
HAL Id: hal-02320463
https://hal.science/hal-02320463v1

Submitted on 18 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Response Time Analysis of Dataflow Applications on a
Many-Core Processor with Shared-Memory and

Network-on-Chip
Amaury Graillat, Claire Maiza, Matthieu Moy, Pascal Raymond, Benoît

Dupont de Dinechin

To cite this version:
Amaury Graillat, Claire Maiza, Matthieu Moy, Pascal Raymond, Benoît Dupont de Dinechin. Re-
sponse Time Analysis of Dataflow Applications on a Many-Core Processor with Shared-Memory and
Network-on-Chip. RTNS 2019 - 27th International Conference on Real-Time Networks and Systems,
Nov 2019, Toulouse, France. pp.61-69, �10.1145/3356401.3356416�. �hal-02320463�

https://hal.science/hal-02320463v1
https://hal.archives-ouvertes.fr

Response Time Analysis of Dataflow Applications on a
Many-Core Processor with Shared-Memory and

Network-on-Chip
Amaury Graillat

amaury.graillat@univ-grenoble-alpes.fr
Univ. Grenoble Alpes, CNRS,
Grenoble INP, VERIMAG
38000 Grenoble, France

Claire Maiza
claire.maiza@univ-grenoble-alpes.fr

Univ. Grenoble Alpes, CNRS,
Grenoble INP, VERIMAG
38000 Grenoble, France

Matthieu Moy
matthieu.moy@univ-lyon1.fr

Univ Lyon, EnsL, UCBL, CNRS, Inria,
LIP

F-69342 LYON Cedex 07, France

Pascal Raymond
pascal.raymond@univ-grenoble-alpes.fr

Univ. Grenoble Alpes, CNRS,
Grenoble INP, VERIMAG
38000 Grenoble, France

Benoît Dupont de Dinechin
bddinechin@kalray.eu

Kalray S.A
38330 Montbonnot-Saint-Martin

France

ABSTRACT
We consider hard real-time applications running on many-core pro-
cessor containing several clusters of cores linked by a Network-on-
Chip (NoC). Communications are done via shared memory within
a cluster and through the NoC for inter-cluster communication.
We adopt the time-triggered paradigm, which is well-suited for
hard real-time applications, and we consider data-flow applications,
where communications are explicit.

We extend the AER (Acquisition/Execution/Restitution) execu-
tion model to account for all delays and interferences linked to
communications, including the interference between the NoC in-
terface and the memory. Indeed, for NoC communications, data is
first read from the initiator’s local memory, then sent over the NoC,
and finally written to the local memory of the target cluster. Read
and write accesses to transfer data between local memories may
interfere with shared-memory communication inside a cluster, and,
as far as we know, previous work did not take these interferences
into account.

Building on previous work on deterministic network calculus
and shared memory interference analysis, our method computes
a static, time-triggered schedule for an application mapped on
several clusters. This schedule guarantees that deadlines are met,
and therefore provides a safe upper bound to the global worst-case
response time.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RTNS’19, Toulouse,
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 000. . . $00.00
https://doi.org/0.0.0

ACM Reference Format:
Amaury Graillat, Claire Maiza, Matthieu Moy, Pascal Raymond, and Benoît
Dupont de Dinechin. 2019. Response Time Analysis of Dataflow Applica-
tions on a Many-Core Processor with Shared-Memory and Network-on-
Chip . In rtns. ACM, New York, NY, USA, 9 pages. https://doi.org/0.0.0

1 INTRODUCTION
Time-critical systems are systems whose response time is part of
the specification and for which a too long response time could have
dramatic consequences.

Many-core platforms are based on a set of multi-core clusters
connected through a Network-on-Chip (NoC). They offer more
computational performances than single-core platforms, and offer
interesting properties for real-time: partitioning cores into clus-
ters allows spatial isolation, and individual cores can be simple
enough to allow a precise worst-case execution time (WCET) anal-
ysis. In this paper, we consider Kalray’s MPPA2 many-core pro-
cessor, which is well-suited to hard real-time applications [26]. Its
architecture and implementation allow minimizing and bounding
interferences, but not fully eliminating them. Hence, a global anal-
ysis of applications must be performed in order to ensure that their
timing constraints are satisfied.

This paper deals with hard real-time applications, for which
deadlines are strict, and provides safe upper bounds on the worst-
case response time. We consider precisely a non-preemptive execu-
tion model where software is divided into a set of periodic tasks
communicating through channels. Each task follows a variant of
the Acquisition/Execution/Restitution (AER) execution model [10]:
tasks start when their input data is ready in the local memory. The
first phase is the execution itself. Then, data is transmitted directly
to the target tasks. In other words, we follow a remote-write pol-
icy, and do not need the “Acquisition” phase of the AER model.
When the target task is located in the same cluster, data is written
directly to its input buffer in the local memory; when the target
task is located on a different cluster, data is remotely written over
the NoC. Such a set of tasks can be extracted automatically from a
program written in a synchronous language such as Lustre [17] or
its industrial variant Scade [5], or other high-level languages such

https://doi.org/0.0.0
https://doi.org/0.0.0

RTNS’19, Toulouse, Graillat and Maiza, et al.

as Simulink [20]. Note that this AER execution model is a phased
execution model that is also referred to as read/execute/write in
the literature [4].

Since we consider hard real-time applications, we optimize the
application and analysis for the worst-case. Non-preemptive, static,
time-triggered scheduling is therefore awell-suited executionmodel.
Since we consider periodic applications, we need to check the
schedulability of one period (or hyper-period in case we use hyper-
period expansion), and the rest of the execution will repeat the
schedule of this period. For each task, a release date (arrival time)
is computed, defined as the offset within a period where the task
is allowed to start. Each release date is computed in such a way
that the input data for the task are guaranteed to be available at
this time. If the data is available earlier, the task still waits for the
release date to start. This is not a limitation in a hard real-time
context, since starting earlier would not improve the Worst-Case
Response Time (WCRT) of the application. On the other hand, a
static time-triggered schedule allows a finer analysis of the interfer-
ence than a more dynamic schedule: the time interval when a task
can execute is known statically. Tasks start at their release date,
and execute without preemption no longer than their WCRT. This
knowledge is exploited in the interference analysis: tasks whose
execution intervals do not overlap cannot interfere. In other words,
time-triggered schedules allow timing isolation of tasks within a
period.

Prior work has been carried out to compute response-time anal-
ysis within a cluster [1, 25] or a worst-case traversal time for the
NoC [8]. However, there is little research on computing a worst-
case response time that considers application mapped to more than
one cluster with a complete model of the NoC interference on local
memories (see Section5). Considering the interference on memory
accesses and the latency due to NoC communications separately
is not sufficient: we need to take into account the interference be-
tween NoC communications and memory accesses, since a NoC
communication implies memory read accesses on the sending side
and write accesses on the receiving side.

We model NoC transmissions by inserting additional endpoint
tasks such that a global response-time analysis may be applied. This
response-time analysis takes the interference on shared resources
(shared bus and memory) into account, including both interference
between software tasks and interference between software tasks
and the NoC transmission (TX) and reception (RX) engines.

Contribution. The contribution of this paper is a global model
to compute the task release date for applications with both shared-
memory and NoC transfers. We propose a new execution model
where NoC communications are implemented with multiple tasks,
each one having its own release date. We exploit hard-real time
software properties and hardware mechanisms to guarantee the
absence of interference on some tasks, and to avoid circular de-
pendencies in the timing analysis. We consider a Remote Direct
Memory Access (RDMA) NoC where a core can write to a remote
memory address through the NoC. Furthermore, we integrate the
worst-case NoC transmission delay in this model to satisfy data
dependencies and tighten bounds on the memory interferences
from the NoC.

Section 2 presents the context of this work: the hard-real time
software properties, the Kalray MPPA2 processor, a method to
compute the task release dates and a method to compute the WCTT
on the NoC. Section 3 explains the sources of interferences we focus
on, and presents our new WCRT analysis for handling the NoC
interferences. Section 4 gives the results of the experiments on the
Kalray MPPA2 processor. Related work is discussed in Section 5.

2 CONTEXT
2.1 Hard Real-Time Application Model
We consider reactive systems, operating in interaction with their
environment, which generally involves the physical world. They are
used in domains of application like control engineering in industry
(power plants) or transportation (avionics, train, automotive). These
systems are hard-real time, meaning that each reaction must occur
before a strict, fixed deadline.

Such applications may be developed directly in low-level lan-
guages (e.g. C), but more often, they are developed using model-
based design tools, like Scade Suite (avionics) or Simulink (automo-
tive, industrial). In this case the task’s code is generated automati-
cally and the compilation process may give useful guarantees on
the application execution. Code generation tools targeting sequen-
tial execution is available and deployed industrially, see KCG [5].
The area of code generators targeting multi-core is more recent: an
extension of KCG, the Multicore Code Generator (MCG) to gener-
ate parallel programs was proposed in [7, 22]. MCG deals with the
target-independent code generation, and requires a complementary
integration tool to deal with the specificities of the target architec-
ture like memory access interference and NoC communications.
A research prototype of code generator from Lustre programs tar-
geting Kalray’s MPPA2 processor is proposed in [14]. We base the
present work on this code generator; the same principles could
apply to an integration tool for MCG.

We consider applications as sets of tasks generated from high-
level languages and implement them on many-core platforms; their
characteristics influence our solution:

• They are hard real-time, thus only the worst-case execu-
tion/reaction time matters: enhancing the average or best
case is irrelevant.

• The communications between the tasks are statically known:
each communication is oriented and described by a “channel”
information that includes the type of the data, the produc-
ing and the consuming task. When the application comes
from a high level data-flow design (Scade, Simulink), channel
information is readily available.

• Each functional task is a purely computational piece of code,
that generally follows the AER (Acquisition/Execution/Resti-
tution) policy. This is the case when the code is automat-
ically generated from Scade or Simulink. This property is
interesting since it is a starting point for implementing a
synchronization mechanism: a task requires all its inputs
before producing any output.

At this point in the code generation flow, the application is there-
fore a tasks graph, with dependencies between tasks. Tasks follow
a variant of the AER model where the Acquisition phase is not
needed: tasks write directly to the input buffer of the receiving

R.T.A. of Dataflow App. on Many-Cores with Shared-Memory and Network-on-Chip RTNS’19, Toulouse,

Cl12

Cl8

Cl4

Cl0

Cl13

Cl9

Cl5

Cl1

Cl14

Cl10

Cl6

Cl2

Cl15

Cl11

Cl7

Cl3

W3

W2

W1

W0

E3

E2

E1

E0

N0 N1 N2 N3

S0 S1 S2 S3

Figure 1: Overall viewof theMPPAprocessor. Cli squares are
clusters (containing 16 cores each), and {N,S,E,W}i (North/-
South/East/West) squares are NoC routers part of the I/O
clusters.

task. Data dependencies are annotated in the task graph with the
amount of data transmitted. Classical WCET analysis techniques
(e.g. OTAWA [3]) are used to compute each task’s WCET (not ac-
counting for inter-tasks interferences).

2.2 The Kalray MPPA2 Processor
The MPPA2 is a many-core processor composed of 16 compute
clusters and 4 I/O clusters, pictured in Figure 1. Each compute clus-
ter is made of 16 cores and a shared memory. The shared memory
is composed of 16 banks with independent arbiters. For a more
comprehensive description, see [9].

Clocks of the clusters are mesochronous, i.e. they have the same
frequency but may have different phase. Each cluster contains a
Debug Support Unit (DSU), containing a cycle counter register. This
counter is initialized synchronously on the whole processor and can
be used to synchronize all compute cores [15], making the MPPA a
suitable platform for time-triggered processor-wide scheduling.

Fig. 2 shows a closer view of the path taken by a communica-
tion between two clusters. Data is transmitted from the memory
of a source cluster to the memory of another cluster. This is the
communication we focus on in this paper.

(1) Core 1 reads the data in the memory and copies this
data to the buffer of a TX (transmission) engine. We call
copy_noc(tx_engine, buffer, size) the piece of code exe-
cuting on the core that takes care of this copy. In a cluster,
accesses to TX engine buffers from the different cores are ar-
bitrated on a single bus. Consequently, concurrent requests
can be delayed due to interferences. Data is retained in the
buffer.

(2) After the data is fully copied to the buffer of the TX engine,
the communication is initiated and the packet is sent to
the NoC. This is triggered by a core, that emits the end of

transmission (EOT). The code executing on the core is a non-
blocking procedure that ends the transmission on the sender
side and initiates the transmission from the TX buffer to the
NoC. We call it EOT_noc(tx_engine).

(3) Then, the packet traverses the NoC. The worst-case latency
from the initiation to the destination cluster is called WCTT.
Packets enter the destination cluster through the NoC local
link.

(4) The RX engine is responsible for copying the received data
to the shared memory (5). Concurrent writes to the same
memory bank from the NoC RX and from the cores are
arbitrated with a fixed-priority policy. Writes from the NoC
have the highest priority. Cores have lower priority and
are arbitrated with each other in round robin. There is one
arbiter per memory bank: this allows spatial isolation since
an access to one bank does not interfere with accesses to
other banks. A typical scenario is that writes from the NoC
RX can interfere with accesses done during the Execute
phase of a task running before the receiving task, on the
same core hence accessing the same memory bank.

We analyze in details the possible interferences at each stage
later in Section 3.1.

2.3 Multi-Core Interference Analysis (MIA)
We distinguish the WCET of a task in isolation, i.e. when there
are no memory interferences, and the Worst Case Response Time
(WCRT) of the task which accounts for interferences (there are no
task preemptions to consider).

Memory interferences have an effect on the execution time of
the tasks. Conversely, the execution time of each task may impact
the execution time of the others, since it changes the set of tasks
concurrently accessing the memory. Consequently, the whole ap-
plication has to be analyzed globally and information about the
release date and response time of each task is required to analyze
the interferences. A time-triggered execution ensures that tasks
execute between the statically known release date and deadline.

Rihani et al. [25] introduce an algorithm computing the release
dates and WCRT of the tasks. The algorithm takes as input a task
graph (tasks, dependencies between tasks, and optionally minimal
release dates for some tasks). For each task, it needs the WCET in
isolation and the worst-case memory demand (number of accesses
to each memory bank). The mapping and execution order of tasks
on each core is known. Mapping and scheduling are out of the scope
of our work; an external tool is used as a black-box. Based upon
this information, MIA computes a static time-triggered schedule,
i.e. a release date and a WCRT, accounting for interference for each
task.

The algorithm starts from the WCET in isolation of the tasks
and iteratively adds the delays due to the interferences reconsider-
ing each time the set of interfering tasks. It relies on the memory
demand of each task and a model of the memory arbiter. This al-
gorithm has been implemented in the MIA tool1. Our contribution
is to integrate a NoC model in release dates and WCRT analysis
performed by MIA. This allows analyzing applications mapped to

1http://www-verimag.imag.fr/Multi-core-interference-Analysis.html

http://www-verimag.imag.fr/Multi-core-interference-Analysis.html

RTNS’19, Toulouse, Graillat and Maiza, et al.

TX

low

TX

low

Cluster 1Cluster 0

R
R

Core 2

Core 1

Mem
Bank

Mem
Bank

R
R

Core 2

Core 1

high

RX

Pr
io

Routers

high

RX

Pr
io

2 3

1

4

5

Figure 2: NoC communication path from a core (1) to a remote memory bank (5). In each cluster, only one bank and one TX
engine are represented. (4) is the memory bank arbiter.

multiple clusters, which rely on both shared-memory and NoC
transmission.

2.4 NoCWorst-Case Traversal Time Bounds
When the traffic at the NoC input is known, the estimation of a
WCTT bound can be simplified and the absence of buffer overflow
can be checked. Several methods exist to bound latency of packets
through the NoC.

Deterministic Network Calculus (DNC) is a theory dedicated to
the performance analysis of computer networks such as ATM and
Internet. More recently, it has been used for Avionics Full Duplex
Switched Ethernet (AFDX) networks certification [12, 16]. DNC
relies on an upper-bound on the input traffic called arrival curve.
This arrival curve can be ensured by bandwidth limiter. Then, the
methods gives service curve of the network’s elements. Operation
on these curves allows computing an upper-bound on the latency
for each flow and an upper-bound of the buffer level.

Recursive Calculus [11] (RC) is a method to bound the WCTT of
best effort traffic. Ayed et al. [2] applied the RC theory to handle
both the MPPA2 and the Tilera TILE64 many-core processor.

In this work, we use the method from [6] which is based on the
DNC framework, applied to the MPPA’s NoC. It provides latency
bounds from source to destination memory.

3 HANDLING NOC INTERFERENCES IN
WCRT ANALYSIS

3.1 Possible Sources of Interference
In this section, we enumerate and focus on the sources of interfer-
ences along the transmission path detailed in Figure 2. For each
source of interference, we explain how it will be handled in our
analysis.

The first source of interference is encountered already at point
(1) that is the transmission from a core to the NoC. In the MPPA2
architecture, the cluster’s TX engines are accessed by the cores
through a single bus. As a consequence, it may introduce inter-
ferences and delays between tasks of the cluster accessing the TX
engines if accesses are done concurrently. Instead of analyzing
these interferences, our solution is to avoid them: in our execution
model we forbid copy_noc and EOT_noc from being executed at the

same time in a cluster by adding artificial edges in the task graph.
This way, we can guarantee that there is no concurrent access to
the NoC TX, hence no interference between these accesses. This
method to avoid interference is similar to the work of Melani et
al. [21], where tasks are scheduled in a way that forbids concurrent
accesses of write tasks to avoid contention. We add artificial edges
to the dependency graph to enforce a total order and no concur-
rence between tasks accessing the NoC TX, i.e. steps (1)+(2), before
running the scheduling algorithm.

Interference between flows transmitted on the NoC (3) are dealt
with by the DNC analysis. DNC is a very general approach, and
can deal with interference with other task models including non-
periodic traffic. It does not need to make assumption about the
execution model of other sources of traffic on the same chip. It only
relies on configuration of hardware traffic limiters in the TX engines
of each cluster. Since data being sent come from the TX’s input
buffer, the TX engine only interferes with other flows in the NoC
during this stage, but no interference happen with other elements
in the sending cluster.

The next source of interference is at point (4): the bus arbiter
to reach a memory bank is shared by the cluster and the receiving
task. At this point we partially avoid interferences by limiting the
cores that are impacted by the reception of a NoC communication.
The architecture allows attributing one memory bank per core. The
data and code corresponding to a task are attributed to the bank of
the core executing this task. NoC reception buffers are located in
the memory bank of the destination task. Packet receptions trigger
write access to the memory bank of the buffer. This write access
may only interfere with the memory accesses of the destination
task and other write phases of tasks on the same core. This limited
interference scope avoids interfering with all tasks executed on all
cores.

Furthermore, as in [15], the task execution is time-triggered
and the implementation relies on a global clock synchronization
protocol.

In summary, the only interference related to NoC communica-
tions happen when the receiving task is writing, to the memory
bank of the destination task.

R.T.A. of Dataflow App. on Many-Cores with Shared-Memory and Network-on-Chip RTNS’19, Toulouse,

τECore 1

NoC RX

τC τD

Core 1 τA
Cluster 1

Cluster 3

NoC RX

RX A

Figure 3: NoC Transmission from τA to τE on different clus-
ters. RX A represents the possible interference from NoC to
the memory of τE .

3.2 Motivational Example and Naive Approach
To illustrate our approach, consider the data-flow application de-
picted in Fig. 3. It is mapped on several clusters. Core 1 of Cluster
3 executes tasks C, D and E. Task E depends on outputs of task A.
Task A runs on Core 1 of Cluster 1 and sends its output through
the NoC as soon as possible. The transmission is represented with
the hatched rectangles. The WCET and the memory demand are
known for each task. The WCTT and the size of the transmission
are known.

Our aim is to compute the WCRT and release date r for each
task taking into account both memory interferences between the
cores and from the NoC. In other words, we compute the first date
when the inputs of the tasks are guaranteed to be available and the
task can start. For instance, in Fig. 3, τE starts after τD has finished
and the data from τA has been received. Data transmitted through
the NoC are written to the memory bank of τE , hence possibly
interfering the other tasks of the core. Our purpose is to compute
the first and the last date when the transmission may write to the
destination bank. The first and the last date are respectively the
beginning and the end of the hatched rectangle of Fig. 3.

τA executes three procedures in sequence: the computation,
copy_noc and EOT_noc. The best-case execution time of the tasks and
the best-case traversal time of the NoC transmission are not known.
As a consequence, the first date when the NoC transmission may
write to the memory is 0.

The last date when the NoC transmission writes to the remote
memory is the last date when the sending task has finished, plus the
WCTT. Consequently, the NoC transmission is represented with a
task RXA starting at the same time as τA of durationWCRT (τA) +
WCTT .

The RX task appears in the model used for the analysis but does
not correspond to any physical task in the implementation. It is an
over approximation of the interval where the NoC reception may
occur.

This method is quite simple but leads to a pessimistic computa-
tion since the duration of RXA is longer than required. In fact, RXA
starts after the call to the EOT_noc procedure, hence at a date strictly
greater than 0. Since the RX accesses have the highest priority in
the shared-memory arbiter, an overapproximation of the execution
interval of RX has important consequences: all memory accesses by
concurrent tasks could be delayed by the number of accesses done
by the RX task. It is therefore important to minimize the duration
of RXA to limit the number of tasks that may interfere with RX and
therefore minimize its impact on the analysis.

A

τECore 1

Core 1 τA

τC τD

Copy E
O
T

Cluster 3

Cluster 1

NoC RX

NoC RX

RX A

Figure 4: NoC Transmission from τA to τE on different clus-
ters. The NoC communication is represented with two tasks:
Copy and EOT.

This “naive” approach does not guarantee the mutual exclusion
of accesses to the TX engine. However, in our experiments the
computed schedules are such that no concurrent access occur, hence
the comparison with our proposed solution (which does ensure
mutual exclusion) is fair.

3.3 Proposed Solution
As stated previously, a NoC transmission is composed of a copy
of the data to the TX engine’s buffer (copy_noc) and the EOT_noc

procedure to initiate the transfer. The packet is guaranteed to stay
in the buffer until the communication is initiated with EOT_noc.

Our proposed method, illustrated in Fig. 4, improves the naive
solution by splitting τA into a computation task, and two extra tasks
to implement the communication: the copy task and the EOT task,
each one having its own release date. Compared to the AER phased
model, we split the Restitution (R) phase into a phase to copy data
(copy_noc) and one to initiate the NoC (EOT_noc). The release dates
of these tasks are computed the same way as for other tasks by MIA.
Note that in this model, EOT_noc has its own release date, which does
not depend on the best case execution time of precedent tasks. The
NoC transmission cannot start before this date. Without knowledge
about the NoC’s best case transmission time, the first date when
the transmission can write to the remote memory can be set to the
start of EOT_noc (i.e. the end date of copy_noc). Then, the duration
of RXA isWCTT +WCRT (EOT_noc). This improvement makes the
analysis less pessimistic than the naive approach since the duration
of the RX task no longer includes the task computation.

To split the Restitution phase, we modified the code generator
so that communication between nodes implying the NoC generate
two tasks for copy_noc and EOT_noc. Extra care must be taken to
avoid cyclic dependencies in the analysis, as explained in the next
section.

3.4 Handling Communications Cyclic
Dependencies

WCRT and cycle problem. This section presents the problem of
cycle that can occur when the method is applied to a programwhere
two clusters are sending data to each other through the NoC. The
issue is that the duration of the RX tasks depends on the duration
of the EOT, and when the EOT task performs memory accesses, its
duration depends on the memory access from the NoC.

For example, in Fig. 5, Cluster 1 and Cluster 3 are communicating
in both ways. The WCRT of RX1 is WCTT1→3 + WCRT(EOT1).

RTNS’19, Toulouse, Graillat and Maiza, et al.

τB

τD
E
O
T

E
O
T

τA

τC τECore 1

Core 1
Cluster 1

Cluster 3

NoC RX

NoC RX

RX 2

RX 1

Copy
1

Cpy
2

Figure 5: Cycle problemwhere two clusters are communicat-
ing in both ways.

Since RX is arbitrated with the highest priority, we do not need to
consider other SMEM accesses interfering with the reception of
data. However, WCRT(EOT1) depends on memory interferences,
hence it depends on WCRT(RX2) and the release date of RX2, may
or may not allow the analysis to conclude that RX2 and EOT1 have
no overlap hence no interference. Similarly, the WCRT of RX2
depends itself on the WCRT of RX1 and its release date. In other
words, the duration of an RX task depends on the duration of the
corresponding EOT task.

The difference with the usual task graphs analyzed by the MIA
tool is that task RX1 does not depend on EOT1, but its WCRT de-
pends on WCRT(EOT1). This kind of dependency is not supported
by existing interference analysis.

Cycle Breaking Method. This method relies on an implementa-
tion of the TX and EOT tasks ensuring that EOT does not perform
any data memory access. Furthermore, we guarantee that there
is no concurrent task accessing the TX engine bus. This imple-
mentation ensures WCRT(EOT) = WCET(EOT) since there is no
interference.

The duration of RXs is computed using the WCET of EOT tasks
and the WCTT. Since we consider a response time for EOT which
does not depend on interferences, only one instance of the release
date computation tool is required even if there are cycles.

EOT is just a single store instruction writing in a hardware
register. It does not perform memory access other than the fetch,
and since the MPPA architecture has different arbiters for memory
banks and TX, this register access cannot interfere with accesses
to memory banks. Nevertheless, the fetch for this instruction can
lead to an instruction cache miss. The implementation must ensure
that this miss occurs in the copy_noc function instead of the EOT_noc
function. There are several methods: either a __builtin_prefetch

can be called to fetch the instruction into the cache at the end of the
copy_noc task, or the code alignment can be chosen to make sure
that the instruction cache line containing EOT has already been
loaded when it executes. We use the latter in the experiments.

4 EXPERIMENTS
In this section, we evaluate our method concerning two aspects:
the gain obtained compared to the naive method, and the efficiency
of the guaranteed time-triggered execution.

4.1 Evaluation of the timing analysis model
In this section we show how much our method improves the naive
version introduced in Section 3.2. For this purpose we implemented

P1

P0

RX

P1

P0

RX

Cluster 0

Cluster 1

RX1

RX2

n3 n4

n2

n5

n8

n1

n6 n7

n9

n10Copy1

Copy2

EO
T 1

EO
T 2

Figure 6: Schedule using the naive approach on an applica-
tion mapped to two clusters.

P1

P0

RX

P1

P0

RX

Cluster 0

Cluster 1

RX1

RX2

n3 n4

n2

n5

n8

n1

n6 n7

n9

n10Copy1

Copy2

EO
T 1

EO
T 2

Figure 7: Final schedule using the improved approach on an
application mapped to two clusters.

the naive method without our method to break the cycle: we over-
approximate the duration of the calculation+Copy+EOT tasks in-
stead. This duration is used to compute the duration of the RX task.
Then we apply the release date computation procedure from Rihani
et al. [25]. The estimated response time of EOT is then injected in
the next iteration.

For this experiment, we consider an application composed of
10 tasks mapped on two clusters, using two cores per cluster. The
WCTT is 120 cycles and each NoC transfer is 20 words long. For the
improved version, the EOT task has aWCET of 20 cycles. Copy1 and
Copy2 have aWCET of 100 cycles and 30 words of memory demand.
Each task n1... n10 has WCET of 100 cycles and a memory demand
of 30 words of 32-bits. For the naive version, we consider tasks in-
cluding all stages: (n1+Copy1+EOT1) and (n2+Copy2+EOT2) have
a WCET of 220 cycles and 60 words of memory demand.

In the case of the naive approach, the cyclic dependency requires
to re-launch MIA with an updated duration for the RX tasks until
convergence (2 iterations are needed for this example).

R.T.A. of Dataflow App. on Many-Cores with Shared-Memory and Network-on-Chip RTNS’19, Toulouse,

The naive and improved schedules are depicted respectively in
Fig. 6 and Fig. 7. A detailed comparison is given in Table 1. To ease
comparison, we show WCRT of Copy and EOT tasks which are
normally included in n1 and n2 in the naive implementation, but n1
+ Copy1 + EOT1 is considered as a single task in the analysis (and
likewise for n2 + Copy2 + EOT2). The reducedWCRT’s of the RX
tasks and of n3 lead to a reduced global WCRT and the one of
taskn3, and an earlier release date for 6 tasks. In the naive version,
RX1 interferes with n2 + Copy2 + EOT1 and n9 which run on the
core associated with the target memory bank, and with n6, which
writes to the target memory bank. Since RX1 writes 20 words with
a high priority, it delays tasks that may interfere by 20 cycles. In
the proposed version, RX1 is guaranteed to start later, and does not
interact with n2, textCopy2 nor n6, which are therefore 20 cycles
faster.

This globally shows that our model is good when the NoC com-
munication leads to memory interference.

Task Release date WCRT
Naive Improved Naive Improved

Application 550 540
Copy1 130 110 100 110
Copy2 130 110 100 110
EOT1 230 220 20 20
EOT2 230 220 20 20
RX1 0 220 450 220
RX2 0 220 450 220
N1 0 0 130 110
N2 0 0 130 110
N3 0 0 180 160
N4 180 160 100 100
N5 450 440 100 100
N6 0 0 180 160
N7 180 160 100 100
N8 450 440 100 100
N9 250 240 120 120
N10 250 240 120 120

Table 1: Comparison of WCRT and release dates with both
methods (in bold where there is a difference).

4.2 Evaluation of our guaranteed
Time-triggered execution

This experiment is performed on two applications: the ROSACE
case study and a synthetic benchmark running on 64 cores. Our
improved method with cycle breaking is used to implement them.

We evaluate theWorst-case response time of our Time-Triggered
(WCRT TT) solution, and compare it to 2 different implementations:
(1) a single-core implementation, where all tasks are executed se-
quentially, gives a basic execution time to measure the speedup
due to parallelization; (2) a best effort implementation, where each
task starts as soon as possible, gives the Event Triggered execution
time (measured ET); this Measured ET does not offer any real-time

guaranties, but gives a rough (and unreachable) upper-bound to
the speedup due to parallelization.

To simplify the experimental setup, the WCET in isolation is
evaluated using measurements on the Kalray MPPA2 running at
400 Mhz. Stronger guaranties would be obtained using a WCET
analysis tool like OTAWA [3]. This would not change the interfer-
ence analysis step, hence would not change the conclusions of this
experiment.

Note that, in these experiments, there is no computation in par-
allel with the NoC communications due to the structure of these
benchmarks.

4.2.1 ROSACE Case Study. ROSACE [23] is a case-study whose
structure is inspired by true avionic control applications. Only al-
titude is controlled, hence it does not require heavy computation.
It is composed of a controller and an aircraft simulator. We imple-
ment the whole application on the MPPA2. The simulator and the
controller run on two different clusters communicating through the
NoC. The solution relies on 2 cores of the environment cluster and 5
cores of the controller cluster. Five floating-point numbers are trans-
mitted from the environment to the controller and 2 floating-point
numbers are transmitted from the controller to the environment.
Our implementation relies on hyper-period expansion similarly
to [15] and [25].

In order to experiment the influence of computation load on
the execution time, we created several versions of the application
with different computation loads in each computing task of the
controller. The “pure-ROSACE” version, the “ROSACE+100” where
100 cycles are added in each computing task of the controller, the
“ROSACE+200”where artificial computations of 200 cycles are added
to each node. We measure the latency of the computation as a
duration between the beginning of the period and the reception by
the environment of the data computed by the controller.

ROSACE ROSACE+100 ROSACE+200
Single-Core 4.01µs (x1) 20.13µs (x1) 36.13µs (x1)
Measured ET 3.73µs (x1.08) 9.66µs (x2.08) 15.66µs (x2.31)
WCRT TT 5.49µs (x0.73) 13.44µs (x1.50) 21.24µs (x1.70)

Table 2: ROSACE case study. Speedup of the parallel execu-
tions on the MPPA2.

Table 2 shows the timing obtained for each implementation.
WCRTTT offers good speedups for ROSACE+100 and ROSACE+200.
The difference with the speedups obtained with the best-effort exe-
cution (Measured ET) gives an idea of the cost of timing guarantees.

The performance is reduced for pure-ROSACE since, the cost of
computation is negligible compared to the one of NoC communica-
tion. Note that the performance loss is due to the time-triggered
nature of the model, but not to the way we combine NoC and
memory interference analyses.

4.2.2 Synthetic Benchmark on 64 Cores. We designed a synthetic
benchmark running on 64 cores. The purpose is to apply ourmethod
on a highly parallel application with important data transfers and
observe the time-triggered implementation. The application runs

RTNS’19, Toulouse, Graillat and Maiza, et al.

on 16 clusters and in each cluster, the program executes 4 tasks in
parallel on 4 cores.

Fig. 8 shows NoC communications involved in the application.
Clusters are sorted so that clusters with direct links are represented
adjacent to form a grid, but their number correspond to the physi-
cal layout. I/O clusters and their routers are not represented. The
dispatch operation (Fig. 8a) follows a tree of nodes while the gather
operation is composed of point to point communication to cluster
0.

As shown in Fig. 8c, in each cluster a split task receives the
inputs from the NoC. The results are centralized by a join task
and sent through the NoC by specific tasks (NoC_Copy and NoC_EOT).
Tasks t1, t2, t3 and t4 are computation tasks.

The packets are 17-flit long, i.e. 17 words of 32 bits. In average
the WCTT are 98 cycles for the flows of Fig. 8a and 1227 cycles for
the flows of Fig. 8b. The difference is due to the highest number of
concurrent flows of the gather operation compared to the dispatch
operation.

Execution time Speedup
Single-core 358 ms x1
Measured ET 31 ms x11.46
WCRT TT 51 ms x7.08

Table 3: Synthetic benchmark running on 64 cores.

Table 3 shows the speedup obtained by each method. WCRT TT
has a good speedup and is 38% slower than the non-guaranteed
best-effort Measured ET method. Since WCRT TT offers strong
real-time guarantees, this result is good.

5 RELATEDWORK
Skalistis et al. [27] present a method similar to Rihani et al. [25]
to compute time-triggered schedules taking into account interfer-
ences. This method considers shared-memory communications and
communication through the NoC. However, the architecture is dif-
ferent: they consider a Direct Memory Access (DMA) engine which
is programmed by the core with an address and a size and this DMA
copies data from the memory to the remote memory through the
NoC. A NoC communication is modeled with 3 tasks: an initializa-
tion task to configure the DMA, a transfer task which performs
both local memory accesses and remote memory accesses and the
finalization task which ends when the DMA has finished. The dura-
tion of the transfer task corresponds to the WCTT plus the copy of
the data. This is close to the model of Tendulkar et al. [28] where
the transfer is in two phases and represented with an initialization
task and a transfer task. At the opposite, in our model the core
is responsible for copying the data from the memory to the NoC
transmission buffer. Consequently, the duration of our reception
task (RX) does not include the duration of the copy from the local
memory.

If we focus only on the NoC model and aside from the hardware
differences, our solution allows a finer analysis since we can de-
couple the copy from the NoC transmission. In other terms, their
approach would lead to intermediate results between our naive
and our improved method. Furthermore, our method relies on the

MIA tool for interference analysis, which has been shown to lead
to more precise results [24].

Note that there is extensive work on timing verification tech-
niques for scheduling of the NoC, or considering that tasks on
each core execute out of local memory with the only interaction
with packet flows being through a consideration of release jitter
(surveyed in [18, 19]). This complementary work could be com-
bined to what we present in this paper. As said before, our paper
is also orthogonal to work focusing on schedling and memory or
task mapping. For instance, work by Giannopoulou et al. [13] uses
network calculus to bound the worst-case traversal time over the
NoC and introduces endpoint tasks. They focus on the problem
of memory bank assignment to minimize interferences. As future
work, it would be interesting to combine their work to what we
present in this paper.

6 CONCLUSION AND FUTUREWORK
In this paper we present a method to compute a global, time-
triggered schedule on a many-core platform. We focus on NoC
communications between tasks running on different clusters, and
their impact on memory access interferences. Our solution is inte-
grated into an existing method focused on shared-memory commu-
nication in a single cluster. To fit the existing model, we model the
NoC communication using virtual tasks. To avoid pessimism due to
uncertainty on the possible execution time of the NoC reception, we
split the replication phase in two tasks, and identify precisely the
instant where the NoC transmission starts. To avoid cyclic depen-
dency, we use the hardware mechanisms provided by the MPPA to
avoid any memory access, hence any potential interference, during
the transmission phases.

We introduce an implementation and modeling method that
leads to tight response-time and an efficient scheduling (earlier
release date) by splitting network access from task computation. We
applied the method to a use-case inspired from avionic application
and a synthetic benchmark to evaluate the time-triggered execution.
The time-triggered implementation offers real-time guarantees and
a parallelization speedup close to the best-effort execution.

We describe a problem due to cycles in the communications
through the NoC. In the paper, we solved this problem by breaking
the cycle using hardware mechanisms. As future work, this problem
could be solved by a fixed-point computation, as used in section 4.1
for the naive approach. This would make the approach applicable
to architecture where our hardware mechanisms does not exist.
However, to be generalized, it would be necessary to prove that the
fixed-point iteration terminates.

REFERENCES
[1] Sebastian Altmeyer, Robert I Davis, Leandro Indrusiak, Claire Maiza, Vincent

Nelis, and Jan Reineke. 2015. A generic and compositional framework for multi-
core response time analysis. In Proceedings of the 23rd International Conference
on Real Time and Networks Systems. ACM, 129–138.

[2] Hamdi Ayed, Jérôme Ermont, Jean-luc Scharbarg, and Christian Fraboul. 2016.
Towards a unified approach for worst-case analysis of Tilera-like and Kalray-like
NoC architectures. In Factory Communication Systems (WFCS), 2016 IEEE World
Conference on. IEEE, 1–4.

[3] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. 2010.
OTAWA: an open toolbox for adaptive WCET analysis. In IFIP International
Workshop on Software Technolgies for Embedded and Ubiquitous Systems. Springer,
35–46.

R.T.A. of Dataflow App. on Many-Cores with Shared-Memory and Network-on-Chip RTNS’19, Toulouse,

0 2

8 10

4 6

12 14

1 3

9 11

5 7

13 15

(a) Dispatch from Cluster 0

0 2

8 10

4 6

12 14

1 3

9 11

5 7

13 15

(b) Gather to Cluster 0

NoC_RX

split

t1 t2 t3 t4

join

NoC_Copy

NoC_EOT

(c) In each cluster, 4 cores execute tasks
in parallel.

Figure 8: Overview of the synthetic benchmark involving 16 clusters.

[4] Mathias Becker, Dakshina Dasari, Borislav Nicolic, Benny Åkesson, Vincent Nélis,
and Thomas Nolte. 2016. Contention-Free Execution of Automotive Applications
on a Clustered Many-Core Platform. In 2016 28th Euromicro Conference on Real-
Time Systems (ECRTS). 14–24.

[5] Gérard Berry. 2007. SCADE: Synchronous design and validation of embedded
control software. In Next Generation Design and Verification Methodologies for
Distributed Embedded Control Systems. Springer, 19–33.

[6] Marc Boyer, Benoît Dupont de Dinechin, Amaury Graillat, and Lionel Havet.
2018. Computing Routes and Delay Bounds for the Network-on-Chip of the
Kalray MPPA2 Processor. In ERTS 2018-9th European Congress on Embedded Real
Time Software and Systems.

[7] Jean-Louis Colaço, Bruno Pagano, Cédric Pasteur, and Marc Pouzet. 2018.
Scade 6: from a Kahn Semantics to a Kahn Implementation for Multicore.
In Forum on specification & Design Languages (FDL). Munich, Germany.
https://hal.archives-ouvertes.fr/hal-01960410.

[8] Benoît Dupont de Dinechin and Amaury Graillat. 2017. Network-on-chip service
guarantees on the kalray mppa-256 bostan processor. In Proceedings of the 2nd
International Workshop on Advanced Interconnect Solutions and Technologies for
Emerging Computing Systems. ACM, 35–40.

[9] Benoît Dupont de Dinechin, Duco van Amstel, Marc Poulhiès, and Guillaume
Lager. 2014. Time-critical Computing on a Single-chip Massively Parallel Pro-
cessor. In Proceedings of the Conference on Design, Automation & Test in Europe
(DATE ’14). European Design and Automation Association, 3001 Leuven, Belgium,
Belgium, Article 97, 6 pages. http://dl.acm.org/citation.cfm?id=2616606.2616725

[10] Guy Durrieu, Madeleine Faugere, Sylvain Girbal, Daniel Gracia Pérez, Claire
Pagetti, and Wolfgang Puffitsch. 2014. Predictable Flight Management System
Implementation on a Multicore Processor. In ERTS 2014-7th European Congress
on Embedded Real Time Software and Systems.

[11] Thomas Ferrandiz, Fabrice Frances, and Christian Fraboul. 2012. A sensitivity
analysis of two worst-case delay computation methods for spacewire networks.
In Real-Time Systems (ECRTS), 2012 24th Euromicro Conference on. IEEE, 47–56.

[12] Fabien Geyer and Georg Carle. 2016. Network engineering for real-time net-
works: comparison of automotive and aeronautic industries approaches. IEEE
Communications Magazine 54, 2 (2016), 106–112.

[13] Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, Lothar Thiele,
and Benoît Dupont de Dinechin. 2016. Mixed-criticality scheduling on cluster-
based manycores with shared communication and storage resources. Real-Time
Systems 52, 4 (2016), 399–449.

[14] Amaury Graillat, MatthieuMoy, Pascal Raymond, and Benoît Dupont de Dinechin.
2018. Parallel code generation of synchronous programs for a many-core archi-
tecture. In DATE. IEEE, 1139–1142.

[15] Amaury Graillat, Matthieu Moy, Pascal Raymond, and Benoît Dupont
De Dinechin. 2018. Parallel Code Generation of Synchronous Programs for
a Many-core Architecture. In DATE 2018 - Design, Automation and Test in Europe.
Dresden, Germany. https://hal.inria.fr/hal-01667594

[16] Jérôme Grieu. 2004. Analyse et évaluation de techniques de commutation Ethernet
pour l’interconnexion des systèmes avioniques. Ph.D. Dissertation. Institut National
Polytechnique de Toulouse.

[17] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. 1991. The synchronous
dataflow programming language Lustre. Proc. IEEE 79, 9 (Sept. 1991), 1305–1320.

[18] S. Hesham, J. Rettkowski, D. Goehringer, and M. A. Abd El Ghany. 2017. Survey
on Real-Time Networks-on-Chip. IEEE Transactions on Parallel and Distributed
Systems 28, 5 (May 2017), 1500–1517. https://doi.org/10.1109/TPDS.2016.2623619

[19] A.E. Kiasari, A. Jantsch, and Z. Lu. 2013. Mathematical Formalisms for Perfor-
mance Evaluation of Networks-on-chip. ACM Comput. Surv. 45, 3, Article 38
(July 2013), 41 pages. https://doi.org/10.1145/2480741.2480755

[20] The Mathworks. [n. d.]. Simulink: User’s Guide.
[21] Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-

Spaccamela, and Giorgio Buttazzo. 2015. Memory-Processor Co-Scheduling
in Fixed Priority Systems. In Proceedings of the 23rd International Conference on
Real Time and Networks Systems (RTNS). 87–96.

[22] Bruno Pagano, Cédric Pasteur, Günther Siegel, and R Kníźek. 2018. A model
based safety critical flow for the AURIX multi-core platform. Embedded Real-Time
Software and Systems (ERTS’18) (2018).

[23] Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and Pierre Siron.
2014. The ROSACE case study: From simulink specification to multi/many-core
execution. In Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2014 IEEE 20th. IEEE, 309–318.

[24] Hamza Rihani. 2017. Many-Core timing Analysis of Real-Time Systems. Ph.D.
Dissertation. Univ. Grenoble Alpes.

[25] Hamza Rihani, Matthieu Moy, Claire Maiza, Robert I Davis, and Sebastian Alt-
meyer. 2016. Response Time Analysis of Synchronous Data Flow Programs on a
Many-Core Processor. In RTNS’16. ACM, 67–76.

[26] Selma Saidi, Rolf Ernst, Sascha Uhrig, Henrik Theiling, and Benoît Dupont de
Dinechin. 2015. The shift to multicores in real-time and safety-critical systems.
In Proceedings of the 10th International Conference on Hardware/Software Codesign
and System Synthesis. IEEE Press, 220–229.

[27] Stefanos Skalistis and Alena Simalatsar. 2016. Worst-Case Execution Time Analy-
sis for Many-Core Architectures with NoC. In Proceedings of the 14th International
Conference on Formal Modelling and Analysis of Timed Systems, Springer (Ed.).
211–227.

[28] Pranav Tendulkar, Peter Poplavko, Ioannis Galanommatis, and Oded Maler. 2014.
Many-core scheduling of data parallel applications using SMT solvers. In Digital
System Design (DSD), 2014 17th Euromicro Conference on. IEEE, 615–622.

https://hal.archives-ouvertes.fr/hal-01960410
http://dl.acm.org/citation.cfm?id=2616606.2616725
https://hal.inria.fr/hal-01667594
https://doi.org/10.1109/TPDS.2016.2623619
https://doi.org/10.1145/2480741.2480755

	Abstract
	1 Introduction
	2 Context
	2.1 Hard Real-Time Application Model
	2.2 The Kalray MPPA2 Processor
	2.3 Multi-Core Interference Analysis (MIA)
	2.4 NoC Worst-Case Traversal Time Bounds

	3 Handling NoC interferences in WCRT analysis
	3.1 Possible Sources of Interference
	3.2 Motivational Example and Naive Approach
	3.3 Proposed Solution
	3.4 Handling Communications Cyclic Dependencies

	4 Experiments
	4.1 Evaluation of the timing analysis model
	4.2 Evaluation of our guaranteed Time-triggered execution

	5 Related Work
	6 Conclusion and Future Work
	References

