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Abstract: Many wetlands are characterized by a vegetation cover of variable height and density over
time. Tracking spatio-temporal changes in inundation patterns of these wetlands remains a challenge
for remote sensing. Water In Wetlands (WIW) was predicted using a dichotomous partitioning of
reflectance values encoded based on ground-truth (n = 4038) and optical-space derived (n = 7016)
data covering all land cover types (n = 17) found in the Rhône delta, southern France. The models
were developed with spectral data from Sentinel 2, Landsat 7, and Landsat 8 sensors, hence providing
a monitoring tool that covers a 35-year period (same sensor for Landsat 5 and 7). A single model
combining the near infrared (NIR ≤ 0.1558 to 0.1804, depending on sensors) and short-wave infrared
(SWIR2 ≤ 0.0871 to 0.1131) wavelengths was identified by three independent analyses, each one
using a different satellite. Overall accuracy of water maps ranged from 89% to 94% for the training
samples and from 90% to 94% for the validation samples, encompassing standard water indices that
systematically underestimate flooding duration under vegetation cover. Sentinel 2 provided the
highest performance with a kappa coefficient of 0.82 for both samples. Such tool will be most useful
for monitoring the water dynamics of seasonal wetlands, which are particularly sensitive to climate
change while providing multiple services to humankind. Considering the high temporal resolution
of Sentinel 2 (every 5 days), cumulative water maps built with the WIW logical rule could further be
used for mapping a wide range of wetlands which are either periodically or permanently flooded.

Keywords: dichotomous partitioning; wetland hydrology; remote sensing; satellite data; water detection

1. Introduction

Ecosystem monitoring with replicable remotely-sensed methods offers the distinct advantage
of repeated, homogeneous coverage of large areas, with little extra effort [1–4]. This allows the
development of time series datasets at coherent spatial scale irrespective of site accessibility. Application
of remotely-sensed techniques for wetland mapping and monitoring has received a lot of attention [5–7]
due to this ecosystem’s decline and contribution to human well-being [8,9]. Wetland classifications
have been performed with a multitude of sensors (aerial, multispectral, and synthetic aperture radar
SAR) under a wide array of parametric and non-parametric statistical approaches using pixel- and
object-based algorithms [5,10–14]. Among spectral bands, the near infrared (NIR) and red edge
(RE) have been identified as the most useful for delineating wetland types [5–7,11,15,16], along with
short-wave infrared (SWIR) bands, which are sensitive to both soil and vegetation moisture [6,17].
Thermal infrared (TIR) bands have also been used successfully to distinguish water bodies from
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vegetation and soil covers [6,7], as well as for identifying inundated wetlands [6,18]. With microwave
bands, optimal values for incidence angles, wavelengths, and polarizations differ according to wetland
vegetation types, with longer wavelengths performing better in forested wetlands [14]. What stands
out from the abundant literature reviews on the remote mapping of wetlands is that, owing to the
diversity of their vegetation morphologies, which are highly dynamic and often hard to discriminate
from that of terrestrial ecosystems, there is no standard methodology to map wetlands on a large
scale [6,19]. However, because hydroperiod is a prime factor influencing biodiversity and the services
provided by aquatic ecosystems [20,21], surface water area is often used as a proxy in remote sensing
to identify wetlands or estimate spatio-temporal changes in their extent [22–25].

Although supervised classifications based on spectral analysis have been useful for accurately and
repeatedly mapping water bodies [26–28], the application of spectral indices has gained popularity
because they are considered less restrictive and more reproducible, especially for applications at
large or on global scale [4,29]. Several spectral indices have been developed to monitor surface
water areas using satellite imagery [25,30–37]. They generally use the near infrared (NIR) and/or
short-wave infrared (SWIR) bands because water absorbs most radiation at NIR wavelengths and
beyond, in contrast to other landscape features [33,38]. Their increasing applications under various
situations has led to several modifications to improve classification accuracy, especially relative to
the misclassification of turbid waters [39] or the noise caused by built-up land and shadow [22,40].
For instance, the NIR band in the Normalized Difference Water Index (NDWI) developed in 1996 [37]
was replaced by the SWIR band in 2006 to reduce disturbances related to built-up lands giving rise to
the Modified NDWI [36]. Under the same reasoning, it was further suggested to calculate the MNDWI
using the band SWIR2 instead of SWIR1 [22]. An Automated Water Extraction Index (AWEI) has been
proposed under two versions to reduce misclassifications related to either shadow or built-up land [31].
A comprehensive comparison of the performance of these water indices using Landsat scenes from
Australia revealed that most indices tend to underestimate water presence, being affected by water color
and the presence of non-water features in a pixel [41]. Considering the unique spectral characteristics
of water bodies in the visible and infrared wavelengths, the application of fixed thresholds to spectral
bands remains a valuable approach for delineating aquatic ecosystems [40,42]. Arguments against
threshold-based methods is that they do not necessarily perform as well outside the areas where they
were developed [25]. Although water indices are considered as more stable because they use band ratios,
recent studies have revealed similar shortcomings when water maps are confronted with ground-truth
data, imposing the use of specific thresholds (different from 0) to increase classification accuracy [22,41].

Because of its particular climate characterized by an annual water deficit, many wetlands of
the Mediterranean basin are flooded only seasonally [43]. In this area, wetlands colonized by reeds,
bulrushes, and other emergent plants provide sheltered refuges for wildlife and primary resources
for industry and local populations [44]. The biodiversity and socio-economic value of these wetlands
primarily rely on the timing and duration of inundation [45]. Increased water stress predicted under
climate change projections [46–49] will negatively affect ecosystem services (provision of food, building
materials, recreational activities, etc.) and biodiversity (e.g., reduction of suitable feeding, spawning,
nesting and nursery grounds to birds, amphibians and fish) [8,50,51]. Accordingly, failure to detect
water presence under vegetation could lead to errors in the (1) classification of wetland habitats;
(2) detection of changes in wetland functions; (3) assessment in water resource use, availability or
management; and (4) extrapolation of wetland biodiversity and services [19,46,52].

Detection of water under wetland vegetation has received little attention in the development of
remote sensing algorithms and indices using optical data [25,26]. Vegetation growth inhibits optical
sensors in variable ways, depending on the plant species, by interfering with water detection [25,26,53,
54]. With radar sensors, emergent vegetation presents differences in surface roughness and increases
the amount of backscattered radiation from inundated surfaces, making the discrimination of land and
vegetated wetlands problematic [24,54]. Long wavelength SAR sensors with small incidence angles
can penetrate vegetation more successfully, but the signal that is partially blocked by the vegetation
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creates a specific backscatter response due to double-bounce scattering [55]. Because vegetation growth
and structure will induce different scattering mechanisms [54–57], the ability to detect surface water
will vary across space and time being influenced by vegetation morphology and phenology [14,58].

Several studies have recently tested the performance of standard spectral indices for surface
water detection under various situations in terms of terrain and sensor [22,40,41,59]. Capitalizing
on a solid ground-truth sample, this study aims at identifying what are currently the best options
for detecting surface water, with special attention to water under dense vegetation cover. However,
instead of individually testing the water and non-water classification accuracy of each index relative
to ground-truth data as previously done [22,40,41,59], this study uses a data mining approach to
identify what performs best among water indices, vegetation indices, and spectral bands used alone or
in combination, using decision trees as classifiers. This work was carried out with the optical sensors
of Sentinel 2, Landsat 7, and Landsat 8. The recent launch of Sentinel 2 satellites provides scenes of
relevant spectral, spatial, and temporal resolution for monitoring wetlands routinely and at no cost.
Although Landsat data have lower temporal and spatial resolutions, they were also selected because of
their exceptional data archive that enables long-term trend assessments.

2. Materials and Methods

2.1. Ground-Truth Data

The diversity and dynamics of Camargue wetlands make it an ideal case study for testing the
performance of water detection methods under different types of vegetation cover. The Camargue or
Rhône delta is a 145,300 ha alluvial plain located in southern France that rarely surpasses 5 m elevation.
It is comprised of a network of wetland habitats including ponds, lagoons, freshwater open and reed
marshes, halophilous scrubs (Salicornia marshes), salt pans, and rice fields (Figure 1). The variety of
human uses associated with wetlands combined with the natural water deficit (−700 mm annually)
on one hand and the possibility of water pumping from the Rhône river on the other hand, produce
a variety of hydrological conditions at any time of the year (Figure 2).
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Between 20 April and 27 October 2017, 480 points were monitored for water presence/absence
within lagoons, salt marsh, reed beds, and grasslands. These measurement points were distributed
every 60 m along 29 transects. Most transects were sampled two or three times during this period
in order to obtain data under wet and dry conditions. Some 1115 additional measures of water
level were obtained from a monitoring programme initiated in 2001 in the largest reed bed of the
Camargue. This wetland is divided into 37 independent hydrological units covered more or less
homogenously with common reed Phragmites australis which can grow up to 1.5–3 m tall depending
on salinity. Water levels were measured bi-monthly or monthly at piezometers buried 50 cm into the
ground at the marsh edge. A number of studies collected data on water levels in the middle of these
hydrological units and these measures, calibrated with the associated piezometer [26,43,60], were the
ones used in this study. For each hydrological unit, mean water level at one point randomly selected
in emergent vegetation was extrapolated once or twice a month at the time of passage of a satellite
under the assumption that water levels vary linearly over time. To overcome the insensitivity of the
data associated with micro-topography, points with water levels estimated between −5 and 5 cm were
discarded from the analysis. Because early classification attempts with Sentinel 2 misclassified dune
areas as flooded, 454 dry points were sampled in the dunes during the summer of 2016, and these
points were systematically reported on the two scenes corresponding to the period of field sampling.

2.2. Optical Data

To increase the performance and transferability of this work, water measures in wetlands were
complemented by optical data extracted from 50 random points selected in each of the 17 main land
cover types (n = 850) of the Camargue. Information on water presence/absence was derived from five SPOT-5
scenes of 2015 by applying the Modified Index of Free Water (MIFW, [26]), which provides an overall accuracy
of 88% for detecting water in Camargue wetlands. The five scenes of SPOT-5 were selected to match dates at
which scenes could be provided by the Operational Land Imager (OLI) of Landsat 8 (Table 1), allowing us to
transfer the water presence/absence information of the 850 reference points to the five Landsat 8 scenes. A new
model to detect Water In Wetlands (WIW) using field and optical data was then developed with Landsat 8.
The resulting water masks were used to extract and transfer the reference point data (n = 850) to five Sentinel 2
scenes of the same dates. A similar reasoning was followed to obtain optical data for 6 scenes provided by the
Enhanced Thematic Mapper Plus (ETM+) of Landsat 7 in 2014 from the Landsat 8 water mask. To compensate
for the failure of the Landsat 7 ETM+ scan line corrector since May 2003, the number of optical reference points
was increased twofold for each land cover type with this satellite. The number of scenes used for data transfer
between satellites corresponds to the maximum number of clear images that coincide in time (within three
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days maximum), while covering all seasons. Considering the satellite timelines and the fact that Landsat 7
used the same sensors as Landsat 5 TM (from 1984 to 2011), the three models developed in this study provide
a water monitoring tool for several upcoming years extending 35 years back.

Table 1. Satellite sensors and spectral bands used in this study with their spatial and temporal resolutions.

Spectral Band

Landsat 8 OLI Landsat 7 ETM+ Sentinel 2A, 2B

Band Wavelength
(µm) Band Wavelength

(µm) Band Wavelength
(µm)

Blue (B1) B1 0.43–0.45
Blue (B) B2 0.45–0.51 B1 0.45–0.52 B2 0.46–0.52

Green (G) B3 0.53–0.59 B2 0.52–0.60 B3 0.54–0.58
Red (R) B4 0.64–0.67 B3 0.63–0.69 B4 0.65–0.68

Red edge (RE1) B5 0.698–0.712
Red edge (RE2) B6 0.733–0.747
Red edge (RE3) B7 0.773–0.793

Near Infrared (NIR) B4 0.77–0.90 B8 0.784–0.9
Near Infrared (NIR) B5 0.85–0.88 B8A 0.855–0.875

Shortwave Infrared (SWIR1) B6 1.57–1.67 B5 1.55–1.75 B11 1.565–1.655
Shortwave Infrared (SWIR2) B7 2.11–2.29 B7 2.09–2.35 B12 2.1–2.28

Launched date 11 February 2013 15 April 1999 June 2015, March 2017
Spatial resolution (m) 30 30 10−20

Frequency of data acquisition 16 days 16 days 5 days

2.3. Development of the Water In Wetlands (WIW) Logical Rule

A supervised classification was performed in the Rpart (Recursive PARTitioning, [61]) package in R
software. Reference field and optical data points were encoded as 0 for water absence and 1 for water
presence. Classification algorithms included the reflectance value of spectral bands listed in Table 1,
as well as 9 current water indices or equations and 13 indices used in image analysis which are listed
in Table 2. Several classifiers were created iteratively by progressively varying (at every 5%) the value of
prior probabilities of the presence and absence of water classes. The classifier that was the least complex
with the highest rate of good classification was selected. A cross-validation procedure called CV1-0 [62],
for pruning with 10 subsets as well as iterative runs of the algorithm [63] for the selection of the cost
complexity parameter and the prior parameter for imbalanced samples, was used. A random selection
of 30% of all points was excluded from the sample and used for (independent) validation. In addition,
a second validation was performed by comparing the classification rates from all of the points (training
and validation) by separating the ground-truth from the optical-space based data.

Table 2. Indices used as potential model variable in dichotomous partitioning for classifying water
presence in wetlands.

Index Equation Reference

AWEInsh—Automated Water Extraction Index with no shadow 4 × (G − SWIR1) − (0.25 × NIR + 2.75 × SWIR1) [31]
AWEIsh—Automated Water Extraction Index with shadow B + 2.5 × G − 1.5 × (NIR + SWIR1) − 0.25 × SWIR2 [31]
BI—Bare soil Index ((SWIR1 + R) − (NIR + B))/((SWIR1 + R) + (NIR + B)) × 100 + 100 [64]
DVI—Differential Vegetation Index NIR − R [65]
DVW—Difference between Vegetation and Water NDVI − NDWI [66]
IFW—Index of Free Water NIR − G [30]
IPVI—Infrared Percentage Vegetation Index NIR/(NIR + R) [67]
MIFW—Modified Index of Free Water SWIR1 − G [26]
MNDWI1—Modified Normalized Difference Water Index with SWIR1 (G − SWIR1)/(G + SWIR1) [36]
MNDWI2—Modified Normalized Difference Water Index with SWIR2 (G − SWIR2)/(G + SWIR2) [36]
MSI—Moisture Stress Index SWIR/NIR [68]
NDVI—Normalized Difference Vegetation Index (NIR − R)/(NIR + R) [69]
NDWI(F)—Normalized Difference Water Index of McFeeters (G − NIR)/(G + NIR) [37]
NDWI(G)—Normalized Difference Water Index of Gao (NIR − SWIR1)/NIR + SWIR1) [32]
OSAVI—Optimized SAVI (NIR − R)/(NIR + R + 0.16) [70]
RVI—Ratio Vegetation Index NIR/R [71]
SAVI—Soil Adjusted Vegetation Index 1.5 × (NIR − R)/(NIR + R + 0.5) [72]
SR—Simple Ratio R/NIR [73]
TVI—Triangular Vegetation Index 0.5 × (120 × (NIR − G) − 200 × (R − G)) [74]
WII—Water Impoundment Index NIR2/R [75]
WRI—Water Ratio Index (G + R)/(NIR + SWIR1) [34]
WTI—Water Turbidity Index 0.91 × R + 0.43 × NIR [76]
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2.4. Validation of the Water In Wetlands (WIW) Logical Rule

A binary mask of water presence based on the most accurate classifiers with each satellite was
created with the raster calculator (Spatial Analyst) of ArcGIS version 10 (ESRI). Using the zonal statistics
tool (Spatial Analyst) of ArcGIS, the values of the validation points (1 for water presence and 0 for
water absence) were extracted to build an error matrix for estimating omission errors, commission
errors, overall accuracy, and Kappa coefficient [22]. These statistics were also calculated for 8 standard
water indices or equations found in the literature based on the training and validation reference points
used in this study. The annual water masks, obtained by combining monthly water masks when
applying the WIW and three water indices having the highest classification accuracy with our dataset,
were also computed for qualitative visual validation based on local expert knowledge.

3. Results

3.1. Optimal Classifiers for Detecting Water In Wetlands (WIW) According to Satellites

Although based on different ground-truth and optical-based data, the binary trees resulting
from the data mining process were highly similar among satellites. Two single spectral bands from
Landsat and Sentinel sensors were preferred over the various existing water indices for detecting water
in wetlands according to the following thresholds:

Landsat 8 : WIW = NIR ≤ 0.1735 and SWIR2 ≤ 0.1035
Landsat 5, 7 : WIW = NIR ≤ 0.1558 and SWIR2 ≤ 0.0871

Sentinel 2 : WIW = NIR ≤ 0.1804 and SWIR2 ≤ 0.1131
Threshold values identified by the classifiers differed slightly from one satellite to another, resulting

from the diversity of sensors (Table 1) and the different ground-truth data used to fit their time coverage.
Details on the samples used for training and validation of the classifiers as well as accuracy estimates
are provided in Table 3. Overall accuracy was highest with Sentinel 2 (94.1%) followed by Landsat
7 (93.0%) and Landsat 8 (89.2%). Omission errors were lower for predicting water absence (9% for
Landsat 8, 3% for Landsat 7, and 4% for Sentinel 2) than water presence (respectively 19%, 20%,
and 15%). Kappa coefficients on the training and validation samples were, respectively, 0.63 and 0.68
for Landsat 8, 0.82 and 0.78 for Landsat 7, and 0.82 and 0.82 for Sentinel 2. All classifiers behaved
similarly with all datasets, with classification accuracy for training and validation samples not varying
by more than 1.3%. Field data were better classified than data extrapolated from water masks for
Landsat 7 and Sentinel 2, reaching 97% of correct classification with S2.

3.2. Classification Accuracy According to Landcover Types

Predictive accuracy according to land cover classes was also quite similar across satellites (Table 3).
Dry habitats were typically well classified, and the low omission errors were probably overestimated
due to potentially false data in the training samples which were entirely based on remotely-sensed
transferred data. A good example of this are the buildings from Landsat 7 scenes, of which 4% were
“misclassified” as flooded areas. Model performance was lower for sand, with around 90% of good
classification. Wet habitats with permanent or temporary waters were typically less well classified
(≈85%), mostly due to omission errors of water presence. Wet habitats containing tall vegetation,
which were our main targets in this study, were correctly classified at 83% (Landsat 8), 85% (Landsat 7),
and 89% (Sentinel 2). Riparian vegetation was rather well classified even though the training data were
remotely-sensed and identified as dry areas in the training sample. As a consequence, the omission
rate when the habitats are flooded can reach up to 55% with Sentinel 2. Another particular case is that
of canals and rivers, which were well classified at only 75% with Landsat 8.
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Table 3. Optimal classifiers for predicting water presence with error matrix and calculation of overall accuracy (%OA) according to land cover types for each satellite.

OLI Landsat 8 ETM + Landsat 7 Sentinel 2A, 2B

Water Equation B5 ≤ 0.1735 and B7 ≤ 0.1035 B4 ≤ 0.1558 and B7 ≤ 0.0871 B8a ≤ 0.1804 and B12 ≤ 0.1131
Observed => Predicted 0 => 0 0 => 1 1 => 0 1 => 1 %OA 0 => 0 0 => 1 1 => 0 1 => 1 %OA 0 => 0 0 => 1 1 => 0 1 => 1 %OA

Model building
Training data 2157 232 84 361 88.8 1623 44 103 453 93.4 2052 81 79 471 94.0

Validation data 940 77 44 170 90.2 685 24 50 173 92.1 894 30 35 192 94.4
Data source

Scenes 2204 209 46 349 90.9 1158 28 89 328 92.7 1849 84 104 568 92.8
Field 893 100 82 182 85.5 1150 40 64 298 93.3 1097 27 10 95 97.0

Land cover classes
Building 139 0 4 0 97.2 91 0 4 0 95.8 74 0 1 0 98.7

Road 194 25 1 5 88.4 85 2 3 2 94.6 178 4 7 2 94.2
Dry crop 162 1 0 1 99.4 137 0 1 1 99.3 127 1 0 1 99.2
Rice field 185 25 8 20 86.1 97 0 2 1 98.0 163 7 1 2 95.4
Grassland 186 3 0 1 98.4 84 2 0 1 97.7 128 1 0 1 99.2

Fallow land 153 1 0 1 99.4 101 0 7 0 93.5 82 2 0 1 97.6
Forest 222 8 0 0 96.5 92 1 5 5 94.2 145 1 6 3 95.5
Dune 332 24 1 1 93.0 464 5 4 1 98.1 664 9 5 1 97.9

Bare ground 152 5 5 8 94.1 74 2 4 13 93.5 164 7 6 30 93.7
Beach 181 11 8 5 90.7 95 5 4 20 92.7 174 14 11 26 88.9

Salt pans 264 10 25 67 90.4 313 9 7 82 96.1 353 15 3 126 96.4
Open-water marsh 165 58 27 210 81.5 161 13 16 199 92.5 108 10 6 202 95.1
Halophilous scrub 221 28 1 0 88.4 110 3 9 13 91.1 175 17 15 14 85.5

Canal, River 26 39 11 123 74.9 13 7 1 65 90.7 3 3 2 121 96.1
Reed marsh 258 38 35 87 82.5 281 17 70 206 84.8 190 14 23 100 88.7

Riverine forests 122 16 1 0 87.8 45 1 10 1 80.7 90 4 16 13 83.7
Salt meadows 135 17 1 2 88.4 65 1 6 16 92.0 128 2 12 20 91.4

Total 3097 309 128 531 89.2 2308 68 153 626 93.0 2946 111 114 663 94.1



Remote Sens. 2019, 11, 2210 8 of 18

3.3. Coherence of Resulting Water Masks

More important than the statistics is the coherence of the water maps produced with our predictive
classifiers relative to “real” habitat hydrology [19]. Permanent and seasonal wetlands, as well as
dry natural areas were all correctly identified based on visual interpretation and expert knowledge
(Figures 1 and 3). The differing management strategies (flooding durations) of embanked units were
easily recognizable on the resulting water maps, similarly to hydrology of rectangular rice fields, which
are flooded for four to five months a year. A strong decrease in rice cropped areas was further easily
detected when comparing the maps built with Landsat 7 scenes to the more recent satellite images
(Figure 3). Such decrease is in accordance with data from the French Rice Centre reporting 20479
hectares of rice in 2001 [77], compared to 11349 ha in 2017 [78]. The Landsat 7 classifier provided
longer flooding durations compared to Landsat 8 and Sentinel 2 due to discrepancies in the amount of
rainfall among the three periods considered (Figure 3a–c). The annual water maps were created with
at least one image per month. However, given the availability of cloud-free scenes from Landsat 7 and
8, images from different successive calendar years were combined. The sum of rainfalls in the month
preceding the 12 scenes corresponded to 651 mm for Landsat 7, 393 mm for Landsat 8, and 474 mm for
Sentinel 2, based on data from a local meteorological station. A closer look at the September–December
period, when Mediterranean wetlands are flooded again, is shown in Figure 4. The period covered by
Landsat 7 (from 26 August 2002 to 31 December 2002) was characterized by strong rainfalls cumulating
328 mm compared to 67mm for Landsat 8 (from 27 August 2017 to 16 December 2017) and 89 mm
for Sentinel 2 (from 27 August 2017 to 24 December 2017). These precipitations translated into the
inundation of natural and agricultural systems of which the progression is easily detected on the
successive Landsat 7 scenes (Figure 4). Actually, the impact of a wet month preceding scene acquisition
is clearly visible when comparing scenes on a monthly basis, irrespective of the satellite used.

With all satellites, uneven slopes facing north of a small mountain range located north west of the
study area were sometimes misclassified as flooded (Figure 4). These misclassifications arise from the
end of autumn to winter and disappear progressively from winter to early spring. On a few occasions,
some permanent waters in large lagoons were identified as dry (see November scenes of Landsat 8
in Figure 4). This situation occurred systematically under strong winds (above 100 km/h) according to
data from a local meteorological station.
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3.4. Impact of Radiometric Corrections and Satellite Sensors on Classifier Accuracy

Considering that atmospheric corrections affect the reflectance value of a pixel, they can influence
classification accuracy based on reflectance thresholds. The effect of correction methods on overall
accuracy was tested with Sentinel 2. The original model, obtained with 2A level scenes from THEIA
(WIW = B8a ≤ 0.1804 and B12 ≤ 0.1131) was compared with models using 1A level scenes provided
by the Sentinel products exploitation platform (PEPS) of Copernicus and scenes corrected with the
Semi-Automatic Classification Plug-in (SCP) in QGIS. The models obtained were very similar to the
original (SCP: B8a ≤ 0.1798 and B12 ≤ 0.1143; PEPS: B8a ≤ 0.1839 and B12 ≤ 0.1269), as was their overall
accuracy with 93.9% (SCP) and 93.1% (PEPS) compared to 94.1% for the original classifier. For any
land cover class, omission or commission errors did not vary by more than 1% from the original
classification, except for halophilous scrubs for which omission errors increased by 5.3% (SCP) and
3.6% (PEPS) due to misclassification of ten dry-ground points (Table 4).

Considering that the WIW logical rules differed little among satellites, their performance was
tested across satellites. All models performed well with all satellite sensors (Table 4). Actually,
the model developed with Landsat 7 performed better with Landsat 8 than the model originally built
with Landsat 8. While the overall accuracy was rather similar, discrepancies were sometimes observed
according to land cover classes. For instance, classification accuracy of bare ground and halophilous
scrubs decreased by more than 10% when the Sentinel 2 model was applied to Landsat 7 scenes.
Application of any model to Sentinel 2 provided, however, a roughly similar overall accuracy. Water
maps were coherent and similar, the only perceptible divergence being an overall slight increase or
decrease in the annual flooding durations. Results issued from the Landsat 7 model applied to Landsat
8 scenes or from the Sentinel 2 model applied to Landsat 8 can be considered as identical as they were
only very marginally different.

Table 4. Difference in % overall accuracy according to the original satellite used for classification and
the radiometric correction used for Sentinel 2 when applying the WIW logical rule.

Landsat 8 Landsat 7 Sentinel 2

Land Cover Class L8 ∆L7 ∆S2 L7 ∆L8 ∆S2 S2 ∆L8 ∆L7 ∆SCP ∆Peps

Buildings 97.2 0.0 0.0 95.8 −1.1 0.0 98.7 0.0 0.0 0.0 0.0
Roads 88.4 2.7 −1.3 94.6 −6.5 −6.5 94.2 0.0 1.0 −0.5 −0.5
Dry crops 99.4 −0.6 0.0 99.3 0.0 0.0 99.2 0.0 0.8 0.0 −0.8
Rice fields 86.1 0.4 −0.8 98.0 0.0 0.0 95.4 0.0 0.0 0.0 0.0
Grassland 98.4 0.0 0.0 97.7 −1.1 −1.1 99.2 0.8 0.8 0.0 −0.8
Fallow land 99.4 0.6 0.0 93.5 0.0 0.0 97.6 2.4 2.4 0.0 0.0
Forests 96.5 0.0 0.0 94.2 −1.9 −3.9 95.5 0.6 0.0 0.0 0.0
Dunes 93.0 2.5 −1.7 98.1 −0.6 −0.8 97.9 0.3 1.2 0.0 −0.7
Bare ground 94.1 −1.2 −1.8 93.5 −4.3 −10.8 93.7 −0.5 −1.4 0.0 −0.5
Sand 90.7 2.0 −0.5 92.7 −4.0 −4.0 88.9 1.8 1.3 0.0 −5.3
Salt works 90.4 −1.9 −0.5 96.1 −2.2 −2.9 96.4 −0.2 −0.6 0.0 −0.8
Open marsh 81.5 1.5 −1.1 92.5 −1.5 −3.1 95.1 −0.3 −0.9 −0.6 −1.2
Halophilous scrub 88.4 2.4 −2.8 91.1 −3.7 −10.4 85.5 0.9 0.9 −0.5 −3.6
Canal, River 74.9 −0.5 −1.0 90.7 −1.2 −1.2 96.1 0.0 0.0 0.0 0.0
Reed marsh 82.5 −0.7 −1.4 84.8 0.3 −0.7 88.7 0.3 −3.4 −0.6 −1.2
Riparian vegetation 87.8 2.2 −2.2 80.7 −2.3 −9.5 83.7 −2.4 −3.3 −0.8 0.0
Salt meadows 88.4 1.3 −3.2 92.0 −2.3 −3.4 91.4 −1.9 −3.1 −0.6 0.0

Total 89.2 0.6 −1.1 93.0 −1.4 −2.5 94.1 0.1 −0.3 −0.2 −1.1

3.5. Performance of the WIW Logical Rule Relative to Other Water Indices

Performance of the WIW equation (based on independent validation data only) was compared to eight
water indices found in the literature using all field and optical reference points extracted from Landsat 7,
Landsat 8 and Sentinel 2 scenes (Table 5). The Kappa coefficients were systematically higher with the WIW
logical rule and differences among methods were especially marked with Sentinel 2 scenes. The resulting
water masks were computed on twelve Sentinel 2 scenes from December 2017 through November 2018
using the four methods providing the highest Kappa coefficient values (Figure 5).
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Table 5. Kappa values obtained when applying spectral water indices found in the literature to Sentinel 2
(S2), Landsat 7 (L7) and Landsat 8 (L8) scenes using the ground-truth and optical data available in this study.

Water Index Landsat 8 Landsat 7 Sentinel 2

AWEIsh [31] 0.64 0.61 0.57
AWEInsh [31] 0.63 0.60 0.56

IFW [30] 0.62 0.52 0.57
NDWI (F) 0.62 0.52 0.57
MIFW [26] 0.66 0.65 0.64

MNDWI1 [36] 0.63 0.65 0.61
MNDWI2 [36] 0.50 0.67 0.61

WRI [34] 0.64 0.62 0.58
WIW [this study] 0.68 0.77 0.82

The MNDWI1 and MIFW indices could detect water in rice fields only before rice growth (area
in pink circle on Figure 5) or after rice harvest (darker area in orange circle on Figure 5). Likewise, water
in reed vegetation was detected only inside open-water areas of hunting marshes (small dark areas
in red circle) or after reed harvest in winter (right part in the yellow circle). It appears that the MIFW
index, which was developed with SPOT-5 sensors for detecting water under vegetation (used here with
0 as threshold value to improve Kappa coefficient), does not perform better than other water indices
when used with Sentinel 2. The MNDWI2 succeeds partially in detecting water under vegetation,
but its performance with Landsat 8 is particularly low (Table 5). Only the WIW equation provides
duration of flooding that reflects real inundation patterns for all habitat types (shown in Figure 2):
Water is detected similarly in non-harvested and harvested reed marsh (left vs. right part in yellow
circle), demonstrating that vegetation coverage does not interfere with water detection; rice fields
are considered as flooded during most of the period of rice growth (pink circle); and water can be
detected under dense cover of halophilous scrubs (darker area in green circle). These plant formations,
which grow in depressions that are flooded during a few winter months by rainfalls, are misclassified
as permanently dry with the other three indices (Figure 5).Remote Sens. 2019, 11, 2210 14 of 20 

 

 

Figure 5. Annual water mask obtained with 12 monthly scenes of Sentinel 2 (from December 2017 to 
November 2018) when applying the water indices having the highest Kappa values in Table 5. 

4. Discussion 

In contrast to current water indices, the logical rule presented in this paper for detecting Water 
In Wetlands (WIW) performs equally well in the absence or presence of vegetation above the water 
surface. Seasonal wetlands are ecologically and economically important ecosystems that are 
particularly sensitive to climate change [46]. A robust tool for monitoring annual and seasonal 
trends in their hydrology is needed by practitioners interested in the conservation of these 
vulnerable ecosystems because hydrology is a prime factor affecting their biodiversity and 
contribution to humankind [8,43] 

Although based on independent field and remotely-sensed data in differing proportions, as 
well as various satellite sensors and different time periods, dichotomous partitioning with Landsat 
7, Landsat 8, and Sentinel 2 led to the same logical rule for predicting water presence. In all cases, the 
near-infrared band (NIR) was first selected, followed by the second shortwave-infrared band 
(SWIR2). None of the standard water indices found in the literature were selected by our models for 
detecting water in wetlands. Although an increased performance of water indices has been obtained 
recently by adding specific threshold values or by using them in combination with vegetation 
indices [22,41,59], applying simple threshold values to the NIR and SWIR2 bands appeared to 
provide better results in this study. Switching the threshold values among satellites or using 
different atmospheric correction methods provided similar water maps, suggest that our approach is 
robust and replicable. Furthermore, when applied to a Sentinel 2 scene of the Doñana marshes in 
southern Spain [79], the WIW logical rules provides a Kappa coefficient of similar value (0.84) to the 
one obtained for the Camargue wetlands. Overall, Sentinel 2 scenes systematically provide better 
classifications, presumably because of their higher spatial resolution compared to Landsat sensors. 
All models performed better than the water index previously developed in Camargue with Spot 5 

Figure 5. Annual water mask obtained with 12 monthly scenes of Sentinel 2 (from December 2017 to
November 2018) when applying the water indices having the highest Kappa values in Table 5.



Remote Sens. 2019, 11, 2210 13 of 18

4. Discussion

In contrast to current water indices, the logical rule presented in this paper for detecting Water
In Wetlands (WIW) performs equally well in the absence or presence of vegetation above the water
surface. Seasonal wetlands are ecologically and economically important ecosystems that are particularly
sensitive to climate change [46]. A robust tool for monitoring annual and seasonal trends in their
hydrology is needed by practitioners interested in the conservation of these vulnerable ecosystems
because hydrology is a prime factor affecting their biodiversity and contribution to humankind [8,43]

Although based on independent field and remotely-sensed data in differing proportions, as well as
various satellite sensors and different time periods, dichotomous partitioning with Landsat 7, Landsat 8,
and Sentinel 2 led to the same logical rule for predicting water presence. In all cases, the near-infrared
band (NIR) was first selected, followed by the second shortwave-infrared band (SWIR2). None of
the standard water indices found in the literature were selected by our models for detecting water
in wetlands. Although an increased performance of water indices has been obtained recently by
adding specific threshold values or by using them in combination with vegetation indices [22,41,59],
applying simple threshold values to the NIR and SWIR2 bands appeared to provide better results
in this study. Switching the threshold values among satellites or using different atmospheric correction
methods provided similar water maps, suggest that our approach is robust and replicable. Furthermore,
when applied to a Sentinel 2 scene of the Doñana marshes in southern Spain [79], the WIW logical rules
provides a Kappa coefficient of similar value (0.84) to the one obtained for the Camargue wetlands.
Overall, Sentinel 2 scenes systematically provide better classifications, presumably because of their
higher spatial resolution compared to Landsat sensors. All models performed better than the water
index previously developed in Camargue with Spot 5 which used a combination of green and SWIR
wavelengths (MIFW index, [26]). The Spot-5 sensor had a single SWIR band that was located in the
lower wavelength (1.58–1.75 µm), corresponding to the SWIR1 of the satellites used in this study and
not selected in our classifiers.

A closer look at the classification tree reveals that areas which reflect heat back into the atmosphere
such as dry ground with little (e.g., mud flats) or no (e.g., road, buildings) vegetation are discarded by
the reflectance values of the near infrared radiation. In a second step, the combined action of the short
infrared penetrating the vegetation, its absorption by water and reflection by the ground is useful for
identifying flooded areas, even under vegetation cover. Penetration of the NIR and SWIR wavelengths
(800 and 2700 nm) through organic matter has several applications [80]. It has been shown that SWIR
penetration capacity increases with increasing wavelengths [81,82]. In our case, it seems that the SWIR
band behaves as in reflectography, the process used to highlight charcoal drawing underlying master
paintings. According to this technique, a light source is used to illuminate the painting and the SWIR
passes through the paint, being reflected by the canvas and absorbed by the charcoal. The optimal
wavelength for passing through all paint layers is around 2 µm [83], similarly to the SWIR2 bands
selected in the WIW logical rule. It is noteworthy to mention that the only existing water index that
can detect water under vegetation (MNDWI2) also uses SWIR2 wavelengths.

The main types of flooded vegetation in the Camargue correspond to grasses (e.g., rice), succulent
shrubs (e.g., Arthrocnemum, Salicornia, Salsola), trees (Tamarix sp.), and beds of emergent plants having
variable height and density such as Ludwigia spp., club-rush, rush, sedge, fen-sedge, and common
reed [84]. Based on visual interpretation of the water maps, the WIW logical rule performs equally
well with all these types of vegetation. Apart from the MNDWI2 that can detect water in the early
stage of vegetation growth, all water indices tested in this study failed to detect water under all types
of vegetation cover. The particular case of hunting reed marshes is interesting because all water indices
could detect permanent water in areas free of vegetation that are managed for ducks, but none of them
could detect water into the reeds surrounding these pools which are also flooded for most of the year.
Likewise, water under halophilous scrubs, which are a common habitat in Camargue, went completely
undetected in all water indices.
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Standard water indices applied to our dataset had nevertheless Kappa coefficients generally above
0.6. Kappa coefficients are considered as the most robust method to measure classification accuracy
because they take into account the possibility of the agreement occurring by chance alone. However,
their calculation remains limited to the reference and validation points provided by the observer.
Accordingly, a high Kappa coefficient does not necessarily mean that the map is accurate. Originally,
only optical-space derived data (from SPOT 5 to Landsat 8 and then other satellites, see methods)
were used in this study to develop the WIW equation. Such an approach provided good overall
accuracy and Kappa coefficients but the resulting water maps were wrong when confronted with
ground-truth knowledge. Conventional statistical methods are not designed to deal with erroneous
data. When using inaccurate training data, misclassifications (e.g., sampling points for which the
reflectance value is located outside the confidence interval of the studied variable) are discarded from
the original group of data. This contributes to reducing the confidence intervals of the original dataset
and the data marginally correctly classified are suppressed to optimize good classifications. While such
procedure gives a high potential for good statistical results, it amplifies the original model’s flaws.
In our case, when the original model correctly classified water presence or absence only half the time
for a specific land cover class, the following water model then systematically misclassified this land
cover type. Our solution was to add ground-truth data on water presence in the training sample for
those land cover classes that were identified as providing false results. This allowed us to restore the
original confidence interval of the dataset by increasing the number of points lying outside its limit
values. This approach provided satisfactory results because the water maps were coherent with reality
and the final models provided high classification accuracy.

With all satellites, uneven slopes facing north of a small mountain range located outside the study
area were misclassified as flooded during the winter months. Since all satellites were passing over the
Camargue in the late morning (between 10:10 and 10:40 CET), this confusion is probably associated
with shadows caused by the winter sun that is too low to light the northern face of the mountains.
This problem has previously been reported with most water detection methods and can be solved by
combining spectral indices or adding elevation data [23,31]. On a few occasions, some permanent
waters in a large and deep lagoon were identified as dry by all satellites. Considering that these scenes
were systematically acquired under the condition of strong winds (> 100 km/h), these artifacts were
probably caused by strong waves causing foam on the water surface. Such phenomenon is, however,
unlikely to occur in shallow or seasonal wetlands.

5. Conclusions

The Camargue or Rhône delta comprises a high diversity of natural and human-modified habitats.
The method developed in this study for detecting Water In Wetland (WIW) is hence likely to be
applicable to many other wetland areas, especially around the Mediterranean Basin where similar types
of landscapes are found. It would be interesting to test its performance under subtropical and tropical
climates where wetland vegetation is more luxuriant and stratified, such as in the Everglades [25].
Automated methods for defining optimal thresholds would certainly increase performance of the WIW
of which the main strength is to rely on high shortwave infrared wavelengths (SWIR2). Considering
that our models were transferable from one satellite to the other, it seems likely that they would perform
equally well with other satellites should they have SWIR and NIR sensors of comparable wavelengths.
The model developed with Landsat 7 is probably the most robust for use with other satellites given its
high performance with Landsat 8 and Sentinel 2, which is attributed to the wider acceptance range of
its NIR sensor. Considering that Landsat 5 uses exactly the same sensors as Landsat 7, application of
the WIW logical rule will permit territorial planners, wetland managers, and environmental scientists
to follow water dynamics back to 35 years ago and, hopefully, for many years into the future with
Sentinel 2, Landsat 8, and other satellites.

The definition of wetlands provided by the Ramsar Convention is very inclusive [85]: “ . . .
wetlands are areas of marsh, fen, peatland or water, whether natural or artificial, permanent or
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temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water
the depth of which at low tide does not exceed six metres.” Considering the high temporal resolution
of Sentinel 2 scenes (every 5 days), cumulative water maps built with the WIW logical rule could
further be used for mapping a wide range of wetlands which are either periodically or permanently
flooded. Such approach could be a good substitute to wetland mapping based on their vegetation
characteristics and would further enable the monitoring of hydrology, in addition to wetland extent and
location. Flooding dynamics have important implications for multiple services provided by wetlands
(e.g., flood mitigation, water purification, wildlife habitat, and recreational potential), including carbon
and methane cycling [8,86].
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