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Featured Application: This work proposes a semi-automatic approach for the 3D reconstruction
of existing buildings from point clouds in the context of BIM. This process remains currently
largely manual and its automation will allow reducing time required for the manual modelling
and errors induced by the user.

Abstract: The creation of as-built Building Information Models requires the acquisition of the as-is
state of existing buildings. Laser scanners are widely used to achieve this goal since they permit
to collect information about object geometry in form of point clouds and provide a large amount
of accurate data in a very fast way and with a high level of details. Unfortunately, the scan-to-BIM
(Building Information Model) process remains currently largely a manual process which is time
consuming and error-prone. In this paper, a semi-automatic approach is presented for the 3D
reconstruction of indoors of existing buildings from point clouds. Several segmentations are
performed so that point clouds corresponding to grounds, ceilings and walls are extracted. Based on
these point clouds, walls and slabs of buildings are reconstructed and described in the IFC format in
order to be integrated into BIM software. The assessment of the approach is proposed thanks to two
datasets. The evaluation items are the degree of automation, the transferability of the approach and
the geometric quality of results of the 3D reconstruction. Additionally, quality indexes are introduced
to inspect the results in order to be able to detect potential errors of reconstruction.

Keywords: as-built BIM; building indoor environments; Terrestrial Laser Scanning; point clouds;
3D reconstruction; assessment; automation; transferability; quality

1. Introduction

The modelling of indoor areas of existing buildings is a huge issue since the emergence of
Building Information Modelling (BIM) in Architecture, Engineering and Construction (AEC) industry.
Volk et al. [1] highlight the fact that despite well established BIM processes for new buildings,
the majority of existing buildings is not maintained, refurbished or deconstructed with BIM yet.
According to Giudice and Osello [2], the need to refurbish the cultural heritage is becoming more
important than the construction of new buildings. The potential benefits of BIM implementation in
existing buildings seem to be significant, for among them, restoration, documentation, maintenance,
quality control or energy and space management [1,3]. The creation of a Building Information Model
of an existing building commonly named as-built BIM requires the acquisition of the as-is state of the
building. Terrestrial Laser Scanning (TLS) is widely used to achieve this goal. Indeed, laser scanners
permit to collect information about object geometry in form of point clouds. They provide a large
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amount of accurate data in a very fast way and with a high level of details [4–6]. Some governments
such as the British and the American governments recommend the use of this capture technology in
the BIM process [7,8].

Unfortunately, the scan-to-BIM process remains largely a manual process because of the huge
amount of data, the challenge that constitutes the reconstruction of occluded parts of buildings and
the absence of semantic information in point clouds. This is time consuming and requires skills. A key
challenge today is thus to automate the process leading to as-built BIM from point clouds. The aim
of our project is to develop a processing chain allowing to extract automatically the maximum of
information from point clouds in order to integrate easily the result in BIM software. Three items were
considered for the development of the approach. The first item is the automation. A 3D semi-automatic
reconstruction is proposed and tasks which can be automated have to be identified. Secondly, in order
to guaranty the generalisation of the approach, a transferability item is considered. It involves the
definition of characteristics of studied buildings. The last but not least item is the geometric quality of
the results. Quality criteria are intended to be integrated in the approach and quality indexes have to
be proposed for the inspection of reconstruction results.

In this article, a state of the art of the process which consists in the creation of as-built BIM
from point clouds is first proposed (Section 2). The Section 3 is dedicated to the full description of
the developed approach which considers indoor point clouds as input. The project framework is
presented and the two parts of the approach, namely the segmentation of building elements point
clouds and the 3D reconstruction of walls and slabs of buildings, are detailed. The assessment of the
developed approach is then considered in Section 4. Datasets and thresholds used for the assessment
are presented and results of both parts of the approach are shown. Moreover, quality indexes are
introduced for the inspection of results. Finally, some future works are proposed and new trends for
as-built BIM creation are discussed (Section 5).

2. Related Work

2.1. From Point Clouds to Building Information Model

The scan-to-BIM process involves three tasks [9]: modelling the geometry of components,
assigning an object category and material properties to a component, and establishing of relationships
between components.

Anil et al. [10] identified several characteristics induced by the use of laser scanner data for as-is
BIM creation. First of all, the point cloud density, which describes the average spacing between points,
conditions the size of the smallest object that can be modelled. The density of point clouds has to be
chosen regarding to the level of details defined in the requirements of the project. Secondly, since point
clouds are the source of information for the generation of the model, measurement uncertainties
may affect the derived geometry. Measurement uncertainties are notably due to the scanned object
properties [11,12] and the geometry of the acquisition namely the distance to the object and the
incidence angle formed by the laser beam and the scanned surface [13]. Thirdly, laser scanner allows
acquiring large spaces but, because of occluding objects, it is difficult to acquire the whole environment.
Even if some masks can be circumvent by optimising the successive positions of the laser scanner,
in very congested spaces, occlusions are inexorably present in point clouds. It is particularly the case
for indoor spaces where equipment and furniture are encountered [14,15]. Pătrăucean et al. [16] also
highlight that besides partially occluded objects, there are also objects which are invisible such as
pipes located inside walls. Finally, since building geometry is imperfect, simplification assumptions
are often considered and constraints are commonly introduced. In order to keep the true geometry
and to assess the quality of the as-built model, it is essential to integrate information about deviations
of the model from the laser scan data. One should also add to the above mentioned characteristics
the absence of semantic information in point clouds. Indeed, point clouds provide information about
the geometry of objects but don’t contain semantic information such as the categories of objects or
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the materials composing construction elements. In that sense, Pătrăucean et al. [16] explain that the
scan-to-BIM process is limited. The best possible as-built modelling method cannot be expected to
output an as-built BIM as rich as an as-designed BIM. An as-built model represents a reduced version
of a complete BIM.

Currently, the scan-to-BIM process remains largely manual and is recognized by many as
time-consuming, tedious, subjective and requiring skills [9,17,18]. As explained by Xiong et al. [19],
even with training, the result produced by one modeller may differ significantly from that produced by
another person. The automation of the scan-to-BIM process is thus a very active research area. In order
to model a building from point clouds manually, either the point clouds can be used as a visual support
(usually in a top view) or sections can be generated. The manual modelling causes some errors since the
modelling is achieved thanks to 2D views or restricted to specific locations. Semi-automatic tools were
developed to avoid potential errors. Software dedicated to point cloud processing such as Realworks
(Trimble), CloudCompare (EDF R&D) or 3D Reshaper (Technodigit) propose tools to create geometric
primitives or meshes directly from 3D data. Unfortunately such a modelling does not generate objects
which can be integrated directly in a BIM software such as Revit (Autodesk), ArchiCAD (Graphisoft)
or Tekla Structures (Trimble). A conversion step, which often involves several software, is necessary.
Moreover, this conversion can cause problems of data interoperability. Thus, semi-automatic software
(e.g., EdgeWise, Trimble) or plugins integrated to BIM software (e.g., Scan-to-BIM, ImaginIT and
PointSense, FARO) were developed specifically for the scan-to-BIM process. In such software, structural
elements are adjusted to point clouds from information given by the user.

2.2. Modelling of Building Geometry

2.2.1. Types of Models

Different types of models can be constructed from point clouds: models based on geometric
primitives, mesh based models and hybrid models [20]. Models based on geometric primitives
consist of the segmentation of point clouds into geometric shapes namely planes, cylinders, cones and
spheres [21–23]. Mesh based models are considered when surfaces under study are complex or when
a high level of details is required [24]. They are composed of sets of facets and require unlike models
based on geometric primitives a large storage volume. Geometric shapes and meshes can also be
combined into hybrid models when different levels of details have to be reached in a same model [25].

The choice of the type of model depends on the type of building under study. Historical buildings
combine geometric shapes as well as distorted areas, architectural details such as mouldings and
ornaments, that is why hybrid models are often considered. Industrial buildings present Mechanical,
Electrical and Plumbing (MEP) objects generally cylindrical which have to be modelled. The modelling
of such buildings often consists firstly in dissociating building architecture from objects of interest [26].
Most buildings are more ordinary and composed mostly of planes. Thus, in order to characterize the
geometry of these buildings, models based on geometric primitives limited to planes are frequently
used. Moreover, some assumptions can be integrated to the modelling process as for example
the parallelism or the perpendicularity between two walls. The choice of the type of model is
oriented by the type of building, but also by the precision defined in the project requirements.
Runne et al. [27] study the link between modelling precisions and different applications. For example,
for retro-engineering a model with a higher precision is required than for space planning and area
management.

2.2.2. Modelling of Indoor Environments

The modelling of building façades from laser scan data was already the subject of many works
(e.g., [21,28,29]). Our work focus on the modelling of indoor environments from point clouds.
It requires other methods and involves more challenges to overcome. Indeed, an indoor space is
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not limited to the study of the elements belonging to a plane. Moreover, existing buildings can present
numerous occlusions which disturb the modelling.

A building is usually composed of sub-spaces namely floors and rooms. Several approaches are
developed in order to segment or identify these sub-spaces in a building point cloud. Huber et al. [30],
Khoshelham and Díaz-Vilariño [31] and Oeseau et al. [32] use an histogram of the repartition of
points along z axis to identify the different floors of a building. The study of the histogram allows
determining ground and ceiling altitudes of the building. Ochmann et al. [33] propose a room
segmentation algorithm based on the computation of the probability of each point to belong to a
room. This algorithm requires the positions of the scanner as input. Budroni and Boehm [34] and
Mura et al. [35] detect the major planes of a floor and use a cell decomposition in the X-Y plane in
order to segment rooms. Lastly other methods of room segmentation are based on shape or structure
grammars [31,36].

Rather than considering a decomposition into sub-spaces, an other approach consists in looking
for structural elements of a building and notably walls and slabs. A plane segmentation is usually
performed for the identification of planes composing the structural elements. The RANdom
SAmple Consensus (RANSAC) paradigm is frequently preferred for this purpose [37–40] instead
of region growing algorithms. Indeed, it is robust and efficient regarding processing time and noise
management [41].Two methods are commonly used to segment point clouds of indoor environments.
The first one consists in carrying out a plane segmentation and then in identifying groups of planes
(gather together) which constitute building elements by exploiting the properties of planes such
as their normals or their positions [37,39,42]. The second method executes several successive
segmentations. Thomson and Boehm [40] first perform a segmentation into horizontal planes in
order to extract planes corresponding to ground and ceiling and then a segmentation into vertical
planes to identify wall planes. Hong et al. [38] and Valero et al. [43] also begin their processes by
segmenting ceiling and ground. Then, the remaining point cloud is projected onto the X-Y plane
and planes corresponding to walls are extracted by considering room boundaries in the 2D plane.
Once planes are extracted from point clouds and identified as a part of a wall, a ceiling or a ground,
different modelling strategies can be carried out. Wire frame models [19] or surface models composed
of planes [43] are obtained by considering intersections between planes. Boulch et al. [44] propose a
piecewise-planar 3D reconstruction. The reconstructed surface is in this case a polygonal mesh of the
scene. Lastly Anagnostopoulos et al. [45] assemble wall planes and create a volumetric model of walls.
This type of model is the one that is the closest to Building Information Model since wall objects are
described by volumes.

A key challenge in the reconstruction of existing buildings is to manage masks in point clouds.
Besides adding elements which do not have to be modelled, occluding objects also cause some missing
parts of structural elements of a building. Some works deal with the reconstruction of missing parts
of walls which is particularly interesting for the identification of openings (doors and windows).
Huber et al. [30], Previtali et al. [15] and Xiong et al. [19] use a ray tracing labelling for that purpose.
The ray tracing algorithm exploits the position of scan stations. For a given surface, a voxel space is
created for each scan station. A voxel is labelled as either occupied, occluded or empty by studying
the position of points in relation to the scanner and the surface. Based on the occlusion labelling
results, Xiong et al. [19] use a learning-based method to recognize and model openings in the surface.
They finally apply an inpainting algorithm to fill occluded regions of walls. Stambler and Huber [46]
also use a ray tracing algorithm but they consider point clouds describing surfaces of both sides of a
wall.

2.3. Object Recognition and Relationship Establishment

As highlighted by Tang et al. [9] and Pătrăucean et al. [16], object recognition is a core task in
as-built BIM modelling. Beyond geometry, elements extracted from point clouds have to be assigned
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to several object classes. The attribution of semantic information can be done at various steps in the
processing chain.

Semantic information can be integrated directly during the segmentation step and/or the
geometric modelling of elements so that the search of building elements is guided. As shown
above, some approaches integrate knowledge about building structure in order to identify specific
elements in point clouds. Hong et al. [38], Thomson and Boehm [40] and Valero et al. [43] first extract
only horizontal planes with the aim of identifying grounds and ceilings. Then, Hong et al. [38]
and Valero et al. [43] exploit the fact that walls are located in borders of rooms to extract them.
Whereas Thomson and Boehm [40] use a verticality constraint for the extraction of walls. Buildings
generally follow standards and architectural codes linked to the type of building and the construction
date. Plenty of buildings, notably office buildings, verify the Manhattan-World (MW) assumption
originally defined by [47]. As explained by Anagnostopoulos et al. [37] these buildings have three
mutually orthogonal directions. Grounds and ceilings are horizontal (X-Y plane), whereas the walls
are vertical and either parallel to the Y-Z or the X-Z planes. Budroni and Boehm [34] consider the
MW assumption in their approach. They use a sweeping method along Y-Z and X-Z planes to extract
walls. Anagnostopoulos et al. [37] also take advantage of MW assumption in their processing chain in
particular during the fusion of wall planes. Methods based on shape grammars, used more specifically
for MW buildings, are studied by [31,48,49]. Ikehata et al. [36] developed an approach in which a scene
graph is modified thanks to a structure grammar.

When the attribution of semantic information is not coupled with the modelling of the geometry,
an a posteriori object recognition has to be performed. The chosen approach depends on the
considered elements which are either parametric representations or non-parametric representations [9].
In the context of as-built BIM, one of the challenges for object recognition is that many objects are
similar. Several works focus on the use of contextual characteristics to differentiate very close objects.
A constraint network is used by [50] to represent a knowledge model. This type of network specifies the
relationships between entities. For example, considering a building, this consists in saying that a wall
is parallel or orthogonal to another wall and orthogonal to ceiling and floor. Bassier et al. [51] combine
simultaneously contextual and geometrical characteristics in order to assign an object category to
extracted elements. Pu and Vosselman [21] also suggest to distinguish segmented planar entities based
on their characteristics. The characteristics taken into account are the size, the position, the orientation,
the topology and the density of points. Xiong et al. [19] propose a machine learning algorithm to
automatically label planar patches previously extracted as walls, ceilings, or floors. Features of different
types of surfaces and the contextual relationships between them are learned to perform the labelling.

For non-parametric models, 3D object recognition algorithms may label object instances or
recognized classes of objects. They are used whether in urban environments [52], industrial
environments [53] or in indoor areas of buildings [54]. The recognition is based on a database of
objects which have to be recognized. Shape descriptors are computed for both objects of the database,
and the scene containing these objects. Then, a matching step allows to identify objects in the scene.
Recognition of object instances is usually performed when objects with known shape and which are
repeated in a scene have to be identified. For example, Johnson et al. [55] use this method in power
plants for recognizing objects such as machinery, pipes and valves. Günther et al. [54] are interested
in furniture recognition in an indoor environment. Based on a semantic model of furniture objects,
they generate hypotheses to locate object instances and they verify them by matching a geometric
model of the object into the point cloud. Recognition of object classes is more adapted to handle
variations in object shape. Global descriptors are frequently used in this case but one disadvantage
of using an approach with such descriptors is that it cannot handle partial data, ie. data in which
occlusions are encountered. As highlighted by Tang et al. [9], research about recognition of BIM specific
components (walls, windows, doors, etc.) is still in its early stages. Currently approaches developed
for as-built BIM modelling usually consider a prior segmentation of the scene into planes and then
features of planes are used to recognize objects.
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The third task necessary for as-built BIM creation is the establishment of relationships between
elements. Indeed, besides their geometry, building elements are also described by their topology.
Geometrical data represent the dimensions and the location of elements whereas topological data refer
to information about their spatial relations [56]. There is obviously a link between the type of element
and the types of relations with other elements. As explained above, spatial relations between objects can
by the way be used to identify the nature of objects. Several models were developed to automatically
determine topological relations between objects. Nguyen et al. [56] present an approach which is
able to automatically deduce topological relationships between building elements. Belsky et al. [57]
implemented a prototype system for the semantic enrichment of precast concrete model files. Joint and
slab aggregation concepts are considered. The composition of rule-sets uses topological, geometric
and other generic operators. Anagnostopoulos et al. [45] present a semi-automatic algorithm which
estimates the boundaries and the adjacency of objects in point clouds and creates a representation of
objects in IFC format.

3. Full Description of the Approach

3.1. Project Framework

3.1.1. Buildings under Study

The French real-estate patrimony is rich and all types of buildings can not be taken into account
during this project. Hence, it is important to define what type of buildings can be considered.
A building is described thanks to several characteristics such as its size, its function, its topology,
its date of construction, materials composing it and its aesthetic.

Buildings taken into account in the developed approach are ordinary buildings both by their
function and their aesthetic. The modelling of industrial buildings or historical buildings is not
envisaged since these types of buildings require specific processes. Moreover, in the developed
approach, a building is described by planar shapes. Complex architectures composed of non-planar
shapes are thus set aside. Also, some buildings composed of materials which are difficult to acquire
by laser scanning could obviously not be considered. It is notably the case for buildings with façades
made entirely of glass. The developed approach deals with buildings of variable sizes and dates
of construction. These buildings are composed of one or several floors divided into several rooms.
This organisation is followed by the majority of buildings as for example individual houses, public
buildings or office buildings. Finally, developed algorithms handle only horizontal ceilings that is why
rooms with sloped ceilings are not processed.

3.1.2. Input Data

The developed approach considers as input data acquired by laser scanners namely registered
point clouds. Our project focuses on how to process these data even if it must be noticed that the
acquisition and the post-processing steps have obviously an impact on the quality of the data and
consequently on the quality of models created from point clouds. It is essential to adopt the best
possible acquisition protocol to avoid troubles during the modelling step. In order to ensure the quality
of input data, the following recommendations have to be followed by the operator:

• Scan stations:

– optimize the placement of scan stations in order to acquire the whole environment without
causing redundant data by multiplying scan stations

– plan a consequent overlapping between point clouds in case of indirect georeferencing
– if possible perform loops to improve the quality of the registration of point clouds (global

adjustment) and to limit the risks of deviation
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• Targets:

– use at least 4 targets in common between two scans: 3 targets are sufficient to register point
clouds issued from 2 successive scans but it is recommended to take more than 3 and to
compensate the whole network of targets at once

– prioritize targets placed in more than 2 scans. It should be ensured that targets are
well-distributed in the space, that is to say placed at various ranges from the scanner,
not in the same plane or along one line and locared at different heights

– the use of natural targets such as edges, planes and cylinders can reduce and simplify data
collection process; indeed, it can be difficult and time consuming to place targets throughout
all the building

• Point spacing:

– consider upstream the desired point density according to project specifications
– adapt point spacing depending on space configuration and the positioning of targets in

relation to the laser scanner

• Georeferencing after registration:

– georeferencing can be either direct when positions and orientations of the successive scanner
stations are known within a geodetic network, or indirect when the georeferencing is
performed after the registration

– in case of indirect georeferencing, the coordinates of targets or characteristic points well
distributed in the scene are measured and are used to compute the transformation from the
local system to the global system

– georeferencing can improve the quality of the registration notably for a linear project

Considering the developed approach, several requirements have to be taken into account for the
acquisition with the laser scanner. A minimum of one point per centimetre is required by the approach.
Moreover, a scan has to be performed whenever the ceiling height changes. It shall also be ensured
that the ceilings are not occluded at the scanner point of views since the approach largely exploits
slices of point clouds at their levels.

The data considered as input of the algorithms are supposed to be correctly registered indoor
point clouds. In order to save time during the process and to gain more insight into the number of
points of extracted elements, point clouds are spatially resampled at 1 cm. Point clouds are also rotated
to follow the orientation of one of the major façade plane obtained using a Principal Component
Analysis (PCA) to accelerate processing time. Finally, a global shift to a local coordinate system is
temporarily performed so that the original precision is kept.

3.1.3. Overview of the Approach

Figure 1 proposes an overview of the developed approach. The approach is composed of two
main parts. In the first part, aim is to segment point clouds so that structural elements of the building
are identified. Indoor point clouds are first segmented into sub-spaces namely floors and rooms.
Then, for each room point cloud, several segmentations into planes are performed. These segmentations
are combined with the classification of points into several categories (grounds, ceilings and walls).
Finally, wall point clouds are obtained by assembling planes classified as walls.

In the second part of the approach, walls and slabs of the building are reconstructed in 3D based
on wall point clouds and ground and ceiling point clouds. In order to do that, point clouds describing
these structural elements are adjusted either by volumes or surfaces. The output of the approach is a
file in the IFC format (BIM format) where walls and slabs are described.
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Figure 1. Overview of the developed approach.

The entire approach was carried out thanks to MATLAB (MathWorks) software. In the remainder
of this section the different steps of the developed approach are detailed and illustrated based on
indoor point clouds acquired in a public building namely a building of the National Institute of
Applied Sciences (INSA) in Strasbourg (Figure 2). The ground floor, the first floor and a part of the
second floor of the building which represent approximately 2500 m2 were scanned. The acquisition
and the post-processing of this dataset have already been presented in [58].

(a) (b)

Figure 2. Dataset used to illustrate the approach: (a) Photograph of the acquired building. (b) Indoor
colourized point clouds (∼1.7 billion points before resampling).

3.2. Segmentation into Structural Elements

The aim of the first part of the approach, structural element point clouds are segmented. It begins
with the segmentation of the building point clouds into sub-spaces to move from scan point clouds to
room point clouds. Then, based on each room point cloud, several plane segmentations are performed
and points are classified as walls, ceilings or grounds. Finally, wall point clouds are obtained by
assembling planes. This part of the approach was already described in [58,59].

3.2.1. Segmentation into Sub-Spaces

First, a floor segmentation is performed for scans resampled at 1 cm. For each scan, an histogram
describing the distribution of points along z axis is created and analysed in order to determine the
ground and ceiling altitudes. Thanks to ground altitudes, scans are grouped into several clusters
representing the different floors. The floor segmentation result obtained for indoor point clouds
presented in Figure 2b is shown in Figure 3.
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Figure 3. Floor segmentation result—3 floors of the INSA building (one colour per floor).

Then for each floor, a room segmentation is performed. At this stage, a binary image is
generated based on the projection onto an horizontal plane of a slice of point clouds at ceiling levels.
The advantage of considering the ceilings is that at this location the point clouds of different rooms
are not linked together. A slice of 30 cm was chosen. The distances between the ceilings and interior
contours of doors are generally higher than this value. One should note that if the distances are smaller
than the defined value, the link between rooms can be removed by considering the standard deviation
of points along z axis (explanation below).

The generated binary image for the first floor of INSA building is presented Figure 4a. A pixel is
coloured in white if it contains at least one point and in black otherwise. A pixel size of three times
the spatial resampling namely 3 cm is chosen. The choice of the image pixel size is induced on one
hand by the thinnest wall that can be encountered. A higher pixel size can cause the disappearance
of thin walls and can consequently create links between rooms. On the other hand, by considering
a spatial resampling of 1 cm the binary image does not contain “holes”. During the creation of the
binary image, the standard deviation of points along z axis is also calculated for each pixel. The pixels
corresponding to walls have a higher standard deviation and are temporarily coloured in black in the
room segmentation process to ensure that there are no links between rooms.

A region growing is then applied in the image to identify 2D regions representing rooms. During
this process, 2D regions are removed if their surfaces are lesser than a threshold (smin = 1 square
metre). The result of the region growing applied to the image Figure 4a is presented in Figure 4b. It is
superimposed with an existing floor map. The result is satisfying since the rooms are correctly detected.

Finally, to move from 2D to 3D regions representing the rooms, 2D regions are considered from
ground height to ceiling height of the floor. A filter is also considered to eliminate 3D regions which
are too small or which do not describe rooms. For this purpose, a minimum height hmin of 1.8 m was
chosen. This choice was induced by the fact that regarding to the French “Carrez” law, parts of an
enclosed area with a ceiling height of less than 1.8 m are excluded from the calculation of the effective
usable surface area of an accommodation. Moreover, by considering that a room measures at least one
square metre of surface, a minimal volume vmin of 1.8 cubic metres (1 m2 × 1.8 m) was fixed. At the
end of room segmentation, points which are not assigned to a region are kept aside for a further use.
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(a)

(b)

Figure 4. Room segmentation: (a) Generated binary image for the 1st floor of the INSA building.
(b) Region growing result superimposed with an existing floor map in red.

3.2.2. Segmentations into Planes and Point Classification

Once room point clouds are identified, the altitudes of ceiling and floor of each room are
determined. A plane segmentation is performed at these altitudes and points corresponding to ceilings
and floors are extracted. A criterion of horizontality (αhz) is considered. A robust estimator namely
the Maximum Likelihood Estimation SAmple Consensus (MLESAC) is used for plane extraction.
This estimator uses the same sampling strategy as RANSAC. However, it presents the benefit that the
retained solution maximizes the likelihood rather than just the highest number of inliers as it is done
by RANSAC [60]. A tolerance t defining the maximum distance between points and the corresponding
plane has to be defined. In our case, it has been fixed to 2 cm for ceiling and floor extraction.

After removing ceilings and floors, room point clouds still contain points belonging to walls but
also points belonging to occluding objects such as furniture for example desks, computer equipment,
chairs and cabinets (see Figure 5a). At this stage, two assumptions are done: on one hand, points located
in the borders of rooms are presumably points belonging to walls, and on the other hand, occluding
objects generally do not reach the ceilings. Thus based on both room boundaries determined during the
room segmentation, and the higher part of the remaining room point cloud, top of walls are identified
and then points belonging to walls can be isolated. Figure 5b shows the classification result obtained
for a computer room. Points classified as walls are kept in real colours whereas points belonging to
occluding objects are presented in red. Points belonging to occluding objects are removed and stored in
a remaining point cloud. A reference point cloud containing points belonging to walls of the first floor of
INSA building was segmented manually and compared to the result obtained automatically in order
to determine the percentage of points correctly assigned to the wall class (true positives). The result is
satisfying since about 93 percent of the points are correctly assigned to the wall class.
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(a)

(b)

Figure 5. Point classification: (a) Perspective and top view of point cloud of a computer room without
ceiling and floor. (b) Result of point classification.

A plane segmentation is then performed for points classified as wall points. For that purpose,
lines are first extracted in a slice of room point cloud at ceiling level projected in the horizontal plane.
A buffer zone is considered around a line and a plane is determined based on points located in this
zone. The extracted plane has to be composed of a minimum number of 1800 points (nbmin). This value
was established by considering a plane of 1.8 m height (hmin) and 10 cm width as well as the spatial
sampling of 1 cm applied to input point clouds. Once again MLESAC is used for plane extraction.
The tolerance t defining the maximum distance between points and plane is fixed to 5 cm for wall
plane extraction. Considering that portions of walls have to be extracted, a criterion of verticality is
imposed. A maximum angular value related to the vertical αvert of one degree is defined. Moreover,
a filter based on the Root Mean Square Error (RMSE) associated to the extracted planes is considered.
Indeed, the extraction of planes can be disturbed by some objects fixed on the walls as for example
black boards. A threshold σp of 2 cm was fixed so that extracted planes which have a RMSE higher
than this threshold are not considered.

Given our processing chain, the probability that the first segmentation extracts small planes is low,
which is why several segmentations are performed sequentially. For each room point cloud, the number
of segmentations to perform is determined automatically by thresholding both the percentage and
the number of remaining points in the slice of points (%ptsremaining > 5% and nbptsremaining > 400).
Moreover, the last segmentation must have extracted at least one plane of 1800 points minimum. At the
end of the successive wall planes segmentations, unsegmented points are stored in a remaining point
cloud.

Figure 6 presents the results of plane segmentations for several rooms of the 1st floor of the
INSA building and the associated numbers of segmentations and extracted planes. The number of
segmentations depends on the size of the room and the complexity of the space. One segmentation is
required for the segmentation of a small storeroom (Figure 6c) whereas 9 successive segmentations are
required for a corridor of about 20 m composed by a plenty of planes.
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(a) Corridor—9 successive segmentations, 34 planes

(b) Classroom—2 segmentations, 5 planes (c) Storeroom—1 segmentation, 4 planes

Figure 6. Plane segmentations of rooms (one colour per plane)—Number of segmentations determined
automatically and number of extracted planes.

Finally, all extracted planes of a floor are grouped into walls by using two criteria that are the
parallelism and distances between wall planes. Planes which are parallel considering a maximal
angular value α� of 5 degrees between them are selected. Then, they are grouped if they are close
enough from each others. A maximal thickness thmax of 50 cm is defined for a wall. Figure 7
shows the result obtained for the first floor of INSA building. Each colour corresponds to one wall.
Planes belonging to indoor parts of façade walls are identified by considering the borders of the floor.
They are presented in grey in the figure.
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Figure 7. Wall identification result (one colour per wall)—1st floor of the INSA building.

Thus, the first part of the developed approach allows identifying wall point clouds. Each wall is
composed of 1 to p planes. At this stage, a floor map can be automatically generated by considering
the intersection of the extracted planes with an horizontal plane. Moreover, ceiling heights can be
deduced from the altitudes of planes corresponding to ceilings and floors.

3.3. Reconstruction of Structural Elements

Planes composing walls, ceilings and floors were identified thanks to successive segmentations.
These elements are still in form of point clouds. At this stage, a 3D reconstruction of the structural
elements of the building (walls and slabs) must be performed. To reconstruct slabs and walls and
to export the result into a BIM format, two steps are necessary. The 3D geometry of the elements is
first described into the obj format [61] developed by Wavefront Technologies. This format is a simple
data-format which is open and which is used by a plenty of 3D graphics applications. It has been
chosen as a transition format towards IFC format [62]. The second step consists in translating the 3D
geometry of elements into an IFC file in order to be able to open results of the developed approach
in BIM software. For this purpose, the FreeCAD software is used. This software has the ability of
importing obj file and of creating, from imported objects, building entities in IFC format.

3.3.1. Element Description into Obj Format

Based on point clouds extracted in the first part of the approach, slabs and walls are reconstructed
with either volumes or surfaces. Several assumptions are taken into account for the reconstruction:
slabs are horizontal, walls follow the vertical and the two sides of a wall are parallel.

For the description of slabs of the building, the altitudes of ceilings and grounds are used.
The ground level of a floor describes the upper part of a slab whereas the ceiling level of the floor below
describes the lower part of the slab. One should note that if several ceiling levels are encountered for a
floor, the highest ceiling level is taken into account for the definition of the slab. A slab is described by
a rectangular solid. In the vertical plane the level of the upper and the lower part of the slab is used
and in the horizontal plane slab limits are determined considering the contours of the floor. For the
two slabs located at the ends, a default value of thickness is used.

The walls identified in the previous part of the approach are composed of 1 to p planes.
Their reconstruction consists of adjusting either volumes or surfaces to the wall point clouds.
A maximal thickness thmax and a minimal thickness thmin are defined for this purpose. Depending on
the number of planes which compose a wall, different cases appear:
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1. Wall composed of one plane: It can be encountered when only one side of a wall is determined
or for elements such as pillars. In this case a line is adjusted to the plane point cloud projected in
an horizontal plane. The wall portion is described by two points in the X-Y plane.

2. Wall composed of two planes: If the two planes do not describe the two sides of a wall,
the method of the case 1 is used. Otherwise, two lines are adjusted to the two plane point
clouds projected in the horizontal plane. The wall axis is determined by the average of the two
lines and the half-thickness is calculated by the average of distances between the points of both
planes and the axis of the wall. Based on the axis and the thickness of the wall, four points are
constructed to describe the wall in the X-Y plane.

3. Wall composed of more than two planes: In this case, planes located in each side of the wall are
grouped. If only one side is identified, the method of case 1 is used. If two sides are identified,
the method proposed in case 2 is considered.

A slab is described by a volume composed of eight points and six facets. A wall is described
either by a volume composed of eight points and six facets or by a surface composed of four points
and one facet. Based on these information, a file in obj format is created. Figure 8 shows the result
of the reconstruction for the 1st floor of the INSA building. In this figure the slab is in grey, the walls
reconstructed by volumes are in orange-red and portions of walls reconstructed by surfaces are in yellow.

Figure 8. Reconstruction of slabs and walls—1st floor of the INSA building.

3.3.2. File Generation into IFC Format

The obj format is not a BIM format. Indeed, only the geometry of structural elements is described
in a such a file. Neither object class is assigned to elements contrarily to what it is expected in a
building information model. A conversion phase is thus necessary to be able to integrate results in
BIM software. The Industry Foundation Classes (IFC) format was chosen as format for the output of
the approach. The IFC format is a standardized object-based file format used by the AEC industry to
facilitate the interoperability between the building actors. Both elements and relationships between
elements are described in this type of file. It has the advantage not to be a proprietary format.

In order to generate a file in IFC format from a file created in obj format, the open-source
parametric 3D CAD modeller FreeCAD was used. The Architecture module is particularly interesting
since it provides BIM workflow to FreeCAD, with support for features like IFC support (thanks to
IfcOpenShell, an open source library), fully parametric architectural entities such as walls, structural
elements or windows.
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The FreeCAD software allows importing the created obj file. Once the file is imported, each
object can be selected separately. The objects describing slabs are first selected. A tool provided in
the Arch workbench is used to transform these objects into parametric structural entities for which a
role property is set (beam, column, slab, roof, foundation, etc.). Similarly, objects describing walls are
selected and transformed into parametric wall entities. During the creation of wall entities, walls which
are close from each other are joined automatically. Figure 9 shows structural and wall entities created
in FreeCAD. One should note that the creation of entities is based on volumes and therefore walls
described only by one surface disappear.

Figure 9. Creation of architectural entities in FreeCAD —1st floor of the INSA building.

Finally, structural and wall entities are grouped into a building entity and a file in IFC format is
exported. The whole steps carried out in the FreeCAD software (import, creation of structural, wall and
building entities and export) can be automated thanks to a script in Python. To check if the export in IFC
format works properly, the generated file for the 1st floor of the INSA building was imported into several
viewers and several BIM software. The IFC file opened in Revit (Autodesk), a leading BIM software in the
market, is presented Figure 10. At this stage, one can imagine to enrich semantically the created model by
adding for example information about materials composing walls and slabs.

Figure 10. Rendering of the ifc file into Revit (Autodesk) —1st floor of the INSA building.

4. Assessment of the Developed Approach

As depicted in the introduction of this paper, three items were considered for the development of
the approach: the degree of automation, the transferability and the geometric quality. The assessment of
the developed approach will consider these items. The developed approach is applied to two datasets
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with the same thresholds in order to conclude about the degree of automation and the transferability of
the approach. The assessment of the approach is divided in two parts. First, results obtained for the
segmentations into sub-spaces and planes and the classifications of points into several categories are
studied. Then, results of wall and slab reconstructions are presented. The geometric quality of generated
models of both buildings under study are analysed. A complete automation of the reconstruction seems
utopian. It is essential to be able to locate possible errors in order to proceed to a manual reconstruction
in this case. Two quality indexes are proposed to visualise and locate these errors.

4.1. Datasets and Thresholds Used for the Assessment

The approach was developed based on two datasets namely an individual house and the
INSA building presented above. Despite two buildings with different characteristics, the developments
may have been influenced by particularities of these datasets. Thus, the assessment of the approach
has been performed with two other datasets not involved in the development of the approach. In this
sub-section, the datasets used for the approach assessment are first presented. Then, a review of
thresholds involved in the approach is proposed and default values used for the assessment are listed.

4.1.1. Datasets for the Approach Assessment

During our project, a call for point clouds has been launched. Consecutively to it, four datasets
were provided by French Land Surveyors Offices and a French company. It deals with indoor point
clouds issued from laser scanning acquisitions. Among these datasets, two datasets were more
specifically chosen for the assessment of the approach. They present the advantage of being relatively
complete compared to the two others and they concern buildings with different functions and surfaces.
Figure 11 presents the two selected datasets. The first dataset deals with an individual house composed
of a garden level and a first floor for a total surface of about 200 m2. Indoor point clouds of this house
were acquired with a FARO Focus3D S120 laser scanner. The second dataset concerns an office building
composed of two blocks and four floors. Indoor point cloud of the biggest block of about 1000 m2 was
considered. The laser scanner used for the acquisition was a Leica ScanStation C10. For both datasets,
deliverables created manually from point clouds were also provided by the professionals.

(a) Individual house (∼ 10M points) (b) Office building (∼ 39M points)

Figure 11. Datasets used for the assessment of the approach: indoor point clouds resampled at 1 cm.

4.1.2. Review of Involved Thresholds

The developed approach involves several thresholds which can be classified into the
following categories:
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• Thresholds related to spatial resampling of point clouds
• Thresholds related to space dimensions
• Thresholds related to constraints and quality criteria

A category of thresholds can be associated to several steps of the approach. Moreover, some thresholds
are a combination of categories. Thresholds are often related to both space dimensions and spatial
resampling. It is for example the case for the threshold defining the number of points of the smallest
3D region to keep. A synthesis of the main thresholds encountered in the developed approach is
proposed hereafter in Table 1. Some of default values of those thresholds are also indicated. In addition,
Figure 12 shows where thresholds are used in the approach.

Some thresholds are defined manually. Thresholds related to constraints and quality criteria have
to be defined regarding the project specifications and thus they cannot be automated. These thresholds
are notably involved in plane segmentations: the maximum distance between a plane and its inliers,
the horizontal and vertical constraints and the threshold related to the RMSE of planes. Default values
are proposed to the user for such thresholds. Other thresholds are defined manually and are intended
to be applied to buildings in general as for example the smallest volume or the smallest plane which
have to be taken into account. Default values of those thresholds are also proposed and should be
adapted to several datasets of various buildings.

By considering all information given by the user, some thresholds are defined automatically as for
example for the minimum number of points of a 3D region. Considering a spatial resampling of 1 cm
and a minimum volume of 1.8 cubic metres (1 metre by 1.8 m height), the smallest 3D region would
count 92,000 points.

The approach was obviously developed so that it can be applied to all datasets having
characteristics described in project framework. The approach was applied to the two presented
datasets with the proposed default values of thresholds. The results will allow concluding about the
generalisation of the use of thresholds defined manually but also about the adaptation of thresholds
established automatically. In this way, the transferability of the approach is investigated.
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Figure 12. Steps of the developed approach and associated thresholds.
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Table 1. Main thresholds involved in the developed approach and default values.

PROCESS THRESHOLD VALUE

Spatial resampling and/or space dimensions

3D region growing in point clouds voxel size = multiple of resampling

Filter for 2D regions removal in binary image smin = 1 square metre (∼1100 pixels)

Filter for 3D regions removal
hmin = 1.8 m (French “Carrez” law)

vmin =1.8 m3

(92,000 points for a spatial resampling of 1 cm)

Minimal number of points for a plane nbmin = 1800 for a spatial resampling of 1 cm
(10 cm × 1.80 m)

Conditions to perform an additional plane
segmentation (while loop)

number of remaining points:
>5% (%ptsremaining) of initial point cloud

OR > 400 (nbptsremaining) for a spatial resampling of 1 cm
(20 cm × 20 cm)

the last segmentation must have extracted
at least one plane of 1800 points minimum

(nbpextractsegm−1 ≥ 1)

Constraints and quality criteria

Maximum distance between inliers and plane t = 2 cm for grounds and ceilings;
t = 5 cm for walls

RMSE of planes σp < 2 cm

Horizontal and vertical constraints maximal angular value of 1 degree
(αhz et αvert)

Criteria for the identification and the
reconstruction of walls

maximal distance between planes
between 5 cm (thmin) and 50 cm (thmax)

parallelism: maximal angular value of
α� = 5 degrees

4.1.3. Processing of Datasets

The developed approach was applied to the two presented datasets with the default threshold
values proposed Table 1. The automatic 3D reconstruction of walls and slabs required a processing time
of 8 min for the individual house and 19 min for the office building. Figure 13 shows for each dataset
the repartition of processing time regarding the main steps of the approach namely the loading of point
clouds, the segmentation into sub-spaces, the segmentations into planes and the point classification
and finally the description of walls and slabs into obj format. One can observe that the repartition is
quite similar for the two datasets. The most time consuming step is the segmentations into planes and
the point classification which represents almost 50% of the processing time. The percentage of time
required for the segmentation into sub-spaces is higher for the office building since the considered
surface is five times higher than the surface of the individual house.
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Segmentations into planes and point classification
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Loading of input point clouds

Description of walls and slabs into obj format

(a) Processing of the individual house (200 m2, ∼ 10M points) – Time required: 8 min

46%
34%

13%

7%

Segmentations into planes and point classification

Segmentation into sub-spaces

Loading of input point clouds

Description of walls and slabs into obj format

(b) Processing of the main block of the office building (1000 m2, ∼ 16M points) – Time required: 19 min

Figure 13. Repartition of the processing time regarding the main steps of the developed approach.

4.2. Assessment of Segmentations and Point Classification

In this sub-section, the results of the first part of the approach are investigated. Results of
segmentations into sub-spaces and planes are assessed. The semantic aspect is also considered since
the classification of points into several categories is analysed.

4.2.1. Segmentation into Sub-Spaces

Table 2 presents the results of floor segmentation for the two datasets and the results of room
segmentation for one floor of each building. For both datasets floors are correctly identified. Results of
room segmentation are also very satisfying. Indeed, 3D regions describing rooms are distinct from each
other. Considering all the rooms of the two buildings, only two of them were falsely fused. This fusion
is due to the fact that one of the room was not complete in the initial point cloud and a part of the wall
between the rooms was missing.

The analysis of remaining point clouds of segmentations into sub-spaces is also instructive. For the
individual house, all rooms were extracted, whereas for the office building, two rooms out of forty one
were not extracted and are in the remaining point cloud. It deals with small rooms partially scanned
and for which the minimal density of points required by the approach is not reached. One can also
notice that small parts of three rooms are present in the remaining point cloud also because of a too
small density of points in the input point clouds.
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Table 2. Results of the segmentations into sub-spaces (one colour per sub-space).
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4.2.2. Classification of Points into Several Categories

During the successive segmentations of room point clouds, points composing each room are
classified as ceilings and floors, walls or occluding objects. In order to assess this classification, reference
point clouds were segmented manually from room point clouds obtained after the segmentation into
sub-spaces. Regarding a floor, points corresponding to ceilings and grounds are first segmented.
Then, in a top view, points corresponding to walls and occluding objects are separated. In case of
doubt on the nature of points, provided deliverables were examined carefully. Comparisons between
the point clouds obtained automatically and the reference point clouds segmented manually allows
determining the percentages of true positives, false positives and false negatives for each category
and for each building. Moreover, for each building the precision and the recall of each category are
calculated based on the following formulas [63], p. 138:

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

Results of the assessment of point classification into several categories are presented Table 3.
For both datasets, results obtained for the category “ceilings and grounds” are very satisfying since a
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high percentage of true positives is combined with a low percentage of false negatives. For ”walls”
and “occluding objects” categories, results are satisfying but some exchanges of points between the
two categories are observed. These exchanges are mostly due to the fact that a lot of objects are very
close or leaned against walls. For the individual house, points belonging to cupboards embedded in
walls were falsely classified as walls because they are located in the borders of rooms. This explains
that 21% of false negatives are observed for the "occluding objects" category.

Table 3. Assessment of point classification into several categories.

Ceilings and Grounds Walls Objects

Individual house

TP 99% 89% 94%
FP 1% 11% 6%
FN 3% 1% 21%

Precision 99% 89% 94%
Recall 97% 99% 82%

Office building

TP 99.5% 93% 81%
FP 0.5% 7% 19%
FN 4.5% 9% 8%

Precision 99.5% 93% 81%
Recall 96% 91% 91%

TP = true positives; FP = false positives; FN = false negatives.

4.2.3. Segmentation into Planes

As explained in Section 3, several plane segmentations are necessary and the number of
segmentations is determined automatically. In order to validate if this number is correctly determined,
remaining point clouds were analysed for both datasets. At the end of plane segmentations of room
point clouds, 6% of points classified as walls were not extracted for the individual house and 12% for
the office building.

It is interesting to compare remaining points with reference point clouds of “walls” and “occluding
objects” categories. Among remaining points, 70% belong in reality to objects for the individual house
whereas 30% for the office building. This means that quality criteria integrated in the approach allows
rejecting points belonging to objects falsely classified as walls.

4.3. Assessment of Structural Element Reconstruction

After assessing the segmentation of point clouds, the reconstruction of building elements
performed in part two of the approach must be evaluated. The geometric quality of reconstructed
elements is investigated. The reconstructed elements are first manually inspected. Then analyses,
based on both standard deviations associated to walls and distances points-to-models, are carried out.

4.3.1. Inspection of Reconstructed Walls

The results of 3D semi-automatic reconstruction of walls and slabs are shown Figure 14 for both
datasets. For visualisation purposes exploded perspective views are used. For the individual house
44 objects were created (12 walls and 32 portions of walls) whereas for office building 127 objects
were created (35 walls and 92 portions of walls). For both datasets, about a third of wall portions
corresponds to indoor parts of façades since the approach considers indoor point clouds exclusively.
A visual inspection of the results superimposed with input indoor point clouds allowed to determine
that 93% of acquired objects were reconstructed automatically for the individual house and 94% for
the office building.
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(a) Individual house (b) Office building

Figure 14. Results of the 3D reconstruction of walls and slabs in an exploded perspective view.

In order to assess the geometric quality of the reconstruction, deliverables created manually
based on indoor point clouds of the buildings were exploited. For each floor of the buildings, a 3D
rigid body transformation was performed so that floor plan extracted from the results of the 3D
automatic reconstruction can be superposed to floor plan created manually. For that purpose, control
points corresponding to points in common between the two plans were selected. Table 4 presents the
minimum, the maximum and the mean of the 2D deviations observed for these control points for each
floor of the two buildings. Deviations of one millimetre to several centimetres are observed between
control points selected in floor plans created manually and automatically. Moreover, for all floors the
mean of deviations is lower than 2 cm.

Table 4. Deviations between control points selected in floor plans created manually and automatically.

Number of
Points

Mean of Deviations
(cm)

Minimum
Deviation

(cm)

Maximum
Deviation

(cm)

Individual
house

Garden level 34 1.1 ± 0.8 0.2 4.4
1st floor 23 0.9 ± 0.6 0.2 2.3

Office
building

Ground floor 20 1.1 ± 0.6 0.4 2.7
1st floor 24 1.2 ± 0.9 0.1 3.7
2nd floor 32 1.7 ± 1 0.6 4.1
3rd floor 10 1 ± 0.6 0.1 1.8

Based on the superimposition of floor plans created manually and automatically, a visual
inspection was performed to check if objects correctly describe the buildings. This inspection shows
that 93% of objects are correctly placed for the individual house whereas 88% of objects are correctly
placed for the office building. The falsely placed objects are mostly portions of façade walls. Figure 15
presents an example of the inspection of reconstructed walls for the 2nd floor of the office building.
The floor plan was extracted from a building information model constructed manually based on point
clouds. Reconstructed walls and portions of walls are presented in red in the figure and points used
for the calculation of the 3D rigid body transformation are in green.
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(a)

(b)

Figure 15. (a) Superimposition of obj file (in red) with a 2D floor plan in dwg format—2nd floor of the
office building. (b) Zoom on the map.

4.3.2. Attribution of Standard Deviations to Reconstructed Walls

For each created wall, a quality index is calculated. It deals with the standard deviation of the
unsigned distances between points and the reconstructed wall. Figure 16 presents wall point clouds
colourized with the standard deviations associated to walls for one floor of each dataset.

For the individual house, the mean of standard deviations associated to walls or portions of walls
is 9 mm whereas for the office building the mean of standard deviations is 8 mm. This means that on
average, the walls are reconstructed with a precision of 1 cm. The visualisation of standard deviations
thanks to a colour-bar allows locating rapidly walls or portions of walls for which standard deviations
are distinguished from those of the other elements. For example, for the garden level of the individual
house, an element point cloud is colourized in red and emerges from the other elements (Figure 16a).
It deals with a small portion of wall with a standard deviation of 1.9 cm which was likely not correctly
reconstructed or which is not really a portion of wall.
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(a) Individual house—garden level

(b) Office building—second floor

Figure 16. Visualisation of standard deviations associated to walls (colour-bar unit in metres).

Assuming that there is no significant noise in the data, the factors that influence the standard
deviation of a wall are the size of the wall, the number of planes composing it and the amount of
points which emerges from the wall (objects leaning against walls). A small wall with a high standard
deviation indicates a problem occurred during the reconstruction. However, for a long wall composed
of several planes belonging to different rooms (typically the case of a corridor wall or an indoor façade
wall) the standard deviation seems not be sufficient to conclude about the quality of the reconstruction.
The distances between points and model have to be analysed more specifically.

4.3.3. Analysis of Points-to-Model Distances

A second quality index taken into account is the signed distances between points composing
an element and the reconstructed element and more specifically the statistical distribution of those
distances. Figure 17 proposes two examples of point clouds of respectively a portion of façade wall
(Figure 17a) and an indoor wall (Figure 17b). These point clouds are colourized according to the signed
distances between points and the reconstructed element. The distributions of the signed distances are
shown in the associated histograms representing the number of points related to the signed distances.
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(a) Point cloud of an indoor portion of a façade wall

(b) Point cloud of an indoor wall

Figure 17. Point clouds colourized with points-to-model signed distances: (a) For a surface. (b) For a volume.

Reconstructed walls or portions of walls are based on a set of points which contains inevitably
artefacts or objects. It is for example the case, in Figure 17a, where window awnings and a painting
emerge from the wall. It is essential that for points which are effectively on the wall, the distances
points-to-wall are close to 0. Figure 17b presents an example of a wall very well reconstructed since the
highest occurrence frequencies concern distances around 0 and the most part of distances are between
−5 mm and 5 mm. For point cloud of Figure 17a, the reconstruction is less satisfying because the
most frequent signed distances are located around −5 mm. This is due to the fact that the surface was
reconstructed based on two planes located in two different rooms. For the plane located on the right,
one can observed that distances are positives for one side and negatives for the other side. This means
that the two planes are not utterly coplanar.

5. Future Work

Several future works are planned for our approach. First, the building will be considered in its
whole for the 3D reconstruction. Indeed, the 3D reconstruction is performed for each floor individually
but some elements of a building are extended to several floors as for example façade walls. Outdoor
point clouds will be used to improve the reconstruction of façade walls and to consider the detection
of openings. Moreover, the combination of indoor and outdoor models will enable to integrate the
building to models at larger scale such as city models.

In parallel to the development of our approach, the potential use of radiometric information of
point clouds (colour and intensity) was investigated for the detection of openings. Satisfying results
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are obtained in condition to dispose of reliable radiometric information. The developed methodologies
are for now not applicable to all point clouds. Works on the detection of openings will be deepened.
In particular, the fact that façade walls contain windows and the fact that indoor walls contain doors
will be exploited.

As describe in Section 4, two quality indexes were defined and can be used to identify if some
elements are not correctly reconstructed. In the future, a tool will be developed to automatically
interpret these quality indexes in order to propose to the user a manual reconstruction of elements in
case of errors. To do that, it is essential to keep the link between point clouds and the as-built BIM.
Additionally, tolerances will have to be defined regarding simplification assumptions.

In the context of BIM, it would also be interesting to define a specific acquisition protocol to
integrate information which are not available in point clouds as for example ceiling heights when false
ceilings are encountered or materials composing building elements. These information could facilitate
the reconstruction and semantically enrich the as-built BIM.

One should also notice that acquisition methods are constantly evolving. In this project, data
issued from laser scanners were used but, considering the new techniques in photogrammetry and
computer vision, point cloud of a building may be obtained by an automatic dense correlation of
thousands images. Beside point cloud, the exploitation of images may allow extracting more semantic
informations. Moreover, constraints may be imposed during the densification step to optimize the
identification of walls, grounds and ceilings for example.

A new trend for the acquisition of building environments is the combined use of several sensors.
Multi-sensors systems are increasingly developed. The synchronized data issued from different
sensors constitute a significant contribution for the automation of processes and can provide semantic
information. For instance, the combination of laser scanning data and data issued from thermal
cameras is notably studied in the context of as-built BIM creation.

6. Conclusions

The aim of this article was to present a processing chain conceived for the 3D semi-automatic
reconstruction of indoors of existing buildings from point clouds for their integration in BIM software.
The developed approach is composed of two parts. Based on indoor point clouds, the first part consists
in several segmentations into spaces and planes and in the classification of points into several categories.
The second part of the approach deals with the reconstruction of walls and slabs of buildings from the
element point clouds extracted in the first part. At the end of the approach, a file in a BIM format is
generated and reconstructed walls and slabs can be opened in BIM software.

The approach was assessed based on two datasets which were not used for the development of
the approach. The same thresholds were used for both datasets. The results obtained for the first part
of the approach are promising in a geometric and a semantic point of view. Indeed, sub-spaces are
almost all segmented and points are well classified into the different categories. The second part of the
assessment was looked to the reconstruction of building elements. The results are also very satisfying
for both datasets since, for individual house and the office building, more than 90% of objects located in
the input point clouds were reconstructed automatically. Additionally, percentages of respectively 93%
and 88% of walls and portions of walls detected automatically are correctly positioned and deviations
from one millimetre to several centimetres are observed in relation to deliverables created manually.

The assessment of the approach demonstrates that the same default thresholds can be applied to
several datasets of quite different buildings, in other words that the approach is transferable. Moreover,
the high percentages of elements correctly extracted shows that thresholds determined automatically
are well determined. Finally, low deviations indicate that the reconstructed elements accurately
described the as-is states of the buildings. Thus, the developed approach responds positively to the
three items considered namely the transferability, the degree of automation and the geometric quality.

Tools for the inspection of results were also proposed. Standard deviations associated to
reconstructed walls and points-to-model distances were proposed as quality indexes. These tools for
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the quality assessment are essential since a complete automation of reconstruction seems utopian and
reconstruction errors can potentially occur. Despite many scan-to-BIM approaches, currently there are
very few tools on the market addressing the quality of generated Building Information Models from
point clouds.
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Abbreviations

The following abbreviations are used in this manuscript:

BIM Building Information Modelling
AEC Architecture, Engineering and Construction
TLS Terrestrial Laser Scanning
MEP Mechanical, Electrical and Plumbing
RANSAC RANdom SAmple Consensus
MW Manhattan-World
PCA Principal Component Analysis
MLESAC Maximum Likelihood Estimation SAmple Consensus
RMSE Root Mean Square Error
IFC Industry Foundation Classes
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