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Abstract

Let (M,g) be a complete Riemannian manifold. Assume that the Ricci
curvature ofM has quadratic decay and that the volume growth is strictly faster
than quadratic. We establish that the Hardy spaces of exact 1-differential forms
on M , introduced in [5], coincide with the closure in Lp of R(d)∩Lp(Λ1T ∗M)
when ν

ν−1 < p < ν, where ν > 2 is related to the volume growth. Here

and after, R(d) denotes the range of d as an unbounded operator from L2 to
L2(Λ1T ∗M). The range of p is optimal. This result applies, in particular, when
M has a finite number of Euclidean ends.
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1 Introduction

1.1 Motivation

Let n ≥ 1 be an integer. The notation J1, nK denotes the set of integers j satisfying
1 ≤ j ≤ n. It is a well-known fact that, for all j ∈ J1, nK, the Riesz transform
∂j(−∆)−1/2 is Lp(Rn)-bounded for all p ∈ (1,∞) andH1(Rn)-bounded, whereH1(Rn)
denotes the real Hardy space. If one seeks for a version of this result in a complete
Riemannian manifold (M, g) endowed with its Riemannian measure µ, one has to
take into account that the Riesz transform, given by d∆−1/2 in this context, is 1-form
valued. Motivated by this observation and relying on the connection between Hardy
spaces and tent spaces ([16]), Auscher, McIntosh and the second author introduced,
in [5], a family of Hardy spaces of exact (resp. co-exact) differential forms on M ,
namely Hp

d(Λ
kT ∗M) (resp. Hp

d∗(Λ
kT ∗M)) for 1 ≤ p ≤ ∞ and 0 ≤ k ≤ dim M .

Denote ∆k = dd∗+ d∗d the Hodge Laplacian acting on differential forms of degree k;
in particular, ∆0 = ∆, the usual Laplacian acting on scalar functions on M . In [5], it
was proved that, under a doubling volume condition for geodesic balls ofM , the Riesz
transform d∆

−1/2
k acting on exact differential k-forms is bounded from Hp

d∗(Λ
kT ∗M)

to Hp
d(Λ

k+1T ∗M) for all k ∈ J0, dim M − 1K and all 1 ≤ p ≤ ∞.
With the issue of Lp-boundedness of the Riesz transform in mind, one may wonder

if Hp
d(Λ

kT ∗M) coincides with the closure in Lp of R(d)∩Lp(ΛkT ∗M) for 1 < p <∞,
as well as the corresponding statement for Hp

d∗(Λ
kT ∗M), as in the Euclidean case.

In the case of 0-forms (that is, for functions), it was proved in [5, Theorem 8.5]
that the answer is positive for Hp

d∗(Λ
0T ∗M) if the heat kernel associated with the

Laplace-Beltrami operator satisfies Gaussian pointwise upper estimates. A similar
statement holds for Hp

d (Λ
1T ∗M) if one assumes analogous Gaussian bounds for the

heat kernel associated with ∆1, the Hodge Laplacian on 1-forms; this is however a
much stronger assumption. In particular, it implies the Lp-boundedness of d∆−1/2

for all 1 < p < +∞ ([17, 29]). Gaussian bounds for the heat kernels associated with
∆0 and ∆1 hold, in particular, if (M, g) has nonnegative Ricci curvature ([28, 7, 8]).
In the present work we want to compare Hp and Lp, avoiding the use of Gaussian
bounds for the heat kernel on 1-forms. A general fact proved in [5] is that if the
measure µ is doubling, then for all p ≥ 2 and all 0 ≤ k ≤ dimM , the closure in
Lp of R(d) ∩ Lp(ΛkT ∗M) is included in Hp

d(Λ
kT ∗M). But the inclusion may be

strict, as the following example demonstrates: consider the manifold M made of the
connected sum of two copies of Rn. It is well-known that the heat kernel of ∆0 on M
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has Gaussian estimates, but that the heat kernel of ∆1 does not, despite M having
vanishing Riemannian curvature outside a compact set. If n ≥ 3 (resp. n = 2), it was
proved in [13] that d∆−1/2 is Lp-bounded if and only if 1 < p < n (resp. 1 < p ≤ 2).
and it follows that, on M , Hp

d(Λ
1T ∗M) and the closure in Lp of R(d) ∩ Lp(Λ1T ∗M)

never coincide if p ≥ n (resp. p > 2). However, as a consequence of the main result
in the present paper, we shall prove that for the connected sum of two copies of
Rn, n ≥ 3, Hp

d(Λ
1T ∗M) is equal to the closure in Lp of R(d) ∩ Lp(Λ1T ∗M) for all

p ∈
(

n
n−1

, n
)
. Thus, in this particular example, Hp

d(Λ
1T ∗M) is equal to the closure

in Lp of R(d) ∩ Lp(Λ1T ∗M), if and only if p ∈
(

n
n−1

, n
)
.

More generally, following [12], we consider complete Riemannian manifolds (M, g)
with a quadratic decay of the Ricci curvature, and, under suitable assumptions on
the volume growth of balls in M , we prove that Hp

d(Λ
1T ∗M) and the closure in Lp of

R(d) ∩ Lp(Λ1T ∗M) coincide for ν
ν−1

< p < ν, where ν is an exponent related to the
volume growth of balls in M . In particular, if n := dim M > 2 and M has a finite
number of Euclidean ends, the conclusion holds with ν = n. Moreover, in the latter
situation, we also prove that, for p ≥ n, the closure in Lp of R(d) ∩ Lp(Λ1T ∗M) is
a strict subspace of Hp

d(Λ
1T ∗M), unless M has only one end, in which case the two

spaces are equal.

1.2 The geometric context

Throughout the paper, if two quantities A(f) and B(f) depend on a function f
ranging over some space L, the notation A(f) . B(f) means that there exists C > 0
such that A(f) ≤ CB(f) for all f ∈ L. Moreover, A(f) ≃ B(f) means that A(f) .
B(f) and B(f) . A(f).
Let (M, g) be a complete Riemannian manifold. Denote by µ the Riemannian measure
and by d the Riemannian distance. For all x ∈ M and all r > 0, B(x, r) stands for
the open geodesic ball with center x and radius r, and V (x, r) := µ(B(x, r)). We
assume that the measure µ is doubling: for all x ∈M and all r > 0,

V (x, 2r) . V (x, r). (D)

By iteration, this condition implies at once that there exists D > 0 such that for all
x ∈M and all 0 < r < R,

V (x,R) .

(
R

r

)D

V (x, r). (VD)

We also consider a reverse doubling volume condition: there exists ν > 0 such that,
for all x ∈ M and all 0 < r < R,

(
R

r

)ν

V (x, r) . V (x,R). (RD)

When M is connected, (RD) follows from (D) (see [23, Chapter 15, p. 412]); further-
more, the exponent ν is related to lower bounds for the p-capacity of geodesic balls,
see [22, Theorem 5.6].
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Fix o ∈M and set r(x) := d(o, x) for all x ∈M . We make the following assumption
on the Ricci curvature of M : denoting Ricx the Ricci tensor at the point x and gx
the Riemannian metric at x, we assume that there is η ≥ 0 such that

Ricx ≥ − η2

r2(x)
gx, ∀x ∈M (QD)

in the sense of quadratic forms. We say that a ball B(x, r) is remote if r ≤ r(x)
2
. A ball

B(o, r) will be called anchored. The assumption (QD) on the Ricci curvature implies
by the Bishop-Gromov theorem and a simple scaling argument that if B(x, 2r) is
remote, then V (x, 2r) . V (x, r); hence, by [24, Prop. 4.7], (D) holds if and only if
M satisfies the so-called volume comparison condition, which writes as follows: for
every x ∈M ,

V (o, r(x)) . V (x,
r(x)

2
). (VC)

We notice also (see [12]) that (D) implies that M has a finite number of ends. More-
over, according to [10], (QD) implies that remote balls satisfy the scale invariant L1

Poincaré inequality: if B is remote and has radius r then

||f − fB||L1(B) . r||∇f ||L1(B), f ∈ C∞(B), (P1)

where fB denotes the average of f on B, that is fB := V (B)−1
∫
B
f .

For 0 ≤ k ≤ dim M , as already said, we denote by ∆k = dd∗ + d∗d the Hodge-
Laplacian acting on k-forms (here d stands for the exterior differential and d∗ for its
adjoint 1). Recall that −∆k generates a holomorphic semigroup on L2(ΛkT ∗M), and
the associated heat kernel, namely the kernel of e−t∆k , is denoted by pkt . One denotes
pt(x, y) the scalar heat kernel, i.e. the kernel of e−t∆0 . We consider the Gaussian
upper-bounds for the heat kernel:

pt(x, y) .
1

V (x,
√
t)

exp

(
−d

2(x, y)

ct

)
, ∀t > 0, ∀x, y ∈M. (UE)

Under (QD) and (VC), according to [12] there is a simple geometric condition ensuring
that (UE) holds:

Definition 1.1. We say that (M, g) with a finite number of ends satisfies the Relative
Connectedness in the Ends (RCE) condition, if there is a constant θ ∈ (0, 1) such
that for any point x with r(x) ≥ 1, there is a continuous path c : [0, 1] →M satisfying

• c(0) = x.

• the length of c is bounded by r(x)
θ
.

• c([0, 1]) ⊂ B(o, θ−1r(x)) \B(o, θr(x)).

1The notation d stands both for the exterior differential and for the Riemannian distance, which
will cause no confusion.
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• there is a geodesic ray γ : [0,+∞) →M \B(o, r(x)) with γ(0) = c(1).

In simple words, the condition (RCE) says that any point x inM can be connected
to an end by a path staying at distance approximately r(x) from the origin o. With
this definition, [12, Theorem 2.4] asserts that under (QD), (VC) and (RCE), the
Gaussian upper-estimate (UE) for the scalar heat kernel holds.

1.3 Tent and Hardy spaces

Let us briefly recall here the definitions of Hardy spaces of differential forms on (M, g)
introduced in [5]. These definitions rely on tent spaces, which we first present. For
all x ∈ M and α > 0, the cone of aperture α and vertex x is the set

Γα(x) = {(y, t) ∈ M × (0,+∞) ; y ∈ B(x, αt)} .
When α = 1, we write Γ(x) instead of Γ1(x). For any closed set F ⊂ M , let R(F )
be the union of all cones with aperture 1 and vertices in F . Finally, if O ⊂ M is an
open set and F = M \ O, the tent over O, denoted by T (O), is the complement of
R(F ) in M × (0,+∞).
Let F = (Ft)t>0 be a family of measurable functions on M . Write F (y, t) := Ft(y)
for all y ∈M and all t > 0 and assume that F is measurable onM × (0,+∞). Define
then, for all x ∈M ,

SF (x) =
(∫∫

Γ(x)

|F (y, t)|2 dµ(y)

V (x, t)

dt

t

)1/2

and, if 1 ≤ p < +∞, say that F ∈ T p,2(M) if

‖F‖T p,2(M) := ‖SF‖Lp(M) < +∞.

Recall that we denote by d the exterior differentiation and by d∗ its adjoint. Define
the following Hardy spaces of forms of degree one, for p = 2:

H2(Λ1T ∗M) = KerL2(∆1)
⊥,

H2
d(Λ

1T ∗M) := {du ∈ L2(Λ1T ∗M); u ∈ L2(M)}L
2

= dC∞
0 (Λ0T ∗M)

L2

,

and

H2
d∗(Λ

1T ∗M) := {d∗u ∈ L2(Λ1T ∗M); u ∈ L2(Λ2T ∗M)}L
2

= d∗C∞
0 (Λ2T ∗M)

L2

.

One has the following orthogonal Hodge decomposition for p = 2:

L2(Λ1T ∗M) = KerL2(∆1)⊕⊥H
2(Λ1T ∗M) = KerL2(∆1)⊕⊥H

2
d(Λ

1T ∗M)⊕⊥H
2
d∗(Λ

1T ∗M),

and moreover if M is non-parabolic, thus has a Green operator, the Hodge projector
Π onto exact forms, that is the orthogonal projector onto H2

d(Λ
1T ∗M) in the above

orthogonal decomposition, is given by the formula:

Π = d∆−1
0 d∗. (1.1)
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Remark 1. When M is non-parabolic, the operator ∆−1
0 is well-defined, which

makes the expression (1.1) valid. If M is parabolic, it is still possible to write
Π = (d∆−1/2)(d∆−1/2)∗ and Π is bounded on L2 (see [21] for details), but (1.1)
is not well-defined. The parabolic situation will not be encountered in the sequel of
the present work.

In this work, we will mainly focus on the scale of Hardy spaces of exact forms,
Hp

d(Λ
1T ∗M), which we present now in details. Its definition for p 6= 2 relies on two

operators ([5, Section 5.3]):

Definition 1.2. Let N ≥ 0 be an integer.

1. For all F ∈ T 2,2(M), let

SN
d (F ) :=

∫ +∞

0

td(t∆)Ne−t2∆Ft
dt

t
∈ L2(Λ1T ∗M).

2. For all ω ∈ L2(Λ1T ∗M) and all t > 0, let

(QN
d∗ω)t := td∗(t2∆1)

Ne−t2∆1ω ∈ T 2,2(M).

The spectral theorem shows that, for all integers N,N ′ ≥ 0, on H2
d(Λ

1T ∗M),

SN
d QN ′

d∗ = cN,N ′Id (1.2)

for some constant cN,N ′ > 0.
We now turn to the definitions of Hardy spaces, starting from Hardy spaces of exact
forms:

Definition 1.3. Let N ≥ 0 be an integer and p ∈ [1,∞). If p > 2, assume moreover
that N ≥ ⌊D

2
⌋+ 1.

1. Define

Ep
d(Λ

1T ∗M) := {ω ∈ H2
d(Λ

1T ∗M); td∗(t2∆1)
Ne−t2∆1ω ∈ T p,2(M)},

equipped with the norm

‖ω‖Hp

d
(Λ1T ∗M) =

∥∥∥td∗(t2∆1)
Ne−t2∆1ω

∥∥∥
T p,2(M)

.

2. LetHp
d(Λ

1T ∗M) be the completion of Ep
d(Λ

1T ∗M) under the norm ‖·‖Hp

d
(Λ1T ∗M).

It turns out that any two || · ||Hp

d
(Λ1T ∗M) norms, defined for two different values of

N satisfying the above assumptions, are equivalent, see [5, Section 5]; therefore, by
a slight abuse of notation, we will just write || · ||Hp

d
(Λ1T ∗M) without mentionning the

parameter N .
In some sense, as we already mentioned Hp

d(Λ
1T ∗M) is a space of exact forms of

degree one. More generally, in [5], a scale of Hardy spaces Hp(ΛT ∗M) of forms of any
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degree, that are not necessarily exact, are defined in a similar fashion. In degree one,
the construction is the same, except that the space Ep

d(Λ
1T ∗M) has to be replaced

by

Ep(Λ1T ∗M) := {ω ∈ H2(Λ1T ∗M); (t2∆1)
Ne−t2∆1ω ∈ T p,2(Λ1T ∗M)},

where N ≥ 1 is large enough, endowed with the corresponding norm. Finally, we also
mention that Hardy spaces of co-exact forms Hp

d∗(Λ
1T ∗M) can be defined similarly,

and one has the following Hodge decomposition in degree one:

Hp(Λ1T ∗M) = Hp
d(Λ

1T ∗M)⊕Hp
d∗(Λ

1T ∗M),

and the sum is topological (see [5, Theorem 5.14]). Two other useful facts are the
duality of the Hardy spaces, as well as the fact that they interpolate by the complex
method. These facts extend to the scale of Hardy spaces of exact (resp. co-exact)
forms Hp

d (ΛT
∗M) (resp. Hp

d∗(ΛT
∗M)). More precisely, the duality of Hardy spaces

for general forms of degree one is as follows: if p ∈ (1,+∞) and q = p′ is the conjugate
exponent, the pairing

(ω, η) 7→
∫

M

〈ω(x), η(x)〉x dµ(x),

(where 〈·, ·〉x denotes the complex inner product in T ∗
xM induced by the Rie-

mannian metric), initially defined on Ep(Λ1T ∗M) × Eq(Λ1T ∗M) ⊂ L2(Λ1T ∗M) ×
L2(Λ1T ∗M), extends uniquely to a pairing on Hp(Λ1T ∗M) × Hq(Λ1T ∗M), which
realizes Hq(Λ1T ∗M) as the dual of Hp(Λ1T ∗M) (see [5, Theorem 5.8]). Since
d ◦ d = 0 = d∗ ◦ d∗, the pairing of any element of Ep

d(Λ
1T ∗M) (resp. Ep

d∗(Λ
1T ∗M))

with an element of Eq
d∗(Λ

1T ∗M) (resp. Eq
d(Λ

1T ∗M)) is equal to zero, one concludes
that the dual of Hp

d(Λ
1T ∗M) is Hq

d(Λ
1T ∗M).

Remark 2. According to [5, Proposition 5.4], the space

Ẽp
d(Λ

1T ∗M) := {ω ∈ R(d); td∗(t2∆1)
Ne−t2∆1ω ∈ T p,2(M)}

is dense in Ep
d(Λ

1T ∗M). Hence, the Hardy space Hp
d (Λ

1T ∗M) can equivalently be
defined as the completion of Ẽp

d(Λ
1T ∗M).

The Hardy space Hp
d(Λ

1T ∗M) thus defined is an abstract Banach space, however
it is not at all clear from this definition that elements of Hp

d(Λ
1T ∗M) can be identified

bona fide with elements of a function space, for instance it is not clear whether there
is an embedding Hp

d(Λ
1T ∗M) →֒ L1

loc(Λ
1T ∗M). For the case p ∈ [1, 2), this issue has

been addressed in [4] (see Theorem 1.1 therein), filling a gap in [5, Corollary 6.3].
Since this is a quite subtle point, let us elaborate a bit more on this, following the
concepts introduced in [4].

Definition 1.4. Let X and Y be normed spaces. We write X ⊆ Y when X is a
subspace of Y , with the property that there exists C > 0 such that ||x||Y ≤ C||x||X
for all x ∈ X , and we write X = Y when X ⊆ Y ⊆ X . We also write X $ Y if
X ⊆ Y but Y * X .
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An (abstract) completion (X , ı) of a normed space X consists of a Banach space
X and an isometry ı : X → X such that ı(X) is dense in X . Every normed space
X has an abstract completion X , defined as the set of all Cauchy sequences in X ,
quotiented by the following equivalence relation: two Cauchy sequences (xn)n∈N and
(yn)n∈N in X are identified provided that ‖xn − yn‖X → 0. However, if one wants to
realize the completion X as a function space, this abstract construction is useless. It
is convenient to formalise the following related notion.

Definition 1.5. Let X be a normed space and suppose that X ⊆ Y for some Banach
space Y . A Banach space X̃ is called the completion of X in Y when X ⊆ X̃ ⊆ Y ,
the set X is dense in X̃ , and ‖x‖X = ‖x‖X̃ for all x ∈ X .

It is easily checked that the completion X̃ of X in Y is unique whenever it exists.
Moreover, the set X̃ consists of all x in Y for which there is a Cauchy sequence (xn)n
in X such that (xn)n converges to x in Y , and the norm ‖x‖X̃ = limn→∞ ‖xn‖X . Let
us recall the following characterization from [4, Proposition 2.2]:

Proposition 1.6. Let X be a normed space and suppose that X ⊆ Y for some
Banach space Y , so the identity I : X → Y is bounded. The following are equivalent:

1. the completion of X in Y exists;

2. if (X , ı) is a completion of X, then the unique operator Ĩ in L(X , Y ) defined
by the commutative diagram below, is injective;

X

ı

��

I // Y

X
Ĩ

>>
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦

3. for each Cauchy sequence (xn)n in X that converges to 0 in Y , it follows that
(xn)n converges to 0 in X.

It has been established in the proof of [5, Corollary 6.3] that under the assump-
tion (D), for any p ∈ [1, 2), one has Ep

d(Λ
1T ∗M) ⊆ Lp(Λ1T ∗M). Then, in [4, The-

orem 1.1], it has been proved that under (D) and for any p ∈ [1, 2), the completion
Hp

d(Λ
1T ∗M) of Ep

d(Λ
1T ∗M) (or equivalently, of Ẽp

d(Λ
1T ∗M)) in Lp(Λ1T ∗M) exists;

in fact, since Ẽp
d(Λ

1T ∗M) is included as a set in R(d), it follows that the com-

pletion of Ẽp
d(Λ

1T ∗M) exists in R(d) ∩ Lp(Λ1T ∗M)
Lp

, which one writes shortly as

Hp
d(Λ

1T ∗M) ⊆ R(d) ∩ Lp(Λ1T ∗M)
Lp

, p < 2. In particular, the following inequality
holds for p < 2:

||ω||Lp(Λ1T ∗M) . ||ω||Hp

d
(Λ1T ∗M) = ||td∗e−t2∆1ω||T p,2, ∀ω ∈ Ep

d(Λ
1T ∗M) (1.3)

The converse inequality is then equivalent to Hp
d(Λ

1T ∗M) = R(d) ∩ Lp(Λ1T ∗M)
Lp

;
to stress this latter fact, we single it out in a seperate lemma:
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Lemma 1.7. Assume that M satisfies (D) and has Ricci curvature bounded from
below. Let p < 2, then the inequality

||td∗e−t2∆1ω||T p,2 . ||ω||Lp(Λ1T ∗M), ∀ω ∈ H2
d(Λ

1T ∗M) ∩ Lp(Λ1T ∗M). (1.4)

is equivalent to Hp
d(Λ

1T ∗M) = H2
d(Λ

1T ∗M) ∩ Lp(Λ1T ∗M)
Lp

= R(d) ∩ Lp(Λ1T ∗M)
Lp

,
in the sense of Definition 1.5.

Proof. As mentioned above, one always has the inclusion

Hp
d(Λ

1T ∗M) ⊆ R(d) ∩ Lp(Λ1T ∗M)
Lp

.

Assume (1.4), it remains to prove the converse inclusion. Notice also that by definition
R(d) ⊂ H2

d , so

R(d) ∩ Lp(Λ1T ∗M)
Lp

⊂ H2
d(Λ

1T ∗M) ∩ Lp(Λ1T ∗M)
Lp

.

Let ω ∈ H2
d(Λ

1T ∗M) ∩ Lp(Λ1T ∗M). By (1.4), we get that ω ∈ Hp
d(Λ

1T ∗M) with

‖ω‖Hp

d
(Λ1T ∗M) . ‖ω‖p . (1.5)

If ω ∈ H2
d(Λ

1T ∗M) ∩ Lp(Λ1T ∗M)
Lp

, there exists a sequence (ωk)k≥1 ∈ H2
d(Λ

1T ∗M)∩
Lp(Λ1T ∗M) converging to ω in Lp(Λ1T ∗M). Hence, (1.4) entails that (ωk)k≥1 is
a Cauchy sequence in Hp

d(Λ
1T ∗M). As a consequence, this sequence converges in

Hp
d(Λ

1T ∗M), therefore also in Lp(Λ1T ∗M). Thus, ω ∈ Hp
d(Λ

1T ∗M) and therefore

H2
d(Λ

1T ∗M) ∩ Lp(Λ1T ∗M)
Lp

⊆ Hp
d(Λ

1T ∗M) holds. Finally, we have proved that

Hp
d(Λ

1T ∗M) = H2
d(Λ

1T ∗M) ∩ Lp(Λ1T ∗M))
Lp

, and it follows that

Hp
d(Λ

1T ∗M) = H2
d(Λ

1T ∗M) ∩ Lp(Λ1T ∗M)
Lp

= R(d) ∩ Lp(Λ1T ∗M)
Lp

.

Conversely, assume that Hp
d(Λ

1T ∗M) = H2
d(Λ

1T ∗M) ∩ Lp(Λ1T ∗M)
Lp

. Then,

||ω||Hp

d
(Λ1T ∗M) = ||td∗e−t2∆1ω||T p,2 ≃ ||ω||Lp(Λ1T ∗M), ∀ω ∈ Ep

d(Λ
1T ∗M).

Let ω ∈ H2
d(Λ

1T ∗M) ∩ Lp(Λ1T ∗M), then the assumed equality Hp
d(Λ

1T ∗M) =

H2
d(Λ

1T ∗M) ∩ Lp(Λ1T ∗M)
Lp

implies that ω ∈ Hp
d(Λ

1T ∗M), so that there is a se-
quence (ωn)n∈N in Ep

d(Λ
1T ∗M), such that ||ωn−ω||Hp

d
(Λ1T ∗M) ≃ ||ωn−ω||Lp(Λ1T ∗M) →

0. In particular, this implies that (td∗e−t2∆1ωn)n∈N is a Cauchy sequence in T p,2,
hence converges to F ∈ T p,2. We also have ||F ||T p,2 ≃ ||ω||Lp(Λ1T ∗M), there-

fore, in order to prove (1.4), it is enough to prove that F = td∗e−t2∆1ω. Denote
Fn = td∗e−t2∆1ωn. We use the duality between T p,2(Λ0T ∗M) and T q,2(Λ0T ∗M),
q = p′: let G ∈ T q,2(Λ0T ∗M), then

9



∫

M×(0,+∞)

F (t, x)G(t, x) dµ(x)
dt

t
= lim

n→∞

∫

M×(0,+∞)

Fn(t, x)G(t, x) dµ(x)
dt

t

= lim
n→∞

∫ ∞

0

Q0
d∗ωnG

dt

t

= lim
n→∞

∫

M

〈ωn,S0
dG〉 dµ(x)

Let us assume now that G is a smooth, compactly supported function inM×(0,+∞).
We claim that S0

dG ∈ Lq(Λ1T ∗M). Indeed, observe first that, since M satisfies (D)
and has Ricci curvature bounded from below, there exist C, c > 0 such that, for all
t ∈ (0, 1) and all x, y ∈M ,

|∇xpt(x, y)| ≤
C√

tV (x,
√
t)

exp

(
−cd

2(x, y)

t

)
. (1.6)

Indeed, arguing as in [22, p. 488], one deduces from the lower bound for the Ricci
curvature of M that, for all t ∈ (0, 1) and all x, y ∈M ,

|−→p t(x, y)| . pt(x, y), (1.7)

where −→p t denotes the keat kernel on 1-forms. Inequality (1.7) and [18, Theorem 16]
entail the existence of C, c > 0 such that, for all t ∈ (0, 1) and all x, y ∈M ,

|−→p t(x, y)| ≤
C

V (x,
√
t)

exp

(
−cd

2(x, y)

t

)
. (1.8)

Finally, arguing as in the proof of [17, (5.7)], one derives from (D), [18, Theorem 16]
and (1.8) that (1.6) holds for all t ∈ (0, 1).

Thus, (1.6), as well as the compactness of the support of G, show that, for all
x ∈M ,

S0
dG(x) . MG(x),

where M stands for the (uncentered) Hardy-Littlewood maximal function. In turn,
this implies that S0

dG ∈ Lq(M), as claimed. Using that ωn → ω in Lp, we conclude
that

∫

M×(0,+∞)

〈F (t, x), G(t, x)〉 dµ(x)dt
t
=

∫

M

〈ω,S0
dG〉 dµ(x),

for all G is a smooth, compactly supported function in M × (0,+∞). Since the set of
such G’s is dense in T q,2(Λ1T ∗M), we obtain that F = (S0

d)
∗ω = Q0

d∗ω = td∗e−t2∆1ω.

Let us now turn to the case p > 2. In this case, as far as we know, it is still
unknown whether under the assumption (D) only, the completion of Ep

d(Λ
1T ∗M) in

L1
loc(Λ

1T ∗M) exists. Denote F p
d (Λ

1T ∗M) := H2
d(Λ

1T ∗M) ∩ Lp(Λ1T ∗M), endowed

10



with the Lp norm. The proof of [5, Corollary 6.3, (b)] shows that F p
d (Λ

1T ∗M) ⊆
Ep

d(Λ
1T ∗M). This means in particular that the following inequality holds:

||ω||Hp

d
(Λ1T ∗M) . ||ω||Lp(Λ1T ∗M), ∀ω ∈ H2

d(Λ
1T ∗M) ∩ Lp(Λ1T ∗M). (1.9)

Clearly, by item 3 in Proposition 1.6, the completion of F p
d (Λ

1T ∗M) in Lp(Λ1T ∗M)
therefore exists; in what follows, this completion will be denoted by

H2
d(Λ

1T ∗M) ∩ Lp(Λ1T ∗M)
Lp

,

or F p
d (Λ

1T ∗M)
Lp

, or even just H2
d(Λ

1T ∗M) ∩ Lp(Λ1T ∗M) to keep notations rea-
sonnably light, when there is no possible confusion. The inclusion F p

d (Λ
1T ∗M) ⊆

Ep
d(Λ

1T ∗M) therefore extends uniquely to an inclusion:

F p
d (Λ

1T ∗M)
Lp

⊆ Hp
d(Λ

1T ∗M).

In light of Remark 2, one can alternatively define the Hardy space Hp
d(Λ

1T ∗M) as
the completion of Ẽp

d(Λ
1T ∗M), and the proof of [5, Corollary 6.3, (b)] shows that

R(d) ∩ Lp(Λ1T ∗M) ⊆ Ẽp
d(Λ

1T ∗M),

and this inclusion also extends uniquely to an inclusion:

R(d) ∩ Lp(Λ1T ∗M)
Lp

⊆ Hp
d(Λ

1T ∗M).

In the sequel, we will be interested in the converse inclusion.

1.4 Statement of the results

With these definitions settled, our main result states as follows:

Theorem 1.8. Assume that (M, g) satisfies (QD), (VC), (RCE) and (RD) with
some ν > 2. Then, for all p ∈ ( ν

ν−1
, ν), the completion Hp

d(Λ
1T ∗M) of Ep

d(Λ
1T ∗M)

in Lp(Λ1T ∗M) exists, and moreover this completion satisfies

Hp
d(Λ

1T ∗M) = R(d) ∩ Lp(Λ1T ∗M)
Lp

,

in the sense of Definition 1.4.

As a corollary, we are able to completely characterize the Hardy spaceHp
d(Λ

1T ∗M)
for p ∈

(
n

n−1
, n
)
, as well as for p ≥ n in some cases, where n = dim(M) ≥ 3, for

all manifolds having Euclidean or conical ends. Recall first that a manifold M with
topological dimension n is said to have a finite number of Euclidean ends if there
is a compact set K ⋐ M , an integer N ∈ N and positive real numbers R1, · · · , RN

such that M \ K is isometric to the disjoint union
⊔N

i=1R
n \ B(0, Ri). The sets

Rn \B(0, Ri) can thus be identifed isometrically with open subsets of M , which are
called the Euclidean ends of M (of course, the positive numbers Ri are not unique,

11



so we slightly abuse notations here). More generally, in the same fashion one can
define the notion of a manifold with a finite number of conical ends, where a conical
end E is defined as follows: there exists a compact Riemannian manifold (Σ, h) and
R > 0, such that E = (R,+∞) × Σ endowed with the metric dr2 + r2h. Note that
manifolds with conical ends satisfy assumptions (QD), (VC), (RCE). Moreover, there
exists C > 0 such that, for all x ∈M and all R > 0,

C−1Rn ≤ V (x,R) ≤ CRn

so that (RD) holds with ν = n. All these properties are stated in [12, Section 7.1]).
For manifolds with a finite number of Euclidean ends, our result writes as follows:

Corollary 1.9. Let M be a complete Riemannian manifold of dimension n ≥ 3 with
a finite number of Euclidean ends, and let p ∈

(
n

n−1
,+∞

)
;

• if p ∈
(

n
n−1

, n
)
, then Hp

d(Λ
1T ∗M) = R(d) ∩ Lp(Λ1T ∗M)

Lp

.

• if p ∈ [n,+∞), and M has only one end, then

Hp
d (Λ

1T ∗M) = R(d) ∩ Lp(Λ1T ∗M)
Lp

• if p ∈ [n,+∞) and M has two or more ends, the completion of Ep
d(Λ

1T ∗M) in
Lp(Λ1T ∗M) does not exist. The inclusion R(d) ∩ Lp(Λ1T ∗M) ⊆ Ep

d(Λ
1T ∗M)

extends uniquely to an inclusion:

R(d) ∩ Lp(Λ1T ∗M)
Lp

⊆ Hp
d(Λ

1T ∗M),

but the latter inclusion is strict.

Proof. The statement for n
n−1

< p < n follows from Theorem 1.8.
It thus remains to discuss the case p ∈ [n,+∞). For p ≥ n, as already seen, the

inclusion

R(d) ∩ Lp(Λ1T ∗M)
Lp

⊂ Hp
d (Λ

1T ∗M)

holds true. Moreover, by [5, Theorem 5.16], the Riesz transform is bounded from
Hp

d∗(Λ
0T ∗M) to Hp

d(Λ
1T ∗M). By the argument in [20, p. 12-13], (D) and (UE)

imply thatHp
d∗(Λ

0T ∗M) ≃ Lp(M), hence the Riesz transform d∆
−1/2
0 is bounded from

Lp(M) to Hp
d (Λ

1T ∗M). Since it is known that d∆
−1/2
0 is not bounded on Lp, p ≥ n,

in the case M has several Euclidean ends (see [13, Corollary 7.5]), one concludes that
in this case, for p ∈ [n,+∞),

R(d) ∩ Lp(Λ1T ∗M)
Lp

$ Hp
d(Λ

1T ∗M).

If M has only one end, (RCE) is the more familiar (RCA) condition (Relative Con-
nectedness of Annuli) from [24], hence by [24, Corollary 5.4] M satisfies the scaled
L2 Poincaré inequalities. According to [13], the Riesz transform on M is bounded on
Lp, for every p ∈ (1,+∞); hence, by [20], for every p ∈ [n,+∞),

12



Hp
d(Λ

1T ∗M) ≃ R(d) ∩ Lp(Λ1T ∗M)
Lp

.

More generally, we can prove a similar result for manifolds with conical ends:

Corollary 1.10. Let M be a complete Riemannian manifold of dimension n ≥ 3
with a finite number of conical ends. Define a number p∗ as follows: p∗ is equal to
n if M has two ends or more, whereas if M has only one end which is isometric to
[R,+∞)× Σ, one lets

p∗ =
n

n
2
−
√
λ1 +

(
n−2
2

)2 > n,

where λ1 > 0 is the first non-zero eigenvalue of the Laplacian on Σ (by convention,
p∗ = +∞ if λ1 ≥ n− 1). Then, for all p ∈

(
n

n−1
, p∗
)
,

Hp
d(Λ

1T ∗M) ≃ R(d) ∩ Lp(Λ1T ∗M)
Lp

,

whereas for all p ∈ [p∗,+∞),

R(d) ∩ Lp(Λ1T ∗M)
Lp

$ Hp
d(Λ

1T ∗M).

Remark 3. The same result holds for asymptotically conical manifolds in the sense
of [25].

Proof. The proof is the same as for Corollary 1.9, taking into account that the Riesz
transform on M is bounded on Lp, if and only if 1 < p < p∗ (see [25]).

Remark 4. As already seen, the conclusion of Theorem 1.8 does not hold when
p ≥ ν. The validity of this conclusion, as well as the corresponding assertions in
Corollaries 1.9 and 1.10, when 1 < p ≤ ν

ν−1
is an open problem.

1.5 Strategy of the proof

Our strategy is as follows. We distinguish the cases p < 2, and p > 2. For the former,
we will use the characterization of Lemma 1.7, while for p > 2, one will make use of
the following result, whose proof is based on the duality of the Hardy spaces:

Proposition 1.11. Let p > 2, and denote q = p′ < 2 the conjugate exponent. Assume
that the following inequality is satisfied:

∥∥∥td∗e−t2∆1ω
∥∥∥
T q,2(M)

. ‖ω‖q , ∀ω ∈ Lq(Λ1T ∗M), (1.10)

Then, the Hardy space Hp
d(Λ

1T ∗M) can be realized as the completion of Ep
d(Λ

1T ∗M)
into Lp(Λ1T ∗M). Moreover, this completion satisfies

Hp
d(Λ

1T ∗M) = R(d) ∩ Lp(Λ1T ∗M)
Lp

,

in the sense of Definition 1.4.
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Proof. Let η ∈ Ep
d(Λ

1T ∗M) and ω ∈ Lq(Λ1T ∗M) ∩ L2(Λ1T ∗M). Let N ′ ≥ ⌊D
2
⌋ + 2

be an integer. Then, using the duality pairing between T p,2 and T q,2 ([16, Section 5,
Theorem 2]) and (1.2), we get

∫

M

〈η(x), ω(x)〉dµ(x) = c

∫

M

〈S0
dQN ′

d∗ η(x), ω(x)〉dµ(x)

= c

∫∫

M×(0,+∞)

〈QN ′

d∗ η(x),Q0
d∗ω(x)〉dµ(x)

dt

t

≤ c
∥∥∥td∗(t2∆1)

N ′

e−t2∆1η
∥∥∥
T p,2

∥∥∥td∗e−t2∆1ω
∥∥∥
T q,2

. ‖η‖Hp

d
(Λ1T ∗M) ‖ω‖Lq(Λ1T ∗M) ,

where we have used the hypothesis, as well as Definition 1.3. By density of
Lq(Λ1T ∗M) ∩ L2(Λ1T ∗M) in Lq(Λ1T ∗M), the above inequality extends to all ω ∈
Lq(Λ1T ∗M). Dividing both sides by ‖ω‖Lq(Λ1T ∗M) and taking the supremum in ω 6= 0

belonging to Lq(Λ1T ∗M), one obtains that for every η ∈ Ep
d(Λ

1T ∗M),

||η||Lp(Λ1T ∗M) . ‖η‖Hp

d
(Λ1T ∗M) . (1.11)

In particular, Ep
d(Λ

1T ∗M) ⊆ F p
d (Λ

1T ∗M), and Ẽp
d(Λ

1T ∗M) ⊆ R(d) ∩ Lp(Λ1T ∗M).
Since p > 2, as already mentioned previously (cf the proof of [5, Corollary 6.3, (b)]),
the converse inclusions hold, and one concludes that Ep

d(Λ
1T ∗M) = F p

d (Λ
1T ∗M)

and Ẽp
d(Λ

1T ∗M) = R(d) ∩ Lp(Λ1T ∗M) in the sense of Definition 1.4. By item 3 of
Proposition 1.6, the completion of F p

d (Λ
1T ∗M) in Lp(Λ1T ∗M) exists, hence the same

is true for Ep
d(Λ

1T ∗M), and we conclude that the Hardy space Hp
d(Λ

1T ∗M) can be
realized as the completion of Ep

d(Λ
1T ∗M) in Lp(Λ1T ∗M). Moreover, since

Ẽp
d(Λ

1T ∗M) = R(d) ∩ Lp(Λ1T ∗M)

and Ẽp
d(Λ

1T ∗M) is dense in Hp
d(Λ

1T ∗M), one obtains that

Hp
d(Λ

1T ∗M) = R(d) ∩ Lp(Λ1T ∗M)
Lp

.

According to Lemma 1.7 and Proposition 1.11, in order to prove Theorem 1.8, it
is enough to establish that for all p ∈

(
ν

ν−1
, 2
)

∥∥∥td∗e−t2∆1ω
∥∥∥
T p,2(M)

. ‖ω‖p , ω ∈ Lp(Λ1T ∗M). (1.12)

For p ∈ (1,∞) and N ≥ 0 an integer, we will in fact consider the more general
inequality:

∥∥∥td∗(t2∆1)
Ne−t2∆1ω

∥∥∥
T p,2(M)

. ‖ω‖p , ω ∈ Lp(Λ1T ∗M). (1.13)

We now introduce the inequality (1.13), in restriction to exact forms: more precisely,
for every ω in the Lp closure of H2

d(Λ
1T ∗M) ∩ Lp(Λ1T ∗M) ∩ C∞(Λ1T ∗M),
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∥∥∥td∗(t2∆1)
Ne−t2∆1ω

∥∥∥
T p,2(M)

. ‖ω‖p . (1.14)

The reason for adding the condition that ω ∈ C∞(Λ1T ∗M) is the following: let
ω ∈ H2

d(Λ
1T ∗M)∩C∞(Λ1T ∗M), then by definition ofH2

d(Λ
1T ∗M), there is a sequence

(fn)n∈N of smooth, compactly supported function so that ω is the L2 limit of (dfn)n∈N;
then, since ω is smooth, according to [11, Lemma 1.11] there is f ∈ C∞(M) such that
ω = df . Thus, ω really is an exact 1-form. Observe also that, if N is large enough
and p > 2, then (1.14) always holds. Indeed, if ω ∈ H2

d ∩ Lp, (1.14) follows from the
fact that ω ∈ Hp

d . The general case follows by approximation.
The following lemma shows that (1.13) follows from (1.14) if the Hodge projector

on exact forms Π = d∆−1
0 d∗ is bounded in appropriate Lebesgue spaces:

Lemma 1.12. Let p ∈ (1,∞), and assume that Hodge projector on exact forms
Π = d∆−1

0 d∗is bounded on Lp. Then, (1.14) implies (1.13).

Proof. Let ω ∈ C∞
0 (Λ1T ∗M). Since Π : L2(Λ1T ∗M) → H2

d(Λ
1T ∗M) is always

bounded, and since by assumption Π is bounded on Lp, it follows that Πω ∈
H2

d(Λ
1T ∗M) ∩ Lp(Λ1T ∗M) ∩ C∞(Λ1T ∗M) with ||Πω||p . ||ω||p , therefore by (1.14)

one obtains

∥∥∥td∗(t2∆1)
Ne−t2∆1Πω

∥∥∥
T p,2(M)

. ‖Πω‖p . ||ω||p.

Therefore, noticing that td∗(t2∆1)
Ne−t2∆1ω = td∗(t2∆1)

Ne−t2∆1Πω, (1.13) holds for
any ω ∈∞

0 (Λ1T ∗M). Since C∞
0 (Λ1T ∗M) is dense in Lp(Λ1T ∗M), we conclude that

(1.13) holds for any ω ∈ Lp(Λ1T ∗M).

We can now make explicit the connections between all these different inequalities,
and the Hardy spaces:

Proposition 1.13. Assume that M is a complete Riemannian manifold satisfying
(D) and (UE). Let r ∈ (2,∞) and denote s = r′ < 2 the conjugate exponent.
Recall that Π denotes the Hodge projector onto exact 1-forms. Then, the following
are equivalent (in which the equalities are taken in the sense of Definition 1.5):

(i) Hs
d(Λ

1T ∗M) = R(d) ∩ Ls(Λ1T ∗M)
Ls

and Π extends to a bounded operator on
Ls.

(ii) for any p ∈ [s, r], Hp
d(Λ

1T ∗M) = R(d) ∩ Lp(Λ1T ∗M)
Lp

.

(iii) for any p ∈ [s, 2], (1.14) with N = 0 is satisfied, and Π extends to a bounded
operator on Ls.

(iv) the inequality (1.13) with N = 0 holds for p = s, and Π extends to a bounded
operator on Ls.
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Proof. (i) ⇒ (ii): first, according to Lemma 1.7, if p < 2 then Hp
d(Λ

1T ∗M) =

R(d) ∩ Lp(Λ1T ∗M)
Lp

is equivalent to (1.4). Since Π is Ls-bounded, Lemma 1.12
entails that (1.13) holds for all ω ∈ Ls. Since (1.13) clearly holds for p = 2, it also
holds for all p ∈ [s, 2] by interpolation, which implies in turn that Hp

d(Λ
1T ∗M) =

R(d) ∩ Lp(Λ1T ∗M)
Lp

for all p ∈ [s, r] (the case s ≤ p ≤ 2 follows from Lemma 1.7
while the case 2 ≤ p ≤ r is due to Proposition 1.11).

(ii) ⇒ (iii): clearly, (1.14) follows from (1.4) for p < 2, which holds accord-
ing to Lemma 1.7. Since M satisfies (D) and (UE), for every p ∈ (1,+∞),

Hp(Λ0T ∗M) ≃ Lp(Λ0T ∗M). Moreover, by [5], the Riesz transform d∆
−1/2
0 is bounded

from Hp(Λ0T ∗M) into Hp
d(Λ

1T ∗M), hence the Riesz transform is bounded in particu-

lar on Ls and Lr. Since Π = d∆−1
0 d∗ = (d∆

−1/2
0 )(d∆

−1/2
0 )∗, we get that Π is bounded

on Ls. Hence, (iii) holds.

(iii) ⇒ (iv): follows directly from Lemma 1.12 since Π is Ls-bounded.

(iv) ⇒ (i): clearly, (1.13) implies (1.4), so (i) follows directly from Lemma 1.7.

The key technical result in this work is the following:

Proposition 1.14. Assume that (M, g) satisfies (QD), (VC), (RCE) and (RD) for
some ν > 2. Let p ∈ ( ν

ν−1
, ν), where ν is the reverse doubling exponent from (RD).

Then, (1.14) with any N ∈ N holds.

The remaining of the article will be devoted to the proof of Proposition 1.14.
Assuming for the moment the result of Proposition 1.14, let us give the proof of
Theorem 1.8:

Proof of Theorem 1.8: recall ([12, Theorem A]) that, under the assumptions of The-
orem 1.8, the Riesz transform d∆−1/2 is Lq-bounded for all q ∈ (1, ν). This implies,
according to Lemma 1.12, that (1.13) holds. The result then follows from Proposition
1.11. �

In what follows, we establish (1.14).2

Our strategy for (1.14) is as follows. First, by density, notice that it suffices to
establish (1.14) for any ω ∈ H2

d(Λ
1T ∗M) ∩ Lp(Λ1T ∗M) ∩ C∞(Λ1T ∗M). Since ω ∈

2Our proof of (1.14) relies on the Lp and the Lp′

boundedness of d∆
−1/2
0

(or alternatively, of

the boundedness on Lp′

of Hodge projector onto exact forms Π), for p ∈ ( ν
ν−1

, 2). A variation on
our argument for (1.14) (with square vertical functionals instead of non-tangential ones) will show

that for every p ∈ ( ν
ν−1

, 2) and every function u, ||d∗∆−1/2
1

(du)||p . ||du||p. This is equivalent to

||d∗∆−1/2
1

Πω||p . ||Πω||p, where Π = d∆−1

0
d∗ is the Hodge projector. It is not clear how to get

from this the boundedness of the Riesz transform on Lp′

. It would be more satisfying to recover
directly the boundedness of the Riesz transform from our result on H

p
d (Λ

1T ∗M). Note also that it
is possible, for asymptotically euclidean manifolds, to establish directly the Lp-boundedness of Π,
without going through the continuity of Riesz transforms, see [27, Lemma 4.5].
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H2
d(Λ

1T ∗M)∩C∞(Λ1T ∗M), according to [11, Lemma 1.11], there existe f ∈ C∞(M)
such that ω = df . Thus, the inequality (1.14) amounts to

‖A(df)‖p . ‖df‖p , (1.15)

where

Aω(x) :=
(∫∫

Γ(x)

∣∣∣td∗(t2∆1)
Ne−t2∆1ω(z)

∣∣∣
2 dµ(z)

V (z, t)

dt

t

) 1
2

. (1.16)

The spectral theorem implies that

‖Aω‖2 . ||ω||2, ω ∈ L2(Λ1T ∗M).

We express

td∗(t2∆1)
Ne−t2∆1ω(z) =

∫

M

kt(z, y) · ω(y)dµ(y),

where kt is the kernel of td∗(t2∆1)
Ne−t2∆1, and plug this expression into (1.16). Fol-

lowing ideas of [12], we then split the integration domain into three parts, involving
different conditions on t, y, z.
The first one, called “long-to-short”, is defined by the conditions (z, t) ∈ Γ(x) and
r(y) ≥ κr(z). We establish the part of inequality (1.15) corresponding to this regime
thanks to pointwise bounds on |kt|, which in turn follow from pointwise Gaussian type
bounds on the heat kernel on functions and its gradient. More precisely, we obtain
in this way a weak type (1, 1) inequality, and the required Lp bound is obtained
by interpolation between this weak type (1, 1) inequality and a strong type (2, 2)
inequality.
The second one, called “short-to-long”, is defined by the conditions (z, t) ∈ Γ(x),
κr(z) > r(y) and d(z, y) ≥ κ−1r(z), and the corresponding part of (1.15) is proved
by similar arguments. Note that the part of (1.14) corresponding to these two regimes
holds even if the form ω is not exact.
The last part of the splitting is the so-called “diagonal regime”, defined by (z, t) ∈
Γ(x) and d(z, y) < κ−1r(z). The proof of the corresponding part in (1.15) is more
involved. We use a covering of M by a suitable collection of balls (Bα)α∈A which are
either remote or anchored, and localize in some sense the operator A in the balls Bα.
When t ≥ rα, a pointwise bound for |kt| is still sufficient. When t < rα, we use the
fact that ω is an exact form and, writing ω = df , decompose

ω =
∑

α∈A
d(χα(f − fBα

))−
∑

α∈A
(f − fBα

)dχα =
∑

α∈A
dfα −

∑

α∈A
ηα,

where (χα)α∈A is a special partition of unity associated with the covering (Bα)α∈A.
The part corresponding to dfα is treated by arguments similar to those used in [2],
and relies on L1−L2 estimates for the heat semigroup of the Hodge-Laplacian acting
on exact 1-forms (see Lemma 2.8 below). Roughly speaking, these estimates hold
since

e−s∆1du = de−s∆0u
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and pointwise estimates on the gradient of the heat kernel on functions can be used
again (note that pointwise bounds on the heat kernel on 1-forms do not hold in the
context of the present paper).
Finally, to treat the terms arising from ηα, we write

d∗e−s∆1ηα = e−s∆0d∗ηα,

and we conclude using pointwise bounds for e−s∆0, the inequality |dχα| . r−1
α , and

the fact that, due to L1 Poincaré inequalities on remote balls,

‖ηα‖L1(Bα)
.

1

rα
‖f − fBα

‖L1(Bα)
. ‖df‖L1(Bα)

.

The paper is organized as follows. Section 2 first presents the covering of M by
remote and anchored balls, as well as the associated partition of unity. We also
gather (and give proofs for) various pointwise or integrated estimates involving the
heat semigroup on functions or 1-forms. The proof of (1.14) is presented in Section
3, where the three regimes are successively considered.
Acknowledgements: this work was partly supported by the French ANR project
RAGE ANR-18-CE40-0012. The authors thank the department of mathematics at
the Technion - Israel Institute of Technology and the Institut Fourier at the Grenoble
Alpes University for their hospitality. They also thank the referees for their careful
reading and their very interesting remarks, which helped them to improve the paper.

2 Preliminary estimates

2.1 A good covering by admissible balls

For convenience, let us first gather definitions about balls of M (the first two ones
were already introduced before):

Definition 2.1. Let x ∈M and r > 0.

1. The ball B(x, r) is called remote if r ≤ r(x)
2
,

2. The ball B(x, r) is called anchored if x = o,

3. The ball B(x, r) is admissible if and only if B is remote or B is anchored and
r(B) ≤ r(B0), where the ball B0 will be defined in the construction of the
covering below.

We now explain how the assumption on the Ricci curvature allows one to construct
a good covering of M by remote and anchored balls, as well as a good partition of
unity associated to it. Following [12, Sections 4.3 and 5.3], consider a special covering
of M by a countable collection of admissible balls (Bα)α∈N, with the finite overlap
property. Let us briefly recall the construction, for the sake of completeness:
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1. define B0,1 := B(o, 1),

2. for all integer N ≥ 0, since

B
(
o, 2N+1

)
\B

(
o, 2N

)
⊂

⋃

2N≤r(x)<2N+1

B
(
x, 2N−13

)
,

the “5r” covering lemma ([26, Theorem 1.2]) provides a collection of points
(xN+1,i)i∈IN ∈ B

(
o, 2N+1

)
\ B

(
o, 2N

)
, where the set IN is at most countable,

such that the balls B
(
xN+1,i, 2

N−13
)
are pairwise disjoint and

B
(
o, 2N+1

)
\B

(
o, 2N

)
⊂
⋃

i∈IN

B
(
xN+1,i, 2

N−10
)
.

Since, for all i ∈ IN , B(xN+1,i, 2
N−13) ⊂ B

(
o, 2N+2

)
and the balls

B(xN+1,i, 2
N−13) are pairwise disjoint, the doubling property shows that, for

all finite subset J ⊂ IN ,

(♯J)V (o, 2N+2) ≤
∑

i∈J
V
(
xN+1,i, 2

N+3
)
.
∑

i∈J
V
(
xN+1,i, 2

N−13
)
≤ V

(
o, 2N+2

)
,

hence the set IN is actually finite and ♯IN ≤ C with C independent of N .

For all N ≥ 0 and all i ∈ IN , denoting BN+1,i = B
(
xN+1,i, 2

N−9
)
, the balls

BN+1,i and 7BN+1,i are remote and satisfy

29r(BN+1,i) ≤ r (xN+1,i) ≤ 210r(BN+1,i).

We have constructed a countable family (Bα)α≥0 of balls covering M ; actually the
family of balls (1

2
Bα)α≥0 also coversM and this will be relevant later. Up to increasing

the radius of B0 and deleting balls included in B0, we assume that B0 is the unique
ball containing the origin o. Denoting the family of balls by (Bα)α∈N, by rα the radius
of Bα and by xα its center, then for α 6= 0,

2−10r(xα) ≤ rα ≤ 2−9r(xα). (2.17)

In particular, for α 6= 0, the balls Bα and 7Bα are remote. Also, note that by
construction, if α 6= β such that Bα ∩ Bβ 6= ∅, then

rα ≃ rβ. (2.18)

Another consequence of the construction is that there exists C ≥ 1 such that, for all
x ∈M ,

♯ {α ∈ N; x ∈ Bα} ≤ C.

In the sequel, if B ⊂ M is a ball with radius r(B), say that B is admissible if and
only if B is remote or B is anchored and r(B) ≤ r(B0). We also state for future use
(see (P1)):
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Lemma 2.2. For all admissible balls B ⊂M with radius r(B) and all C∞ functions
u ∈ L1(B):

1. if B is remote,
‖u− uB‖L1(B) . r(B) ‖du‖L1(B) , (2.19)

2. if B is anchored, (2.19) holds, as well as

‖u− u2B‖L1(2B) . r(B) ‖du‖L1(2B)

for all C∞ functions u ∈ L1(2B).

Let us now construct a suitable partition of unity adapted to the covering (Bα)α∈N.

Lemma 2.3. There is a partition of unity (χα)α∈A subordinate to (Bα)α∈N, satisfying,
for α ∈ N,

|dχα| .
1

rα + 1
, |∆χα| .

1

r2α + 1
. (2.20)

Proof. It is clearly enough to prove the estimates (2.20) only for α 6= 0. By [14,
Theorem 6.33] and a scaling argument, for every α, there exists a smooth function
ϕα :M → [0, 1] such that:

(i) ϕα| 1
2
Bα

≡ 1,

(ii) The support of ϕα is included in the (remote) ball Bα,

(iii) |∇ϕα| . 1
rα
,

(iv) |∆ϕα| . 1
r2α
.

Let

ϕ :=
∑

α

ϕα,

then ϕ ≥ 1 on M since the family of balls (Bα)α≥0 covers M . As a consequence of
(2.18), of the fact that the covering has the finite overlap property, and of (iii) and
(iv) above,

|∇ϕ| . r−1
α , |∆ϕ| . r−2

α on Bα. (2.21)

We let

χα :=
ϕα

ϕ
.

Obviously,
∑

α χα ≡ 1, and the support of χα is included in Bα. Hence, (χα)α∈A is
a partition of unity, subordinate to (Bα)α∈A. Let us check that χα has the desired
properties. One has
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∇χα = −ϕα∇ϕ
ϕ2

+
∇ϕα

ϕ
,

which implies that |∇χα| . r−1
α by using (2.21) and ϕ ≥ 1, 0 ≤ ϕα ≤ 1. Next,

∆χα =
∆ϕα

ϕ
+ ϕα∆(ϕ−1) + 2

∇ϕα · ∇ϕ
ϕ2

=
∆ϕα

ϕ
+ ϕα

(
−∆ϕ

ϕ2
+ 4

|∇ϕ|2
ϕ3

)
+ 2

∇ϕα · ∇ϕ
ϕ2

,

and it follows from (2.21) and ϕ ≥ 1, 0 ≤ ϕα ≤ 1 that |∆χα| . r−2
α .

2.2 Heat kernel estimates

Recall that pt denotes the kernel of e−t∆0 . One starts with the following gradient
estimates for the heat kernel under the hypothesis (QD) on the Ricci curvature:

Lemma 2.4. Assume that (QD) and (D) holds. Then, for every N ∈ N,

|∇x∂
N
t pt(x, y)| . t−N

(
1√
t
+

1

r(x) + 1

)
1

V (x,
√
t)
e−c d2(x,y)

t , t > 0, x, y ∈ M.

Proof. The case N = 0 follows directly from the classical Li-Yau gradient estimate
for positive solutions of the heat equation (see [12, Section 3.2-3.3]). Note that for
r(x) . 1, we use the fact that the Ricci curvature is bounded from below on M .

Let us now turn to the case N ≥ 1. Denote kt(x, y) = tN∇x∂
N
t pt(x, y), then

kt(x, y) is the kernel of the operator ∇(t∆)Ne−t∆ = 2N
(
∇e− t

2
∆
)(

( t
2
∆)Ne−

t
2
∆
)
.

According to [19, Theorem 4], tN∂Nt pt(x, y) has Gaussian estimates, hence the kernel
of the operator ( t

2
∆)Ne−

t
2
∆ has Gaussian estimates. By the estimate for N = 0,

the kernel of the operator
(

1√
t
+ 1

r(x)+1

)−1

∇e− t
2
∆ has Gaussian estimates. It is a

well-known fact that under (D), the composition of two operators whose kernels have
Gaussian estimates, also has a kernel with Gaussian estimates ([6, Lemma A.5]) .
Therefore, we obtain the claimed estimate for kt(x, y).

By duality, Lemma 2.4 has consequences for the heat kernel on 1-forms; let
kN(t, x, y) be the kernel of td∗(t2∆1)

Ne−t2∆1. Then,

Lemma 2.5. One has, for all t > 0 and all x, y ∈M ,

|kN(t, x, y)| .
1

V (y, t)

(
1 +

t

r(y) + 1

)
e−c

d2(x,y)

t2 .
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Proof. For all g ∈ C∞
0 (Λ1T ∗M) and h ∈ C∞

0 (M),

∣∣∣∣
∫

M

td∗(t2∆1)
Ne−t2∆1g(x)h(x)dµ(x)

∣∣∣∣ =

∣∣∣∣
∫

M

(t2∆1)
Ne−t2∆1g(x) · tdh(x)dµ(x)

∣∣∣∣

=

∣∣∣∣
∫

M

g(x) · (t2∆1)
N te−t2∆1dh(x)dµ(x)

∣∣∣∣

=

∣∣∣∣
∫

M

g(x) · td(t2∆0)
Ne−t2∆0h(x)dµ(x)

∣∣∣∣

.

∫∫

M

|g(x)| 1

V (x, t)

(
1 +

t

r(x) + 1

)
e−c d2(x,y)

t2

× |h(y)| dµ(y)dµ(x),

where the last line follows from Lemma 2.4.

The following lemma deals with heat kernel estimates for complex time. Before
stating the result, define, for all θ ∈

(
0, π

2

)
,

Σθ := {z ∈ C; |arg z| < θ} .

Lemma 2.6. Let θ < π
4
and δ > 0. The operator V (·, |z|)δe−z2∆0V (·, |z|)−δ has

L2 → L2 off-diagonal estimates for z ∈ Σθ. More precisely, for every x, y ∈ M , and
every z ∈ Σθ,

∣∣∣
∣∣∣χB(y,|z|)V (·, |z|)δe−z2∆0V (·, |z|)−δχB(x,|z|)

∣∣∣
∣∣∣
2→2

. e
−C d2(x,y)

|z|2 .

Proof. For a fixed z ∈ Σθ, let us consider a covering of M by balls Bi := B(xi, |z|),
i ∈ N with the following property: there exists N ≥ 1 independent of z such that,
for all x ∈ M , at most N balls Bi intersect B(x, |z|).3

Denote dij := d(xi, xj), and χi := χBi
. Then, by the properties of the covering, it

is easy to see that it is enough to prove:

∣∣∣
∣∣∣χiV (·, |z|)δe−z2∆0V (·, |z|)−δχj

∣∣∣
∣∣∣
2→2

. e
−C

d2ij

|z|2 .

By doubling and Davies-Gaffney estimates for complex times (see [2, Prop 2.1], the
proof of which only relies on uniform ellipticity of the operator under consideration),

3Indeed, by the “5r” covering theorem, for any fixed z there is a covering of M with balls Bi =
B(xi, |z|) such that the balls 1

5
Bi are pairwise disjoint. Now, if x ∈ M , Ix := {i ; Bi ∩B(x, |z|) 6= ∅}

and i ∈ Ix, then by doubling V (x, |z|) ≃ V (Bi). Thus, if we call Nx := ♯Ix, then

NxV (x, |z|) ≤ C
∑

i∈Ix

V (Bi) ≤ C
∑

i∈Ix

V

(
1

5
Bi

)
≤ C′V (x, |z|),

where the constant C > 0 only depends on the doubling constants. It follows that Nx ≤ C′.
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∣∣∣
∣∣∣χiV (·, |z|)δe−z2∆0V (·, |z|)−δχj

∣∣∣
∣∣∣
2→2

.

(
V (xi, |z|)
V (xj , |z|)

)δ ∣∣∣
∣∣∣χie

−z2∆0χj

∣∣∣
∣∣∣
2→2

.

(
V (xj , |z|+ d(xi, xj))

V (xj , |z|)

)δ

e
−c

d2ij

|z|2

.

(
1 +

d2ij
|z|2
)δD

e
−c

d2ij

|z|2

. e
−C

d2ij

|z|2

We now turn to a lemma concerning Gaussian kernels. Let

Kt(x, y) :=
1

V (x, t)
e−c

d2(x,y)

t2

be a Gaussian kernel, and Kt be the associated integral operator

Ktv(x) :=

∫

M

Kt(x, y)v(y) dµ(y),

defined for all measurable functions v such that the integral converges.

Lemma 2.7. Let 1 ≤ p ≤ q ≤ +∞, and denote γp,q =
1
p
− 1

q
. Let E and F be two

measurable sets in M . Then, for some positive constants c1 and c2, independent of
the sets E and F , and for all t > 0,

ec1
d2(E,F )

t2 ||V (·, t)γp,qKt||Lp(E)→Lq(F ) ≤ c2

as well as

ec1
d2(E,F )

t2 ||KtV (·, t)γp,q ||Lp(E)→Lq(F ) ≤ c2.

Proof. We first claim that Kt satisfies

sup
t>0

||V (·, t)γp,qKt||p→q < +∞, (2.22)

Indeed, let us denote A(x, t, 0) = B(x, t) and A(x, t, k) = B(x, (k + 1)t) \ B(x, kt),
k ≥ 1. Let x0 ∈ M . Then, for all k ≥ 2, all measurable functions v supported in
A(x0, t, k), and x ∈ B(x0, t), one has by doubling and Hölder
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|Ktv(x)| =

∫

A(x0,t,k)

e−c d2(x,y)

t2

V (x, t)
|v(y)| dµ(y)

.
1

V (x0, t)
e−ck2µ(A(x0, t, k))

1−1/p||v||p

.
1

V (x0, t)1/p
e−Ck2 ‖v‖p .

Therefore,

||Ktv||Lq(B(x0,t)) ≤ V (x0, t)
1/q||Ktv||L∞(B(x0,t))

.
1

V (x0, t)γp,q
e−Ck2||v||p.

Consequently,

||χB(x0,t)Kt χA(x0,t,k)||p→q .
e−Ck2

V (x0, t)γp,q
.

Hence, the proof of [1, Prop. 2.9] applies, and gives (2.22). This implies the result,
in the case d(E, F ) = 0. If now d(E, F ) > 0, then for every u with support in E and
every x ∈ F ,

|Ktu(x)| ≤ e−
c
2

d2(F,E)

t2

∫

E

1

V (x, t)
e−

c
2

d2(x,y)

t2 |u(y)| dµ(y)

= e−
c
2

d2(F,E)

t2

∫

E

K̃t(x, y) |u(y)| dµ(y),

where

K̃t(x, y) =
1

V (x, t)
e−

c
2

d2(x,y)

t2

is a Gaussian kernel. By the above argument, the associated operator K̃t satisfies
(2.22), hence with C = c/2,

sup
t>0

eC
d2(E,F )

t2 ||V (·, t)γp,qKt||Lp(E)→Lq(F ) < +∞.

Finally, the inequality for KtV (·, t)γp,q can be proved by duality: indeed, it is equiv-
alent to

sup
t>0

eC
d2(E,F )

t2 ||V (·, t)γp,qK∗
t ||Lq′(E)→Lp′ (F ) < +∞,

where p′ and q′ are the conjugate exponent to p and q respectively, and K∗
t is the

adjoint operator to Kt.
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The kernel of K∗
t is

K∗
t (x, y) = Kt(y, x) =

1

V (y, t)
e−c

d2(x,y)

t2 ,

and using the inequality

V (x, t)

V (y, t)
≤ V (y, t+ d(x, y))

V (y, t)
.

(
1 +

d(x, y)

t

)D

,

it is easily seen that

K∗
t (x, y) .

1

V (x, t)
e−C d2(x,y)

t2 ,

hence K∗
t is bounded by a Gaussian kernel. Therefore, the first part of the argument

yields the inequality

sup
t>0

eC
d2(E,F )

t2 ||V (·, t)γp,qK∗
t ||Lq′(E)→Lp′ (F ) < +∞,

which implies

sup
t>0

eC
d2(E,F )

t2 ||KtV (·, t)γp,q ||Lp(E)→Lq(F ) < +∞.

The next two lemmata will be needed in order to control the heat kernel of the
Hodge Laplacian acting on exact one-forms.

Lemma 2.8. Let B be a ball such that 2B is admissible, and u be a function in
C∞

0 (B). Let F ⊂M be such that

r(B) . r(x) + 1, ∀x ∈ F.

Then, for every t > 0,

||V (·, t)1/2e−t2∆1(du)||L2(F ) .

(
1 +

r(B)

t

)
e−

cd(F,B)2

t2 ||du||1.

Proof. For every x ∈ F ,

∣∣∣e−t2∆1(du)
∣∣∣ (x) = |∇e−t2∆0u|(x)

≤
∫

B

|∇xpt2(x, y)||u(y)| dµ(y)

.

(
1

t
+

1

r(x) + 1

)∫

B

Kt(x, y)|u(y)| dµ(y)

.

(
1

t
+

1

r(B)

)
Kt(|u|)(x),

(2.23)
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where Kt is a Gaussian kernel and we have used the assumption on F and Lemma
2.4. According to Lemma 2.7, one gets

sup
t>0

eC
d2(F,B)

t2 ||V 1/2(·, t)e−t2∆1(du)||L2(F ) .

(
1

t
+

1

r(B)

)
||u||L1(B).

Since 2B is admissible, it supports an L1 Poincaré inequality with constant of order
r(B) by Lemma 2.2. Since u vanishes on 2B \B, one gets (see [9, Lemma 4.2.3])

∫

B

|u| . r(B)

∫

2B

|∇u| = r(B)

∫

B

|∇u|. (2.24)

Therefore, one arrives to

sup
t>0

eC
d2(F,B)

t2 ||V 1/2(·, t)e−t2∆1(du)||L2(F ) .

(
r(B)

t
+ 1

)
||du||L1(B).

and the result follows.

Lemma 2.9. Let B be an admissible ball, and u be a function in C∞
0 (B). Let 0 <

θ < π
2
, and let Σθ denotes the sector of angle θ in C. Let F be a measurable set in

M . Let N ∈ N. Then, for z ∈ Σθ, there holds:

||V (·, |z|)1/2zd∗(t2∆1)
Ne−z2∆1(du)||L2(F ) . e

−c
d(F,B)2

|z|2 ||du||1,
where the various constants in the inequality are independent of the ball B and the
function u.

Proof. Denote xB the center of B. We start with the case z = t > 0 positive real
number, for which there are two cases: either t ≤ r(xB) + 1, or t > r(xB) + 1. For
t ≤ r(xB) + 1, we proceed by duality: let h ∈ L2 with support in F , then

∣∣∣∣
∫

F

V (x, t)1/2td∗(t2∆1)
Ne−t2∆1(du)(x) · h(x)dµ(x)

∣∣∣∣

=

∣∣∣∣
∫

F

V (x, t)1/2t(t2∆0)
Ne−t2∆0(d∗du)(x) · h(x)dµ(x)

∣∣∣∣

=

∣∣∣∣
∫

M

d∗du(x) · t(t2∆0)
Ne−t2∆0V (x, t)1/2h(x)dµ(x)

∣∣∣∣

=

∣∣∣∣
∫

B

du(x) ·
(
td(t2∆0)

Ne−t2∆0V (·, t)1/2h
)
(x)dµ(x)

∣∣∣∣ .

However, by Lemma 2.4,

∣∣∣
(
td(t2∆0)

Ne−t2∆0V (·, t)1/2h
)
(x)
∣∣∣ .

∫

F

(
1 +

t

r(x) + 1

)
e−c

d2(x,y)

t2

V (x, t)
V (y, t)1/2 |h(y)| dµ(y)

Since t ≤ r(xB) + 1 and B is admissible, it follows that t . r(x) + 1 for every x ∈ B.
Hence,
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∣∣∣
(
td(t2∆0)

Ne−t2∆0V (·, t)1/2h
)
(x)
∣∣∣ .

∫
Kt(x, y) V (y, t)

1/2|h(y)| dµ(y), x ∈ B,

where Kt(x, y) is a Gaussian kernel. According to Lemma 2.7, one obtains

sup
t>0

eC
d2(F,B)

t2

∣∣∣
∣∣∣td(t2∆0)

Ne−t2∆0V (·, t)1/2
∣∣∣
∣∣∣
L2(F )→L∞(B)

< +∞.

This implies

∣∣∣∣
∫

F

V (x, t)1/2td∗(t2∆1)
Ne−t2∆1(du)(x) · h(x)dµ(x)

∣∣∣∣ . e−C d2(F,B)

t2 ||du||L1(B) · ||h||L2(F ),

hence

||V (·, t)1/2td∗(t2∆1)
Ne−t2∆1(du)||L2(F ) . e−c d(F,B)2

t2 ||du||1.
This proves the result for z = t ≤ r(xB) + 1. Now, we treat the case t > r(xB) + 1:
we write

td∗(t2∆1)
Ne−t2∆1(du) =

1

t
(t2∆0)

N+1e−t2∆0u.

According to [19, Theorem 4], the kernel sN+1∂N+1
s ps(x, y) has pointwise Gaussian

estimates. Applying this with s = t2 and using Lemma 2.7,

||V (·, t)1/2td∗(t2∆1)
Ne−t2∆1(du)||L2(F ) .

1

t
e−c d2(F,B)

t2 ||u||1.

As in the proof of Lemma 2.8, (2.24) yields

||V (·, t)1/2td∗(t2∆1)
Ne−t2∆1(du)||L2(F ) .

r(B)

t
e−c d2(F,B)

t2 ||du||1.

Since B is admissible, r(B) . r(xB) + 1, and because t > r(xB) + 1, one gets that

||V (·, t)1/2td∗(t2∆1)
Ne−t2∆1(du)||L2(F ) . e−c

d2(F,B)

t2 ||du||1.
This concludes the proof for z = t > 0 real; it remains to prove the lemma for complex
z. We write z2 = (z′)2 + t2, where z′ ∈ Σµ with µ > θ, t > 0, and

|z| ≃ |z′| ≃ t. (2.25)

Then, one has

V (·, |z|)1/2zd∗(z2∆1)
Ne−z2∆1

=
(z
t

)2N+1 (
V (·, |z|)1/2e−(z′)2∆0V (·, |z|)−1/2

)(
V (·, |z|)1/2td∗(t2∆1)

Ne−t2∆1

)
.
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Since (2.25) holds, Lemma 2.6 and the above entail that the L2 → L2 off-diagonal esti-

mates for
(
V (·, |z|)1/2e−(z′)2∆0V (·, |z|)−1/2

)
and for

(
V (·, |z′|)1/2e−(z′)2∆0V (·, |z′|)−1/2

)

are comparable. The same is true for the L1 → L2 off-diagonal estimates for(
V (·, |z|)1/2td∗(t2∆1)

Ne−t2∆1

)
and

(
V (·, t)1/2td∗(t2∆1)

Ne−t2∆1

)
. Since the term z

t

is bounded, the composition lemma (see [2, Proposition 3.1] for the Euclidean case)
yields the L1 → L2 off-diagonal estimates for the composed operator

(
V (·, |z′|)1/2e−(z′)2∆0V (·, |z′|)−1/2

)(
V (·, t)1/2td∗(t2∆1)

Ne−t2∆1

)
,

hence the result.

3 Proof of Proposition 1.14

3.1 Splitting into three regimes

Recall that, for all x ∈M ,

Aω(x) :=
(∫∫

Γ(x)

∣∣∣td∗(t2∆1)
Ne−t2∆1ω(z)

∣∣∣
2 dµ(z)

V (z, t)

dt

t

) 1
2

.

The conclusion of Proposition 1.14 means that

‖A(du)‖p . ‖du‖p . (3.26)

For the proof of (3.26), following [12], we fix a constant κ ≥ 210 and, as explained
in the introduction, decompose the integration domain in the definition of Aω into
three pieces or “regimes”, namely:

Aω ≤ Alω +Asω +Adω, (3.27)

where Alω stands for the “long-to-short” regime, that is

Alω(x) :=

(∫∫

(z,t)∈Γ(x)

(∫

r(y)≥κr(z)

kt(z, y) · ω(y)dµ(y)
)2

dµ(z)

V (z, t)

dt

t

) 1
2

, (3.28)

Asω stands for the “short-to-long” regime, that is

Asω(x) :=

(∫∫

(z,t)∈Γ(x)

(∫

κr(z)>r(y), d(z,y)≥κ−1r(z)

kt(z, y) · ω(y)dµ(y)
)2

dµ(z)

V (z, t)

dt

t

) 1
2

,

(3.29)
and Adω stands for the “diagonal” regime, that is

Adω(x) :=

(∫∫

(z,t)∈Γ(x)

(∫

d(z,y)<κ−1r(z)

kt(z, y) · ω(y)dµ(y)
)2

dµ(z)

V (z, t)

dt

t

) 1
2

. (3.30)
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Recall that kt is the kernel of td
∗e−t2∆1. Notice that, whenever r(y) ≥ κr(z), one has

d(z, y) ≥ r(y)− r(z) ≥ (κ− 1)r(z) ≥ κ−1r(z),

which shows that the long-to-short and the short-to-long regimes cover the case where
d(z, y) ≥ κ−1r(z).

3.2 The “long-to-short” regime

In this section, we establish that, for all λ > 0,

µ ({x ∈M ; Alω(x) > λ}) . ‖ω‖1
λ

. (3.31)

To this purpose, we split Al into two parts, whether t ≥ r(y) or t < r(y), that is

Alω(x) ≤
(∫∫

(z,t)∈Γ(x)

(∫

t≥r(y)≥κr(z)

|kt(z, y)| |ω(y)| dµ(y)
)2

dµ(z)

V (z, t)

dt

t

) 1
2

+

(∫∫

(z,t)∈Γ(x)

(∫

r(y)≥max(t,κr(z))

|kt(z, y)| |ω(y)| dµ(y)
)2

dµ(z)

V (z, t)

dt

t

) 1
2

=: Al,1ω(x) +Al,2ω(x).

3.2.1 The case t ≥ r(y):

For this part, by Lemma 2.5,

Al,1ω(x) =

(∫∫

d(z,x)≤t

(∫

κr(z)≤r(y)≤t

|kt(z, y)| |ω(y)| dµ(y)
)2

dµ(z)

V (z, t)

dt

t

) 1
2

.

(∫∫

d(z,x)≤t

(∫

κr(z)≤r(y)≤t

1

V (y, t)

t

r(y)
|ω(y)| dµ(y)

)2
dµ(z)

V (z, t)

dt

t

) 1
2

.

We will estimate the latter quantity by a duality argument. Pick up a function

h ∈ L2
(
Γ(x), dµ(z)

V (z,t)
dt
t

)
such that

∫

Γ(x)

|h(z, t)|2 dµ(z)

V (z, t)

dt

t
= 1. (3.32)

Then, by Fubini,

∫∫

d(z,x)≤t

|h(z, t)|
(∫

κr(z)≤r(y)≤t

1

V (y, t)

t

r(y)
|ω(y)| dµ(y)

)
dµ(z)

V (z, t)

dt

t

=

∫

M

|ω(y)|
(∫∫

d(z,x)≤t, κr(z)≤r(y)≤t

|h(z, t)| 1

V (y, t)

t

r(y)

dµ(z)

V (z, t)

dt

t

)
dµ(y).
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The Cauchy-Schwarz inequality and condition (3.32) yield

∫∫

d(z,x)≤t, κr(z)≤r(y)≤t

|h(z, t)| 1

V (y, t)

t

r(y)

dµ(z)

V (z, t)

dt

t

≤
(∫∫

d(z,x)≤t, κr(z)≤r(y)≤t

1

V (y, t)2
t2

r2(y)

dµ(z)

V (z, t)

dt

t

)1/2

,

so that
∫∫

d(z,x)≤t

|h(z, t)|
(∫

κr(z)≤r(y)≤t

1

V (y, t)

t

r(y)
|ω(y)| dµ(y)

)
dµ(z)

V (z, t)

dt

t

≤
∫

M

|ω(y)|
((∫∫

d(z,x)≤t, κr(z)≤r(y)≤t

1

V (y, t)2
t2

r2(y)

dµ(z)

V (z, t)

dt

t

)1/2
)
dµ(y)

=

∫

r(y)≥r(x)

|ω(y)|
((∫∫

d(z,x)≤t, κr(z)≤r(y)≤t

1

V (y, t)2
t2

r2(y)

dµ(z)

V (z, t)

dt

t

)1/2
)
dµ(y)

+

∫

r(y)<r(x)

|ω(y)|
((∫∫

d(z,x)≤t, κr(z)≤r(y)≤t

1

V (y, t)2
t2

r2(y)

dµ(z)

V (z, t)

dt

t

)1/2
)
dµ(y)

=: I1 + I2.
(3.33)

Notice that
∫

κr(z)≤r(y)≤t

1

V (z, t)
dµ(z) =

1

V (o, t)

∫

κr(z)≤r(y)≤t

V (o, t)

V (z, t)
dµ(z)

≤ 1

V (o, t)

∫

κr(z)≤r(y)≤t

V (z, t + r(z))

V (z, t)
dµ(z)

.
V (o, r(y))

V (o, t)
.

(3.34)

We therefore estimate the innermost integral in I1 as follows:

∫∫

d(z,x)≤t, κr(z)≤r(y)≤t

1

V (y, t)2
t2

r2(y)

dµ(z)

V (z, t)

dt

t

=

∫ +∞

r(y)

1

V (y, t)2
t2

r2(y)

(∫

d(z,x)≤t, κr(z)≤r(y)

dµ(z)

V (z, t)

)
dt

t

.

∫ +∞

r(y)

1

V (y, t)2
t2

r2(y)

V (o, r(y))

V (o, t)

dt

t

=

∫ +∞

r(y)

1

V (o, t)2
V (o, t)2

V (y, t)2
t2

r2(y)

V (o, r(y))

V (o, t)

dt

t

.

∫ +∞

r(y)

1

V (o, t)2
t2

r2(y)

V (o, r(y))

V (o, t)

dt

t

=
1

V (o, r(y))2

∫ +∞

r(y)

V (o, r(y))3

V (o, t)3
t2

r2(y)

dt

t

.
1

V (o, r(y))2

∫ +∞

r(y)

(
r(y)

t

)3ν−2
dt

t
.

1

V (o, r(y))2
.
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where the third line holds since r(y) ≤ t and the fifth line follows from V (o, t) ≤
V (y, t+ r(y)) . V (y, t) since r(y) ≤ t. As a consequence,

I1 .

∫

r(y)≥r(x)

|ω(y)|
V (o, r(y))

dµ(y) ≤ 1

V (o, r(x))
‖ω‖1 . (3.35)

For I2, notice first that, when d(z, x) ≤ t and κr(z) ≤ r(y) ≤ t,

r(x) ≤ r(z) + t ≤ 1

κ
r(y) + t ≤ 2t. (3.36)

On the other hand,

d(x, y) ≤ d(x, z) + d(z, y) ≤ t+ r(z) + r(y) ≤ 3t. (3.37)

Gathering (3.36) and (3.37) and using (3.34) again, we obtain
∫∫

d(z,x)≤t, κr(z)≤r(y)≤t

1

V (y, t)2
t2

r2(y)

dµ(z)

V (z, t)

dt

t

≤
∫ +∞

r(x)
2

1

V (y, t)2
t2

r2(y)

(∫

d(z,x)≤t, κr(z)≤r(y)

dµ(z)

V (z, t)

)
dt

t

.

∫ +∞

r(x)
2

1

V (y, t)2
t2

r2(y)

V (o, r(y))

V (o, t)

dt

t

.

∫ +∞

r(x)
2

1

V (x, t)2
t2

r2(y)

V (o, r(y))

V (o, t)

dt

t

.
1

V (x, r(x))2

∫ +∞

r(x)
2

t2

r2(y)

V (o, r(y))

V (o, t)

dt

t

.
1

V (o, r(x))2

∫ +∞

r(y)
2

(
r(y)

t

)ν−2
dt

t

.
1

V (o, r(x))2
,

where the fourth line uses (3.37). As a consequence,

I2 .
1

V (o, r(x))

∫

r(y)<r(x)

|ω(y)| dµ(y) ≤ 1

V (o, r(x))
‖ω‖1 . (3.38)

Using (3.33), (3.35) and (3.38), we conclude that
∫∫

d(z,x)≤t

|h(z, t)|
(∫

κr(z)≤r(y)≤t

1

V (y, t)

t

r(y)
|ω(y)|dµ(y)

)
dµ(z)

V (z, t)

dt

t

.
1

V (o, r(x))
‖ω‖1 ,

and finally, taking the supremum over all functions h ∈ L2
(
Γ(x), dµ(z)

V (z,t)
dt
t

)
satisfying

(3.32),

Al,1ω(x) .
1

V (o, r(x))
‖ω‖1 .

Thus, if λ > 0 and Al,1ω(x) > λ, then V (o, r(x)) ≤ ‖ω‖1
λ

. Lemma 3.2 in the Appendix
therefore yields

µ ({x ∈M ; Al,1ω(x) > λ}) . ‖ω‖1
λ

. (3.39)
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3.2.2 The case t ≤ r(y):

Here,

Al,2ω(x) =

(∫∫

d(z,x)≤t

(∫

max(κr(z),t)≤r(y)

|kt(z, y)| |ω(y)| dµ(y)
)2

dµ(z)

V (z, t)

dt

t

) 1
2

.

(∫∫

d(z,x)≤t

(∫

max(κr(z),t)≤r(y)

1

V (y, t)
e−c

r2(y)

t2 |ω(y)| dµ(y)
)2

dµ(z)

V (z, t)

dt

t

) 1
2

,

(3.40)
where the last line holds since

r(y) ≤ r(z) + d(z, y) ≤ 1

κ
r(y) + d(z, y)

so that r(y) . d(z, y). As in the previous case, we therefore have to estimate

∫

r(y)≥r(x)

|ω(y)|
((∫∫

d(z,x)≤t, max(κr(z),t)≤r(y)

1

V (y, t)2
e−c r2(y)

t2
dµ(z)

V (z, t)

dt

t

)1/2
)
dµ(y)

+

∫

r(y)<r(x)

|ω(y)|
((∫∫

d(z,x)≤t, max(κr(z),t)≤r(y)

1

V (y, t)2
e−c r2(y)

t2
dµ(z)

V (z, t)

dt

t

)1/2
)
dµ(y)

=: I1 + I2.

Since V (o, t) ≤ V (z, t+r(z)) ≤ V (z, t+r(y)) . V (z, t)
(
1 + r(y)

t

)D
whenever κr(z) ≤

r(y), we estimate the innermost integral in I1 by

∫∫

d(z,x)≤t, max(κr(z),t)≤r(y)

1

V (y, t)2
e−c r2(y)

t2
dµ(z)

V (z, t)

dt

t

=

∫ r(y)

0

1

V (y, t)2
e−c r2(y)

t2

(∫

κr(z)≤r(y)

dµ(z)

V (z, t)

)
dt

t

.

∫ r(y)

0

V (o, r(y))

V (o, t)

1

V (y, t)2

(
1 +

r(y)

t

)D

e−c r2(y)

t2
dt

t

≤
∫ r(y)

0

(
r(y)

t

)D
1

V (y, r(y))2
V (y, r(y))2

V (y, t)2

(
1 +

r(y)

t

)D

e−c r2(y)

t2
dt

t

.
1

V (o, r(y))2
.

It follows that

I1 .

∫

r(y)≥r(x)

|ω(y)|
V (o, r(y))

dµ(y) ≤ ‖ω‖1
V (o, r(x))

. (3.41)

For the innermost integral in I2, since κr(z) ≤ r(y) ≤ r(x),

r(x) ≤ r(z) + t ≤ 1

κ
r(y) + t ≤ 1

κ
r(x) + t,
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one has r(x) . t ≤ r(y) ≤ r(x), which entails

∫∫

d(z,x)≤t, max(κr(z),t)≤r(y)

1

V (y, t)2
e−c

r2(y)

t2
dµ(z)

V (z, t)

dt

t

=

∫ r(y)

cr(x)

1

V (y, t)2
e−c r2(y)

t2

(∫

B(x,t)

dµ(z)

V (z, t)

)
dt

t

.

∫ r(y)

cr(x)

1

V (y, t)2
e−c r2(y)

t2
dt

t

≤ 1

V (y, r(y))2

∫ r(y)

cr(x)

(
r(y)

t

)2D

e−c r2(y)

t2
dt

t

.
1

V (y, r(y))2
.

1

V (x, r(x))2
,

therefore

I2 .
1

V (x, r(x))
‖ω‖1 .

1

V (o, r(x))
‖ω‖1 . (3.42)

Gathering (3.40), (3.41) and (3.42), we obtain

Al,2ω(x) .
1

V (o, r(x))
‖ω‖1 ,

and, using Lemma 3.2 again, we conclude that

µ ({x ∈M ; Al,2ω(x) > λ}) . ‖ω‖1
λ

. (3.43)

The conjunction of (3.39) and (3.43) yields (3.31).

3.3 The “short-to-long” regime

This section is devoted to the analysis of Asω. Again, we split this term into two
parts: we bound Asω(x) by the sum As,1ω(x) +As,2ω(x), where

As,1ω(x) =

(∫∫

(z,t)∈Γ(x)

(∫

κr(z)>r(y), d(z,y)≥κ−1r(z), t≥r(y)

|kt(z, y)| |ω(y)| dµ(y)
)2

dµ(z)

V (z, t)

dt

t

) 1
2

and

As,2ω(x) =

(∫∫

(z,t)∈Γ(x)

(∫

κr(z)>r(y), d(z,y)≥κ−1r(z), t<r(y)

|kt(z, y)| |ω(y)| dµ(y)
)2

dµ(z)

V (z, t)

dt

t

) 1
2

In this regime, we will assume and use the fact that p > ν
ν−1

. We then intend to
prove that, for all λ > 0,

µ ({x ∈M ; As,1ω(x) > λ}) .
‖ω‖pp
λp

(3.44)
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and

µ ({x ∈M ; As,2ω(x) > λ}) . ‖ω‖1
λ

. (3.45)

Note that, in this short-to-long regime, since d(y, z) ≥ κ−1r(z),

|kt(z, y)| .
1

V (z, t)

(
1 +

t

r(y)

)
e−c r2(z)

t2 . (3.46)

Indeed, using r(z) . d(y, z) and doubling, one has

|kt(z, y)| .
1

V (y, t)

(
1 +

t

r(y)

)
e−c

d2(y,z)

t2

.
1

V (z, t)

V (y, t+ d(y, z))

V (y, t)

(
1 +

t

r(y)

)
e−c d2(y,z)

t2

.
1

V (z, t)

(
1 +

t

r(y)

)
e−c r2(z)

t2 .

3.3.1 The case t ≥ r(y)

As in the corresponding case of Section 3.2, using (3.46), one has

As,1ω(x) ≤
(∫∫

d(z,x)≤t

(∫

κr(z)>r(y), d(z,y)≥κ−1r(z), r(y)≤t

|kt(z, y)| |ω(y)| dµ(y)
)2

dµ(z)

V (z, t)

dt

t

) 1
2

.

(∫∫

d(z,x)≤t

(∫

κr(z)>r(y), d(z,y)≥κ−1r(z), r(y)≤t

1

V (z, t)

t

r(y)
e−c

r2(z)

t2 |ω(y)|dµ(y)
)2

dµ(z)

V (z, t)

dt

t

) 1
2

≤
(∫∫

d(z,x)≤t

1

V (z, t)2
e−c r2(z)

t2

(∫

κr(z)>r(y), d(z,y)≥κ−1r(z), r(y)≤t

t

r(y)
|ω(y)|dµ(y)

)2
dµ(z)

V (z, t)

dt

t

) 1
2

By the Hölder inequality and Lemma 3.1 from the Appendix, since p′ < ν,

∫

κr(z)>r(y), d(z,y)≥κ−1r(z), r(y)≤t

t

r(y)
|ω(y)| dµ(y) ≤ t ‖ω‖p

(∫

r(y)≤min(κr(z),t)

1

r(y)p′
dµ(y)

) 1
p′

. t ‖ω‖p min (κr(z), t)−1 V (o,min (κr(z), t))
1
p′ .

As a consequence,

As,1ω(x) . ‖ω‖p
(∫∫

d(z,x)≤t

t2

V (z, t)3
e−c r2(z)

t2 (min (κr(z), t))−2 V (o,min (κr(z), t))
2
p′ dµ(z)

dt

t

) 1
2

≤ ‖ω‖p

(∫∫

d(z,x)≤t, t≤ r(x)
2

t2

V (z, t)3
e−c r2(z)

t2 (min (κr(z), t))−2 V (o,min (κr(z), t))
2
p′ dµ(z)

dt

t

) 1
2

+ ‖ω‖p

(∫∫

d(z,x)≤t, t>
r(x)
2

t2

V (z, t)3
e−c

r2(z)

t2 (min (κr(z), t))−2 V (o,min (κr(z), t))
2
p′ dµ(z)

dt

t

) 1
2

=: I1 + I2.
(3.47)
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When d(z, x) ≤ t and t ≤ r(x)
2
, then r(x) ≤ r(z) + t ≤ r(z) + r(x)

2
, and r(z) ≤

r(x) + t ≤ 3r(x)
2

, so that r(x) ≃ r(z) and min (κr(z), t) ≃ t, which shows that

I1 . ‖ω‖p

(∫∫

d(z,x)≤t, t≤ r(x)
2

1

V (z, t)3
e−c r2(z)

t2 V (o, t)
2
p′ dµ(z)

dt

t

) 1
2

. ‖ω‖p

(∫ r(x)
2

0

1

V (x, t)2
e−c

r2(x)

t2 V (o, t)
2
p′
dt

t

) 1
2

.
‖ω‖p

V (x, r(x))
V (o, r(x))

1
p′

(∫ r(x)
2

0

(
r(x)

t

)D

e−c r2(x)

t2
dt

t

) 1
2

.
‖ω‖p

V (o, r(x))
1
p

.

(3.48)

When d(z, x) ≤ t and t > r(x)
2
, then r(z) ≤ r(x)+t ≤ 3t, so that min (κr(z), t) ≃ r(z).

Therefore,

I2 . ‖ω‖p

(∫∫

d(z,x)≤t, t> r(x)
2

t2

V (z, t)3
e−c r2(z)

t2 r(z)−2V (o, r(z))
2
p′ dµ(z)

dt

t

) 1
2

. ‖ω‖p

(∫ +∞

r(x)
2

1

V (x, t)3

(∫

d(z,x)≤t, r(z)≤3t

t2

r(z)2
e−c r2(z)

t2 V (o, r(z))
2
p′ dµ(z)

)
dt

t

) 1
2

. ‖ω‖p

(∫ +∞

r(x)
2

1

V (x, t)3

(∫

d(z,x)≤t, r(z)≤3t

t2

r(z)2

(
r(z)

t

) 2ν
p′

e−c r2(z)

t2 dµ(z)

)
V (o, t)

2
p′
dt

t

) 1
2

. ‖ω‖p

(∫ +∞

r(x)
2

1

V (x, t)2
V (o, t)

2
p′
dt

t

) 1
2

. ‖ω‖p

(∫ +∞

r(x)
2

V (x, t)−
2
p
dt

t

) 1
2

. ‖ω‖p V (x, r(x))−
1
p

(∫ +∞

r(x)
2

(
r(x)

t

)2 ν
p dt

t

) 1
2

. ‖ω‖p V (x, r(x))−
1
p ,

(3.49)
where the third line follows from the second one since 2ν

p′
> 2 (this, in turn, is due to

the fact that p > ν
ν−1

). Thus, (3.47), (3.48) and (3.49) yield

As,1ω(x) .
‖ω‖p

V (o, r(x))
1
p

.

Lemma 3.2 therefore ensures that (3.44) holds.
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3.3.2 The case t ≤ r(y):

In this case, following the argument in Section 3.2.2 and using (3.46) again, one
obtains

As,2ω(x) ≤
(∫∫

d(z,x)≤t

(∫

κr(z)>r(y), d(z,y)≥κ−1r(z), t≤r(y)

|kt(z, y)| |ω(y)| dµ(y)
)2

dµ(z)

V (z, t)

dt

t

) 1
2

.

(∫∫

d(z,x)≤t

(∫

κr(z)>r(y), d(z,y)≥κ−1r(z), t≤r(y)

1

V (z, t)
e−c

r2(z)

t2 |ω(y)| dµ(y)
)2

dµ(z)

V (z, t)

dt

t

) 1
2

.

∫

M

|ω(y)|
(∫ r(y)

0

1

V (z, t)3

(∫

d(z,x)≤t, κr(z)>r(y), d(z,y)≥κ−1r(z)

e−c r2(z)

t2 dµ(z)

)
dt

t

)1/2

dµ(y)

.

∫

M

|ω(y)|
(∫ r(y)

0

1

V (x, t)3

(∫

d(z,x)≤t, κr(z)>r(y), d(z,y)≥κ−1r(z)

e−c r2(z)

t2 dµ(z)

)
dt

t

)1/2

dµ(y)

=:

∫

M

|ω(y)| I(y)dµ(y).
(3.50)

When 1
2
r(x) ≤ r(y), then, using the doubling property, we simply estimate

I(y) .

(∫ r(y)

0

1

V (x, t)2
e−c r2(y)

t2
dt

t

)1/2

.
1

V (x, r(y))
.

1

V (x, r(x))
.

1

V (o, r(x))
.

(3.51)

If r(y) < 1
2
r(x), then

r(x) ≤ r(z) + d(x, z) ≤ r(z) + t ≤ r(z) + r(y) < r(z) +
1

2
r(x),

so that r(x) ≤ 2r(z). As a consequence,

I(y) .

(∫ r(y)

0

1

V (x, t)2
e−c r2(x)

t2
dt

t

)1/2

≤
(∫ r(x)

0

1

V (x, t)2
e−c r2(x)

t2
dt

t

)1/2

.
1

V (x, r(x))
.

1

V (o, r(x))
.

(3.52)

Gathering (3.50), (3.51) and (3.52), we obtain

As,2ω(x) .
1

V (o, r(x))
‖ω‖1 ,

and we conclude as before that (3.45) holds.
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3.4 The “diagonal” regime

We now turn to the range d(z, y) < κ−1r(z). As in [12, Sections 4.3 and 5.3], we will
use the covering (Bα)α∈N of M by admissible balls introduced in Section 2.1, as well
as the associated partition of unity. Let α ∈ N and y ∈ Bα. If d(z, y) ≤ κ−1r(z),
then, by (2.17),

d(z, xα) ≤ d(z, y) + d(y, xα)
≤ κ−1r(z) + rα
≤ κ−1d(z, xα) + κ−1r(xα) + rα
≤ κ−1d(z, xα) + (1 + 210κ−1)rα,

and a short computation shows that since κ ≥ 210 by assumption, one has d(z, xα) ≤
4rα, that is z ∈ 4Bα. Therefore,

Adω(x) ≤
∑

α

(∫∫

(z,t)∈Γ(x), z∈4Bα

∣∣∣∣
∫

d(z,y)<κ−1r(z)

kt(z, y) · (χαω)(y)dµ(y)

∣∣∣∣
2
dµ(z)

V (z, t)

dt

t

) 1
2

=:
∑

α

Ad,α(ω)(x).

Fix α ∈ N and split

Ad,α(ω)(x) ≤
(∫∫

(z,t)∈Γ(x), z∈4Bα, t≥rα

∣∣∣∣
∫

d(z,y)<κ−1r(z)

kt(z, y) · (χαω)(y)dµ(y)

∣∣∣∣
2
dµ(z)

V (z, t)

dt

t

) 1
2

+

(∫∫

(z,t)∈Γ(x), z∈4Bα, t<rα

(∫

d(z,y)<κ−1r(z)

kt(z, y) · (χαω)(y)dµ(y)

)2
dµ(z)

V (z, t)

dt

t

) 1
2

=: Ad,α,1ω(x) +Ad,α,2ω(x).

3.4.1 The case t ≥ rα:

We intend to prove that

µ

({
x ∈M ;

∑

α

Ad,α,1ω(x) > λ

})
.

‖ω‖1
λ

. (3.53)

We use the upper bound

|kt(z, y)| .
1

V (y, t)

t

r(y) + 1
,

which follows from Lemma 2.5. Indeed, note that, for all α and all y ∈ Bα, r(y) . rα.
As a consequence, r(y) . t in the range under consideration.

As in section 3.2.1, one has

Ad,α,1(ω)(x) ≤
∫

y∈Bα

|ω(y)| I(y)dµ(y),
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where

I(y) .

(∫

d(z,x)≤t, t≥rα, z∈4Bα

1

V (y, t)3

(
t2

r2α

)
dµ(z)

dt

t

)1/2

.

Noticing that, for all y ∈ Bα, 4Bα ⊂ B(y, 5rα), we write

I(y) .

(∫

t≥rα

V (y, 5rα)

V (y, t)3

(
t2

r2α

)
dt

t

)1/2

.
1

V (y, rα)

(∫ +∞

rα

V (y, rα)
3

V (y, t)3

(
t2

r2α

)
dt

t

)1/2

.
1

V (y, rα)

(∫ +∞

rα

(rα
t

)3ν−2 dt

t

)1/2

.
1

V (y, rα)
.

As a consequence,

Ad,α,1(ω)(x) .

∫

y∈Bα

|ω(y)|
V (y, rα)

dµ(y)

.
1

V (Bα)
‖ω‖L1(Bα)

,

so that

Ad,α,1(ω)(x) .
1

V (o, r(x)))
‖ω‖L1(Bα)

, (3.54)

whenever r(x) ≤ 2(4 + 210)rα.
Consider now the case where r(x) > 2(4 + 210)rα. Then, for all z ∈ 4Bα, r(z) ≤

4rα + r(xα) ≤ (4 + 210)rα <
r(x)
2
, so that d(x, z) ≥ r(x)

2
. As a consequence,

I(y) .

(∫

t≥ 1
2
r(x)

V (y, 5rα)

V (y, t)3

(
t2

r2α

)
dt

t

)1/2

.

(
V (y, rα)

V (y, r(x))

)1/2
(∫

t≥ 1
2
r(x)

V (y, r(x))

V (y, t)3

(
t2

r2α

)
dt

t

)1/2

≤
(
V (y, rα)

V (y, r(x))

)1/2
r(x)

rα

1

V (y, r(x))

(∫

t≥ 1
2
r(x)

V (y, r(x))3

V (y, t)3

(
t2

r(x)2

)
dt

t

)1/2

.

(
rα
r(x)

) ν
2
−1

1

V (y, r(x))

(∫

t≥ 1
2
r(x)

(
r(x)

t

)3ν−2
dt

t

)1/2

.
1

V (y, r(x))
.

1

V (x, r(x))
,

where the last inequality follows from the fact that d(x, y) ≤ r(x)+r(y) . r(x)+rα .

r(x), which entails V (x, r(x)) . V (y, r(x)). As a consequence,

Ad,α,1(ω)(x) .
1

V (o, r(x))
‖ω‖L1(Bα)

. (3.55)
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Gathering (3.54) and (3.55), and using the fact that the balls (Bα)α have the finite
intersection property, we obtain

∑

α

Ad,α,1(ω)(x) .
1

V (o, r(x))
‖ω‖1.

By Lemma 3.2 from Appendix A, we obtain, for all λ > 0,

µ

({
x;
∑

α

Ad,α,1(ω)(x) > λ

})
.

1

λ
‖ω‖1 .

3.4.2 The case t < rα:

We now turn to the case of Ad,α,2ω; we wish to prove that

µ

({
x;
∑

α

Ad,α,2(ω)(x) > λ

})
.

1

λ
‖ω‖1 . (3.56)

Decompose

ω = df =
∑

α∈A
χαdf

=
∑

α∈A
χαd(f − fBα

)

=
∑

α∈A
d(χα(f − fBα

))−
∑

α∈A
(f − fBα

)dχα

=:
∑

α∈A
dfα −

∑

α∈A
ηα.

Note that fα and ηα are supported in Bα. Moreover, we claim:

‖dfα‖L1 + ‖ηα‖L1 + rα ‖d∗ηα‖L1 . ‖ω‖L1(Bα)
. (3.57)

Indeed, by Lemma 2.2,

‖ηα‖L1(Bα)
.

1

rα
‖f − fBα

‖L1(Bα)
. ‖df‖L1(Bα)

= ||ω||L1(Bα).

Thanks to the fact that χαω = dfα − ηα this also entails that ‖dfα‖L1 . ‖ω‖L1(Bα)
.

Finally,
d∗ηα = d∗ [(f − fBα

) dχα]
= 〈df, dχα〉+ (f − fBα

)∆χα,

which, in view of (2.20) and Lemma 2.2, entails that rα ‖d∗ηα‖L1 . ‖ω‖L1(Bα)
, com-

pleting the proof of (3.57).
Let Tα be the operator defined by

Tαω(x) =

(∫

d(x,z)≤t, t<rα

χ4Bα
(z)|td∗(t2∆1)

Ne−t2∆1ω(z)|2 dµ(z)

V (z, t)

dt

t

)1/2

.
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Note that if d(x, z) ≤ t, z ∈ 4Bα and t ≤ rα, then x ∈ 5Bα; consequently, the support
of Tαω is included in 5Bα, which is a remote ball for α 6= 0 by (2.17).

Clearly, one has

‖Tα‖2→2 ≤ ‖A‖2→2 ≤ C,

where C is independent of α. Also, by (3.57),

A2,d,α(df)(x) ≤ Tα(dfα)(x) + Tα(ηα)(x). (3.58)

Since the support of Tα is included in 5Bα, the covering (5Bα)α≥0 has the finite
intersection property and in view of (3.58), in order to show (3.56), it is enough to
prove the following pair of inequalities:

µ ({x ∈ 5Bα; |Tα(dfα)(x)| > λ}) . 1

λ
‖dfα‖L1 (3.59)

and

µ ({x ∈ 5Bα; |Tα(ηα)(x)| > λ}) . 1

λ
‖ω‖L1(Bα)

, (3.60)

3.4.3 The exact diagonal part

According to Proposition 3.4 in Appendix B applied to Tα, the inequality (3.59) will
follow from the following pair of inequalities: for every (admissible) sub-ball B ⊂ 2Bα,
and every function u supported in B,

(
1

V (2j+1B)

∫

Cj(B)∩5Bα

|Tα(I −Ar(B))(du)|2
)1/2

≤ g(j)
1

V (B)

∫

B

|du|, j ≥ 2,

(3.61)
as well as

(
1

V (2j+1B)

∫

Cj(B)∩5Bα

|Ar(B)(du)|2
)1/2

≤ g(j)
1

V (B)

∫

B

|du|, j ≥ 1, (3.62)

where C1(B) := 4B, Cj(B) := 2j+1B \ 2jB for all j ≥ 2 and Ar(B) is a smoothing
operator to be defined and

∑∞
j=1 g(j)2

jD <∞.

Fix α ∈ N, let B ⊂ 2Bα be a sub-ball, and let r := r(B). Given t > 0, define the
operator

ψ(∆1) := e−t∆1(I − e−r2∆1)m,

where m will be chosen big enough later. According to [2, Equations (2.6) and (4.3)],
one has

ψ(∆1) =

∫

Γ±

e−z∆1η±(z) dz,
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where Γ± is the half-ray R+e
±i(π

2
−θ) for a suitable θ ∈

(
0, π

2

)
and η±(z) is a complex

function satisfying the estimate

|η±(z)| .
1

|z|+ t
inf

(
1,

r2m

(|z| + t)m

)
.

Using Lemma 2.9 and following the argument in [2, p.27-28], one obtains

||V (·,
√
t)1/2

√
td∗(t2∆1)

Nψ(∆1)(du)||L2(Cj (B)) . 1
4jm

(
t

4jr2

)D/2×

inf

((
t

4jr2

)1/2
,
(

4jr2

t

)m−1/2
)
||du||L1(B),

(3.63)
for every u supported in the admissible ball B. If one now lets

ϕ(∆1) := e−t2∆1(I − e−r2∆1)m,

then by (3.63), one gets

||V (·, t)1/2td∗(t2∆1)
Nϕ(∆1)(du)||L2(Cj(B)) . 4−jm

(
t

2jr

)D+1

inf

(
1,

(
2jr

t

)2m
)
||du||L1(B).

(3.64)
We now define the smoothing operator Ar(B) by

Ar(B) = I − (I − e−r(B)2∆1)m.

We need to check that (3.61) and (3.62) hold. In what follows, for simplicity we will
simply write r instead of r(B).

Proof of (3.62): this uses the estimate in Lemma 2.8. Indeed, we first notice
that Ar(B) is a linear combination of terms e−kr2∆1 , k = 1, · · · , m, and it suffices to
treat independently each of these terms. In what follows, we will thus fix an integer
k between 1 and m. For every j ≥ 1, letting F = Cj(B) ∩ 5Bα, one has

r(B) . r(x) + 1, ∀x ∈ F.

Indeed, the inequality is trivial for α = 0, and for α 6= 0, r(x) ≥ r(xα) − 5rα ≥
(29− 5)rα ≥ (29−5)

2
r(B). Consequently, by Lemma 2.8, for every u with support in B

and du ∈ L1,

||V (·, r
√
k)1/2e−kr2∆1(du)||L2(Cj(B)∩5Bα) . e−c4j ||du||L1(B).

By doubling, if x ∈ Cj(B), then

V (xB, r)

V (x, r
√
k)

≤ V (x, r(1 + 2j+1))

V (x, r
√
k)

. (1 + 2j)D

. 2Dj.
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Hence,

V (B)1/2||e−kr2∆1(du)||L2(Cj(B)∩5Bα) . 2jD/2e−c4j ||du||L1(B).

Therefore,

V (B)1/2
(

V (B)

V (2j+1B)

)1/2

||e−kr2∆1(du)||L2(Cj(B)∩5Bα) . 2jD/2e−c4j ||du||L1(B),

which implies that (3.62) holds with g(j) ≃ 2jD/2e−c4j .

�

Proof of (3.61): this uses (3.64). Given j ≥ 2, we write Tα(1 − Ar(B))(du) ≤
Sα(du) + Lα(du), where

Sαω(x) =

(∫

d(x,z)≤t, t≤rα∧2j−1r

χ4Bα
(z)|td∗(t2∆1)

Ne−t2∆1(I − e−r(B)2∆1)mω(z)|2 dµ(z)

V (z, t)

dt

t

)1/2

and

Lαω(x) =

(∫

d(x,z)≤t, 2j−1r≤t≤rα

χ4Bα
(z)|td∗(t2∆1)

Ne−t2∆1(I − e−r(B)2∆1)mω(z)|2 dµ(z)

V (z, t)

dt

t

)1/2

(of course, Lα is non-zero only if 2j−1r ≤ rα). Let

Ft(z) := |td∗(t2∆1)
Ne−t2∆1(I − e−r(B)2∆1)m(du)(z)|.

We need to estimate

I :=

(
1

V (2j+1B)

∫

Cj(B)

|Sα(du)(x)|2 dµ(x)
)1/2

≤
(

1

V (2j+1B)

∫

Cj(B)

∫

d(x,z)≤t, t≤2j−1r

|Ft(z)|2
dµ(z)dt

tV (z, t)
dµ(x)

)1/2

as well as

II :=

(
1

V (2j+1B)

∫

Cj(B)

|Lα(du)(x)|2 dµ(x)
)1/2

≤
(

1

V (2j+1B)

∫

Cj(B)

∫

d(x,z)≤t, 2j−1r≤t

|Ft(z)|2
dµ(z)dt

tV (z, t)
dµ(x)

)1/2

.
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According to (3.64), one has

||V (·, t)1/2Ft||L2(Cj (B)) .





4−jm

(
t

2jr

)D+1

||du||L1(B), t ≤ 2jr.

4−jm

(
2jr

t

)2m−D−1

||du||L1(B), t ≥ 2jr.

Furthermore, doubling and reverse doubling imply that if z ∈ Cj(B) and t ≥ 2jr,
then

V (z, t)

V (xB, r)
≥ V (z, t)

V (z, 2j+2r)
≥ C inf

((
t

2jr

)ν

,

(
t

2jr

)D
)
.

Hence,

V (B)1/2||Ft||L2(Cj(B)) .






4−jm
(

t
2jr

)D
2
+1 ||du||L1(B), t ≤ 2jr.

4−jm
(

2jr
t

)2m−D+ ν
2
−1

||du||L1(B), t ≥ 2jr.

One deduces that

V (B)1/2||Ft||L2(Cj (B)) .






4−jm
(

t
2jr

)
||du||L1(B), t ≤ 2jr.

4−jm
(

2jr
t

)2m−D+ ν
2
−1

||du||L1(B), t ≥ 2jr.

(3.65)

Estimate of I: for t ≤ 2j−1r and x ∈ Cj(B), d(x, z) ≤ t implies that z belongs to
Cj−1(B) ∪ Cj(B) ∪ Cj+1(B). Furthermore, if z is fixed, then the measure of the set

{x ∈ Cj(B) ; d(x, z) ≤ t}
is by definition at most V (z, t). Therefore, by Fubini and (3.65), we obtain

V (B) · I ≤
(

V (B)

V (2j+1B)

∫ 2j−1r

0

V (B)||Ft||2L2(Cj−1(B)∪Cj (B)∪Cj+1(B))

dt

t

)1/2

||du||L1(B)

.

(
2−jν

∫ 2j−1r

0

16−jm

(
t

2jr

)2
dt

t

)1/2

||du||L1(B)

= C2−j(2m+ν)/2||du||L1(B).
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Therefore,

I . 2−j(2m+ν)/2 · 1

V (B)
||du||L1(B).

Estimate of II: let t ≥ 2j−1r, and i = i(t) be the lowest integer such that

2ir ≥ t.

Then, for x ∈ Cj(B), d(x, z) ≤ t implies that z belongs to 2i+3B. We bound the
integral

∫

Cj(B)

∫

d(x,z)≤t

|Ft(z)|2 dµ(z)dµ(x)

by

V (2j+1B) ·
∑

k≤i(t)+2

||Ft||2L2(Ck(B)).

By (3.65), we get

∫

Cj(B)

∫

d(x,z)≤t

|Ft(z)|2 dµ(z)dµ(x) ≤ V (2j+1B)

V (B)

∑

k≤i+2

V (B) · ||Ft||2L2(Ck(B))

.
V (2j+1B)

V (B)

(
∑

k≤i+2

4−2km

(
2kr

t

)4m−2D+ν−2
)
||du||2L1(B)

.
V (2j+1B)

V (B)

(r
t

)4m−2D+ν−2
(
∑

k≤i+2

4−k(D− ν
2
+1)

)
||du||2L1(B)

. V (2j+1B)
(r
t

)4m−2D+ν−2 1

V (B)
· ||du||2L1(B),

where the last line follows from the fact that D − ν
2
+ 1 > 0 (since ν ≤ D). Also, if

z ∈ Cj(B) and t ≥ 2j−1r, by doubling

V (B)

V (z, t)
≤ V (z, 8t)

V (z, t)
. 1.

Consequently,

1

V (2j+1B)

∫

Cj(B)

∫

d(x,z)≤t

|Ft(z)|2
dµ(z)dµ(x)

V (z, t)
.
(r
t

)4m−2D+ν−2 1

V (B)2
· ||du||2L1(B).

Therefore,
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II .

(∫ ∞

2j−1r

(r
t

)4m−2D+ν−2 dt

t

)1/2
1

V (B)
· ||du||L1(B)

. 2−j(2m−D+ ν
2
−1) 1

V (B)
· ||du||L1(B).

Collecting the estimates, and choosing m > 2D + 1, one gets (3.61) with g(j) ≃
2−j(2m+ν)/2 + 2−j(2m−D+ ν

2
−1) . 2−jm. Since m > 2D + 1, one has

∑

j

g(j)2jD <∞,

which concludes the proof of (3.61).

�

3.4.4 The non-exact diagonal part

We now prove (3.60). One has

Tαηα(x) =

(∫

d(x,z)≤t<rα

χ4Bα
(z)|t(t2∆0)

Ne−t2∆0d∗ηα(z)|2
dµ(z)

V (z, t)

dt

t

)1/2

.

Define the function gα by

gα := rαd
∗ηα,

so that gα is supported in Bα, and according to (3.57),

||gα||1 . ||ω||L1(Bα). (3.66)

Then,

Tαηα(x) =

(∫

d(x,z)≤t<rα

χ4Bα
(z)|(t2∆0)

Ne−t2∆0gα(z)|2
(
t

rα

)2
dµ(z)

V (z, t)

dt

t

)1/2

≤
(∫

d(x,z)≤t<rα

|(t2∆0)
Ne−t2∆0gα(z)|2

(
t

rα

)2
dµ(z)

V (z, t)

dt

t

)1/2

.

Thus, for r > 0, we are led to consider the following non-tangential functional:

Rrg(x) :=

(∫

d(x,z)≤t≤r

|(t2∆0)
Ne−t2∆0g(z)|2

(
t

r

)2
dµ(z)

V (z, t)

dt

t

)1/2

.
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We claim that there exists a constant C independent of r > 0 such that, for every
g ∈ L1(M),

µ({x ; |Rrg(x)| > λ}) ≤ C
1

λ
||g||1, ∀λ > 0. (3.67)

This claim, together with (3.66), readily implies (3.60).

Let us first check that Rr is bounded on L2, with

||Rr||2→2 ≤ C,

independent of r > 0. One has

∫

M

|Rrg(x)|2 dµ(x) =

∫

M

∫

d(x,z)≤t≤r

|(t2∆0)
Ne−t2∆0g(z)|2

(
t

r

)2
dµ(z)

V (z, t)

dt

t

=

∫

M

∫ r

0

|(t2∆0)
Ne−t2∆0g(z)|2 dµ(z)

(
t

r

)2
dt

t
dµ(x)

=

∫ r

0

||(t2∆0)
Ne−t2∆0g||22

(
t

r

)2
dt

t

≤ ||g||22

(∫ r

0

(
t

r

)2
dt

t

)

= ||g||22.

On the other hand, one notices that for every r > 0,

Rrg(x) ≤ Rg(x) :=

(∫

d(x,z)≤t

|(t2∆0)
Ne−t2∆0g(z)|2 dµ(z)

V (z, t)

dt

t

)1/2

.

This inequality, as well as the Gaussian estimates satisfied by (t2∆0)
Ne−t2∆0 allow

one to show that the hypotheses of Theorem 1.1 in [2] for p0 = 1 are satisfied for Rr

with the choice Ar(B) = I − (I − e−r(B)2∆0)m, m ≫ 1, and with constants that are
bounded independently of r > 0. As a consequence of this theorem, (3.67) holds.

Appendix A: two lemmata on volume

The following two lemmata are of frequent use in the present work:

Lemma 3.1. Let A > 0, 1 ≤ p < ν. Then

∫

r(y)≤A

1

r(y)p
dµ(y) . A−pV (o, A).
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Proof. Splitting the integration domain into dyadic annuli, we get
∫

r(y)≤A

1

r(y)p
dµ(y) =

∑

j≥0

∫

2−j−1A<r(y)≤2−jA

1

r(y)p
dµ(y)

≤ A−p
∑

j≥0

2(j+1)pV (o, 2−jA)

. A−p
∑

j≥0

2(j+1)p2−jνV (o, A),

which yields the result since p < ν.

Lemma 3.2. Let m > 0 and A ⊂ M be a measurable set such that, for all x ∈ A,
V (o, r(x)) ≤ m. Then µ(A) . m.

Proof. Define t := sup {r > 0; V (o, r) ≤ m} (note that t is well-defined and t >
0, since lims→0 V (o, s) = 0 and lims→+∞ V (o, s) = +∞). Since B(o, t) =
⋃

k≥1

B

(
o, t− 1

k

)
, V (o, t) ≤ m. The assumption on A means that, for all x ∈ A,

r(x) ≤ t, so that A ⊂ B(o, 2t). Therefore, µ(A) ≤ V (o, 2t) . m.

Appendix B: A Calderón-Zygmund decomposition

localized in balls

Recall that M denotes the uncentered Hardy-Littlewood maximal function, given by

Mu(x) := sup
B∋x

1

V (B)

∫

B

|u(y)| dµ(y),

where the supremum is taken over all open balls containing x.

Lemma 3.3. Let B be a ball in M , and u ∈ C∞
0 (B). Let 1 ≤ q < ∞, and assume

that the Poincaré inequality with exponent q holds for any ball 7B̃, where B̃ ⊂ 2B.
Then, there exists a constant C > 0 depending only on the doubling constant, with the

following property: for all λ >

(
C ‖∇u‖qq
V (B)

) 1
q

, there exists a denumerable collection of

balls (Bi)i≥1 ⊂ 2B, a denumerable collection of C1 functions (bi)i≥1 and a Lipschitz
function g such that:

1. u = g +
∑

i≥1

bi,

2. The support of g is included in B, and |∇g(x)| . λ, for a.e. x ∈ B.

3. The support of bi is included in Bi, and
∫

Bi

|∇bi|q . λqV (Bi).
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4.
∑

i≥1

V (Bi) . λ−q

∫
|∇u|q.

5. There is a finite upper bound N for the number of balls Bi that have a non-empty
intersection.

Proof. Define
Ω := {x ∈M ; M (|∇u|q) (x) > λq} ,

which is an open subset of M , and set F := M \ Ω. We first claim that Ω ⊂
2B. Indeed, if x /∈ 2B, and B̃ is a ball containing x and intersecting the support
of ∇u (hence intersecting B), then B ⊂ 3B̃, hence V (B) ≤ cV (B̃) by doubling.
Consequently,

1

V (B̃)

∫

B̃

|∇u|q ≤ c
1

V (B)

∫

B

|∇u|q ≤ cC−qλq,

hence, if C ≥ c1/q, one obtains

1

V (B̃)

∫

B̃

|∇u|q ≤ λq.

Taking the supremum over all balls B̃ containing x, one gets

M (|∇u|q) (x) ≤ λq,

and consequently x /∈ Ω. Therefore, we have proved that Ω ⊂ 2B.
For all x ∈ Ω, let rx := 1

10
d(x,M \ Ω) and Bx := B(x, rx), so that Bx ⊂ Ω, and

Ω =
⋃

x∈ΩBx. Since the radii of the balls Bx are uniformly bounded, there exists
a denumerable collection of points (xi)i≥1 ∈ Ω such that the balls Bxi

are pairwise
disjoint and Ω =

⋃
i≥1 5Bxi

. For all i, write si := 5rxi
and let Bi = B(xi, si). Notice

that Bi ⊂ 2B for all i. Furthermore, the balls 1
5
Bi being disjoint together with

doubling entail that the covering by balls Bi has the finite intersection property. And
by construction also, 3Bi ∩ F 6= ∅ for every i. Therefore, if one lets Bi :=

1
5
Bi and

B̄i := 3Bi, then the families of balls (Bi, Bi, B̄i)i form a Whitney-type covering of Ω
in the sense of Coifman and Weiss ([15]). Note that, for all i, j ≥ 1, if Bi ∩ Bj 6= ∅,
then δ−1si ≤ sj ≤ δsi with δ = 3. Indeed, let x ∈ Bi ∩ Bj . Then

si =
1

2
d(xi,M \ Ω) ≤ 1

2
d(xi, x) +

1

2
d(x,M \ Ω) ≤ 1

2
si +

1

2
d(x,M \ Ω),

so that
si ≤ d(x,M \ Ω) ≤ d(x, xj) + d(xj ,M \ Ω) ≤ 3sj ,

and exchanging the roles of i and j proves the claim.
Let (χi)i≥1 be a partition of unity of Ω, subordinated to the covering (Bi)i≥1, and
such that |∇χi| . s−1

i . Then, define

bi = (u− uBi
)χi,
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so that bi has support in Bi. We also let

g = u−
∑

i≥1

bi.

According to the proof of Prop. 1.1 in [3], g is a well-defined, locally integrable
function on M . The Lebesgue differentiation theorem implies that |∇u| ≤ λ a.e. on
F . Following the proof of Prop. 1.1 in [3], and using the Lq Poincaré inequality
for the balls Bi as well as (2δ + 1)Bi = 7Bi, the points 4. as well as 5. are easily
proved.

Proposition 3.4. Let B ⊂M be an admissible ball. Let T be a real-valued sublinear
operator of strong type (2, 2). Assume that, for all balls B̃ ⊂ B, all u ∈ C∞

0 (B), and
for all j ≥ 2,

(
1

V (2j+1B̃)

∫

Cj(B̃)∩5B
|T (I −Ar(B̃))(du)|2

)1/2

≤ g(j)
1

V (B̃)

∫

B̃

|du|, j ≥ 2, (3.68)

and, for all j ≥ 1,

(
1

V (2j+1B̃)

∫

Cj(B̃)∩5B
|Ar(B̃)(du)|2

)1/2

≤ g(j)
1

V (B̃)

∫

B̃

|du|, j ≥ 1, (3.69)

where (Ar)r>0 is a collection of operators acting on 1-differential forms and∑∞
j=1 g(j)2

Dj <∞, where D > 0 is the doubling exponent from (VD). Then,

µ ({x ∈ 5B ; |T (du)(x)| > λ}) . ‖∇u‖1
λ

, u ∈ C∞
0 (B).

Proof. Let λ > 0. If λ ≤ C ‖∇u‖1
V (B)

, where C is given by Lemma 3.3, then by doubling

µ({x ∈ 5B; |T (du)(x)| > λ}) ≤ V (5B) . V (B) ≤ C ‖∇u‖1
λ

.

Assume now that λ >
C ‖∇u‖1
V (B)

. Decompose u = g+ b with g and b given by Lemma

3.3 applied with q = 1. One has

µ({x ∈ 5B; |T (du)(x)| > λ}) ≤ µ

({
x ∈ 5B; |T (dg)(x)| > λ

2

})

+µ

({
x ∈ 5B; |T (db)(x)| > λ

2

})
.
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For the first term of the right-hand side of (3.70), write

µ

({
x ∈ 5B; |T (dg)(x)| > λ

2

})
≤ 4

λ2
‖T (dg)‖22

≤ C

λ2
‖dg‖22

≤ C

λ2
‖dg‖∞ ‖dg‖1

≤ C

λ
‖du‖1 .

The second line follows from the L2-boundedness of T and the last line is due to
property 2 of Lemma 3.3 and the fact (due in turn to items 3 and 4 of Lemma 3.3)
that

‖dg‖1 ≤ ‖du‖1 + ‖db‖1 ≤ ‖du‖1 +
∑

i

‖dbi‖1 . ‖du‖1 + λ
∑

i

V (Bi) . ‖du‖1 .

As far as the second term in the right-hand side of (3.70) is concerned, write

∣∣∣∣∣T
(
∑

i

dbi

)∣∣∣∣∣ ≤
∑

i

|T (I − Ari)dbi|+
∣∣∣∣∣T
(
∑

i

Aridbi

)∣∣∣∣∣ .

This entails that it is enough to check that

I := µ

({
x ∈ 5B;

∑

i

|T (I − Ari)dbi(x)| >
λ

4

})
≤ C

λ
‖du‖1 (3.70)

and

J := µ

({
x ∈ 5B;

∣∣∣∣∣T
(
∑

i

Aridbi

)
(x)

∣∣∣∣∣ >
λ

4

})
≤ C

λ
‖du‖1 . (3.71)

For I,

I ≤ µ

(
⋃

i≥1

4Bi

)
+ µ

({
x ∈ 5B \

⋃

i

4Bi;
∑

i≥1

|T (I −Ari)dbi(x)| >
λ

4

})
=: I1 + I2.

On the one hand, by doubling and property 4. of Lemma 3.3,

I1 ≤ C
∑

i

V (Bi) ≤
C

λ
‖∇u‖1 . (3.72)

On the other hand, the Chebyshev inequality entails

I2 ≤
16

λ2

∥∥∥∥∥
∑

i

15B\
⋃

i 4Bi
T (I − Ari)dbi

∥∥∥∥∥

2

L2(5B)

. (3.73)

50



Pick up a function h ∈ L2(5B) with ‖h‖2 = 1. One has
∣∣∣∣∣

∫

5B

∑

i

15B\
⋃

i 4Bi
T (I − Ari)dbi(x)h(x)dµ(x)

∣∣∣∣∣ ≤
∑

i

∑

j≥2

Aij ,

where

Aij :=

∫

5B∩Cj(Bi)

|T (I −Ari)dbi(x)| |h(x)| dµ(x).

By assumption (3.68) and property 3 of Lemma 3.3,

‖T (I − Ari)dbi‖L2(5B∩Cj (Bi))
≤ V (2j+1Bi)

1
2 g(j)

1

V (Bi)
‖dbi‖1 ≤ V (2j+1Bi)

1
2g(j)λ.

Moreover, for all y ∈ Bi,

‖h‖L2(5B∩Cj (Bi))
≤ ‖h‖L2(2j+1Bi)

≤ V (2j+1Bi)
1
2

(
M|h|2 (y)

)1
2 .

As a consequence,

Aij ≤ V (2j+1Bi)g(j)λ
(
M|h|2 (y)

)1
2 ≤ C2jDV (Bi)g(j)λ

(
M|h|2 (y)

)1
2 ,

and since this holds for all y ∈ Bi,

Aij ≤ C2jDg(j)λ

∫

Bi

(
M|h|2 (y)

) 1
2 dµ(y).

It follows that
∣∣∫

5B

∑
i 15B\

⋃
i 4Bi

T (I −Ari)dbi(x)h(x)dµ(x)
∣∣ is bounded by

Cλ
∑

j≥2

2jDg(j)

(
∑

i

∫

Bi

(
M|h|2 (y)

)1
2 dµ(y)

)
≤ CNλ

∫
⋃

i Bi

(
M|h|2 (y)

) 1
2 dµ(y)

≤ CNλ

∣∣∣∣∣
⋃

i

Bi

∣∣∣∣∣

1
2 ∥∥|h|2

∥∥ 1
2

1

≤ Cλ1/2 ‖∇u‖1/21 ,

and (3.73) shows that

I2 ≤
C

λ
‖∇u‖1 . (3.74)

Gathering (3.72) and (3.74) yields (3.70).
For J , the L2-boundedness of T gives

J ≤ 16

λ2

∥∥∥∥∥T
(
∑

i

Aridbi

)∥∥∥∥∥

2

L2(5B)

≤ C

λ2

∥∥∥∥∥
∑

i

Aridbi

∥∥∥∥∥

2

L2(M)

.

Pick up again a function h ∈ L2(M) with ‖h‖2 = 1. Then
∣∣∣∣∣

∫

M

(
∑

i

Aridbi(x)

)
h(x)dµ(x)

∣∣∣∣∣ ≤
∑

i

(
∑

j≥1

∫

Cj(Bi)

|Aridbi(x)| |h(x)| dµ(x)
)

:=
∑

i

∑

j≥1

Bij .
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For all i, j, using (3.69), one obtains

Bij ≤ V (2j+1Bi)
1/2g(j)

1

V (Bi)
‖dbi‖1

≤ CV (2j+1Bi)
1/2g(j)λ,

and arguing as before, we conclude that (3.71) holds.
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