ t)e 2 12

is a Gaussian kernel. By the above argument, the associated operator K, satisfies

[(212), hence with C = ¢/2,

d2(E,F)
SUIOZ) 60 t2 ||V(',t)’yp’thHLp(E)%Lq(F) < +00.
t>

Finally, the inequality for KV (-,¢)"9 can be proved by duality: indeed, it is equiv-
alent to

CdQ(L;F) V(- t)re K*
S;ig)e 2 ||V (1) t||Lq/(E)—>LP'(F) < +00,

where p’ and ¢ are the conjugate exponent to p and ¢ respectively, and K is the
adjoint operator to K.
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The kernel of K is

K:(l’,y) = Kt<y7x> =

and using the inequality

hence K| is bounded by a Gaussian kernel. Therefore, the first part of the argument
yields the inequality

CdQ(L;F) V(. e K*
S;ig)e 2|V (-, 1) t||Lq'(E)—>LP'(F) < +00,

which implies
d?(

E,F)
suloz)ec T || KV (-, )™ | Le(g)— La(r) < 400,
t>

O

The next two lemmata will be needed in order to control the heat kernel of the
Hodge Laplacian acting on exact one-forms.

Lemma 2.8. Let B be a ball such that 2B is admissible, and u be a function in
C(B). Let F C M be such that

r(B) Sr(x)+1, VeelF.
Then, for every t > 0,

~Y

2 r(B _ cd(F,B)?
||V(',t)1/2@_t Al(du)||L2(F) < (1+ (t )) e 12 ||du||1

Proof. For every x € F,

2 ()| (1) = Ve oul()
< / Vapes (2, ) |u(y)]| dy
1 1 (2.13)
S §+W)/3Kt($ay)|u(y)|dy

S (5 +5g) Kb,

where K is a Gaussian kernel and we have used the assumption on F' and Lemma
2.4l According to Lemma 2.7 one gets

17



Cd2(FaB) 1/2 7t2A ]_ 1
supe” 2 ||V t)e 2 (du <|{-4+—]|lu )
t>g> 2| (-, t) (du)[r2(r) S (t (B) |ul|z1(m)

Since 2B is admissible, it supports an L' Poincaré inequality with constant of order
r(B) by Lemma 22l Since u vanishes on 2B\ B, one gets (see [7, Lemma 4.2.3])

/B|u| < r(B) /23|vu|:r(3)/3|vu|. (2.14)

Therefore, one arrives to

d(F,B)

B
supeC 2 ||V1/2(.,t)e‘t2A1(du)||L2(F)5(T< )

t

t>0

and the result follows.
O

Lemma 2.9. Let B be an admissible ball, and u be a function in C3°(B). Let 0 <
0 < 5, and let Xy denotes the sector of angle 6 in C. Let I be a measurable set in

M. Then, for z € ¥y, there holds:

7Cd(F,B)2
IV 2D 22d e 2 (du) |2y S e = |[dul]y,

where the various constants in the inequality are independent of the ball B and the
function wu.

Proof. Denote zp the center of B. We start with the case z =t > 0 positive real
number, for which there are two cases: either t < r(xp) + 1, or t > r(zg) + 1. For
t <r(xg) + 1, we proceed by duality: let h € L? with support in F, then

/F Ve, )2 e (du) (z) - h(z)da

N / V(w, 6) /2t 20 (d"du) (x) - hz)de

_ / du(x) - (tde "V (1) ?h) (x)dz|.

However, by Lemma 2.4]

d2(z,y)

e 2o 2n) @l < [ (10— ) 02 )| dy
P r(x V(z,t)

)+ 1

Since t < r(xp) + 1 and B is admissible, it follows that ¢ < r(z) 4 1 for every = € B.
Hence,

e V(08 )] < [ K Vi) inw)ldy. € B,
( )@ s
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where Ki(z,y) is a Gaussian kernel. According to Lemma 2.7, one obtains

d2(F,B)
supe 2
t>0

)tde*t“OV(~, £)2

< +00.
L2(F)—L>(B)

This implies

_ ~d%(F,B)
Se O E | |dull gy - | 2y

/FV(.T, Y2 td e A (du) () - h(z)d

hence

d(F,B)?

[V ()2t e (du) | 2my S € # ||dul 1.

This proves the result for z = ¢ < r(zp) + 1. Now, we treat the case t > r(zp) + 1:
we write

td e 2 (du) = tAge " Pou.

According to [15, Theorem 4], the kernel 3% ps(x,y) has pointwise Gaussian estimates.
Applying this with s = ¢? and using Lemma 2.7]

d?(F,B)

1
Vit V24 ety 2 S —e 2 ||ullg.
") S5

As in the proof of Lemma 28, ([ZI4) yields

_cd2(F,B)
e =F | dul .

r(B)
t
Since B is admissible, 7(B) < r(xg) + 1, and because t > r(zg) + 1, one gets that

[V (- t) 2t e (du) | 2y S

d?(F,B)

V(- t V2 =21 gy gy Se 2 ||dullg.
(F) ~

This concludes the proof for z = t > 0 real; it remains to prove the lemma for complex
z. We write 22 = (2/)? 4+ %, where 2/ € ¥, with > 6, ¢ > 0, and

|2] =~ || ~ t.

Then, one has
V(-, |Z|)1/22d*6_22A1 - ; (V(’ |Z|)1/26_(Z,)2A0V(-, |Z|)_1/2) <V(, |Z|)1/2td*e_t2A1)

w2 (V)2 IRV )T (V0 e ).

The term % is bounded, while by Lemma and the above, the operators
(V(-, |2/])1/2e= (D2 Roy/ (. |z’|)_1/2> and (V(~,t)1/2td*e_t2A1) have respectively L? —
L? and L' — L? off-diagonal estimates. The composition lemma (see [2, Proposi-

tion 3.1]) for the Euclidean case) yields the L' — L? off-diagonal estimates for the
composed operator
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(V(7 |Z/|)1/2e*(zl)2on<_’ ‘z/‘)71/2) (V(, t)l/Qtd*efﬁAl) :

hence the result.

3 Proof of Proposition

3.1 Splitting into three regimes
Recall that, for all z € M,

-U/L.,

The conclusion of Proposition means that

1
2 2 dz dt\?
* —t2/A\q -
w(z) Viz,t) t )

[A(du)ll, < lldull, - (3.15)

For the proof of ([B1H), following [9], we fix a constant x > 2! and, as explained
in the introduction, decompose the integration domain in the definition of Aw into
three pieces or “regimes”, namely:

Aw < Aw + Asw + Agw, (3.16)

where A,w stands for the “long-to-short” regime, that is

Aol (//(zt )er(z) (/ (y)>rr(2) bloy) ol )dy) V(d: t)%> | ’ (3.17)

Asw stands for the “short-to-long” regime, that is

2 2
dz dt
b wdr) o)
</ / e </ o), den)2etr() Vizt) t

(3.18)

=

and Ayw stands for the “diagonal” regime, that is

Recall that k; is the kernel of td*e 21, Notice that, whenever r(y) > xr(z), one has

d(z,y) = r(y) —r(2) = (s = Dr(z) = 67 'r(2),

which shows that the long-to-short and the short-to-long regimes cover the case where
d(z,y) >k 1r(2).
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3.2 The “long-to-short” regime

In this section, we establish that, for all A > 0,

[l
)

p{z e M; Aw(x)> A