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Classical approaches to multiple testing grant control over the amount of
false positives for a specific method prescribing the set of rejected hypotheses.
On the other hand, in practice many users tend to deviate from a strictly pre-
scribed multiple testing method and follow ad-hoc rejection rules, tune some
parameters by hand, compare several methods and pick from their results the
one that suits them best, etc. This will invalidate standard statistical guarantees
because of the selection effect. To compensate for any form of such ”data snoop-
ing”, an approach which has garnered significant interest recently is to derive
”user-agnostic”, or post hoc, bounds on the false positives valid uniformly over
all possible rejection sets; this allows arbitrary data snooping from the user. In
this chapter, we start from a common approach to post hoc bounds taking into
account the p-value level sets for any candidate rejection set, and explain how to
calibrate the bound under different assumption concerning the distribution of p-
values. We then build towards a general approach to this problem using a family
of candidate rejection subsets (call this a reference family) together with asso-
ciated bounds on the number of false positives they contain, the latter holding
uniformly over the family. It is then possible to interpolate from this reference
family to find a bound valid for any candidate rejection subset. This general
program encompasses in particular the p-value level sets considered initially in
the chapter; we illustrate its interest in a different context where the reference
subsets are fixed and spatially structured. These methods are then applied to
a genomic example (differential gene expression), and a neuromaging example
(functional Magnetic Resonance Imaging). Code vignettes to reproduce these
examples using the R [21] package sansSouci [19] are provided as Supplemen-
tary Materials1. In this chapter, all references are gathered in Section 11.

1. A motivating example

Differential gene expression studies in cancerology aim at identifying genes
whose activity differs significantly between two (or more) cancer populations,
based on a sample of measurements from individuals from these populations.
The activity of a gene is usually quantified by its level of expression in the cell.
We consider here a microarray data set2 consisting of expression measurements
for more than 12, 000 genes for biological samples from n = 79 individuals with
B-cell acute lymphoblastic leukemia (ALL). A subset of cardinal n1 = 37 of
these individuals harbor a specific mutation called BCR/ABL, while the re-
maining n2 = 42 do not. One of the goals of this study is to identify, from

1The corresponding source files are available from the package web site:
https://pneuvial.github.io/sanssouci/.

2Taken from Chiaretti et. al., Clinical cancer research, 11(20):7209–7219, 2005.
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this sample, those genes for which there is a difference in the mean expression
level between the mutated and non-mutated populations. This question can be
addressed, after relevant data preprocessing, by performing a statistical test of
equality in means for each gene. A classical approach is then to derive a list of
“differentially expressed” genes (DEG) as those passing a FDR correction by the
Benjamini-Hochberg (BH) procedure at a user-defined level. This is illustrated
by Figure 1 for the Leukemia data set, where 163 genes are called “differentially
expressed” at FDR level q = 0.05.
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Fig 1. Left: sorted p-values for the Leukemia data set (thin black solid line). Right: zoom
on the smallest 400 p-values. Dashed line: y = x/m; bold pink solid line: y = qx/m (for
q = 0.05), whose intersection with the p-value curve determines the rejections of the BH
procedure at level q. Pink dotted line: y = q. Here, 163 genes are declared as differentially
expressed.

2. Setting and basic assumptions

Let us observe a random variable X with distribution P belonging to some
model P. Consider m null hypotheses H0,i ⊂ P, i ∈ Nm = {1, . . . ,m}, for P .
We denote H0(P ) = {i ∈ Nm : P satisfies H0,i} the set of true null hypotheses
and H1(P ) = Nm\H0(P ) its complement. We assume that a p-value pi(X) is
available for each null hypothesis H0,i, for each i ∈ Nm.

We introduce the following assumptions on the p-values and the distribution
P , that will be useful in the sequel:

∀i ∈ H0(P ), ∀t ∈ [0, 1], P (pi(X) ≤ t) ≤ t; (Superunif)

{pi(X)}i∈H0(P ) is a family of independent variables,
which is independent of {pi(X)}i∈H1(P ).

(Indep)

3. From confidence bounds ...

Consider some fixed deterministic S ⊂ Nm. A (1 − α)-confidence bound V =
V (X) for |S ∩H0(P )|, the number of false positives in S, is such that

∀P ∈ P, PX∼P
(
|S ∩H0(P )| ≤ V

)
≥ 1− α.
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A first example is given by the k0-Bonferroni bound V (X) =
∑
i∈S 1 {pi(X) ≥ αk0/|S|}+

k0−1, for some fixed k0 ∈ Nm such that k0 ≤ |S| (otherwise the bound is trivial).
The coverage probability is ensured under (Superunif) by the Markov inequality:

P(|S ∩H0(P )| ≥ V + 1)

≤ P
(
|S ∩H0(P )| ≥

∑
i∈S∩H0(P )

1 {pi(X) ≥ αk0/|S|}+ k0

)

= P
( ∑
i∈S∩H0(P )

1 {pi(X) < αk0/|S|} ≥ k0
)

≤ |S ∩H0(P )|αk0/|S|
k0

≤ α.

However, in practice, S is often chosen by the user and possibly depends on
the same data set, then denoted Ŝ to emphasize this dependence; it typically
corresponds to items of potential strong interest. The most archetypal example
is when Ŝ consists of the s0 smallest p-values p(1:m), . . . , p(s0:m), for some fixed
value of s0 ∈ Nm. In that case, it is easy to check that the above bound does
not have the correct coverage: for instance, when the p-values are i.i.d. U(0, 1)
and H0(P ) = Nm, we have for k0 ≤ s0 (that is, when the bound is informative),

P(|Ŝ ∩H0(P )| ≤ V ) = P
(
k0 − 1 +

∑
i∈Ŝ1 {pi(X) ≥ αk0/s0} ≥ s0

)
= P

(∑
i∈Ŝ1 {pi(X) < αk0/s0} ≤ k0 − 1

)
= P

(
p(k0:m)(X) ≥ αk0/s0

)
= P(β(k0,m− k0 + 1) ≥ αk0/s0),

where β(k0,m− k0 + 1) denotes the usual beta distribution with parameters k0
and m−k0 +1. For instance, taking s0 = 10, k0 = 5, α = 0.05 and m = 500, the
latter is approximately equal to 0.005, while the intended target is 1−α = 0.95.

This phenomenon is often referred to as the selection effect: after some data
driven selection, the probabilities change and thus the usual statistical inferences
are not valid.

4. ... to post hoc bounds

To circumvent the selection effect, one way is to aim for a function V (X, ·) :
S ⊂ Nm 7→ V (X,S) ∈ N (denoted by V (S) for short) satisfying

∀P ∈ P, PX∼P
(
∀S ⊂ Nm, |S ∩H0(P )| ≤ V (S)

)
≥ 1− α, (1)

that is, a (1 − α) confidence bound that is valid uniformly over all subsets

S ⊂ Nm. As a result, for any particular algorithm Ŝ, inequality (1) entails
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P
(
|Ŝ ∩ H0(P )| ≤ V (Ŝ)

)
≥ 1 − α, and thus does not suffer from the selection

effect. Such a bound will be referred to as a (1 − α)-post hoc confidence bound
throughout this chapter, “post hoc” meaning that the set S can be chosen after
having seen the data, and possibly using the data several times.

As a first example, the k0-Bonferroni post hoc bound is

V k0Bonf(S) = |S| ∧

(∑
i∈S

1 {pi(X) ≥ αk0/m}+ k0 − 1

)
. (2)

Following the same reasoning as above, it has a coverage at least 1 − α under
(Superunif):

P(∃S ⊂ Nm : |S ∩H0(P )| ≥ V k0Bonf(S) + 1)

≤ P

(
∃S ⊂ Nm :

∑
i∈S∩H0(P )

1 {pi(X) < αk0/m} ≥ k0

)

= P

( ∑
i∈H0(P )

1 {pi(X) < αk0/m} ≥ k0

)

≤ |H0(P )|αk0/m
k0

≤ α.

Remark 0.1 Compared to the k0-Bonferroni confidence bound of Section 3, α
has been replaced by α|S|/m, so that the post hoc bound is much more conserva-
tive than a (standard, non uniform, S fixed) confidence bound when |S|/m gets
small, which is well expected. This scaling factor is the price paid here to make
the inference post hoc. We will see in Sections 5 and 8 that it can be diminished
when considering bounds of a different nature.

Coming back to the motivating example of Section 1, if we choose k0 = 100,
the k0-Bonferroni post-hoc bound (2) ensures that with probability at least 90%,
the number of false positives among the 163 genes selected by the BH procedure
at level q = 0.05 is upper bounded by 99.

Example 0.1 For k0 = 1, when the p-values are i.i.d. U(0, 1) and H0(P ) =
Nm, the coverage probability of the k0-Bonferroni post hoc bound is equal to
(1− α/m)m = em log(1−α/m), which is very close to 1− α when α is small.

The Bonferroni post hoc bound, while it is valid under no assumption on the
dependence structure of the p-value family, may be conservative, in the sense
that V (S) will be large for many subsets S. For instance, one has V k0Bonf(S) =
|S| (trivial bound) for all the sets S such that S ⊂ {i ∈ Nm : pi(X) > αk0/m}.

The Bonferroni bound can be further improved under some dependence re-
striction, with the Simes post hoc bound:

V Sim(S) = min
1≤k≤|S|

{∑
i∈S

1 {pi(X) ≥ αk/m}+ k − 1

}
= min

1≤k≤|S|
{V kBonf(S)}.

(3)
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Its coverage can be computed as follows (using arguments similar as above):

P(∃S ⊂ Nm : |S ∩H0(P )| ≥ V Sim(S) + 1)

≤ P

(
∃S ⊂ Nm , ∃k ∈ {1, . . . ,m} :

∑
i∈S∩H0(P )

1 {pi(X) < αk/m} ≥ k

)
= P

(
∃k ∈ {1, . . . , |H0(P )|} : p(k:H0(P )) < αk/m

)
. (4)

Under (Superunif) and (Indep), this is lower than or equal to α|H0(P )|/m ≤ α
by using the Simes inequality. More generally, the Simes post-hoc bound is
valid in any setting where the Simes inequality holds. This is the case under a
specific positive dependence assumption called Positive Regression Dependency
on a Subset of hypotheses (PRDS), which is also the assumption under which
the Benjamini-Hochberg (BH) procedure has been shown to control the false
discovery rate (FDR).

While it uses more stringent assumptions, V Sim(S) can be much less conser-
vative than V k0Bonf. For instance, if S = {i ∈ Nm : 5α/m ≤ pi(X) < 10α/m},
we have V 5Bonf(S) = |S| and V Sim(S) ≤ |S| ∧ 9, which can lead to a substan-
tial improvement. Coming back to the motivating example of Section 1, the
Simes post-hoc bound (3) ensures that with probability at least 90%, the num-
ber of false positives among the 163 genes selected by the BH procedure at level
q = 0.05 is upper bounded by 78.

From Example 0.2 below, the Simes bound has a nice graphical interpretation:
|S| − V Sim(S) can be interpreted as the smallest integer u for which the shifted
line v 7→ α(v − u)/m is strictly below the ordered p-value curve, see Figure 2.
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Fig 2. Illustration of the Simes post hoc bound (3) according to the expression (5), for two
subsets of Nm (left display/right display), both of cardinal 20 and for m = 50. The level
is α = 0.5 (taken large only for illustration purposes). Black dots: sorted p-values in the
respective subsets. Lines: thresholds k ∈ {u + 1, . . . , |S|} 7→ α(k − u)/m (in bold red for
u = |S| − V (S), in light gray otherwise). The post hoc bound V Sim(S) corresponds the length
of the bold line on the X-axis.
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Example 0.2 Starting from (3) and writing |S|−V Sim(S) ≤ u for some u, one
can show that for all S ⊂ Nm, |S| − V Sim(S) is equal to

min{u ∈ {0, . . . , |S|} : ∀v ∈ {u+ 1, . . . , |S|} : p(v:S) ≥ α(v − u)/m}, (5)

where p(1:S), . . . , p(|S|:S) denote the ordered p-values of {pi(X), i ∈ S}.

Example 0.3 In Figure 2, we have V Sim(S) = 18 (resp. V Sim(S) = 12) in the
left (resp. right) situation. Instead, V k0Bonf for k0 = 7 is equal to 18 (resp. 16).

The Simes post hoc bound (3) has, however, some limitations: first, the cov-
erage is only valid when the Simes inequality holds. This imposes restrictive
conditions on the model used, which are rarely met or provable in practice. As
noted above, the same caveat applies to the BH procedure.

Second, even in that case, the bound does not incorporate the dependence
structure, which may yield conservativeness (see Example 0.4 below). Finally,
this bound intrinsically compares the ordered p-values to the threshold k 7→
αk/m (possibly shifted). We can legitimately ask whether taking a different
threshold (called template below) does not provide a better bound.

Example 0.4 Consider the case H0(P ) = Nm, for which m is even, and denote
Φ the upper-tail distribution function of a standard N (0, 1) variable. Consider
the one-sided testing situation where pi = Φ(X1), 1 ≤ i ≤ m/2 and pi = Φ(X2),
m/2+1 ≤ i ≤ m, for a 2-dimensional Gaussian vector (X1, X2) that is centered,
with covariance matrix having 1 as diagonal elements and ρ ∈ [−1, 1] as off-
diagonal elements. In this case, one can show that the coverage probability of
the Simes post hoc bound is equal to

α/2 +

∫ α

α/2

Φ

(
Φ
−1

(α)− ρΦ
−1

(w)

(1− ρ2)1/2

)
dw +

∫ ∞
α

Φ

(
Φ
−1

(α/2)− ρΦ
−1

(w)

(1− ρ2)1/2

)
dw

(6)
The above quantity is displayed in Figure 3 for α = 0.2, as a function of ρ.

5. Threshold-based post hoc bounds

This section presents the λ-calibration method, which allows to derive more
accurate threshold-based post hoc bounds under mild assumptions. This is of
major interest from a practical perspective, since these assumptions are met in
the two-sample multiple testing setting, which is often encountered in applica-
tions.

Let us consider bounds of the form

V λ(S) = min
1≤k≤|S|

{∑
i∈S

1 {pi(X) ≥ tk(λ)}+ k − 1

}
, λ ∈ [0, 1], (7)

where tk(λ), λ ∈ [0, 1], 1 ≤ k ≤ m, is a family of functions, called a template.
A template can be seen as a spectrum of curves, parametrized by λ. We focus
here on the two following examples:
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Fig 3. Coverage of the Simes post hoc bound (6) in the setting of Example 0.4 as a function
of ρ and for α = 0.2.

• Linear template: tk(λ) = λk/m, t−1k (y) = ym/k;
• Beta template: tk(λ) =λ-quantile of β(k,m− k+ 1), t−1k (y) = P(β(k,m−
k + 1) ≤ y).

An illustration for the above templates is provided in Figure 4.
For a fixed template, the idea is now to choose one of these curves, that is,

one value of the parameter λ = λ(α), so that the overall coverage is larger than
1−α. Following exactly the same reasoning as the one leading to (4), we obtain

P(∃S ⊂ Nm : |S ∩H0(P )| ≥ V λ(S) + 1)

≤ P
(
∃k ∈ {1, . . . , |H0(P )|} : p(k:H0(P )) < tk(λ)

)
(8)

= P
(

min
k∈{1,...,|H0(P )|}

{
t−1k (p(k:H0(P )))

}
< λ

)
, (9)

by letting t−1k (y) = max{x ∈ [0, 1] : tk(x) ≤ y} the generalized inverse of tk (in
general, this is valid provided that for all k ∈ {1, . . . ,m}, tk(0) = 0 and tk(·)
is non-decreasing and left-continuous on [0, 1], as in the case of the two above
examples). What remains to be done is thus to calibrate λ = λ(α,X) such that
the quantity (9) is below α.

Several approaches can be used for this. It is possible that for the model
under consideration, the joint distribution of (pi(X))i∈H0(P ) is equal to the

restriction of some known, fixed distribution on [0, 1]Nm to the coordinates of
H0(P ) (this is a version of the so-called subset-pivotality condition). It is met
under condition (Indep), but it is also possible that the dependence structure
of the p-values is known (for example, in genome-wide association studies, the
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Fig 4. Curves k 7→ tk(λ) for a wide range of λ values. Left: linear template. Right: Beta
template.

structure and strength of linkage disequilibrium can be tabulated from previ-
ous studies and give rise to a precise dependence model). In such a situation,
the calibration of λ = λ(α,X) can be obtained either by exact computation,
numerical approximation or Monte-Carlo approximation under the full null.

Another situation of interest, on which we focus for the remainder of this sec-
tion, is when the null corresponds to an invariant distribution with respect to a
certain group of data transformations, which is the setting for (generalized) per-
mutation tests, allowing for the use of an exact randomization technique. More
precisely, assume the existence of a finite transformation group G acting onto
the observation set X . By denoting pH0(x) the null p-value vector (pi(x))i∈H0(P )

for x ∈ X , we assume that the joint distribution of the transformed null p-values
is invariant under the action of any g ∈ G, that is,

∀P ∈ P, ∀g ∈ G, (pH0
(g′.X))g′∈G ∼ (pH0

(g′.g.X))g′∈G , (Rand)

where g.X denotes X that has been transformed by g.
Let us consider a (random) B−tuple (g1, g2, . . . , gB) of G (for some B ≥ 2),

where g1 is the identity element of G and g2, . . . , gB have been drawn (indepen-
dently of the other variables) as i.i.d. variables, each being uniformly distributed
on G. Now, let for all x ∈ X , Ψ(x) = min1≤k≤m

{
t−1k

(
p(k:m)(x)

)}
and consider

λ(α,X) = Ψ(bαBc+1) where Ψ(1) ≤ Ψ(2) ≤ · · · ≤ Ψ(B) denote the ordered
sample (Ψ(gj .X), 1 ≤ j ≤ B). The following result holds.

Theorem 0.1 Under (Rand), for any deterministic template, the bound V λ(α,X)

is a post hoc bound of coverage 1 − α. This level is to be understood as a joint
probability with respect to the data and the draw of the group elements (gi)2≤i≤B.

As a case in point, let us consider a two-sample framework where

X = (X(1), . . . , X(n1), X(n1+1), . . . , X(n1+n2)) ∈ (Rm)n
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is composed of n = n1 + n2 independent m-dimensional real random vectors
with X(j), 1 ≤ j ≤ n1, i.i.d. N (θ(1),Σ) (case) and X(j), n1 + 1 ≤ j ≤ n,
i.i.d. N (θ(2),Σ) (control). Then we aim at testing the null hypotheses H0,i :

“θ
(1)
i = θ

(2)
i ”, simultaneously for 1 ≤ i ≤ m, without knowing the covariance

matrix Σ. Consider any family of p-values (pi(X))1≤i≤m such that pi(X) only

depends on the i-th coordinate (X
(j)
i )1≤j≤n of the observations (e.g., based on

difference of the coordinate means of the two groups). Note that pH0
(X) is thus

a measurable function of (X
(j)
i )i∈H0,1≤j≤n. Now, the group G of permutations

of {1, . . . , n} is naturally acting on X = (Rm)n via the permutation of the
individuals: for all σ ∈ G,

σ.X = (X(σ(1)), . . . , X(σ(n1)), X(σ(n1+1)), . . . , X(σ(n))).

Since the variables (X
(1)
i )i∈H0

, . . . , (X
(n)
i )i∈H0

are i.i.d., it is clear that (Rand)
holds in this case.

The practical interest of Theorem 0.1 is illustrated in Section 9 for the dif-
ferential gene expression study introduced in Section 1, and in Section 10 for
functional Magnetic Resonance Imaging (fMRI) data. These numerical results
demonstrate that substantial gains in power may be obtained by λ-calibration:
in both cases, the lower bounds on the number of true positives are two to three
times higher than with the classical Simes bounds.

An illustration of the above λ-calibration method is provided in Figure 5 in
the case where Σ = Im,

pi(X) = 2

1− Φ

(
s−1n1,n2

∣∣∣∣n−12

n1+n2∑
j=n1+1

X
(j)
i − n

−1
1

n1∑
j=1

X
(j)
i

∣∣∣∣
) ,

for sn1,n2 = (n−11 + n−12 )1/2 and using a Beta template. In the left panel (full
null), we have θ(1) = θ(2) = 0, so that H0(P ) = Nm. In the right panel (half of

true nulls), we have θ
(1)
i = θ

(2)
i = 0 for 1 ≤ i ≤ m/2 and θ

(1)
i = 0, θ

(2)
i = δ/sn1,n2

for m/2 + 1 ≤ i ≤ m, for some δ > 0, so that H0(P ) = {1, . . . ,m/2}. Following
expression (8), k 7→ tk(λ(α,X)) is the highest Beta curve such that at most
Bα orange curves have a point situated below it. This also shows that the
above λ-calibration is slightly more severe when part of the data follows the
alternative distribution. This is a commonly observed phenomenon: although the
permutation approach is valid even when part of the null hypotheses are false,
their inclusion in the permutation procedure tends to yield test statistics that
exhibit more variation under permutation, thus inducing more conservativeness
in the calibration.

6. Reference families

We cast the previous bounds in a more general setting, where (1− α)–post hoc
bounds are explicitly based on a reference family with some joint error rate (JER
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Fig 5. Illustration of the λ = λ(α,X) calibration method on one realization of the data X.
Black curves: Beta template k 7→ tk(λ) for some range of λ values. Orange curves: ordered
p-values (after permutation) k 7→ p(k:m)(gj .X) for 1 ≤ j ≤ B = 1000. Bold red curve:
k 7→ tk(λ(α,X)). Left panel : full null, right panel : half of true nulls (see text). (Parameters
m = 50, α = 0.2, n1 = 50, n2 = 50, δ = 3.)

in short) controlling property. This general point of view offers more flexibility
and allows us to consider post hoc bounds of a different nature, as for instance
those incorporating a spatial structure, see Section 8.

In general, a reference family is defined by a collection R =
(
(R1(X), ζ1(X)),

. . . , (RK(X), ζK(X))
)
, where the Rk’s are data-dependent subsets of Nm and

the ζk’s are data dependent integer numbers (we will often omit the dependence
in X to ease notation). The reference family R is said to control the JER at
level α if

∀P ∈ P, PX∼P (∀k ∈ NK : |Rk(X) ∩H0| ≤ ζk(X)) ≥ 1− α. (10)

Markedly, (10) is similar to (1), but restricted to some subsets Rk, k ∈ NK . The
rationale behind this approach is that, while the choice of S is let completely
free in (1) (to accommodate any choice of the practitioner), the choice of the
Rk’s and ζk’s in (10) is done by the statistician and is part of the procedure.
Once we obtain a reference family R satisfying (10), we obtain a post hoc bound
by interpolation:

V ∗R(S) = max{|S ∩A| : A ⊂ Nm,∀k ∈ NK , |Rk ∩A| ≤ ζk}, S ⊂ Nm . (11)

We call V ∗R the optimal post hoc bound (built upon the reference family R).
Computing the bound V ∗R(S) can be time-consuming, it actually has NP-hard
complexity in a general configuration. We can introduce the following com-
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putable relaxations: for S ⊂ Nm,

V R(S) = min
k∈NK

(|S \Rk|+ ζk) ∧ |S|; (12)

ṼR(S) =

( ∑
k∈NK

|S ∩Rk| ∧ ζk +

∣∣∣∣S \ ⋃
k∈NK

Rk

∣∣∣∣
)
∧ |S|. (13)

One can easily check that V ∗R(S) ≤ V R(S) and V ∗R(S) ≤ ṼR(S) for all S ⊂ Nm.

Moreover, provided that (10) holds, V ∗R, V R and ṼR are all valid (1− α)–post
hoc bounds. The details are left to the reader.

In addition, the following result shows that the relaxed versions coincide with
the optimal bound if the reference sets have some special structure:

Lemma 0.1

• In the nested case, that is, Rk ⊂ Rk+1, for 1 ≤ k ≤ K − 1, we have
V R = V ∗R;

• In the disjoint case, that is, Rk ∩ Rk′ = ∅ for 1 ≤ k 6= k′ ≤ K, we have
ṼR = V ∗R.

We can briefly revisit the post-hoc bounds of the previous sections in this
general framework. The k0-Bonferroni post hoc bound (2) derives from the one-
element reference family (R = {i ∈ Nm : pi(X) < αk0/m} , ζ = k0 − 1). The
Simes post hoc bound (3) derives from the reference family comprising the
latter reference sets for all k0 ∈ Nm. More generally, the threshold-based post
hoc bounds V λ of the form (7) are equal to the optimal bound V ∗R with Rk =
{i ∈ Nm : pi(X) < tk(λ)} and ζk = k − 1, k ∈ Nm(indeed, these reference sets
are nested, so that V ∗R = V R).

How to choose a suitable reference family in general? A general rule of thumb
is to choose the reference sets Rk of the same qualitative form as the sets S for
which the bound is expected to be accurate. For instance, the Simes post hoc
bound will be more accurate for sets S with the smallest p-values. In Section 8,
we will choose reference sets Rk with a spatial structure, which will produce a
post hoc bound more tailored for spatially structured subsets S.

7. Case of a fixed single reference set

It is useful to focus first on the case of a single fixed (non-random) reference set
R1, with (random) ζ1 satisfying (10), that is,

P(|H0(P ) ∩R1| ≤ ζ1(X)) ≥ 1− α.

(In contrast with the k0-Bonferroni bound (2) where ζ was fixed and R variable,
here R1 is fixed and ζ1 is variable.) In other words, ζ1(X) is a (1−α)–confidence
bound of |H0(P ) ∩ R1|. Several examples of such ζ1(X) can be built, under
various assumptions.
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Example 0.5 For R1 ⊂ Nm fixed, the following bounds are (1− α)–confidence
bounds for |H0(P ) ∩R1|:

• under (Superunif), for some fixed t ∈ (0, α),

ζ1(X) = |R1| ∧

⌊ ∑
i∈R1

1 {pi(X) > t}/(1− t/α)

⌋
, (14)

where bxc denotes the largest integer smaller than or equal to x (this is
a simple application of the Markov inequality).

• under (Superunif) and (Indep),

ζ1(X) = |R1|∧ min
t∈[0,1)

⌊
C

2(1− t)
+

(
C2

4(1− t)2
+

∑
i∈R1

1{pi(X) > t}
1− t

)1/2
⌋2

,

(15)

where C =
√

1
2 log

(
1
α

)
(this can deduced by using the DKW inequal-

ity, that is, for any integer n ≥ 1, for U1, . . . , Un i.i.d. U(0, 1), we have
supt∈[0,1]

{
n−1

∑n
i=1 1{Ui > t} − (1− t)

}
≥ −

√
log(1/λ)/(2n) with prob-

ability at least 1− λ).

In addition to the two above bounds (14) and (15), we can elaborate another
bound in the generalized permutation testing framework (Rand), as described
in Section 5. Applying the result of that section, the following bound is also
valid:

ζ1(X) = min
1≤k≤|R1|

{∑
i∈R1

1 {pi(X) ≥ tk(λ(α,X))}+ k − 1

}
, (16)

where tk(λ) denotes the λ-quantile of a β(k, |R1| − k + 1) distribution and
λ(α,X) = Ψ(bαBc+1), where Ψ(1) ≤ Ψ(2) ≤ · · · ≤ Ψ(B) denote the ordered

sample (Ψ(gj .X), 1 ≤ j ≤ B) for which Ψ(x) = min1≤k≤|R1|
{
t−1k

(
p(k:|R1|)(x)

)}
(see the λ-calibration method of Section 5).

Once a proper choice of ζ1(X) has been done, the optimal post hoc bound

can be computed as follows: for any S ⊂ Nm, V ∗R(S) = V R(S) = ṼR(S) = |S ∩
Rc1|+ζ1(X)∧|S∩R1|. When S is large and does not contain very small p-values,
this bound can be sharper than the Simes bound. For instance, let us consider
the single reference family R1 = Nm and ζ1(X) as in (15) (choosing t = 1/2).
For S such that S ⊂ {i ∈ Nm : pi(X) > α|S|/m}, we have V Sim(S) = |S| and
V ∗R(S) = |S| ∧ ζ1(X) ≤ |S| ∧ 2

(
log
(
1
α

)
+ 2

∑
i∈Nm

1 {pi(X) > 1/2}
)
. The latter

can be smaller than |S| when many p-values are below 1/2.
Finally, while the case of a single reference set can be considered as an el-

ementary example, the bounds developed in this section will be useful in the
next section, for which several fixed reference sets Rk are considered, and thus
several (random) ζk should be designed.
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8. Case of spatially structured reference sets

We consider here the case where the null hypotheses H0,i, 1 ≤ i ≤ m, have a
spatial structure, and we are interested in obtaining accurate bounds on |S ∩
H0(P )| for subsets S of the form S = {i ∈ Nm : i0 ≤ i ≤ j0}, for some
1 ≤ i0 < j0 ≤ m.

In that case, it is natural to choose Rk formed of contiguous indices. To be
concrete, consider reference sets consisting of disjoint intervals of the same size
: assume m = Ks for some integers K > 0 and s > 0 and let

Rk = {(k − 1)s+ 1, . . . , ks}, k ∈ NK . (17)

When each of these regions is considered in isolation, Section 7 suggested several
approaches (in the appropriate settings (Superunif), (Indep) or (Rand)) of a
specific form ζk(X) = f(Rk, α,X), to underline the dependence of ζk(X) in Rk
and α. By using a simple union bound, it is then straightforward to show that
the JER control (10) is satisfied for

ζk(X) = f(Rk, α/K,X), k ∈ NK . (18)

When the reference regions Rk are disjoint as in the example (17) above, we

can use the proxy ṼR(S) (see (13)) which is known to coincide with the optimal
bound V ∗R(S). This gives rise to a post hoc bound that accounts for the spatial
structure of the data.

Example 0.6 In the case where ζ1(X) = f(R1, α,X) is given by (14) (t = α2,
K < 1/α), we obtain

ζk(X) = |Rk| ∧

⌊ ∑
i∈Rk

1
{
pi(X) > α2

}
/(1− αK)

⌋
.

Note that this bound quickly increases as the size of the family K increases. By
contrast, when ζ1(X) = f(R1, α,X) is given by (15), one can derive

ζk(X) = |Rk| ∧ min
t∈[0,1)

⌊
2(1− t)

+

(
C2

4(1− t)2
+

∑
i∈Rk

1{pi(X) > t}
1− t

)1/2
⌋2

,

for C =
√

1
2 log

(
K
α

)
. The size of the family K appears here in a logarithmic

term, which makes this bound less sensitive to the parameter K.

When considering the reference regions defined by segments (17), we have to
prescribe a scale (s here, the size of the segments). It is possible to extend this to
a multi-scale approach, choosing overlapping reference intervals Rk at different
resolutions arranged in a tree structure, where parent sets are formed by taking
union of (disjoint) children sets taken at a finer resolution. Furthermore, the
proxy (13) has to be replaced by a more elaborate one, minimizing over all
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possible multi-scale partitions made of such reference regions. This can still be
computed efficiently by exploiting the the tree structure. Doing so, the post hoc
bound will be more scale adaptive to sets S with possibly various sizes. The price
to pay lies in the cardinality K of the family, which gets larger. However, this
does not necessarily make the corresponding bound much larger, as Example 0.6
shows when using the bound (15), since the level α only enters it logarithmically.

9. Application to differential gene expression studies

In this section, we illustrate how the post hoc inference framework introduced in
the preceding sections can be applied to the case of differential gene expression
introduced in Section 1 to build confidence envelopes for the proportion of false
positives (Section 9.1), and to obtain bounds on data-driven sets of hypotheses
(Section 9.2), and on sets of hypotheses defined by an a priori structure (Sec-
tion 9.3). These numerical results were obtained using the R package sansSouci,
version 0.9.0. A Rmarkdown vignette 3 to reproduce results and plots from this
section is provided as Supplementary Material.

9.1. Confidence envelopes

In absence of specific prior information on relevant subsets of hypotheses to con-
sider, it is natural to focus on subsets consisting of the most significant hypothe-
ses. Specifically, we define the k−th p-value level set Sk as the set of the k most
significant hypotheses, corresponding to the p-values (p(1:m), p(2:m), . . . , p(k:m)),
and consider post hoc bounds associated to Sk for k ∈ Nm. Figure 6 provides post
hoc confidence envelopes for the ALL data set, for α = 0.1. While (1−α)-lower
confidence bounds on the proportion of false positives

{(
k, V (Sk)/ |Sk|

)
: k ∈ Nm

}
are displayed in the left panel, (1− α)-upper confidence bounds on the number
of true positives of the form

{(
k, |Sk| − V (Sk)

)
: k ∈ Nm

}
are shown in the right

panel.
The confidence envelopes are built from the Simes bound (3) (long-dashed

purple curve), and from two bounds obtained from Theorem 0.1 by λ-calibration
using B = 1, 000 permutation of the sample labels, based on the two templates
introduced in Section 5: the dashed orange curve corresponds to the linear tem-
plate with K = m, and the solid green curve to the Beta template with K = 50.
Note that Assumption (Rand) holds because we are in the two-sample frame-
work described after Theorem 0.1.

The vertical line in Figure 6 corresponds to the 163 genes selected by the BH
procedure at level 5%. The Simes bound ensures that the FDP of this subset is
not larger than 0.48. As noted above concerning the BH procedure, we have a
priori no guarantee that this bound is valid, because such multiple two-sample
testing situations have not been shown to satisfy the PRDS assumption under

3See https://github.com/rstudio/rmarkdown
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Fig 6. Confidence bounds on the proportion of false positives (left) and on the number of
true positives (right) for the Leukemia data set. Reference families: Simes reference family
(long-dashed purple curve), linear template after λ-calibration (dashed orange curve), and
Beta template after λ-calibration (solid green curve).
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which the Simes inequality is valid4. In contrast, the λ-calibrated bounds built
by permutation are by construction valid here. Moreover, both are much sharper
than the Simes bound while the λ-calibrated bound using the linear template is
twice smaller, ensuring FDP< 0.23, and even smaller for the Beta template with
K = 50. The bound obtained by λ-calibration of the linear template is uniformly
sharper that the original Simes bound (3), which corresponds to λ = α. This
illustrates the adaptivity to dependence achieved by λ-calibration. The bound
obtained from the Beta template is less sharp for p-value level sets Sk of cardinal
less than k = 120, and then sharper. This is consistent with the shape of the
threshold functions displayed in Figure 4.

9.2. Data-driven sets

A common practice in the biomedical literature is to only retain, among the
genes called significant after multiple testing correction, those whose “fold change”
exceeds a prescribed level. The fold change is the ratio between the mean ex-
pression levels of the two groups. With the notation of Section 5, the fold-

change of gene i is given by ∆i = X
(2)

i /X
(1)

i , where X
(1)

i = n−11

∑n1

j=1X
(j)
i and

X
(2)

i = n−12

∑n2

j=1X
(j)
i .

This is illustrated by Figure 7, where each gene is represented as a point in
the (log(fold change), − log(p)) plan. This representation is called a “volcano
plot” in the biomedical literature. Among the 163 genes selected by the BH
procedure at level 0.05, 151 have an absolute log fold change larger than 0.3.
As FDR is not preserved by selection, FDR controlling procedures provide no
statistical guarantee on such data-driven lists of hypotheses.

In contrast, the post hoc bounds proposed in this chapter are valid for such
data-driven sets. The two shaded boxes in Figure 7 correspond to the data-
driven subsets SBH ∩ S− and SBH ∩ S+, where SBH is the set of 163 genes
selected by the BH procedure at level 0.05, S− = {i ∈ Nm, log(∆i) < −0.3}
and S+ = {i ∈ Nm, log(∆i) > +0.3}. The post hoc bounds on the number of
true positives in SBH ∩ S+, SBH ∩ S− and SBH ∩ (S+ ∪ S−) obtained by the
Simes bound and by the λ-calibrated linear and Beta templates are given in
Table 1. Both λ-calibrated bounds are more informative than the Simes bound,
in the sense that they provide a higher bound on the number of true confidence.
Moreover, they have proven (1−α)-coverage, whereas the coverage of the Simes
bound is a priori unknown for multiple two-sample tests. None of the two λ-
calibrated bounds dominates the other one, which is in line with the fact that
the linear template is well-adapted to situations with smaller p-value level sets
than the Beta template.

Finally, we also note that the bound obtained for S+ ∪ S− is systematically
larger than the sum of the two individual bounds, which, again, is in accordance
with the theory.

4In this particular case, λ-calibration with the linear template yields λ(α) > α, which a
posteriori implies that the Simes inequality was indeed valid.
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Fig 7. Post-hoc inference for volcano plots. Each dot corresponds to a gene in the (fold
change, p-value space) on a logarithmic scale. Bold red dots corresponds to 151 genes that (i)
are selected by the BH procedure at level q = 0.05, and (ii) have a absolute log fold change
larger than 0.3.
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S |S| Simes Linear Beta(K=50)

SBH ∩ S− 124 62 96 103
SBH ∩ S+ 27 1 9 7
SBH ∩ (S+ ∪ S−) 151 79 123 130

Table 1
Post hoc bounds on the number of true positives in SBH ∩ S+, SBH ∩ S− and
SBH ∩ (S+ ∪ S−) obtained by the post hoc bounds displayed in Figure 6.

9.3. Structured reference sets

In this section we give an example of application of the bounds mentioned in
Section 8. Our biological motivation is the fact that gene expression activity can
be clustered along the genome.

The m individual hypotheses are naturally partitioned into 23 subsets, each
corresponding to a given chromosome. Within each chromosome, we consider
sets of s = 10 successive genes as in (17). Hence, we focus on a reference family
with the following elements

Rc,k = {(k − 1)s+ 1, . . . ,min(ks,mc)}, k ∈ NKc , c ∈ {1, . . . , 23},

where, in chromosome c, mc denotes the number of genes, Kc = dmc/se the
number of corresponding regions. In addition, for each (c, k) we use ζc,k(X) =
f(Rc,k, αc/Kc, X) coming from the union bound (18) in combination with the
device (15) and αc = αmc/m. This choice accounts for a union bound over all
the chromosomes. As shown in Example 0.5, ζc,k(X) is a valid upper confidence
bound for |H0(P ) ∩ Rc,k| under (Superunif) and (Indep). In this genomic ex-
ample, (Indep) may not hold, so we have in fact no formal guarantee that this
bound is valid. Therefore, the results obtained below are merely illustrative of
the approach and may not have biological relevance.

We report the results for chromosome c = 19, which contains mc = 626 genes.
In this particular case, we obtain trivial bounds ζc,k(X) = |Rc,k| for all k ∈ NKc

.

Therefore, the proxy Ṽ ∗R defined in (13) for disjoint sets does not identify any
signal for this chromosome. However, non-trivial bounds can be obtained via
the multi-scale approach briefly mentioned in Section 8. The idea is to enrich
the reference family by recursive binary aggregation of the neighboring Rc,k.
The total number of elements in this family is less than 2Kc. In our example,
it turns out that (15) yields 6 true discoveries in the interval R17:24 and 1 true
discovery in the interval R53:54, where we have denoted

Ru:v =
⋃

u≤k≤v

Rc,k.

This is illustrated by Figure 8 where the individual p-values are displayed (on
the − log10 scale) as a function of their order on chromosome 19. The sets
R17:24 and R53:54 are highlighted in orange, with the corresponding number
of true discoveries marked in each region. We obtain a non-trivial bound not
because of the large effect of any individual gene, but because of the presence
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Fig 8. Evidence of locally-structured signal on chromosome 19 detected by the bound (15).
The numbers correspond to the lower bound on the false positives in each of the highlighted
regions.

of sufficiently many moderate effects. In particular, in the rightmost orange
region in Figure 8, the distribution of − log10(p) is shifted away from 0 when
compared to the rest of chromosome 19. In comparison, we obtain trivial bounds
V R(R53:54) = |R53:54| = 2s and V R(R17:24) = |R17:24| = 8s from (12) both for
the linear or the Beta template. These numerical results illustrate the interest
of the bounds introduced in Section 8 in situations where one expects the signal
to be spatially structured.

10. Application to fMRI studies

We focus on the problem of detecting brain regions whose activity is significantly
different between two motor tasks performed by subjects: left versus right click.
The fMRI data have been extracted from the Localizer data set5. A Rmark-
down vignette to reproduce results and plots from this section is provided as
Supplementary Material.

10.1. Confidence envelopes

As in Section 9, we begin by constructing confidence envelopes for top-k feature
lists. Figure 9 provides post hoc confidence envelopes for the Localizer data
set, for α = 0.1. While (1 − α)-lower confidence bounds on the proportion
of false positives

{(
k, V (Sk)/ |Sk|

)
: k ∈ Nm

}
are displayed in the left panel,

(1 − α)-upper confidence bounds on the number of true positives of the form{(
k, |Sk| − V (Sk)

)
: k ∈ Nm

}
are shown in the right panel.

5Orfanos, D. P. et al. Neuroimage, 181:786–796 (2017).
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The confidence envelopes are built from the Simes bound (3) (long-dashed
purple curve), and from two bounds obtained from Theorem 0.1 by λ-calibration
using B = 1, 000 permutation of the sample labels, based on the two templates
introduced in Section 5: the dashed orange curve corresponds to the linear tem-
plate with K = m, and the solid green curve to the Beta template with K = 500.
Assumption (Rand) holds because we are in the two-sample framework described
after Theorem 0.1. The Simes bound is also called All Resolution Inference (ARI)
in that context, see Supplementary Material 2 for more details and references.
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Fig 9. Confidence bounds on the proportion of false positives (left) and on the number of
true positives (right) for the fMRI data set. Reference families: Simes reference family (long-
dashed purple curve), linear template after λ-calibration (dashed orange curve), and Beta
template after λ-calibration (solid green curve).

The results are qualitatively similar as for the genomic example given in
Section 9. Both permutation-based post hoc bounds are much sharper than
the Simes bound, illustrating the adaptivity to dependence achieved by λ-
calibration.

10.2. Post hoc bounds on brain atlas areas

The goal in this section is to calculate post hoc bound on user-defined brain
regions. One definition of such regions is given by the Harvard-Oxford brain
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atlas6. We have calculated the post hoc bounds associated to each of these 48
areas: by definition, these are confidence bounds valid simultaneously for all ar-
eas. In this particular example, evidence of signal is obtained for three of these
atlases, as summarized in Table 2. For the same target risk level (α = 0.1),

area size Simes/ARI Linear Beta (K=500)

7 Precentral Gyrus 6640 79 254 281
17 Postcentral Gyrus 5030 69 202 196
19 Supramarg. Gyrus (ant. div.) 2017 0 3 0

Table 2
Lower bounds on the number of true positives in 3 brain regions.

both permutation-based bounds are much less conservative than the classi-
cal Simes/ARI bound, showing that permutation-based approaches are able to
adapt to unknown dependency.

11. Bibliographical notes

The material exposed in this chapter is mainly a digested account of the ar-
ticle [3]. The seminal work [10] introduced the idea of false positive bounds
for arbitrary rejection sets. It started from the idea of building a confidence
set on the set of null hypotheses H0(P ), and introduced the concepts of aug-
mentation procedure and inversion procedure. The latter consists in building a
confidence set based on the inversion of tests for H0(P ) = A for all A ⊂ Nm.
The former starts from a set R with controlled k-familywise error rate, and
the proposed associated post hoc bound is (10) (for the one-element reference
family (R, ζ = k − 1)). The name augmentation refers to a similar idea found
in [7]. The relaxation (10) can in this sense be called “generalized augmentation
procedure”. A post hoc bound for an arbitrary rejection set based on a closed
test principle was proposed in [11]. It can also be seen as a reformulation of
the inversion procedure of [10]. Post-hoc bounds over a large class of reference
families extracted from classical FDR control procedures combined with mar-
tingale techniques were recently proposed in [15]. The principle of the graphical
representation used in Figure 2 to visualize the Simes inequality-based bound
originates from J. Goeman.

The use of generalized permutation procedures in a multiple testing frame-
work has been explored in several landmark works [27, 23, 18, 7, 12, 14]. The
subset-pivotality condition has been defined in [27]. Assumption (Rand) has
been introduced in [13] and is a weaker version of the randomization hypothesis
of [23]. The phenomenon of conservativeness in the permutation-based calibra-
tion mentioned at the end of Section 5, when not all the null hypotheses are
true, can be in part alleviated by using a step-down principle (see [23] for a sem-
inal work on this topic and [3] for more details on this approach in the specific
setting considered here). The choice of the size K of the reference family, which
can be crucial in practice, is also discussed in [3].

6https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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Multiple testing for spatially structured hypotheses is in itself a very active
and broad area of research. It has been specifically considered in conjunction
with post-hoc bounds in [17]. The use of the reference family approach for
post-hoc bounds in combination with spatially structured hypotheses has been
studied in [8], where the notion of tree- (or forest-)structured reference regions
is introduced, along with an efficient algorithm to compute the optimal bound
V ∗R in this setting.

The Simes inequality [25] is a particularly nice and elegant theoretical device
with manifold applications in multiple testing which is still a very active research
area, see, e.g., [4, 5, 9]. The DKW inequality with optimal constant was proved in
[16]. The Benjamini-Hochberg (BH) procedure has been introduced in [2], where
it is also proved to control the false discovery rate (FDR). A huge literature on
FDR control has followed this seminal paper.

The data used for the genomics application in Section 9 are taken from [6].
The fact that the signal is clustered along the genome is motivated by previous
studies showing possible links between gene expression and DNA copy num-
ber changes or other regulation mechanisms [22, 26]. The data used for the
neuroimaging application in Section 10 were obtained from the Brainomics/Lo-
calizer database [20] and the Harvard-Oxford brain atlas7, using the Python
package nilearn [1]. The ARI method mentioned in that section [24] corre-
sponds to the Simes post hoc bound of [11].
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Supplementary Materials

Vignette “Permutation-based post hoc inference for differential gene
expression studies”:

This Rmarkdown vignette8 demonstrates how the R package sansSouci may
be used to obtain post hoc confidence bounds on false positives in the case of
differential gene expression analysis. In particular, it contains the R code to
reproduce Figures 1, 6 and 7, and Table 1.

7https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
8Available at https://pneuvial.github.io/sanssouci/articles/post-hoc_

differential-expression.html.
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Vignette: “Permutation-based post hoc inference for fMRI studies”

This Rmarkdown vignette9 demonstrates how the R package sansSouci may be
used to obtain post hoc confidence bounds on false positives in the case of func-
tional Magnetic Resonance Imaging (fMRI) studies. In particular, in contains
R code to reproduce Figure 9 and Table 2.
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