Insights into nitromethane combustion from detailed kinetic modeling – Pyrolysis experiments in jet-stirred and flow reactors - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Fuel Année : 2020

Insights into nitromethane combustion from detailed kinetic modeling – Pyrolysis experiments in jet-stirred and flow reactors

Résumé

The pyrolysis of nitromethane highly diluted in helium was studied in a plug flow reactor and in a jet-stirred reactor at 1.07 bar and over the temperature range from 500 to 1100 K. Mole fraction profiles of major products and of intermediates were identified with gas chromatography and Fourier transform infrared spectroscopy. Using these experimental data, as well as published ones, we have developed a newly compiled model for the prediction of the pyrolysis and of the oxidation of nitromethane in jet-stirred and flow reactors, freely propagating, and burner-stabilized premixed flames, as well as in shock-tubes. The experimental results from the present work and from the literature are interpreted with the help of the kinetic model derived here. This study mainly focuses on the analysis of speciation in different reactors. Among the nitrogenous species, NO is found to be a major product for pyrolysis and oxidation. The model suggests that for nitromethane pyrolysis and oxidation the thermal dissociation channel to CH3 and NO2 is the main reaction path for the nitromethane degradation followed by the H-atom abstraction channel. The most sensitive reactions for nitromethane pyrolysis in a flow reactor and during pyrolysis and oxidation in a jet-stirred reactor are found to be CH3NO2(+M) ⇋ CH3 + NO2(+M) and CH3 + NO2 ⇋ CH3O + NO. The reaction CH3 + NO2 ⇋ CH3O + NO is found to be the most important reaction for all conditions studied. In a burner-stabilized premixed flame, as the mixture gets richer, the thermal dissociation channel CH3NO2(+M) ⇋ CH3 + NO2(+M) becomes more important as the contribution of the H-atom abstraction channel is decreased. Furthermore, in the burner-stabilized premixed flames, it was found that NO is mainly formed via NO2: NO2 + H ⇋ NO + OH, NO2 + CH3 ⇋ CH3O + NO. The model provided an overall reasonable agreement with the experimental data. However, for pyrolysis conditions, future work is desirable to improve predictions of intermediate species. This work extends the kinetic database and helps to improve the understanding of nitromethane chemistry. The kinetic model presented in this work can serve as a base model for hydrocarbons and oxygenated fuels higher than C2 and nitrogen-containing compounds higher than C1 as well as for pure nitrogen compounds.
Fichier principal
Vignette du fichier
2020 Fuel CH3NO2.pdf (2.09 Mo) Télécharger le fichier
SM.pdf (2.14 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02320515 , version 1 (18-10-2019)

Identifiants

Citer

Krishna Prasad Shrestha, Nicolas Vin, Olivier Herbinet, Lars Seidel, Frédérique Battin-Leclerc, et al.. Insights into nitromethane combustion from detailed kinetic modeling – Pyrolysis experiments in jet-stirred and flow reactors. Fuel, 2020, 261, pp.116349. ⟨10.1016/j.fuel.2019.116349⟩. ⟨hal-02320515⟩
192 Consultations
589 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More