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ABSTRACT
The study of unobscured active galactic nuclei (AGN) and quasars depends on the reliable
decomposition of the light from the AGN point source and the extended host galaxy light. The
problem is typically approached using parametric fitting routines using separate models for the
host galaxy and the point spread function (PSF). We present a new approach using a Generative
Adversarial Network (GAN) trained on galaxy images. We test the method using Sloan Digital
Sky Survey r-band images with artificial AGN point sources added that are then removed
using the GAN and with parametric methods using GALFIT. When the AGN point source is more
than twice as bright as the host galaxy, we find that our method, PSFGAN, can recover point
source and host galaxy magnitudes with smaller systematic error and a lower average scatter
(49 per cent). PSFGAN is more tolerant to poor knowledge of the PSF than parametric methods.
Our tests show that PSFGAN is robust against a broadening in the PSF width of ±50 per cent if
it is trained on multiple PSFs. We demonstrate that while a matched training set does improve
performance, we can still subtract point sources using a PSFGAN trained on non-astronomical
images. While initial training is computationally expensive, evaluating PSFGAN on data is more
than 40 times faster than GALFIT fitting two components. Finally, PSFGAN is more robust and
easy to use than parametric methods as it requires no input parameters.

Key words: methods: data analysis – techniques: image processing – quasars: general.

1 IN T RO D U C T I O N

Active galactic nuclei (AGN) are among the brightest continuously
emitting objects in the Universe radiating in most wavelengths of
light. The link between AGN and the host galaxy properties such as
stellar mass (e.g. Hernán-Caballero et al. 2013; Vitale et al. 2013;
Matsuoka et al. 2014; Reines & Volonteri 2015) and star forma-
tion rate (e.g. Kim, Ho & Im 2006; Schawinski et al. 2006; Santini
et al. 2012; Shimizu et al. 2015) is critical to better understand
the relationship between black hole growth and the host galaxy.
These quantities are frequently inferred by modelling the spectral
energy distribution (SED) from multiwavelength data (Simmons
et al. 2011; Michałowski et al. 2014; Chang et al. 2015; Collinson
et al. 2015). Unfortunately, especially in unobscured quasars, the
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light from the AGN far outshines the host galaxy emission. Inves-
tigating correlations between galaxy parameters and properties of
the AGN thus requires a separate analysis of AGN and host galaxy
components (Gabor et al. 2009; Pierce et al. 2010).

Extending photometric studies to host galaxies at higher redshift
(e.g. Simmons & Urry 2008; Böhm et al. 2013) is critical to under-
standing their evolution across cosmic time. However for imaging
data, if the host galaxy is very faint compared to the quasar and
its angular size is close to the width of the point spread function
(PSF), it can be hard to detect the host galaxy at all (e.g. Bahcall
et al. 1997). Following the pioneering work of Bahcall, Kirhakos &
Schneider (1995) the first studies of quasar hosts were conducted
using the Hubble Space Telescope (HST; e.g. McLeod & Rieke
1995; Hooper, Impey & Foltz 1997; Kirhakos et al. 1999; Lehnert
et al. 1999). The most widely used techniques were based on scaling
and aligning a stellar PSF to the peak of the surface brightness dis-
tribution of the quasar. Other approaches included some constraints
on the residual host galaxy emission such as monotonicity of the
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radial light profile (Boyce, Disney & Bleaken 1999). These meth-
ods however systematically overestimate the quasar contribution
and only yield a lower limit for the host galaxy flux. Later studies
showed that fitting two-dimensional galaxy components simultane-
ously with the point source (PS) component yields the most robust
method (Peng et al. 2002; Bennert et al. 2008).

One of the most popular methods used for two-dimensional sur-
face profile fitting is GALFIT (Peng et al. 2002, 2010). Its ability to
recover PS fluxes and host galaxy parameters has been demonstrated
several times both for HST images (Kim et al. 2008; Simmons &
Urry 2008; Gabor et al. 2009; Pierce et al. 2010) and for ground-
based images (Goulding et al. 2010; Koss et al. 2011). GALFIT is a
very powerful tool for detailed morphological decomposition of sin-
gle cases but it was not designed for batch fitting (Peng et al. 2002).
In the era of ‘big data’ in astronomy,1 where large data sets have to
be efficiently analysed without human interaction, parametric fitting
might not be an efficient approach. Nevertheless there have been
approaches (Vikram et al. 2010; Barden et al. 2012) to automate
GALFIT by combining it with SEXTRACTOR (Bertin & Arnouts 1996),
but these methods still depend on their input parameters.

Machine learning (ML) often accomplishes the demand for au-
tomation and scalability in data analysis. Various ML techniques
have been applied to astronomy, for example in outlier detection
(Baron & Poznanski 2017), galaxy classification (Dieleman, Willett
& Dambre 2015; Sreejith et al. 2018), or detector characterization
(George & Huerta 2018). The most recent developments in auto-
mated galaxy fitting use Bayesian inference (Yoon, Weinberg &
Katz 2011; Robotham et al. 2017) or deep learning (Tuccillo et al.
2018).

By using a Generative Adversarial Network (GAN; Goodfellow
et al. 2014) we develop the first ML-based method for separating
AGN from their host galaxies. We adopt the GALAXYGAN algorithm
(Schawinski et al. 2017) that was originally conceived to recover
features in noisy ground-based imaging data. Our method is called
PSFGAN as it subtracts point sources from CCD images. We test
the effectiveness of PSFGAN at recovering the AGN (and the host
galaxy) and compare our results to GALFIT. In Section 2 we describe
the overall method, we describe the specific GAN architecture in
Section 2.1, the training and testing procedure in Section 2.2, the
model selection in Section 2.3, and in Section 2.4 the GALFIT fitting
strategy we used for the comparisons. In Section 3 we test the
performance of PSFGAN. Finally, in Section 4 we discuss applications
and limitations.

Throughout this paper, we adopt a cosmology with �m = 0.3,
�� = 0.7, and H0 = 70 km s−1 Mpc−1.

2 M E T H O D

2.1 GAN architecture

In Fig. 1 , we show a graphical scheme of the architecture we
used. A GAN consists of two neural networks: a generator and a
discriminator. The generator creates artificial data sets, and the dis-
criminator classifies a given set as ‘real’ or ‘fake’. The generator and
the discriminator are simultaneously trained. In an ideal case, the
generator recovers the training data distribution (Goodfellow et al.

1 Currently, the total data volume of Sloan Digital Sky Survey
(SDSS) is >125 TB (Blanton et al. 2017). The Large Synoptic
Survey Telescope (LSST) will produce 15 TB of data per year
(https://www.lsst.org/about/fact-sheets).

Training Architecture

Discriminator

Generator

Preprocessing

Recovered

Original

Original + AGN

Figure 1. Scheme of the architecture used in this work. The generator takes
as input the modified image (original galaxy image with a simulated PS in
its centre) and tries to recover the original galaxy image. The discriminator
distinguishes the original from the recovered image. Before feeding the
images to the GAN they are normalized to have values in [0,1] and transformed
by an invertible stretch function.

2014). Conditional GANs take a conditional input (Reed et al. 2016)
and can be used for image processing (Isola et al. 2017). GALAXY-
GAN takes a degraded galaxy image as conditional input (Schawinski
et al. 2017). During the training the generator tries to recover the
original image from the degraded one. The discriminator learns to
distinguish between the original image and the generator output.
Both networks are trained at the same time to maximize the others
loss and by this means the generator learns the inverse of the trans-
formation that has been applied to the original image. In the testing
phase, the generator is applied to degraded images it has never seen
before, in order to recover the original ones. In this work we choose
the processed image to be the original galaxy image with a simulated
PS representing an unobscured AGN. Using this as the conditional
input, the generator then learns the inverse transformation that is
equivalent to subtracting the PS.

Adding a simulated PS to the centre of a galaxy image will
primarily affect a few pixels at the centre of the image. We therefore
adapt the generator to increase the weight of the central region in
the loss computation.

2.2 Data preparation

We use r-band images from the SDSS (Blanton et al. 2017) as a test
case though PSFGAN can be applied to any CCD imaging data in any
filter. For this proof of concept we choose SDSS data because it is
very homogeneous and has many galaxy images available for large
training sets. We divide the data into a training set, a validation set
for model selection, and a testing set to evaluate model performance.
Each set consists of image pairs (original and conditional input).
However, only during training PSFGAN uses both the original image
without a PS and the conditional input (original image with added
PS). In the validation set and the testing set we use exclusively
the conditional input as we only run the trained generator on these
samples. To avoid overfitting and ensure the generalization ability
of our approach, throughout the whole project, we only use the
testing set once for each of the final experiments. The development
of models is conducted completely using the validation set.

We test PSFGAN on three redshift ranges corresponding to
z ∼ 0.05, ∼0.1, and ∼0.2, respectively. In these ranges we use
424 × 424 pixels (168 × 168 arcsec2) cut-outs of SDSS galaxies
with some variation of redshift to z ∈ [0.045, 0.055], z ∈ [0.095,

MNRAS 477, 2513–2527 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/477/2/2513/4951616 by O
bservatoire de Paris - Bibliotheque user on 04 M

ay 2023

https://www.lsst.org/about/fact-sheets


PSFGAN 2515

0.105], and z ∈ [0.194, 0.206], respectively. For each redshift sam-
ple we split the data into training set of 5000 images, a validation
set of 200 images, and a testing set of 200 images.

In the following we describe the transformation that we apply
to the original images to get the conditional input. We perform the
following three steps:

(i) we extract the PSF from the SDSS data;
(ii) we scale the PSF to a value by a contrast ratio drawn from a

predefined distribution;
(iii) we align the centroid pixel of the galaxy with the centroid

pixel of the PSF and then add the images pixel wise.

Hence for a given original image, the corresponding conditional
input was defined by two parameters: (a) the brightness of the PS
and (b) the shape of the PSF we convolved it with.

In detail, we implement this procedure differently for the training
sets than for the validation and test sets.

In the training sets, we use the PSF tool provided by SDSS
(Stoughton et al. 2002) to extract in each image the PSF and fit it with
three 2D Gaussians in order to get an analytical PSF.2 Its brightness
is then scaled by a contrast ratio R defined with respect to the host
galaxy luminosity (CMODELFLUX_R). This contrast ratio is drawn
from a uniform distribution in linear space between 0.1 and 10, i.e.
R ∼ U([0.1, 10]). As we describe in Section 2.3, this distribution
was chosen because it yields the best performance (among the tested
distributions).

In the validation and testing sets, following the approach of Koss
et al. (2011), we measure a semi-empirical PSF by median-stacking
40–60 stars from the neighbourhood of the galaxy. (The mismatch
between training and testing PSF is necessary to take into account
the lack of information about the exact PSF we would have in a real
situation.) Because of the high dynamic range of contrasts we want
to test for we draw R from a uniform distribution in logarithmic
space, i.e. log (R) ∼ U([ − 1, 1]).

Table 1 shows an overview of the parameters chosen for different
data sets.

2.3 GAN models

To find a good model we train with different hyperparameters
and then evaluate each trained model on the three validation sets.
We then choose the model with the overall best performance. We
emphasize that we do not perform an exhaustive hyperparameter
search. Also the accuracy of a model depends on the random initial-
ization of the weights at the beginning of the training. Therefore,
the performance of the selected model represents a lower bound.
An exhaustive search for the best hyperparameter and initialization
would likely result in superior performance over our limited search.

To quantify the performance we define the recovery ratio as the
ratio of recovered PS flux to the real PS flux3 and compute its mean
absolute deviation (MAD) from 1 in each validation set. As we will
reuse this quantity for various tests in Section 3 we simply call it �:

� := average

(∣∣∣∣ recovered PS flux

real PS flux
− 1

∣∣∣∣
)

.

2 This tool generates a position-dependent, semi-empirical PSF by use of a
Karhunen–Loève transform (Stoughton et al. 2002). The fitting step that is
performed on the output of the tool is necessary to remove the noise in this
PSF image. (The noise would be amplified when the PSF is scaled to high
contrast ratios that would lead to unrealistic images.)
3 The real PS flux is the flux of the PS that we put on to the original image.

Table 1. Overview of the data sets that were used for each
of the three redshift groups. R is the contrast ratio that ranged
between 0.1 and 10 in all cases. To simulate a real appli-
cation case we introduced a discrepancy between the PSFs
in the training and the testing set. The table shows how we
simulated the AGN point sources in each distinct case. For
a distribution of contrast ratios in the training set we refer
to Section 2.3.2. The size of the data sets was determined
heuristically and can be taken as a guideline of what might
be appropriate for a general application.

Training set Testing and
validation sets

PSF Analytical fit of 40–60 stars
SDSS tool PSF combined by

median stacking

PDF of R Uniform in Uniform in
linear space logarithmic space

Number of 5000 200
image pairs

The average is taken over the 200 instances in the actual validation
set. This yields a score for each redshift sample. We average these
three scores again in order to obtain a measure for the general
accuracy of a model. We then choose the model with the minimal
average score.

While searching for the best GAN model we vary the following
parameters:

(i) pre-processing: normalizing and redistributing pixel values by
applying a non-linear stretching function;

(ii) distribution of contrast ratios in the training set;
(iii) learning rate (defined in Section 2.3.3).

Testing the whole parameter space is computationally expensive.
Therefore we vary only one parameter at a time while holding the
other two parameters at a fixed value.

We discuss the different models and their scores �. Users ap-
plying PSFGAN are advised to use our results as a starting point for
optimizing the parameters for their specific data.

2.3.1 Stretch function and scale factor

It is a common practice to normalize and redistribute the input
values of neural networks such that they are comparable across the
training set (Sola & Sevilla 1997). This pre-processing is especially
important for this work due to the high contrast between galaxy and
PS brightness. If the data were just normalized and scaled linearly,
the galaxy would have been interpreted as noise by the GAN in the
cases where the PS is very bright.

Not only the input images themselves have a high dynamic range
but also the maximum pixel values across the training set. We
want to find a reversible transformation to rescale the images, i.e.
redistribute the pixel values in a smaller range. The pixels in the
transformed image should be distributed in a way that the GAN is
sensible to both the PS and the host galaxy in all of the images.
The transformation has to be unique so that it can be applied to
all images before showing them to the GAN, and applied back on
the output images to recover the full pixel scale. We test several
stretching functions (see Table 2) while holding the learning rate
constant at lr = 9 × 10−5 and using a uniform distribution in linear
space for the contrast ratios in the training set.
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Table 2. Overview of the stretch functions
used. A is the scaling factor, max refers to the
brightest pixel across the whole training set.
max = 6140 for z ∼ 0.05, max = 1450 for
z ∼ 0.1, and max = 1657 for z ∼ 0.2.

asinh asinh(A x)
asinh(A max)

log
log

(
Ax
max

)
log A

pow A

√
x

max

sigmoid 2

(
1

1+e
Ax
max

− 1
2

)

We observe (Fig. 2) that the asinh stretch function with a scale
factor A = 50 model has the smallest average �.

2.3.2 Distribution of contrast ratios in the training set

We test two different distributions of contrast ratios in the training
set: a uniform distribution in linear space R ∼ U([0.1, 10]) and a
uniform distribution in logarithmic space log(R) ∼ U([−1, 1]). We
hold the stretch function constant at asinh, A = 50, and the learning
rate at lr = 9 × 10−5. In Fig. 2 we plot the scores resulting from
evaluation on the validation sets. If PSFGAN is trained on a sample
with contrast ratios distributed uniformly in linear space, it is more
stable than if it is trained on a sample with contrast ratios distributed
uniformly in logarithmic space.

2.3.3 Learning rate

The discriminator and the generator are neural networks. Therefore
they minimize their loss functions by adapting the weights of their
neurons. The learning rate determines how much the weights are
adjusted in each training step. For a more technical description of
the optimization algorithm we are using, we refer to Kingma & Ba
(2015).

In Fig. 2 we plot the score � for six different learning rates. While
varying the learning rates we hold the stretch function constant at
asinh with a scale factor of A = 50 and the distribution of contrast
ratios in the training set is a uniform distribution in linear space.
The model with the lowest average � is the one with lr = 9 × 10−5.

2.3.4 Summary

Within the subset of the parameter space that we test, we find that
the best model is given by the following parameters:

(i) learning rate: lr = 9 × 10−5;
(ii) distribution of contrast ratios in the training set: uniform in

linear space;
(iii) pre-processing: asinh stretch function with a scale factor of

A = 50.

2.4 GALFIT fitting strategy

In this section we explain the GALFIT fitting strategy we use for
the comparisons. GALFIT simultaneously fits an arbitrary number of
surface brightness profiles to an image (Peng et al. 2002). Besides
various types of inbuilt, analytical function types, it can also fit a
PSF provided by the user. A surface brightness component of a
specific function type is defined by its geometrical shape and its
radial surface brightness profile. For the shape we choose ellipsoids
and for the radial surface brightness profile we choose the Sérsic
profile as it is usually done in the literature (Simmons & Urry 2008;
Koss et al. 2011; Schawinski et al. 2011). The Sérsic profile is
defined as

�r = �e exp

(
−κ

(
r

re

) 1
n

− 1

)
,

where �r is the surface brightness at radius r, re is the half-light
radius, the Sérsic index n is a positive real number, κ is a parameter

Figure 2. The GAN trained with different hyperparameters evaluated on the validation sets of the three redshift samples. We only search a subspace of the
whole parameters space. While varying the stretch function we use lr = 9 × 10−5 for the learning rate and a uniform distribution in linear space for the contrast
ratios in the training set. Results for log and sigmoid functions are not plotted as their score was more than five times the average score plotted here. While
varying the distribution of contrast ratios we use asinh, A = 50 as stretch function, and lr = 9 × 10−5 for the learning rate. While varying the learning rates
we use asinh, A = 50 as stretch function, and a uniform distribution in linear space for the contrast ratios. The quantity on the y-axis is the mean absolute
deviation (MAD) of the recovery ratio (recovered PS flux/real PS flux) from 1.
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that depends4 on n, and re and the radius r for an ellipsoid is defined
by

r =
(

|x|2 +
∣∣∣∣yq

∣∣∣∣
2
) 1

2

,

where q is the ratio of the minor to major axis of the ellipses
describing the isophotes (Peng et al. 2002). To fit the PS component
we provide a PSF image as input for GALFIT. We obtain this PSF in
the same way as the PSF we use in the training set of PSFGAN: We
run SDSS’s PSF tool (Stoughton et al. 2002) and fit the output with
three 2D Gaussians.

To let GALFIT runs in an automated way, we use an approach similar
to that of Barden et al. (2012). We run the following algorithm on
each galaxy of the testing set.

(i) Run GALFIT with only a PS component to very roughly subtract
the PS. This yields an initial guess for the PS flux on the one hand
and allows for the next step on the other hand.5

(ii) Run SEXTRACTOR to get initial guesses for host galaxy flux,
geometrical parameters, and half-light radius.

(iii) Find stars above the 5σ limit using the algorithm
DAOSTARFINDER (Stetson 1987) and mask them out.

(iv) Run GALFIT with a Sérsic component and a PS component.
Let the Sérsic index n be a free parameter within 0 and 4. Constrain
the magnitude of the host galaxy to be within ±1 from the initial
guess. Moreover restrict the fitting region to a box of 60 kpc around
the galaxy. Leave all the other parameters free.

3 R ESULTS

We choose the GAN model that works best on the validation set,
and evaluate it on the testing sets to produce the results that we
present in the following. Section 3.1 contains the comparison to
GALFIT. In Section 3.2 we test the dependence of PSFGAN on the
brightness distribution underlying to the PS. In Section 3.3 we test
the sensitivity of PSFGAN on the correct modelling of the PSF and
in Section 3.4 we investigate the ability of PSFGAN to recover host
galaxy structure. We further test the dependence on the size of the
training set in Section 3.5 and the performance on lower quality
data in Section 3.6. Finally, in Section 3.7 we explore the behaviour
of our pre-trained models on higher redshift Hubble near-infrared
(IR) data.

3.1 Comparison of GAN and GALFIT

We quantify the performance by comparing the recovery error in
magnitude of both the PS and the host galaxy: we compute the flux
of the recovered PS (host galaxy), divide it by the flux of the input
PS (host galaxy), and then convert this ratio to magnitudes. That
yields the difference between input PS (host galaxy) magnitude and
output PS (host galaxy) magnitude.

To measure the flux of the recovered PS we subtract the out-
put image (the residual after subtracting the PS component) from
the input image and then sum up the pixel values inside a box of
40 × 40 pixels centred on the centre of the galaxy. To measure the
flux of the recovered host galaxy we subtract the original image

4 The parameter κ ensures that half of the total flux is always within re (Peng
et al. 2002).
5 If we let SEXTRACTOR run before subtracting the PS, all the host galaxy
parameters would be totally biased by the bright PS.

from the output image, sum up the pixel values inside a box of
40 × 40 pixels centred on the centre of the galaxy, and then add the
resulting value to the input host galaxy flux that has already been
measured by the SDSS pipeline (Stoughton et al. 2002). We sum up
the pixels using a restricted box because PSFGAN also modifies other
sources in the image and we do not want to count those modifica-
tions as contributions to the PS flux. As the input host galaxy flux
we take the quantity CMODELFLUX_R measured by the SDSS pipeline
(Stoughton et al. 2002). We plot the median magnitude error in
different bins of contrast ratios and the 68 and 90 percentiles. We
define the nth percentile as the distance from the median that (in
both directions) encloses n per cent of the data points.

Fig. 3 shows the comparison of PSFGAN to GALFIT at the three red-
shift ranges. Figs 4–7 show example images of the original galaxy,
the original galaxy with the simulated PS on top of it, the output
images (by PSFGAN and GALFIT), and residuals (the output subtracted
from the original galaxy image).

Figs 4–6 show examples of randomly selected contrast ratios in
each of the redshift samples. Fig. 7 shows one high contrast example
in each redshift sample.

Our results show that for contrast ratios R < 1.8 the median PS
magnitude error of GALFIT in general is smaller than that of PSFGAN

and reverse for contrast ratios higher than that. For contrast ratios
below R = 1.8 the 68 percentiles of PSFGAN’s PS magnitude errors
are 1.6–4.7 times those of GALFIT. For contrast ratios R > 1.8 the
68 percentiles of PSFGAN’s PS magnitude errors are 0.2–1.4 times
those of GALFIT. This result is consistent with all redshift samples.
For the host galaxy magnitudes we again observe that PSFGAN has
smaller systematic error and smaller scatter above R = 1.8. For
R < 1.8 the 68 percentiles of PSFGAN are 1.0–4.6 times those of
PSFGAN. For R > 1.8 PSFGAN has percentiles smaller than GALFIT with
factors between 0.3 and 1.2.

In Table 3 we compare runtime and robustness of PSFGAN and
GALFIT. We find that the fitting time of GALFIT is ∼3.6 times the
evaluation time of PSFGAN if they are run on the same machine. By
running PSFGAN on GPUs it can be further accelerated such that (in
our specific case) it is ∼48.3 times faster than GALFIT. We also find
that GALFIT crashes in ∼2 per cent of the cases if it is wrapped by
our script.

3.2 Dependence on the underlying brightness profile

In order to test whether PSFGAN actually uses information of host
galaxy brightness distribution we create a comparison sample con-
sisting of pictures of cats and dogs. We add simulated AGN to the
centres of the images at different contrasts: we normalize the animal
image in such a way that the sum of the pixel values inside a box
of 10 × 10 pixels around the centre is equal to the sum of the pixel
values inside a box of the same length in the original galaxy image.
Although contrast ratio is not well defined in the case of animals,
we plot the PS magnitude recovery against the contrast ratio the
PS would have if it was added to the galaxy it corresponds to. We
train PSFGAN once on animals and once on galaxies and then evaluate
both on each testing set (again one consisting of animals and one
consisting of galaxies).

Fig. 8 contains example images and Fig. 9 shows the cross-
comparisons. We conclude that the underlying brightness distribu-
tion of the objects does indeed matter: PSFGAN trained on animals is
better at subtracting point sources from animals and PSFGAN trained
on galaxies is better at subtracting point sources from galaxies.
However as the contrast increases this effect gets less significant.
For evaluation on galaxies both versions of PSFGAN have the same
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2518 D. Stark et al.

Figure 3. We compare how well PSFGAN and GALFIT can recover PS and host galaxy magnitudes by computing the magnitude difference between the input
and the output (recovered) for both the PS and the host galaxy. The plotted quantity is the median in its respective bin and the solid (transparent) error
bars indicate the distance from the median where at least 68 per cent (90 per cent) of the data points are enclosed. The dotted line indicates perfect recovery
(MPS(in) = MPS(out) or Mhost(in) = Mhost(out)). At z ∼ 0.05 we exclude five galaxies from the plot because GALFIT crashed on them. For the same reason we
exclude two galaxies from the z ∼ 0.1 plot and three galaxies from the z ∼ 0.2 plot.

Figure 4. Examples at z ∼ 0.05 with different contrast ratios. In each row we plot the original host galaxy and the host galaxy with the simulated PS in its
centre. We then plot the output images of PSFGAN and GALFIT to see how they differ from the original galaxy image. We call the output images recovered host
galaxy image. Moreover we show residuals (recovered original) for both methods.
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PSFGAN 2519

Figure 5. Examples at z ∼ 0.1 with different contrast ratios. The format of the plots is the same as in Fig. 4.

Figure 6. Examples at z ∼ 0.2 with different contrast ratios. The format of the plots is the same as in Fig. 4.

Figure 7. High contrast examples in all three redshift samples. The format of the plots is the same as in Fig. 4.
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2520 D. Stark et al.

Table 3. Comparison of PSFGAN and GALFIT in terms of runtime and robustness. The specified runtime are measured on the z = 0.1 test sample with images of
size 424 × 424 pixels. GALFIT however only fits a cut-out of 83 × 83 pixels (∼60 kpc). We note that for redshift z = 0.2 (z = 0.05) the GALFIT fitting time is
smaller (larger) as we fix the fitting region to a box of fixed physical length.

PSFGAN GALFIT

Training time Takes ∼8 h for 5000 images on N/A
one NVIDIA Titan Xp GPU

Inference/fitting time Takes ∼2 s per image on a Macbook Air with Takes ∼7.25 s per image on the same
a 1.7 GHz Intel Core i5 CPU and 4 GB RAM Macbook (1 h for 500 images, ∼2000 h
(total runtime of 8.3 h for 500 images, ∼560 h for 106 images)

for 106 images)
Takes ∼0.15 s per image on one NVIDIA Not compatible with GPU technology

Titan Xp GPU
(total runtime of 8 h for 500 images, 49.7 h

for 106 images)
Crashes Always outputs an image (by construction) 2.5 per cent crashes for z ∼ 0.05, 1 per cent crashes for

z ∼ 0.1, and 1.5 per cent crashes for z ∼ 0.2

Figure 8. We validate the hypothesis that the visual structure of galaxies helps PSFGAN for PS subtraction (i.e. the neural network learns, intuitively, what
galaxies look like and uses this information for PS subtraction). To validate this, we apply PSFGAN to very different domains: cats and dogs. Top: with galaxy
images as test images, we compare the outputs and residuals of PSFGAN trained on animals to the ones of PSFGAN trained on galaxies. Bottom: with cats and dogs
images as test images, we compare the outputs and residuals of PSFGAN trained on animals to the ones of PSFGAN trained on galaxies. We note that the colour
map describes only the residuals. We scaled them differently from the animal images in order to visualize both over- and undersubtraction.
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PSFGAN 2521

Table 4. In this table we show how an overall single Gaus-
sian model would be affected by the broadening of the central
Gaussian component of our PSF. In the left-hand column we
list the relative broadening of the central component of the
triple Gaussian PSF. To obtain intuition, we fit the PSF with a
single Gaussian before and after broadening it. We then com-
pute the change in full width at half-maximum (FWHM; of
the single Gaussian) after broadening relative to the FWHM
(of the single Gaussian) before broadening and take the av-
erage over the whole set. These are the values in the second
column.

Relative change in Relative change in
FWHM of central mean FWHM of
Gaussian single Gaussian fit

(per cent) (per cent)

±0 +0
+5 +2
−5 −2
+10 +5
−10 −4
+15 +7
−15 −6
+20 +10
−20 −8
+30 +15
−30 −11
+50 +27
−50 −13
+60 +33
−60 −21
−70 −34
−80 −46
−85 −52
+100 +57
+200 +127
+300 +200
+500 +354

Figure 9. A quantitative summary of the same experiment in Fig. 8. The
right-hand image shows evaluations on a sample of 200 galaxies (it is the
test sample of z ∼ 0.1) with artificial point sources, and the left-hand image
shows evaluations on a set of 200 animals with artificial point sources.

68 percentiles in the highest contrast bin R > 5.6. Also for eval-
uation on animals the systematic error and the scatter of PSFGAN

gradually decrease with increasing contrast ratios. In the highest
contrast bin the version of PSFGAN trained on galaxies has smaller
90 percentiles. Its 68 percentile in this bin is twice the 68 percentile
of the version trained on animals.

Figure 10. Comparison of PSFGAN and GALFIT with increasing broadening
of the PSF. We fit the three-Gaussian PSF with one single Gaussian before
and after broadening its central component and then compute the relative
change of the FWHM of this single Gaussian fit. We use this relative change
as a measure for the PSF broadening (or narrowing).

3.3 PSF dependence

To test the sensitivity of PSFGAN on the PSF shape we simulate
atmospheric seeing variation that occurs in ground based imaging
data. We change the width of the core of the PSF that we use to
simulate the AGN. As a starting point we choose the 3-gaussians fit
of the PSF generated by the SDSS tool. This is the same PSF that
we use to simulate the AGN in the training set and also the same
PSF that GALFIT uses to fit the PS component. The FWHM6 of its
central gaussian component (the one of those three with smallest
FWHM) varies across the images in the testing set with a standard
deviation of 0.13′′ around a mean of 0.98′′. Furthermore the central
gaussian on average contains 48 % of the total flux of the PSF
(with a standard deviation of 9 %). To simulate seeing variation
we broaden this FWHM by a certain percentage for each PS in
the testing set of z ∼ 0.1. When we broaden the FWHM we keep
the amplitude constant in order to avoid the central gaussian from
becoming negligible (compared to the other two components) when
it is broadened. In order to get some intuition we compute (in Table
4) what the changes in FWHM of the central gaussian component
would correspond to if the PSF was modeled by a single gaussian.

As an example we show a comparison of PSFGAN and GALFIT for
broadenings in the single Gaussian full width at half-maximum
(FWHM) of +0, +2, and +15 per cent in Fig. 10. Fig. 11 shows the
score � for the whole range of FWHM broadenings we tested. We
also compare to a version of PSFGAN that was trained on a single PSF.
We randomly choose one of the PSF’s generated by the SDSS tool
and constantly use this one as to simulate the AGN in each galaxy.

The results show that GALFIT has very high accuracy if its input
PSF is the same that the one used to simulate the AGN. As soon
as there is some discrepancy introduced between those two PSFs
GALFIT starts to have large systematic errors. PSFGAN starts to have
problems only for broadenings >100 per cent (in the FWHM of a
single Gaussian model). PSFGAN trained on a single PSF is in general

6 The gaussians we use to fit the PSF are slightly elliptical with an average
axis ratio (for the central component) of 0.91 and a standard deviation of
0.06. We use the same definition of FWHM that is used by (Peng et al.
2002): The radial surface brightness profile of a two-dimensional gaussian
is parametrized by the same r that we defined in subsection 2.4. The FWHM
is then given by 2

√
2 ∗ ln2 · σ , which is analogous to the one dimensional

case.
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2522 D. Stark et al.

Figure 11. Score of PSFGAN and GALFIT for different PSF broadenings. To
get the quantity on the x-axis we fit the three-Gaussian PSF before and
after broadening its central component. We then take the relative FWHM
change of this single Gaussian fit as a measure for the PSF broadening (or
narrowing). The plots show that GALFIT is more sensitive on the PSF than
PSFGAN.

(though not for low contrasts) also more robust to PSF variation in
the test set. Its � is however higher than that of the normal PSFGAN.
Judging from the score �, GALFIT can handle a seeing variation of
approximately +8 and −20 per cent. However at high contrast ratios
R > 1, PSFGAN has already a lower score for −13 and +5 per cent.
We conclude that PSFGAN is more robust against seeing variation and
improper modelling of the PSF. Moreover we can infer that PSFGAN

learns the variation of the PSF during training if it is trained on a
variety of PSFs.

3.4 Host galaxy structure recovery

By now we have only tested the recovery of magnitudes. To test
how well PSFGAN recovers structure of the host galaxy we use the
structural similarity index (SSIM). The SSIM is a distance metric
for two images that takes into account spatial correlations between
different pixels (Wang et al. 2004). The SSIM of two images that are
the same is 1 and it decreases as one of the two images is degraded.
As the SSIM was designed to coincide with the quality assessment
of the human eye (Wang et al. 2004), we consider it useful for
quantifying the loss and recovery of structural information of AGN
host galaxies. For this test we created an additional test sample
consisting of spiral galaxies. We compare the structure recovery on
this sample to the structure recovery on the normal test samples that
we use in this work. It serves as a comparison sample as it consists
of mixed types of galaxies.

To get a sample of spiral galaxies we select galaxies with
z ∈ [0.04, 0.06], z ∈ [0.09, 0.11], and z ∈ [0.19, 0.21] that are
neither in the training set nor in the validation set and have Galaxy
Zoo vote fractions (for either spiral clockwise or spiral anticlock-
wise) above 70 per cent (Lintott et al. 2008, 2011). The reason for
using a slightly wider redshift range here is that there are not enough
sources matching our criteria in the redshift range that we use in
the other tests. We finally get a total of 129, 168, and 59 sources,
respectively.

In Figs 12 and 13 we compute the SSIM between the original
image and the recovered images for both GALFIT and PSFGAN. In order
to only extract the relevant information we compute the SSIM on

Figure 12. SSIM for the mixed type galaxy sample. We observe that PSFGAN’s median SSIM is only higher than that of GALFIT for high contrast ratios.

Figure 13. SSIM for spirals galaxies. We observe that PSFGAN’s median SSIM is closer to one for moderate and high contrast ratios. For z ∼ 0.05 and z ∼ 0.1,
PSFGAN has a lower median SSIM only for contrast ratios R < 0.6.
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PSFGAN 2523

Figure 14. We train PSFGAN on training sets with different sizes 1000, 2000,
3000, 4000, and 5000. As expected the MAD score increases with decreasing
training set size. We conclude that we indeed need approximately 5000
galaxies to be able to train PSFGAN.

cut-outs of the images. We cut out a quadratic box around the centre
of the galaxy and we chose the length of the box by hand such that
the galaxy fills the cut-out (therefore we have different box lengths
for the different redshift samples). In order to get an intuition for
the significance of the different performances we also compute the
SSIM between the original galaxy image and the image with the
added PS. After plotting each individual SSIM we calculate the
median in eight bins of contrast ratio and connect the median points
with a straight line.

For the sample of mixed morphologies we find results consistent
with the analysis of magnitude recovery. We observe that only
above contrast ratio R ∼ 1.8 PSFGAN has a higher median SSIM
than GALFIT. For the spiral galaxies we find that PSFGAN has a higher
SSIM already for lower contrast that in the comparison sample of
mixed morphologies. We conclude that PSFGAN is less confused by
spirals arms.

3.5 Dependence on the size of the training set

To test the dependence of PSFGAN on the size of the training set we
train (for each redshift) on training sets of size 1000, 2000, 3000,
4000, and 5000 images at different redshifts.. We then evaluate on
the test samples and compute the MAD of the recovery ratio from
1 (which we defined as �). Fig. 14 shows how the different models

perform. As expected, decreasing the training set leads to a decrease
in accuracy.

3.6 Performance on low-quality data

The large amount of high-quality imaging data provided by SDSS
make it easy to train a GAN. For many applications, the data may be
noisier and the resolution poorer. Moreover, finding 5000 galaxies
for the training set is not necessarily feasible for many surveys and
wavelengths.

We now show that models trained on SDSS data can perform well
on lower quality data. We train a model on degraded SDSS images
and compare it to GALFIT and to the model trained on non-degraded
images. We compare the models by evaluating them on a degraded
test sample. To degrade the images we convolve the original image
with a Gaussian kernel of size 5 × 5 pixels and FWHM, FWHMkernel.
We then add white noise with a variance such that the noise variance
of the degraded image σ d is larger than the initial noise variance σ i

of the original image. For each redshift we create three differently
degraded tests with (FWHMkernel, σ d/σ i) = (1.2, 1.5), (1.2, 1.8),
(2.0, 1.8). The way we degrade the training PSF is different from
the way we degrade the PSF in the test sets. For the test sets we
convolve the PSF image obtained by median combining stars with
the same kernel and add the resulting image to the degraded galaxy
image. We do not add white noise to the PSF image as we already
add noise to the whole original image.

In the training set we degrade the PSF image obtained from the
SDSS tool by applying the same transformation as for the original
images. Then we fit the degraded PSF image with two Gaussians.
Fitting three Gaussians is not possible here because the convolution
smoothes out the images.

To compare the models we again use the one-dimensional score
� from Section 2.3. We estimate the performance of the model
trained on non-degraded images and the model trained on degraded
images by evaluating them on a degraded test set. We then run GALFIT

on the degraded test set where we provide a degraded PSF image
as input. To get the input PSF we perform the same steps as for
creating the degraded PSF in the training sets. We apply Gaussian
blurring and add white noise to the image that is outputted by the
SDSS PSF tool and then fit the resulting image with two Gaussians.
We choose the variance of the white noise such that the noise of the
PSF image gets increased by a factor σ d/σ i.

Fig. 15 shows the scores for the three degraded test sets and
compares them to the performance of PSFGAN and GALFIT on the non-
degraded test set. The plots show that both GALFIT and PSFGAN have

Figure 15. We degrade the test sample of each redshift by applying convolution with a Gaussian kernel and adding white noise. We create three different
degraded test sets according to different kernel FWHMs and white noise variances. The quantity σ d/σ i is the noise variance of the degraded image divided by
the noise variance of the original image.
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2524 D. Stark et al.

Figure 16. Examples of Hubble WFC3 images in the F160W filter of galaxies with z ∈ [0.4, 0.5]. We randomly choose three examples with different contrast
ratios. The format of the plots is the same as in Fig. 4.

Figure 17. Examples of Hubble WFC3 images in the F160W filter of galaxies with z ∈ [1.0, 1.5]. We randomly choose three examples with different contrast
ratios. The format of the plots is the same as in Fig. 4.

a larger � if they are run on the degraded test samples. However
PSFGAN is more stable. For the non-degraded images GALFIT has a
lower score for all three redshifts. For the most strongly degraded
images (σ d/σ i = 2.0, FWHMker = 1.8) GALFIT only has a lower
score for redshift z = 0.05. For the other two samples both PSFGAN

models have a lower score.

3.7 Applying PSFGAN to Hubble data

To demonstrate that PSFGAN can be used even if there is not enough
training data available, we apply it to the Great Observatories Ori-
gins Deep Survey-South (GOODS-S) Wide Field Camera 3 (WFC3)
data in the F160W filter (Grogin et al. 2011; Koekemoer et al. 2011).
We use the fully calibrated, drizzled images. We create two test
sets with different redshift ranges. We use the GOODS-S Cosmic
Assembly Near-IR Deep Legacy Survey (CANDELS) stellar mass
catalogue (Santini et al. 2015) to select detections with SEXTRACTOR’s
flag ‘STAR_CLASS’ <0.8 and observed AB magnitude in the F160W

filter m < 24. We exclude detections with ‘AGN_FLAG’ <0.1. This
yields a set consisting of 164 galaxies with z ∈ [0.4, 0.5] and another
set consisting of 195 galaxies with z ∈ [1.0, 1.5]. We simulate the
AGN point sources by stacking 10–30 stars from the neighbourhood
of the galaxy. We combine the stacked stars by taking the weighted
median in each pixel where we distribute the weights according to
the signal-to-noise ratio (S/N).

We then evaluate our pre-trained PSFGAN models and compare
them to the GALFIT script we described in Section 2.4. The PSF
image we provide as input for GALFIT is a cut-out of the brightest
star with S/N > 100 we can find in the whole field. In Figs 16
and 17 we show example images of the original host galaxy, the
host galaxy with the PS in its centre, PSFGAN and GALFIT recovered
host galaxies, and both method’s residuals. The examples show that
PSFGAN is not able to subtract the extended wings of the Hubble PSF
that is intuitive given the fact that it was trained on the SDSS PSF.

Fig. 18 shows the PS magnitude errors and the host magnitude
errors for the test sample with z ∈ [0.4, 0.5] and z ∈ [1.0, 1.5]. For all
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PSFGAN 2525

Figure 18. PS magnitude and host magnitude errors of evaluation on Hubble WFC3 galaxies in two different redshift samples (left- and right-hand plots).
The plots show that the PSFGAN models trained on SDSS data (with the SDSS PSF) have similar bias and variance as the GALFIT script we used.

models we exclude 18 galaxies from the left-hand plots and 30 from
the right-hand plots because GALFIT crashed on them. To compute
the medians and the percentiles we only use those galaxies where
the recovered flux is positive for both the PS and the host galaxy
for all of the models. For some cases (<10 per cent) there is another
source within the restricted box we use to compute the recovered
PS flux. In the case where PSFGAN increases the brightness of this
close source the computation of the recovered PS flux can result in
a negative flux value (<2 per cent). The recovered host galaxy flux
can be negative if either PSFGAN or GALFIT massively oversubtracts
(<3 per cent for GALFIT and no observed cases for PSFGAN). All in all
we have to exclude another four galaxies for z ∈ [0.4, 0.5] and six
for z ∈ [1.0, 1.5].

The tests show that the models pre-trained on SDSS data can
indeed be applied to different data and they even have accuracy
comparable to GALFIT. Evaluated on the test sample with z ∈ [0.4,
0.5], the z ∼ 0.05 SDSS model has a smaller scatter and similar
systematic error as our GALFIT script. At z ∈ [1.0, 1.5] it is difficult
to read a significant difference by eye just from the plots of the
magnitude errors. Therefore we also list the � scores in Table 5. At
first we notice that the score is higher for all models than if they are
evaluated on SDSS data. The � is increased by a factor of 1.1 for
the z ∼ 0.05 model, by a factor of 1.7 for the z ∼ 0.1 model, and
by a factor of 2.0 for the z ∼ 0.2 model. Evaluation on the high-
redshift test sample yields an increase by factor of 2.1, 2.2, and 2.8
for the respective model of redshift z ∼ 0.05, 0.1, and 0.2. However
GALFIT’s score increases as well and a thorough comparison reveals

Table 5. For both Hubble WFC3 test sets we compute the
� score for GALFIT and the SDSS models trained on the three
redshift samples. (Before computing � we exclude all the
galaxies where GALFIT crashed in the results of the PSFGAN.)
We find that all pre-trained models have a lower � for both
test samples.

z ∈ [0.4, 0.5] z ∈ [1.0, 1.5]

GALFIT 0.51 0.68
z ∼ 0.05 SDSS model 0.34 0.64
z ∼ 0.1 SDSS model 0.37 0.49
z ∼ 0.2 SDSS model 0.38 0.55

that all the SDSS models have a lower score than our GALFIT script
for both test samples.

4 D I SCUSSI ON

We have shown that GANs can be used to make photometric mea-
surements. PSFGAN is able to separate AGN point sources from their
host galaxies. We have shown that PSFGAN intuitively learns the light
distribution of galaxies and applies this knowledge to subtract the
PS. For contrast ratios above R = 1.8 it recovers PS and host galaxy
fluxes with a smaller median magnitude error and a lower scatter
than a single Sérsic+PS fit performed by GALFIT. We observe that
for low contrast ratios (R < 1.8) PSFGAN’s scatter in PS magnitude
recovery is 1.6–4.7 times larger than GALFIT’s scatter and for high
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2526 D. Stark et al.

contrast ratios (R > 1.8) GALFIT’s scatter is up to five times the scat-
ter of PSFGAN. We have found that – in terms of SSIM – PSFGAN can
recover host galaxy structure of spiral galaxies at least as good as
a single Sérsic+PS fit performed by GALFIT while being better with
higher contrast ratios. For z ∼ 0.05 and ∼0.1 PSFGAN has a higher
median SSIM already for R = 0.6. To conclude that PSFGAN can
handle complicated morphologies better than parametric fitting in
batch mode further tests should be conducted.

Parametric fitting is very powerful for well-resolved galaxies and
low contrast ratios. However it struggles at high contrast ratios
R > 1.8 because of the degeneracy between PS magnitude and
host magnitude. Indeed, in this contrast range, GALFIT artificially
increases the Sérsic index that causes the PS to be underestimated.
This behaviour is documented in the literature (Kim et al. 2008;
Koss et al. 2011).

The fact that PSFGAN performs well at high contrast ratios makes
it a promising tool for studying AGN and their host galaxies at
higher redshift where classical methods tend to break down. Indeed
with increasing redshift the contrast ratio tends to be higher as the
intrinsic emission emerges from a bluer part of the SED where
the AGN is dominant. Also the host galaxy is affected by surface
brightness dimming, while the PS is not (Falomo, Kotilainen &
Treves 2000). This again increases the probability of finding high
contrast systems with increasing redshift.

We have shown that PSFGAN is more stable with noisier and lower
resolution imaging data. Evaluated on differently degraded data we
find that GALFIT always has a lower � than PSFGAN for z ∼ 0.05.
However for z ∼ 0.1 and ∼0.2 the accuracy of GALFIT declines faster
(with the decline in quality) than PSFGAN’s accuracy. For a kernel
width FWHMker = 1.8 and noise variance σ d = 2.0σ i, the � score
of GALFIT increases by more than a factor of 2 compared to the
evaluation on non-degraded images. The � of PSFGAN (trained on
high-quality data) increases by a factor of less than 1.2. Furthermore
we find that PSFGAN trained on non-degraded images has a lower �

on degraded images than if it was trained on degraded images. We
conclude that it can better learn the light distribution of galaxies if
the training data are of high quality.

We find that it is indeed necessary to have a training set size
of ∼5000 images. However if not enough data are available and a
training cannot be performed, the user can also apply the PSFGAN

trained on SDSS data. We demonstrate that our pre-trained models
can be applied on Hubble IR data up to redshift z = 1.5. Although
the accuracy is lower on this data than it was on SDSS data, it
compares well to our GALFIT script. For the Hubble test sample with
z ∈ [0.4, 0.5] the best model is the one trained on z ∼ 0.05 SDSS
data. Its � score is 67 per cent of that ofGALFIT. For the Hubble test
sample with z ∈ [1.0, 1.5] the best model is the one trained on
z ∼ 0.1 SDSS data with a score of 72 per cent of that of GALFIT. We
find that in agreement with Section 3.2 the z ∼ 0.05 SDSS model
performs best on the more nearby sample, and the z ∼ 0.1 SDSS
model performs best on the more distant higher redshift sample.

The inference phase of PSFGAN is faster on a CPU and one can
accelerate it further by running it on GPUs. Run on a Macbook Air
with a 1.7 GHz Intel Core i5 CPU and 4 GB RAM it is ∼3.6 times
faster than GALFIT run on the same machine. By running PSFGAN

on GPUs it can be accelerated such that its inference phase is
more than ∼40 times faster than GALFIT.7 The strength of PSFGAN

however lies in its ability to apply the same trained model to many

7 These numbers should serve as rough estimation as they are specific for
our implementation and hardware.

images. If a low number of galaxies is considered, GALFIT may
have a speed advantage due to PSFGAN’s training time of ∼8 h (on
a GPU). However, e.g. for 106 galaxies the total runtime of PSFGAN

(training+evaluation) is only 2.5 per cent of GALFIT’s runtime.
The lack of input parameters during evaluation is another strong

advantage of PSFGAN. Unlike parametric fitting methods that are
very sensitive on their input parameters, PSFGAN is very robust and
requires no human interaction once it is trained. Also it requires
fewer physical assumptions than parametric fitting. The only phys-
ical knowledge that goes into PSFGAN is the training PSF. A user has
to model the PSF of the data to simulate the point sources in the
training set. We have however found that for using PSFGAN it is less
important to correctly model the PSF than for using GALFIT. PSFGAN

is thus especially powerful to analyse ground-based data where the
seeing is variable.

Although we have trained PSFGAN to subtract AGN point sources
in SDSS data, it is neither limited to AGN nor to SDSS data. PSFGAN

is a general framework for subtracting point sources from CCD
images in an automated way. In order to apply PSFGAN to some
specific case a user should go through the following procedure.

(i) Create a training set consisting of pairs of images (original,
original+point source). We used real observations of galaxies but
if there is not enough data available a user could also simulate the
ground truth (e.g. use simulated galaxies). If ground-based images
are used, make sure PSFGAN sees a variety of PSFs during the training.

(ii) Look at the histogram of pixel values of the whole training
set. Then decide which stretching function might be appropriate. We
recommend starting with asinh and trying different scale factors.

(iii) Test the set-up on a separate testing set to estimate the accu-
racy.

We propose a number of applications of our method. One task
that PSFGAN may be suited for is subtraction of foreground stars from
galaxy images. The only difference from subtracting quasar point
sources is the position of the point source relative to the galaxy.
Another task where PSFGAN could be applied to is separating super-
novae from their host galaxies. Given that this is usually done by
fitting galaxy templates, PSFGAN could both simplify and acceler-
ate those measurement processes. Lastly, we propose to apply our
method to quasar spectra. Like images of quasar host galaxies, their
spectra are as well contaminated the AGN. Indeed the architecture
of PSFGAN can easily be adapted for taking spectra as input. However
the training process might be less straightforward than in our case
where the quasar was a point source and thus had a (more or less)
constant shape.

The code of PSFGAN is described at http://space.ml/proj/PSFGAN
and available at https://github.com/SpaceML/PSFGAN/. Moreover
we will provide the pre-trained models at z ∼ 0.05, ∼0.1, and ∼0.2.
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