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We introduce a kinetic formulation for scalar conservation laws with nonlocal and nonlinear diffusion terms. We deal with merely L 1 initial data, general self-adjoint pure jump Lévy operators, and locally Lipschitz nonlinearities of porous medium kind possibly strongly degenerate. The cornerstone of the formulation and the uniqueness proof is an adequate explicit representation of the nonlocal dissipation measure. This approach is inspired from the second order theory unlike the cutting technique previously introduced for bounded entropy solutions. The latter technique no longer seems to fit our setting. This is moreover the first time that the more standard and sharper tools of the second order theory are faithfully adapted to fractional conservation laws.

In this paper, we define a kinetic formulation for scalar conservation laws with nonlocal and nonlinear diffusion terms. We consider initial-value problems of the form (1)

∂ t u + ∇ • F (u) + g[A(u)] = 0, (t, x) ∈ R + × R d , u(t = 0, x) = u 0 (x), x ∈ R d ,
where u = u(t, x) is the unknown function, ∇ denotes the gradient operator with respect to x and g is an integro-differential operator properly defined at least on D(R d ) by

(2) g[ϕ](x) := -P.V.

R d (ϕ(x + z) -ϕ(x))µ(z) dz,
where µ is a (Borel) measure and µ(z) dz abusively stands for dµ(z) or µ(dz).

Throughout, the initial data u 0 is assumed merely integrable, and the other data are assumed to satisfy the following conditions:

F ∈ W 1,∞ loc (R, R d ), (3) 
A ∈ W 1,∞ loc (R) and is nondecreasing, (4)

µ ≥ 0 with µ({0}) = 0 and R d (|z| 2 ∧ 1)µ(z) dz < ∞, (5) 
µ is even, i.e., it is invariant by the application z → -z. [START_REF] Alibaud | Occurence and non-appearance of shocks in fractal Burgers equation[END_REF] The principal value in (2) is defined as the limit [START_REF] Bendahmane | Renormalized entropy solutions for quasilinear anisotropic degenerate parabolic equations[END_REF] g[ϕ](x) := -lim r↓0 |z|>r (ϕ(x + z) -ϕ(x)) µ(z) dz, which makes sense because of ( 5)- [START_REF] Alibaud | Occurence and non-appearance of shocks in fractal Burgers equation[END_REF]. For all fixed r > 0, we also have

(8) g[ϕ](x) = - R d ϕ(x + z) -ϕ(x) -z • ∇ϕ(x)1 |z|≤r µ(z) dz.
The operators of the form [START_REF] Bendahmane | Uniqueness of entropy solutions for doubly nonlinear anisotropic degenerate parabolic equations[END_REF] correspond to generators of pure jump Lévy processes. By [START_REF] Alibaud | Occurence and non-appearance of shocks in fractal Burgers equation[END_REF] we restrict to self-adjoint operators. They constitute a general class of nonlocal diffusive operators [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF]. Their use in scalar conservation laws goes back to [START_REF] Rosenau | Extending hydrodynamics via the regularization of the Chapman-Enskog expansion[END_REF] on the Chapman-Enskog expansion involving a convolution operator corresponding to µ < ∞. Scalar conservation laws with singular nonlocal diffusions were considered later for instance in semiconductor growth [START_REF] Woyczyński | Lévy processes in the physical sciences[END_REF] or gas detonations [START_REF] Clavin | Instabilities and nonlinear patterns of overdriven detonations in gases[END_REF]. A typical example of such a diffusion is the fractional Laplacian (-∆) α 2 , α ∈ (0, 2), corresponding to µ(z) = c |z| -d-α ; see [START_REF] Landkof | Foundations of modern potential theory[END_REF]. More recent models led to further study scalar conservation laws with nonlocal and nonlinear diffusions; see for instance [START_REF] Rohde | The nonrelativistic limit in radiation hydrodynamics. I. Weak entropy solutions for a model problem[END_REF] on radiation hydrodynamics. Our setting covers all these problems. As a byproduct, it includes the nonlocal diffusion equation ∂ t u + g[A(u)] = 0 and allows for porous medium nonlinearities A(u) = |u| m-1 u with m ≥ 1; see [START_REF] De Pablo | A fractional porous medium equation[END_REF][START_REF] De Pablo | A general fractional porous medium equation[END_REF][START_REF] Del Teso | On distributional solutions of local and nonlocal problems of porous medium type[END_REF][START_REF] Del Teso | Uniqueness and properties of distributional solutions of nonlocal equations of porous medium type[END_REF] for an extensive account on these PDEs. For other related PDEs with nonlocal and nonlinear diffusions, see [START_REF] Biler | Fractal porous medium equation[END_REF][START_REF] Biler | A nonlinear diffusion of dislocation density and selfsimilar solutions[END_REF][START_REF] Caffarelli | Nonlinear porous medium flow with fractional potential pressure[END_REF] and the references therein.

State-of-the-art. Equation (1) may degenerate and should share properties with the scalar hyperbolic conservation law [START_REF] Bénilan | Renormalized entropy solutions of scalar conservation laws[END_REF] ∂ t u + ∇ • F (u) = 0 and the degenerate parabolic equation ( 10)

∂ t u + ∇ • F (u) -A(u) = 0.
Their main difficulties are the possible creation of singularities and the nonuniqueness of weak solutions. Since the fundamental work of Kruzhkov [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF] who defined entropy solutions for first order equations and established well-posedness in the L ∞ framework, many other well-posedness results were obtained. We refer to Carrillo [START_REF] Carrillo | Entropy Solutions for nonlinear Degenerate Problems[END_REF] for the entropy formulation of elliptic-parabolic-hyperbolic problems involving Leray-Lions type operators. The more delicate anisotropic diffusion case has been treated by Bendahmane and Karlsen in [START_REF] Bendahmane | Renormalized entropy solutions for quasilinear anisotropic degenerate parabolic equations[END_REF] using, in particular, the insight from the paper [START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF] of Chen and Perthame. The setting of [START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF] is different because the kinetic formulation is used to achieve well-posedness; this concept goes back to [START_REF] Brenier | Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1[END_REF][START_REF] Giga | A kinetic construction of global solutions of first-order quasilinear equations[END_REF] and to the classical work [START_REF] Lions | Formulation cinétique des lois de conservation scalaires multidimensionnelles[END_REF][START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related local equations[END_REF] of Lions, Perthame and Tadmor. An extensive account on the kinetic formulation of conservation laws can be found in [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. One of the advantages of the kinetic formulation is that the L 1 space is natural for both existence and uniqueness. Several authors have extended the notion of L ∞ entropy solutions to nonlocal problems of the form [START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF]. We refer to [START_REF] Kawashima | Weak solutions with a shock to a model system of the radiating gas[END_REF][START_REF] Kawashima | Shock waves for a model system of a radiating gas[END_REF][START_REF] Liu | Critical thresholds in a convolution model for nonlinear conservation laws[END_REF][START_REF] Lattanzio | Global well-posedness and relaxation limits of a model for radiating gas[END_REF][START_REF] Serre | L 1 -Stability of Constants in a Model for Radiating Gases[END_REF][START_REF] Rohde | The nonrelativistic limit in radiation hydrodynamics. I. Weak entropy solutions for a model problem[END_REF] and the references therein for the case µ < ∞. The case of singular operators is more delicate and the first results were concerned with conservation laws with memory nonlocal in time. The adequate notion of entropy solutions was introduced in [START_REF] Cockburn | On convergence of entropy solutions to a single conservation law[END_REF] by Cockburn, Gripenberg and Londen; see also [START_REF] Jakubowski | On a nonlinear elliptic/parabolic integro-differential equation with L 1 -data[END_REF]. It was adapted later in [START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF] for fractional diffusions in space with a focus on the equation [START_REF] Biler | Fractal porous medium equation[END_REF] ∂ t u + ∇ • F (u) + (-) α 2 u = 0. The pioneering work on [START_REF] Biler | Fractal porous medium equation[END_REF] goes back to Biler, Funaki and Woyczyński [START_REF] Biler | Fractal Burgers Equations[END_REF]. Now the well-posedness is well-understood: If α ≥ 1, there is a unique smooth solution [START_REF] Biler | Fractal Burgers Equations[END_REF][START_REF] Droniou | Global solution and smoothing effect for a nonlocal regularization of a hyperbolic equation[END_REF][START_REF] Chan | Regularity of solutions for the critical N -dimensional Burgers equation[END_REF][START_REF] Silvestre | On the differentiability of the solution to the Hamilton-Jacobi equation with critical fractional diffusion[END_REF][START_REF] Constantin | Nonlinear maximum principles for dissipative linear nonlocal operators and applications[END_REF]; if α < 1, shocks can occur [START_REF] Alibaud | Occurence and non-appearance of shocks in fractal Burgers equation[END_REF][START_REF] Kiselev | Blow up and regularity for fractal Burgers equation[END_REF] and weak solutions can be nonunique [START_REF] Alibaud | Non-uniqueness of weak solutions for the fractal Burgers equation[END_REF]; for any α ∈ (0, 2), there exists a unique entropy solution corresponding to the classical one when it exists as well [START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF]. The entropy solution theory was finally extended by Karlsen and Ulusoy [START_REF] Karlsen | Stability of entropy solutions for Lévy mixed hyperbolic parabolic equations[END_REF] to pure jump Lévy operators and by Cifani and Jakobsen [START_REF] Cifani | Entropy formulation for degenerate fractional order convectiondiffusion equations[END_REF] to nonlinear diffusions such as in [START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF].

As concerning L 1 data, Wei, Duan and Lv recently introduced a kinetic formulation in [START_REF] Wei | Kinetic solutions for nonlocal scalar conservation laws[END_REF] for L 1 ∩ BV solutions of (11) when α < 1. This situation is very particular since (-) α 2 u ∈ L 1 and this allows to treat the diffusion as a zero order term. In general, we do not know whether A(u) is locally integable for unbounded solutions and non-globally Lipschitz A. We thus have difficulties to define g[A(u)] as a distribution.

To conclude this state-of-the-art, note that the concept of renormalized solutions [START_REF] Bénilan | Renormalized entropy solutions of scalar conservation laws[END_REF][START_REF] Bendahmane | Uniqueness of entropy solutions for doubly nonlinear anisotropic degenerate parabolic equations[END_REF] provides another framework for L 1 data. It was extended to nonlocal problems but essentially for elliptic PDEs as far as we know; see e.g. [START_REF] Alibaud | Renormalized solutions of the fractional Laplace equation[END_REF][START_REF] Klimsiak | Renormalized solutions of semilinear equations involving measure data and operator corresponding to Dirichlet form[END_REF].

Main contribution. The present paper extends the kinetic formulation of Lions, Pethame and Tadmor [START_REF] Lions | Formulation cinétique des lois de conservation scalaires multidimensionnelles[END_REF][START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related local equations[END_REF] to [START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF]; see Definition 8. The main results are the equivalence with entropy solutions in L 1 ∩ L ∞ , the well-posedness in L 1 and the L 1 contraction principle; see Theorems 12 and 13. The cornerstone of the theory is a new explicit representation of the nonlocal dissipation measure in the spirit of Chen and Perthame [START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF]; see Theorem 6.

Technically, the uniqueness proof does not rely on the cutting technique used in every known proofs on L ∞ entropy solutions. This technique was based on first order like arguments which no longer seem to fit our setting. Here we faithfully adapt the more standard and sharper tools of the second order theory and this is our main technical contribution. To give more details, we need to recall some facts on entropy solutions.

Various entropy inequalities. An entropy solution to ( 9) is a function u = u(t, x) such that for all ξ ∈ R,

∂ t |u -ξ| + ∇ x • {sgn(u -ξ)(F (u) -F (ξ))} ≤ 0 in D ((0, ∞) × R d )
, where sgn(•) := | • | is the sign function. The uniqueness can be achieved by using the Kruzhkov device of doubling the variables [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF]. For second order equations, one needs to take into account some form of parabolic dissipation. This can be achieved in two ways. The first way was developed by Carrillo in [START_REF] Carrillo | Entropy Solutions for nonlinear Degenerate Problems[END_REF] and consists in recovering such a dissipation from the entropy inequalities. The second way was introduced in [START_REF] Chen | Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations[END_REF] by Chen and DiBenedetto and consists in explicitly including a proper form of dissipation in the entropy inequalities; see also [START_REF] Karlsen | On the uniqueness and stability of entropy solutions of non-linear degenerate parabolic equations with rough coefficients[END_REF][START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF][START_REF] Bendahmane | Uniqueness of entropy solutions for doubly nonlinear anisotropic degenerate parabolic equations[END_REF][START_REF] Chen | Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients[END_REF]. For [START_REF] Biler | Fractal Burgers Equations[END_REF], this gives

∂ t |u -ξ| + ∇ x • {sgn(u -ξ)(F (u) -F (ξ))} -x |A(u) -A(ξ)| ≤ -2δ(u -ξ)A (u)|∇u| 2 , (12) 
where δ(•) := 1 2 sgn (•) is the Dirac measure at zero. In [START_REF] Cifani | Entropy formulation for degenerate fractional order convectiondiffusion equations[END_REF], Cifani and Jakobsen used the following entropy inequalities for (1):

∂ t |u -ξ| + ∇ x • {sgn(u -ξ)(F (u) -F (ξ))} -P.V. |z|≤r (|A(τ z u) -A(ξ)| -|A(u) -A(ξ)|) µ(z) dz -sgn(u -ξ) |z|>r (A(τ z u) -A(u))µ(z) dz ≤ 0, (13) 
for all ξ ∈ R and all r > 0, where τ z u designs the function (t, x) → u(t, x + z). The idea is to treat the integral in |z| > r as a zero order term and neglect the other integral as r ↓ 0; cf. also [START_REF] Cockburn | On convergence of entropy solutions to a single conservation law[END_REF][START_REF] Jakubowski | On a nonlinear elliptic/parabolic integro-differential equation with L 1 -data[END_REF][START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF];

A natural question is whether it is possible to reformulate [START_REF] Brenier | Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1[END_REF] in the spirit of [START_REF] Biler | A nonlinear diffusion of dislocation density and selfsimilar solutions[END_REF]. A first try was attempted by Karlsen and Ulusoy in [START_REF] Karlsen | Stability of entropy solutions for Lévy mixed hyperbolic parabolic equations[END_REF] but their uniqueness proof reduces to recover [START_REF] Brenier | Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1[END_REF]. Here we reformulate [START_REF] Brenier | Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1[END_REF] with a new proper form of nonlocal dissipation:

∂ t |u -ξ| + ∇ x • {sgn(u -ξ)(F (u) -F (ξ))} + g x [|A(u) -A(ξ)|] ≤ - R d |A(τ z u) -A(ξ)|1 1 conv{u,τzu} (ξ)µ(z) dz =:n , ( 14 
)
where 1 1 conv{u,τzu} (•) is the characteristic function of the real interval of extremities u and τ z u. This will be the cornerstone of the kinetic theory.

A successfull kinetic formulation. Following [START_REF] Lions | Formulation cinétique des lois de conservation scalaires multidimensionnelles[END_REF][START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related local equations[END_REF][START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF][START_REF] Perthame | Kinetic formulation of conservation laws[END_REF], we obtain the kinetic equation in χ(ξ; u) := ∂ ξ (|ξ| -|ξ -u|) /2 by derivating [START_REF] Caffarelli | Nonlinear porous medium flow with fractional potential pressure[END_REF] in ξ:

(15) ∂ t χ(ξ; u) + F (ξ) • ∇ x χ(ξ; u) + A (ξ)g x [χ(ξ; u)] = ∂ ξ (m + n) in D ((0, ∞) × R d+1
) where m ≥ 0 is unknown and n ≥ 0 is defined as in [START_REF] Caffarelli | Nonlinear porous medium flow with fractional potential pressure[END_REF]. The advantage of (15) when u is merely L 1 is that it makes sense even if F (u) and A(u) are not L 1 loc . It seems better to consider the kinetic equation from ( 14), because derivating [START_REF] Brenier | Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1[END_REF] would give the term δ(u -ξ) |z|>r (A(τ z u) -A(ξ))µ(z) dz which does not obviously make sense. Small and large jumps z are thus treated in the same way in our uniqueness proof thanks roughly speaking to the explicit dissipation in [START_REF] Caffarelli | Nonlinear porous medium flow with fractional potential pressure[END_REF] and Lemma 23.

Outline of the paper. Our main results are stated in Section 2 and proved in Sections 3-5. The uniqueness is first proved formally and then rigorously in the spirit of [START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF][START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. It is the core of the paper. The existence could be established without relying on entropy solutions, making the kinetic theory self-sufficient as in [START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF][START_REF] Perthame | Kinetic formulation of conservation laws[END_REF], but here we use a known existence result for entropy solutions to be brief.

Reminders of our notation. The symbol ∇ is used for the gradient in x and ∇ 2 for the Hessian. The symbol δ(ξ) designs the Dirac mass at ξ = 0. In integrals, we use the notation δ(ξ) dξ for dδ(ξ) or δ(dξ). We do the same for the other measures µ(z), m(t, x, ξ), etc. Note that µ in ( 5) is σ-finite and Fubini's theorem applies to define its product with dx, etc., which we denote by µ(z) dx dz, etc. Further notation is introduced in Section 3.

Entropy and kinetic solutions: Definitions and main results

Let us now give the rigorous definition of entropy and kinetic solutions and state our main results. In order to avoid unnecessary technical issues, we only use C 2 entropies u → S(u).

Let us recall the notion of entropy solutions to (1) from [START_REF] Cifani | Entropy formulation for degenerate fractional order convectiondiffusion equations[END_REF], see also [START_REF] Cockburn | On convergence of entropy solutions to a single conservation law[END_REF][START_REF] Jakubowski | On a nonlinear elliptic/parabolic integro-differential equation with L 1 -data[END_REF][START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF][START_REF] Karlsen | Stability of entropy solutions for Lévy mixed hyperbolic parabolic equations[END_REF]. Given any convex C 2 function S : R → R, we consider η : R → R d and β : R → R, satisfying η = S F and β = S A .

Throughout such a triplet (S, η, β) is refered to as an entropy-entropy flux triple.

Definition 1 (Entropy solutions). Let u

0 ∈ L 1 ∩ L ∞ (R d ) and (3)-(6) hold. A function u ∈ L ∞ (R + ; L 1 (R d )) ∩ L ∞ (R + × R d
) is an entropy solution of (1) provided that for all entropy-entropy flux triple (S, η, β), all r > 0, and all nonnegative test

function ϕ ∈ D(R d+1 ), ∞ 0 R d (S(u)∂ t ϕ + η(u) • ∇ϕ) dt dx + ∞ 0 R d |z|>r S (u(t, x)) (A(u(t, x + z)) -A(u(t, x))) ϕ(t, x)µ(z) dt dx dz + P.V. ∞ 0 R d |z|≤r β(u(t, x)) (ϕ(t, x + z) -ϕ(t, x)) µ(z) dt dx dz + R d S(u 0 (x))ϕ(0, x) dx ≥ 0. ( 16 
)
Remark 2.

(1) The original definition of [START_REF] Cifani | Entropy formulation for degenerate fractional order convectiondiffusion equations[END_REF] was actually given with the entropies of Kruzhkov. The definition above is an equivalent reformulation already used for instance in [START_REF] Karlsen | Stability of entropy solutions for Lévy mixed hyperbolic parabolic equations[END_REF]Section 6] or [START_REF] Alibaud | Optimal continuous dependence estimates for nonlinear fractional degenerate parabolic equations[END_REF]Section 7].

(2) The principal value makes sense by ( 5)- [START_REF] Alibaud | Occurence and non-appearance of shocks in fractal Burgers equation[END_REF] (see [START_REF] Bendahmane | Renormalized entropy solutions for quasilinear anisotropic degenerate parabolic equations[END_REF] and ( 8)).

(3) Here it may look that we are integrating a Lebesgue measurable function u with respect to the Borel measure µ. An easy way to avoid such measurability issues consists in only considering Borel representative of u. (4) As usually, classical solutions are entropy solutions and entropy solutions are weak (distributional) solutions; see [START_REF] Cifani | Entropy formulation for degenerate fractional order convectiondiffusion equations[END_REF] for more details.

Here is the well-posedness result from [START_REF] Cifani | Entropy formulation for degenerate fractional order convectiondiffusion equations[END_REF].

Theorem 3 (Well-posedness of entropy solutions). Let u 0 ∈ L 1 ∩ L ∞ (R d ) and let us assume (3)- [START_REF] Alibaud | Occurence and non-appearance of shocks in fractal Burgers equation[END_REF]. Then there exists a unique entropy solution u of (1). This solution belongs to C([0, ∞);

L 1 (R d ))∩L ∞ (R + ×R d ) with u(0, •) = u 0 (•). Moreover, we have ess inf u 0 ≤ u ≤ ess sup u 0 , u(t, •) L 1 (R d ) ≤ u 0 L 1 (R d ) for all t ≥ 0,
and if ũ is the solution of (1) associated to ũ(0,

•) = ũ0 (•) ∈ L 1 ∩ L ∞ (R d ), then u(t, •) -ũ(t, •) L 1 (R d ) ≤ u 0 -ũ0 L 1 (R d ) for all t ≥ 0.
To motivate our kinetic formulation, we need to reformulate the entropy inequalities with a proper form of nonlocal dissipation in the spirit of [START_REF] Chen | Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations[END_REF], see also [START_REF] Karlsen | On the uniqueness and stability of entropy solutions of non-linear degenerate parabolic equations with rough coefficients[END_REF][START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF][START_REF] Bendahmane | Uniqueness of entropy solutions for doubly nonlinear anisotropic degenerate parabolic equations[END_REF][START_REF] Chen | Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients[END_REF][START_REF] Karlsen | Stability of entropy solutions for Lévy mixed hyperbolic parabolic equations[END_REF]. The key point is the following elementary Taylor's identity: For all a, b ∈ R,

(17) S (a)(A(b) -A(a)) = β(b) -β(a) - R S (ξ)|A(b) -A(ξ)|1 1 conv{a,b} (ξ) dξ,
where throughout the paper, conv{a, b} stands for the interval conv{a, b} := (min{a, b}, max{a, b}) , and 1 1 conv{a,b} (•) denotes its characteristic function normalized (everywhere defined) by [START_REF] Chen | Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients[END_REF] 1 1 conv{a,b} (ξ) :=

     1 if min{a, b} < ξ < max{a, b}, 1 2 
if ξ = a or b, 0 otherwise. Remark 4. In [START_REF] Chen | Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients[END_REF], the choice of the value 1 2 at the endpoints of the interval conv{a, b} is dictated by the regularization procedure exploited in the uniqueness proof, since nonlinearities S with singular second derivative are used. In this section, this technical detail can be neglected since S is assumed to have the C 2 regularity.

Remark 5. In the sequel, we will use other characteristic functions defined as usually. To avoid confusion, they will be denoted by 1 (and not 1 1). For instance, if E ⊆ R, then

1 E (ξ) := 1 if ξ ∈ E, 0 if not.
The result below is a simple rewritting of the entropy inequality [START_REF] Chan | Regularity of solutions for the critical N -dimensional Burgers equation[END_REF] based on the identity (17) and a passage to the limit as r ↓ 0.

Theorem 6 (Explicit representation of the nonlocal dissipation). Assume (3)-( 6)

and let u 0 ∈ L 1 ∩ L ∞ (R d ). A function u ∈ L ∞ R + ; L 1 (R d ) ∩ L ∞ (R + × R d ) is
an entropy solution of (1) if and only if for all entropy-entropy flux triple (S, η, β) and all nonnegative ϕ ∈ D(R d+1 ),

∞ 0 R d (S(u)∂ t ϕ + η(u) • ∇ϕ -β(u)g[ϕ]) dt dx + R d S(u 0 (x))ϕ(0, x) dx ≥ ∞ 0 R d+1 S (ξ)n(t, x, ξ)ϕ(t, x) dt dx dξ, (19) 
where the function n : R

+ × R d+1 → [0, ∞] is defined by (20) n(t, x, ξ) := R d |A(u(t, x + z)) -A(ξ)|1 1 conv{u(t,x),u(t,x+z)} (ξ)µ(z) dz.
The proof of Theorem 6 is deferred to Section 4.

Remark 7.

Throughout n is refered to as the nonlocal dissipation measure. This is a nonlocal version of the parabolic dissipation measure 2δ(u-ξ)A (u)|∇u| 2 obtained for the degenerate parabolic equation [START_REF] Biler | Fractal Burgers Equations[END_REF]. Here, we get a measure absolutely continuous with respect to the Lebesgue one, since n ∈ L 1 (R + ×R d+1 ) as a consequence of Inequality [START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF] with S ≡ 1.

We are now ready to define the notion of kinetic solutions. We use the framework of [START_REF] Lions | Formulation cinétique des lois de conservation scalaires multidimensionnelles[END_REF][START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related local equations[END_REF][START_REF] Perthame | Kinetic formulation of conservation laws[END_REF] and especially the insight of [START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF] by including the identification of the dissipation measure in the formulation. We consider the kinetic function χ : R 2 → {-1, 0, 1} defined by [START_REF] Clavin | Instabilities and nonlinear patterns of overdriven detonations in gases[END_REF] χ(ξ; u) :=

     1 if 0 < ξ < u, -1 if u < ξ < 0, 0 otherwise. Note that u ∈ L ∞ (R + ; L 1 (R d )) if and only if χ(ξ; u(t, x)) ∈ L ∞ (R + ; L 1 (R d+1 )).
Note also that one has the following simple representation:

(22) S(u) -S(0) = R S (ξ)χ(ξ; u) dξ.
These observations lead us to the definition below where Inequality [START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF] is roughly speaking rewritten with the χ function. Throughout the paper, M 1 stands for the space of bounded Borel measures and L ∞ 0 stands for the space of a.e. bounded functions vanishing at infinity. Definition 8 (Kinetic solutions). Let u 0 ∈ L 1 (R d ) and ( 3)-( 6

) hold. A func- tion u ∈ L ∞ (R + ; L 1 (R d )) is a kinetic solution of (1) provided that there exists a nonnegative measure m ∈ M 1 loc ([0, ∞) × R d+1 ) such that for almost all ξ ∈ R, (23) 
∞ 0 R d (m + n)(t, x, ξ) dt dx ≤ ν(ξ), for some ν ∈ L ∞ 0 (R ξ ), and for all ϕ ∈ D(R d+2 ), ∞ 0 R d+1 χ(ξ; u) (∂ t ϕ + F (ξ) • ∇ x ϕ -A (ξ)g x [ϕ]) dt dx dξ + R d+1 χ(ξ; u 0 (x))ϕ(0, x, ξ) dx dξ = ∞ 0 R d+1 (m + n)(t, x, ξ)∂ ξ ϕ(t, x, ξ) dt dx dξ, (24) 
where n is the nonnegative function defined in [START_REF] Cifani | Entropy formulation for degenerate fractional order convectiondiffusion equations[END_REF].

Note that [START_REF] Constantin | Nonlinear maximum principles for dissipative linear nonlocal operators and applications[END_REF] has to be understood in the distribution sense, that is to say

(25) ∞ 0 R d+1 (m + n)(t, x, ξ)ϕ(ξ) dt dx dξ ≤ R ν(ξ)ϕ(ξ) dξ,
for any nonnegative ϕ ∈ D(R ξ ), where hereafter, we sometimes write R ξ to highlight dependence of functions and measures on the kinetic variable ξ.

Remark 9. The measure m is referred to as the entropy defect measure. It is a priori unknown but a posteriori uniquenely determined (see Theorem 13); in other words, the couple (u, m) is the unknown of the kinetic formulation [START_REF] De Pablo | A fractional porous medium equation[END_REF].

The next remark enumerates standard properties of kinetic solutions which remain valid in the nonlocal setting. Most of them will not be needed, so we refer to the arguments of [START_REF] Lions | Formulation cinétique des lois de conservation scalaires multidimensionnelles[END_REF][START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related local equations[END_REF][START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF][START_REF] Perthame | Kinetic formulation of conservation laws[END_REF] for proofs.

Remark 10.

(

) If u 0 ∈ L 1 ∩ L ∞ (R d ), supp(m + n) ⊆ {ess inf u 0 ≤ ξ ≤ ess sup u 0 } . (2) If u 0 ∈ L 1 ∩ L 2 (R d ), ∞ 0 R d+1 (m + n)(t, x, ξ) dt dx dξ ≤ 1 2 u 0 2 L 2 (R d ) . 1 
(

) If u 0 is merely integrable, then for almost all ξ ∈ R, ∞ 0 R d (m + n)(t, x, ξ) dt dx ≤ ν(ξ), 3 
where ν(ξ

) := (u 0 -ξ) + 1 ξ>0 L 1 (R d ) + (u 0 -ξ) -1 ξ<0 L 1 (R d ) ∈ L ∞ 0 (R ξ ). (4) If S A (u 0 ) ∈ L 1 (R d ) where S A (ξ) := ξ 0 (A(ζ) -A(0)) dζ, ∞ 0 R 2d (A(u(t, x + z)) -A(u(t, x))) 2 µ(z) dt dx dz ≤ S A (u 0 ) L 1 (R d ) .
This should be compared to the usual H 1 estimate for degenerate parabolic equations [START_REF] Carrillo | Entropy Solutions for nonlinear Degenerate Problems[END_REF], since for g = (-) α 2 the above estimate reads

|A(u)| L 2 (R + ;H α 2 (R d )) ≤ S A (u 0 ) L 1 (R d ) .
Here is another standard property of convection-diffusion conservation laws that remains valid for the nonlocal case, and which we often use throughout. It says that we can reformulate Definition 8 by expressing the initial data in the classical sense.

Proposition 11. Assume that (3)-( 6) hold and that

u 0 ∈ L 1 (R d ). Then u ∈ L ∞ (R + ; L 1 (R d ))
is a kinetic solution of (1) if and only if there exsits a nonnegative measure m ∈ M 1 loc ([0, ∞) × R d+1 ) such that (23) holds together with the following conditions:

(26)        ∂ t χ(ξ; u) + F (ξ) • ∇ x χ(ξ; u) + A (ξ)g x [χ(ξ; u)] = ∂ ξ (m + n), lim t↓0 u(t, •) -u 0 (•) L 1 (R d ) = 0, and lim t↓0 t 0 R d R -R (m + n)(s, x, ξ) ds dx dξ = 0, ∀R > 0,
where the equation holds in D ((0, ∞) × R d × R ξ ) and the limits are taken in the essential sense.

We can now state the two main results of this paper.

Theorem 12 (Equivalence between entropy and kinetic solutions). Let

(3)-(6) hold, u 0 ∈ L 1 ∩ L ∞ (R d ) and u ∈ L ∞ (R + ; L 1 (R d )) ∩ L ∞ (R + × R d ).
Then u is an entropy solution of (1) if and only if it is a kinetic solution of (1).

Theorem 13 (Well-posedness in the pure L 1 setting). Let u 0 ∈ L 1 (R d ) and let us assume (3)- [START_REF] Alibaud | Occurence and non-appearance of shocks in fractal Burgers equation[END_REF]. Then there exists a unique kinetic solution u of (1) and a unique measure m satisfying Definition 8. This solution belongs to

C([0, ∞); L 1 (R d )) with u(0, •) = u 0 (•). Moreover, u(t, •) L 1 (R d ) ≤ u 0 L 1 (R d ) for all t ≥ 0 and if ũ is the solution of (1) associated to ũ(0, •) = ũ0 (•) ∈ L 1 (R d ), then u(t, •) -ũ(t, •) L 1 (R d ) ≤ u 0 -ũ0 L 1 (R d ) for all t ≥ 0.
Remark 14. More generally, we have

(u(t, •) -ũ(t, •)) ± L 1 (R d ) ≤ (u 0 -ũ0 ) ± L 1 (R d ) , so that u 0 ≤ ũ0 entails u ≤ ũ.
The rest of this paper is devoted to the proofs of these results. The proof of Proposition 11 is given in Appendix B, for the sake of completeness.

Preliminary lemmas

In this section, we give some basic results that will be useful in the sequel.

3.1. Main properties of the kinetic function χ. Let us begin with some properties concerning the function defined in [START_REF] Clavin | Instabilities and nonlinear patterns of overdriven detonations in gases[END_REF]. We omit the proofs which can be found in [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF], for instance.

Let us first make precise the definition of the sign function used throughout:

sgn(ξ) :=      1 if ξ > 0, -1 if ξ < 0, 0 if ξ = 0.
Lemma 15. (i) For any reals u and ξ,

sgn(ξ)χ(ξ; u) = |χ(ξ; u)| = (χ(ξ; u)) 2 .
(ii) For any reals u and ũ,

|u -v| = R |χ(ξ; u) -χ(ξ; ũ)| dξ = R (χ(ξ; u) -χ(ξ; ũ)) 2 dξ. Remark 16. The map u ∈ L ∞ (R + ; L 1 (R d )) → χ(ξ; u) ∈ L ∞ (R + ; L 1 (R d+1
)) is thus an isometry.

Main properties of the nonlocal diffusion operator g. Let us continue

with standard results on the operator defined in [START_REF] Bendahmane | Renormalized entropy solutions for quasilinear anisotropic degenerate parabolic equations[END_REF]. The proofs are gathered in Appendix A for the sake of completeness; see also [START_REF] Landkof | Foundations of modern potential theory[END_REF][START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF][START_REF] Cifani | Entropy formulation for degenerate fractional order convectiondiffusion equations[END_REF][START_REF] Alibaud | Continuous dependence estimates for nonlinear fractional convection-diffusion equations[END_REF][START_REF] Alibaud | Optimal continuous dependence estimates for nonlinear fractional degenerate parabolic equations[END_REF].

Let us first precise the sense of g for sufficiently regular functions.

Lemma 17. Under (5)-( 6), g is still well defined by (7

) from W 2,1 (R d ) (resp. C 2 b (R d )) into L 1 (R d ) (resp. C b (R d )). It is moreover linear, bounded, and (27) 
R d ϕg[f ] dx = R d f g[ϕ] dx ∀f ∈ W 2,1 (R d ), ∀ϕ ∈ C 2 b (R d ). Remark 18. If f is merely integrable, we can thus define g[f ] in the distribution sense by g[f ], ϕ D ,D := f g[ϕ].
Let us continue with another useful formula; it is interpreted as an integration by parts formula involving the square root of g.

Lemma 19 (Bilinear form). Assume (5)-(6), f ∈ W 1,1 (R d ) and f ∈ W 1,∞ (R d ). Then R d f g[f ] dx = 1 2 R 2d (f (x) -f (y))( f (x) -f (y))µ(x -y) dx dy.
Remark 20.

(1) The Borel measure µ(x -y) dx dy is defined as the pushforward measure µ(x -y) dx dy := T # (µ(z) dx dz)

associated to T : (x, z) ∈ R 2d → (x, x + z) ∈ R 2d .
We can thus change variables by ( 28)

R 2d f (x, y)µ(x -y) dx dy = R 2d f (x, x + z)µ(z) dx dz for any Borel measurable f : R 2d → [0, ∞].
(2) Note that µ(x -y) dx dy is σ-finite because µ(z) dz is σ-finite. The Fubini's theorem then applies to define µ(x -y) dx dy dξ := (µ(x -y) dx dy) ⊗ dξ, etc.

Here is a version of the previous result with time-dependent functions f , as we will have to deal with such functions in the sequel.

Lemma 21. Assume (5)-( 6) and let f = f (t, x, ξ) and f = f (t, x, ξ) be such that

f, ∇ x f, ∇ 2 x f ∈ C([0, ∞); L 1 (R d+1 )) and f , ∇ x f ∈ L ∞ (R + × R d+1 ). Then g x [f ] ∈ C([0, ∞); L 1 (R d+1 )) and for almost any t ≥ 0, (29) 
R d+1 f g x [f ]dx dξ = 1 2 R 2d+1
(f (t, x, ξ) -f (t, y, ξ))( f (t, x, ξ) -f (t, y, ξ))µ(x -y) dx dy dξ. 

I = R S (ξ)|A(b) -A(ξ)|1 1 conv{a,b} (ξ) dξ.
This relies upon the following version of the Taylor's formula:

β(b) -β(a) = β (a)(b -a) + b a β (ξ)(b -ξ) dξ = S (a)A (a)(b -a) + b a (S (ξ)A (ξ) + S (ξ)A (ξ)) (b -ξ) dξ.
We also have

A (a)(b -a) = A(b) -A(a) - b a A (ξ)(b -ξ) dξ; hence, I = b a S (ξ)A (ξ)(b -ξ) dξ + b a (S (ξ) -S (a))A (ξ)(b -ξ) dξ =: I 1 + I 2 .
Let us use again Taylor to rewrite the first term:

I 1 = b a S (ξ)   A(b) -A(ξ) - b ξ A (ζ)(b -ζ) dζ    dξ = b a S (ξ)(A(b) -A(ξ)) dξ - b a b ξ S (ξ)A (ζ)(b -ζ) dζ dξ =: J 1 -J 2 .
By the monotonicity of A(•), we recognize that J 1 is the right-hand side of [START_REF] Jakubowski | On a nonlinear elliptic/parabolic integro-differential equation with L 1 -data[END_REF]. It thus only remains to prove that J 2 = I 2 . But, we can rewrite I 2 as

I 2 = b a ξ a S (ζ)A (ξ)(b -ξ) dζ dξ
and the fact that I 2 = J 2 follows by the Fubini theorem.

The result below will be crucial in the proof of the uniqueness. Proof. Note first that χ(ξ; a) -χ(ξ; b) = sgn(a -b)1 1 conv{a,b} (ξ) if ξ is not an extremity of conv{a, b}, so that

(31) F (a, b, c, d) = R A (ξ)sgn(a -b)sgn(c -d)1 conv{a,b}∩conv{c,d} (ξ) dξ.
Let us now argue in several cases according as the way a, b, c and d are ordered. Note first that F could be nonpositive, whereas G is always nonnegative. We thus do not need to consider the cases where F ≤ 0, which, by [START_REF] Karlsen | On the uniqueness and stability of entropy solutions of non-linear degenerate parabolic equations with rough coefficients[END_REF], reduces our study to ,d,a,b) and the analogous symmetry for G. We can thus also assume without loss of generality that a ≤ c in every cases, that is to say:

• either a ≤ b and c ≤ d, • or b ≤ a and d ≤ c. Note next the symmetry F (a, b, c, d) = F (c
• either a ≤ b, c ≤ d and a ≤ c,

• or b ≤ a, d ≤ c and a ≤ c. Moreover, we can assume that conv{a, b} ∩ conv{c, d} is neither empty nor reduced to a singleton, because F would equal zero by [START_REF] Karlsen | On the uniqueness and stability of entropy solutions of non-linear degenerate parabolic equations with rough coefficients[END_REF] In both the first and the second cases, we have

F (a, b, c, d) = R 1 (a,b)∩(c,d)=(c,min{b,d}) (ξ)A (ξ) dξ = A(min{b, d}) -A(c).
As far as G is concerned, we have

G(a, b, c, d) = A(b) -A(c) in the first case, 1 2 (A(b) -A(c = a)) + 1 2 (A(d) -A(a = c)
) in the second one, taking into account the monotonicity of A(•) and the specific definition of 1 1 in [START_REF] Chen | Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients[END_REF]. In both cases, the monotonicity of A(•) implies that F (a, b, c, d) ≤ G(a, b, c, d). We argue similarly for the third and fourth cases, which completes the proof.

For the accurate proof of the uniqueness, we will need to consider truncations of the preceding quadruplet, namely T R (a), T R (b), T R (c) and T R (d), where [START_REF] Karlsen | Stability of entropy solutions for Lévy mixed hyperbolic parabolic equations[END_REF] T R (u

) := u if -R ≤ u ≤ R, ±R if ± u > R,
for any given R > 0. Here is the precise result that we will use.

Lemma 24. Assume (4) and R > 0. For any reals a, b and ξ, we have

(33) 1 (-R,R) (ξ) (χ(ξ; a) -χ(ξ; b)) = χ(ξ; T R (a)) -χ(ξ; T R (b))
and

(34) |A(b) -A(T R (ξ))|1 1 conv{a,b} (T R (ξ)) ≥ |A(T R (b)) -A(T R (ξ))|1 1 conv{T R (a),T R (b)} (T R (ξ))
(with the representation (18)).

Proof. The identity [START_REF] Kawashima | Weak solutions with a shock to a model system of the radiating gas[END_REF] is immediate since

1 (-R,R) (ξ)χ(ξ; u) = χ(ξ; T R (u))
for any reals u and ξ. Let us now prove [START_REF] Kawashima | Shock waves for a model system of a radiating gas[END_REF]. To do so, note that for any reals b and ξ,

(35) |A(b) -A(T R (ξ))| ≥ |A(T R (b)) -A(T R (ξ))|;
indeed, the monotonicity of A(•) implies that

|A(T R (b)) -A(T R (ξ))| =      A(R) -A(T R (ξ)) ≤ A(b) -A(T R (ξ)) if b > R, |A(b) -A(T R (ξ))| if -R ≤ b ≤ R, A(T R (ξ)) -A(-R) ≤ A(T R (ξ)) -A(b) if b < -R,
so that (35) always holds. With [START_REF] Kiselev | Blow up and regularity for fractal Burgers equation[END_REF] in hands, the proof of ( 34) is obvious in the case where conv{T R (a), T R (b)} ⊆ conv{a, b}; indeed, we then have

1 1 conv{a,b} (T R (ξ)) ≥ 1 1 conv{T R (a),T R (b)} (T R (ξ))
(even if T R (ξ) = a or b, in which case both these functions take the value 1 2 ). When that inclusion fails, a and b are necessarily either both greater than R or both lower than -R. The right-hand side of (34) thus equals zero everywhere, which completes the proof.

Equivalence between entropy and kinetic solutions

This section is devoted to the proof of Theorem 12. Let us first justify the reformulation of the notion of entropy solutions in terms of the nonlocal dissipation measure [START_REF] Caffarelli | Nonlinear porous medium flow with fractional potential pressure[END_REF].

Proof of Theorem 6. Let us assume that u ∈ L ∞ (R + ; L 1 (R d )) ∩ L ∞ (R + ∩ R d
) is an entropy solution in the sense of Definition 1, thus satisfying the inequalities [START_REF] Chan | Regularity of solutions for the critical N -dimensional Burgers equation[END_REF]. Let I r denote the nonlocal term in |z| > r of [START_REF] Chan | Regularity of solutions for the critical N -dimensional Burgers equation[END_REF]. Applying the identity (17), we have

I r = ∞ 0 R d |z|>r (β(u(t, x + z)) -β(u(t, x)))ϕ(t, x)µ(z) dt dx dz - ∞ 0 R d |z|>r R S (ξ)|A(u(t, x + z)) -A(ξ)|1 1 conv{u(t,x),u(t,x+z)} (ξ) • ϕ(t, x)µ(z) dt dx dz dξ =: J r -K r .
We can integrate by parts, as in the proof of Lemma 17 in Appendix A, to rewrite

(36) J r = ∞ 0 R d |z|>r β(u(t, x)))(ϕ(t, x + z) -ϕ(t, x))µ(z) dt dx dz.
We then obtain (19) by passing to the limit in ( 16) as r ↓ 0, thanks to the monotone convergence theorem giving us that

lim r↓0 K r = ∞ 0 R d R S (ξ)ϕ(t, x) • R d |A(u(t, x + z)) -A(ξ)|1 1 conv{u(t,x),u(t,x+z)} (ξ)µ(z) dz =n(t,x,ξ)
dt dx dξ.

Conversely, if we now assume that [START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF] holds, then we cut all the nonlocal terms according as |z| > r or not. Putting all the |z| > r parts at the left-hand side, we get that first order + initial terms

+ ∞ 0 R d |z|>r (β(u(t, x + z)) -β(u(t, x)))ϕ(t, x)µ(z) dt dx dz - ∞ 0 R d |z|>r R S (ξ)|A(u(t, x + z)) -A(ξ)|1 1 conv{u(t,x),u(t,x+z)} (ξ)
• ϕ(t, x)µ(z) dt dx dz dξ

+ P.V. ∞ 0 R d |z|≤r β(u(t, x)))(ϕ(t, x + z) -ϕ(t, x))µ(z) dt dx dz ≥ ∞ 0 R d |z|≤r R S (ξ)|A(u(t, x + z)) -A(ξ)|1 1 conv{u(t,x),u(t,x+z)} (ξ) • ϕ(t, x)µ(z) dt dx dz dξ,
where we have done the reverse integration by parts than in [START_REF] Klimsiak | Renormalized solutions of semilinear equations involving measure data and operator corresponding to Dirichlet form[END_REF] to rewrite J r in its initial form. The left-hand side is thus the same than in [START_REF] Chan | Regularity of solutions for the critical N -dimensional Burgers equation[END_REF], again by [START_REF] Chen | Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations[END_REF].

Since moreover the right-hand side is nonnegative (the test ϕ being nonnegative in our considerations), we already have ( 16) and the proof is complete.

With Theorem 6 at hand, we can establish the equivalence between entropy and kinetic solutions by following standard arguments from [START_REF] Lions | Formulation cinétique des lois de conservation scalaires multidimensionnelles[END_REF][START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related local equations[END_REF][START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF][START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. Let us give details for completeness. We will use Proposition 11, whose proof is postponed to Appendix B. We will also use the two following lemmas.

Lemma 25. Let u 0 ∈ L 1 (R d ), assume that (3)-( 6) hold and suppose that the [START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF]. The associated measures then satisfy supp(m + n) ⊆ {ess inf u ≤ ξ ≤ ess sup u}.

function u ∈ L ∞ (R; L 1 (R d )) ∩ L ∞ (R + × R d ) is a kinetic solution of

Proof. If ξ /

∈ [ess inf u, ess sup u], χ(ξ; u) = 0 by [START_REF] Clavin | Instabilities and nonlinear patterns of overdriven detonations in gases[END_REF] and thus

∂ ξ (m + n) = 0 in D ((0, ∞) × R d × (R ξ \ [ess inf u, ess sup u]
)) by the first line of [START_REF] Del Teso | On distributional solutions of local and nonlocal problems of porous medium type[END_REF]. The result follows from [START_REF] Constantin | Nonlinear maximum principles for dissipative linear nonlocal operators and applications[END_REF] and the last line of [START_REF] Del Teso | On distributional solutions of local and nonlocal problems of porous medium type[END_REF].

Lemma 26. Let (3)-( 6) hold and consider an entropy solution u of (1) with initial data

u 0 ∈ L 1 ∩ L ∞ (R d ). Then the associated nonlocal dissipation measure n belongs to the space L 1 (R + × R d+1 ).
Note that this is the rigorous justification of Remark 7.

Proof. Consider S(u) = u 2
2 which is integrable in x. Take associated nonlinearities vanishing at zero so that η(u) and β(u) are also integrable in x. Consider the test function ϕ k (t)φ(x/M ) in [START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF] 

with 0 ≤ ϕ k ∈ D([0, ∞)) pointwise converging to 1 as k → ∞, such that ϕ k ≤ 0, and with 0 ≤ φ ∈ D(R d ) such that φ(0) = 1. The limit M → ∞ implies that R d S(u 0 (x))ϕ k (0) dx ≥ ∞ 0 R d+1 S (ξ)n(t, x, ξ)ϕ k (t) dt dx dξ,
thanks to the fact that S(u)ϕ k = u 2 ϕ k /2 ≤ 0, to Lemma 35 in appendix and to Fatou's lemma. Since S ≡ 1, the limit k → ∞ completes the proof.

We will finally need a classical density result recalled below.

Lemma 27. Let ϕ ∈ D((0, ∞)×R d+1 ) be nonnegative. Then it can be approximated (for the topology of D) by functions of the form

(t, x, ξ) → N i=1 ϕ i (t, x)φ i (ξ),
for some integer N and nonnegative

ϕ i ∈ D((0, ∞) × R d ) and φ i ∈ D(R ξ ).
The property can be obtained by mollifying ϕ = ϕ(t, x, ξ) with an approximate unit of the form ρ (t, x)θ (ξ) and discretizing the convolutions.

Proof of Theorem 12. Assume first that u ∈ L ∞ (R + ; L 1 (R d )) ∩ L ∞ (R + × R d
) is a kinetic solution and let us show that it is an entropy solution. Recall that χ(ξ; u) = 0 if ξ / ∈ [ess inf u, ess sup u] and note that χ(ξ; u 0 ) = 0 as well by the middle line of [START_REF] Del Teso | On distributional solutions of local and nonlocal problems of porous medium type[END_REF]. By Lemma 25, we can then choose test functions in [START_REF] De Pablo | A fractional porous medium equation[END_REF] of the form (t, x, ξ) → ϕ(t, x)S (ξ), with ϕ ∈ D(R t × R d ) and S ∈ C ∞ (R ξ ) convex, up to modifying S for large |ξ|. Using in addition the identity [START_REF] Cockburn | On convergence of entropy solutions to a single conservation law[END_REF], we deduce that

∞ 0 R d (S(u)∂ t ϕ + η(u) • ∇ϕ -β(u)g[ϕ]) dt dx - ∞ 0 R d (S(0)∂ t ϕ + η(0) • ∇ϕ -β(0)g[ϕ]) dt dx + R d+1 S(u 0 (x))ϕ(0, x) dx - R d S(0)ϕ(0, x) dx = ∞ 0 R d+1 S (ξ)(m + n)(t, x, ξ)ϕ(t, x) dt dx dξ.
Noticing that the sum of the second and fourth integrals of the left-hand side is zero, we obtain [START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF] for smooth entropies. But, it is clear that S can be chosen merely C 2 by an approximation procedure.

Conversely, assume that u is an entropy solution and let us show that it is a kinetic one. We use the reformulation (26) of Proposition 11. Since we have u ∈ C([0, ∞); L 1 (R d )) with u(0, •) = u 0 (•) by Theorem 3, we already know that

lim t↓0 u(t, •) -u 0 (•) L 1 (R d ) = 0.
Let us now construct m as the distribution [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF] 

m(t, x, ξ) := ξ -∞ (∂ t χ(ζ; u) + F (ζ) • ∇ x χ(ζ; u) + A (ζ)g x [χ(ζ; u)]) dζ -n(t, x, ξ).
The integral is well defined in D ((0, ∞) × R d+1 ) since χ(ξ; u) = 0 if ξ < ess inf u. The distribution m is thus well defined since n ∈ L 1 (R + × R d+1 ) by Lemma 26. It satisfies the equation in ( 26) by construction and it only remains to show the other conditions of Proposition 11. Let us first show that [START_REF] Landkof | Foundations of modern potential theory[END_REF] supp(m) ⊆ {(t, x, ξ) : ess inf u ≤ ξ ≤ ess sup u}.

Firstly, it is immediate from (20) that supp(n) ⊆ {(t, x, ξ) : ess inf u ≤ ξ ≤ ess sup u}.

Secondly, [START_REF] Clavin | Instabilities and nonlinear patterns of overdriven detonations in gases[END_REF] implies that for any locally Lipschitz S(•),

ξ -∞ S (ζ)χ(ζ; u) dζ = S(u) -S(0) if ξ > ess sup u, 0 if ξ < ess inf u.
Taking these facts into account in [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF] with S as the identity, F and A, we find that

m =      ∂ t u + ∇ x F (u) + g x [A(u)] -(∇ x F (0) + g x [A(0)]) =0 if ξ > ess sup u, 0 if ξ < ess inf u.
But, the remaining term of the right-hand side equals zero thanks to the weak formulation of (1), see [START_REF] Cifani | Entropy formulation for degenerate fractional order convectiondiffusion equations[END_REF]. This completes the proof of [START_REF] Landkof | Foundations of modern potential theory[END_REF].

The test functions of Equation ( 37) can thus also be taken of the form (t, x, ξ) → ϕ(t, x)S (ξ), for any 0 ≤ ϕ ∈ D((0, ∞) × R d ) and S ∈ C ∞ (R ξ ) convex, up to modifying S for large |ξ|. This gives us that

m, ϕS D ,D = ∞ 0 R d+1 χ(ξ; u) (S (ξ)∂ t ϕ + (S F )(ξ) • ∇ϕ -(S A )(ξ)g[ϕ]) dt dx dξ - ∞ 0 R d+1 S (ξ)n(t, x, ξ)ϕ(t, x) dt dx dξ, (39) 
where we recognize the terms in [START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF] again by [START_REF] Cockburn | On convergence of entropy solutions to a single conservation law[END_REF]. Hence m, ϕS D ,D ≥ 0, for such ϕ = ϕ(t, x) and S = S(ξ), which implies that m is a nonnegative Radon measure on (0, ∞) × R d+1 by the density claim of Lemma 27. To conclude, we need the result below.

Lemma 28. The measure m thus constructed on (0, ∞)×R d+1 satisfies, for almost every ξ ∈ R,

∞ 0 R d (m + n)(t, x, ξ) dt dx ≤ ν(ξ)
(in the sense of (25)) where

ν(ξ) = (u 0 -ξ) + 1 ξ>0 L 1 (R d ) + (u 0 -ξ) -1 ξ<0 L 1 (R d ) is such that ν ∈ L ∞ 0 (R ξ ).
Let us admit it for a while and complete the proof of Theorem 12. Extending m on [0, ∞) × R d+1 by m({t = 0}) := 0, we obtain a Radon measure such that

∞ 0 R d R -R (m + n) dt dx dξ < ∞, for any R > 0.
The last condition of ( 26) follows from the dominated convergence theorem. The proof is complete.

Let us now prove the preceding lemma.

Proof of Lemma 28. Recall that before admitting Lemma 28, u was an entropy solution of (1) and 0 ≤ m ∈ M 1 loc ((0, ∞) × R d+1 ) was such that ( 38) and ( 39) hold. For any

t 0 > 0, 0 ≤ ϕ ∈ D((0, ∞) × R d ) and S ∈ C ∞ (R ξ ) convex, we thus have ∞ t0 R d+1 χ(ξ; u) (F (ξ) • ∇ x ϕ -A (ξ)g x [ϕ]) dt dx dξ + ∞ t0 R d S(u)∂ t ϕ dt dx + R d+1 S(u(t 0 , x))ϕ(t 0 , x) dx = ∞ t0 R d+1 S (ξ)(m + n)(t, x, ξ)ϕ(t, x) dt dx dξ.
As previously, we choose ϕ(t, x) := ϕ k (t)φ(x/M ) with ϕ k nonincreasing on [t 0 , ∞), pointwise converging to 1 as k → ∞, 0 ≤ φ ∈ D(R d ), and φ(0) = 1. Then for any S ≥ 0 with S(0) = 0, the successive limits M, k → ∞ imply that

R d S(u(t 0 , x)) dx ≥ ∞ t0 R d+1 S (ξ)(m + n)(t, x, ξ) dt dx dξ,
thanks again to the fact that S(u)ϕ k ≤ 0, Lemma 35, and Fatou's lemma. Now considering any arbitrarily given 0 ≤ ψ ∈ D(R), we can take

S(ξ) := R (ξ -ζ) + 1 ζ>0 + (ξ -ζ) -1 ζ<0 ψ(ζ) dζ
because it is convex, zero at zero, and nonnegative. Hence

∞ t0 R d+1 ψ(ξ)(m + n)(t, x, ξ) dt dx dξ ≤ R d+1 (u(t 0 , x) -ζ) + 1 ζ>0 + (u(t 0 , x) -ζ) -1 ζ<0 ψ(ζ) dx dζ
which is the desired result for the initial time t 0 . We get the result as t 0 ↓ 0 by recalling that u(t 0 , •) → u 0 (•) in L 1 (R d ), see Theorem 3.

Uniqueness and L 1 contraction for kinetic solutions

This section and the next one are devoted to the proof of Theorem 13. Here we focus on the L 1 contraction principle that we restate below for the reader's convenience.

Theorem 29. Assume (3)-( 6) and let u and ũ be two kinetic solutions of (1) with respective initial data u 0 and ũ0 belonging to L 1 (R d ). Then,

(40) u(t, •) -ũ(t, •) L 1 (R d ) ≤ u 0 -ũ0 L 1 (R d ) for a.e. t ≥ 0.
As usually in the kinetic setting, we first give a formal proof which will be made rigorous later by a regularization procedure.

We will follow the guidelines of [START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF] without needing to regularize in ξ similarly to what is done in [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. This simplification will be also possible in our setting roughly speaking because the nonlocal dissipation measure is absolutely continuous.

5.1.

A formal proof of uniqueness. During this formal proof of (40), u(t, x) is often shortly denoted by u(x); this means that we abusively omit the time variable if there is no confusion. Moreover, χ(ξ; u(t, x)) is shortened to χ(ξ; u) (as we did many times already). Let now m, n, m and ñ be the measures associated to u and ũ, respectively. Let us recall that n and ñ are given by [START_REF] Cifani | Entropy formulation for degenerate fractional order convectiondiffusion equations[END_REF], that is to say:

n(t, x, ξ) = R d |A(u(x + z)) -A(ξ)|1 1 conv{u(x),u(x+z)} (ξ)µ(z) dz, ñ(t, x, ξ) = R d |A(ũ(x + z)) -A(ξ)|1 1 conv{ũ(x),ũ(x+z)} (ξ)µ(z) dz. ( 41 
)
As in [START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF], we introduce the following microscopic contraction functional [START_REF] Liu | Critical thresholds in a convolution model for nonlinear conservation laws[END_REF] M (t, x, ξ) := (χ(ξ; u(t, x)) -χ(ξ; ũ(t, x)))

2 and consider its derivative with respect to time:

Ṁ(t) := d dt R d+1 M (t, x, ξ) dx dξ.
Having in mind the properties given in Lemma 15, we see that on the one hand,

Ṁ(t) = R d+1 ∂ t {|χ(ξ; u)| + |χ(ξ; ũ)| -2 [χ(ξ; u)χ(ξ; ũ)]} dx dξ = R d+1 sgn(ξ) (∂ t χ(ξ; u) + ∂ t χ(ξ; ũ)) dx dξ -2 R d+1 (χ(ξ; u)∂ t χ(ξ; ũ) + χ(ξ; ũ)∂ t χ(ξ; u)) dx dξ
and on the other hand,

Ṁ(t) = d dt u(t, •) -ũ(t, •) L 1 (R d ) .
So we reach to [START_REF] Lions | Formulation cinétique des lois de conservation scalaires multidimensionnelles[END_REF] if we get the property Ṁ(t) ≤ 0.

To do so, let us consider the equation of χ(ξ; u) written in [START_REF] Del Teso | On distributional solutions of local and nonlocal problems of porous medium type[END_REF]. Multiplying it by sgn(ξ), we get ( 43)

∂ t |χ(ξ; u)| + F (ξ).∇ x |χ(ξ; u)| + A (ξ)g x [|χ(ξ; u)|] = sgn(ξ)∂ ξ (m + n).
In the same way, we have

(44) ∂ t |χ(ξ; ũ)| + F (ξ).∇ x |χ(ξ; ũ)| + A (ξ)g x [|χ(ξ; ũ)|] = sgn(ξ)∂ ξ ( m + ñ).
Secondly, we multiply the equation of χ(ξ; u) by χ(ξ; ũ), and do similar computations for ũ, to get

(45) χ(ξ; ũ)∂ t χ(ξ; u) + F (ξ).χ(ξ; ũ)∇ x χ(ξ; u) + A (ξ)χ(ξ; ũ)g x [χ(ξ; u)] = χ(ξ; ũ)∂ ξ (m + n).
and ( 46)

χ(ξ; u)∂ t χ(ξ; ũ) + F (ξ).χ(ξ; u)∇ x χ(ξ; ũ) + A (ξ)χ(ξ; u)g x [χ(ξ; ũ)] = χ(ξ; u)∂ ξ ( m + ñ).
Now we add the equalities ( 43) and ( 44) from which we subtract twice the sum of those given in ( 45) and [START_REF] Rosenau | Extending hydrodynamics via the regularization of the Chapman-Enskog expansion[END_REF]. Then, after an integration over R d+1 , we get

Ṁ(t) = R d+1 (sgn(ξ) -2χ(ξ; ũ))∂ ξ (m + n) dx dξ + R d+1 (sgn(ξ) -2χ(ξ; u))∂ ξ ( m + ñ) dx dξ +2 R d+1 A (ξ) {(χ(ξ; ũ)g x [χ(ξ; u)] + χ(ξ; u)g x [χ(ξ; ũ)]} dx dξ =: I 1 (t) + I 2 (t) + I 3 (t). ( 47 
)
Notice that we have omitted several terms because -at least formally -they are equal to zero, namely

R d+1 F (ξ) • ∇ x |χ(ξ; u)| dx dξ = 0 = R d+1 F (ξ) • ∇ x |χ(ξ; ũ)| dx dξ,
as well as

R d+1 F (ξ) • {χ(ξ; ũ)∇ x χ(ξ; u) + χ(ξ; u)∇ x χ(ξ; ũ)} dx dξ = R d+1 F (ξ) • ∇ x (χ(ξ; u)χ(ξ; ũ)) dx dξ = 0 and R d+1 A (ξ)g x [|χ(ξ; u)|] dx dξ = 0 = R d+1 A (ξ)g x [|χ(ξ; ũ)|] dx dξ.
All these equalities stem from the use of the Fubini theorem and from the fact that, in a sense, the functions χ(ξ, u) and χ(ξ, ũ) vanish as |ξ| → ∞ due to their integrability. To get the last equality, we have also (formally) used Lemma 19. Now it remains to show that I 1 (t) + I 2 (t) + I 3 (t) ≤ 0 in [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF]. For the first term, we use that

∂ ξ sgn(ξ) = 2δ(ξ) and ∂ ξ χ(ξ; ũ) = δ(ξ) -δ(ξ -ũ).
We use similar (formal) calculations for the second term and infer that

I 1 (t) + I 2 (t) = -2 R d+1 {(δ(ξ -ũ(x))(m + n)(t, x, ξ) + δ(ξ -u(x))( m + ñ)(t, x, ξ)} dx dξ ≤ -2 R 2d+1 δ(ξ -ũ(x))|A(u(x + z)) -A(ξ)|1 1 conv{u(x),u(x+z)} (ξ)µ(z) dx dz dξ -2 R 2d+1 δ(ξ -u(x))|A(ũ(x + z)) -A(ξ)|1 1 conv{ũ(x),ũ(x+z)} (ξ)µ(z) dx dz dξ,
thanks to the nonnegativity of the measures m, m and to explicit representations (41) of the measures n, ñ. After the integration in ξ, we get

I 1 (t) + I 2 (t) ≤ -2 R 2d |A(u(y)) -A(ũ(x))|1 1 ũ(x)∈conv{u(x),u(y)} µ(x -y) dx dy -2 R 2d
|A(ũ(y)) -A(u(x))|1 1 u(x)∈conv{ũ(x),ũ(y)} µ(x -y) dx dy,

where we have also (formally) changed the variables by x + z → y and used the symmetry µ(y -x) = µ(x -y) in [START_REF] Alibaud | Occurence and non-appearance of shocks in fractal Burgers equation[END_REF]. We recognize the G-term of Lemma 23 and thus infer that

I 1 (t) + I 2 (t) ≤ -2 R 2d
G(u(x), u(y), ũ(x), ũ(y))µ(x -y) dx dy.

Further, we use Lemma 19 to rewrite the last term I 3 (t) as follows:

I 3 (t) = 2 R 2d+1 A (ξ) {χ(ξ; u(x)) -χ(ξ; u(y))} • {χ(ξ; ũ(x)) -χ(ξ; ũ(y))} µ(x -y) dx dy dξ.
We recognize the F -term of Lemma 23. Hence

I 3 (t) = 2 R 2d
F (u(x), u(y), ũ(x), ũ(y))µ(x -y) dx dy and finally Ṁ(t) = I 1 (t) + I 2 (t) + I 3 (t) ≤ 0, since F (u(x), u(y), ũ(x), ũ(y)) ≤ G(u(x), u(y), ũ(x), ũ(y)), by Lemma 23. This completes the formal proof of the L 1 contraction.

5.2.

Accurate uniqueness and L 1 contraction proof. Let us now give the rigorous proof of Theorem 29. For brevity, we set χ = χ(t, x, ξ) := χ(ξ; u(t, x)) and do similarly for ũ. Next, we follow the regularization approach of [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF] thus considering > 0 and some approximate unit

ρ (t, x) := 1 ρ 1 t 1 d ρ 2 x ,
with kernels satisfying

ρ 1 ∈ D((-1, 0)), ρ 2 ∈ D(R d ), ρ 1 , ρ 2 ≥ 0 and R ρ 1 = R d ρ 2 = 1. Given f ∈ L 1 loc (R + × R d+1 ) (or M 1 loc )
, we denote its regularized version by

f (t, x, ξ) := (f * ρ )(t, x, ξ) = ∞ 0 R d ρ (t -s, x -η)f (s, η, ξ) ds dη.
This can also write

f (t, x, ξ) = ∞ 0 R d ρ (-s, -η)f (t + s, x + η, ξ) ds dη
(with the pushforward measure, cf. Remark 20). Note that the symbol ' * ' denotes the convolution in (x, t) without convoluting in ξ. We then define

M (t, x, ξ) := |χ | + | χ | -2χ χ , (48) 
M (t) := R d+1 M (t, x, ξ) dx dξ = M 1 (t) + M 2 (t) + M 3 (t),
where M 1 , M 2 and M 3 correspond to the contributions of the respective terms of M (t, x, ξ) to the integral M (t). We shall see that this is a regularized version of the microscopic contraction functional [START_REF] Liu | Critical thresholds in a convolution model for nonlinear conservation laws[END_REF]. Here is the main lemma that we will have to prove. Lemma 30. Let the assumptions of Theorem 29 hold and let > 0 be fixed. Then, we have M ∈ C 1 ([0, ∞)) with Ṁ (t) ≤ 0 for all t ≥ 0.

Let us admit this result for a while and complete the proof of Theorem 29. For that, we argue as in [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. For the sake of completeness, we provide details.

Proof of Theorem 29. Let us recall that

(49) χ ∈ L ∞ (R + ; L 1 (R d+1 )) ∩ L ∞ (R + × R d+1 ) by Remark 16. It is standard that χ → χ in L 1 loc ([0, ∞); L 1 (R d+1 )), as ↓ 0, while remaining bounded in L ∞ (R + ; L 1 (R d+1 )) ∩ L ∞ (R + × R d+1 ). Recalling then that M (t, x, ξ) = (χ -χ) 2 = |χ| + | χ| -2χ χ and M(t) = R d+1 M (t, x, ξ) dx dξ = u(t, •) -ũ(t, •) L 1 (R d ) ,
we infer that M(•) is the limit of

M (•) in L 1 loc ([0, ∞)). By Lemma 30 t ≥ 0 → u(t, •) -ũ(t, •) L 1 (R d )
is essentially nondecreasing and we get (40) by using that

lim t↓0 u(t, •) -ũ(t, •) L 1 (R d ) = u 0 -v 0 L 1 (R d ) .
Let us recall that the latter limit is a consequence of Proposition 11 proved in Appendix B. This completes the proof of Theorem 29.

Let us now establish Lemma 30. Before, we need some technical results. The two first ones work as in [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. Let us give details for completeness.

Lemma 31. Let u ∈ L ∞ (R + ; L 1 (R d )) and > 0. Then χ ∈ C([0, ∞); L 1 (R d+1 )) ∩ L ∞ (R + × R d+1 )
and all its derivatives in (t, x) satisfy the same property.

The proof is immediate from [START_REF] Serre | L 1 -Stability of Constants in a Model for Radiating Gases[END_REF] since

χ ε = χ * ρ . Corollary 32. Let u, ũ ∈ L ∞ (R + ; L 1 (R d )). Then M ∈ C 1 ([0, ∞)) with (50) Ṁ (t) = R d+1 sgn(ξ) (∂ t χ + ∂ t χ ) dx dξ -2 R d+1 ∂ t [χ χ ] dx dξ ∀t ≥ 0.
Proof. By [START_REF] Clavin | Instabilities and nonlinear patterns of overdriven detonations in gases[END_REF] for almost every (t, x, ξ) there holds sgn(χ(t, x, ξ)) = sgn(ξ); this property is inherited by χ , for all > 0. Hence we have

|χ | = sgn(ξ)χ ∈ C([0, ∞); L 1 (R d+1
)) with a time distribution derivative satisfying

∂ t |χ | = sgn(ξ)∂ t χ ∈ C([0, ∞); L 1 (R d+1 )).
For any ϕ ∈ D((0, ∞)) and φ ∈ D(R d+1 ), we thus have

∞ 0 R d+1 |χ | dϕ dt (t)φ(x, ξ) dt dx dξ = - ∞ 0 R d+1 ϕ(t)φ(x, ξ)sgn(ξ)∂ t χ dt dx dξ.
Since we know that χ and ∂ t χ belong to L 1 loc ([0, ∞); L 1 (R d+1 )), we can take φ ≡ 1 and find that

d dt   t → R d+1 |χ | dx dξ   = R d+1 sgn(ξ)∂ t χ dx dξ in D ((0, ∞)).
This gives the contribution to (50) of the term M 1 = R d+1 |χ | dx dξ from [START_REF] Silvestre | On the differentiability of the solution to the Hamilton-Jacobi equation with critical fractional diffusion[END_REF]. We argue in the same way for the terms M 2 , M 3 and justify [START_REF] Wei | Kinetic solutions for nonlocal scalar conservation laws[END_REF] in the sense of distributions. In particular M ∈ C 1 ([0, ∞)) since the right-hand side of ( 50) is continuous by Lemma 31.

The next lemma is specific to nonlocal diffusions especially (iii). It will allow us to avoid regularization in ξ during the whole proof of uniqueness, as mentioned previously.

Lemma 33. Assume (3)-( 6) and u is a kinetic solution of (1) (for some L 1 initial data). Let m and n be the associated dissipation measures. Let > 0 be fixed. Then:

(i) m + n ∈ W 1,∞ loc ([0, ∞) × R d+1 ) and ∂ ξ (m + n ) ∈ C([0, ∞); L 1 (R d × K), for any compact K ⊂ R ξ , (ii) there exists ν ∈ C 0 (R ξ ) such that R d (m + n )(t, x, ξ) dx ≤ ν (ξ),
for any t ≥ 0 and ξ ∈ R, (iii) and for any

(t, x, ξ) ∈ [0, ∞) × R d+1 , (m + n )(t, x, ξ) ≥ ∞ 0 R 2d |A(u(t + s, x + z + η)) -A(ξ)| • 1 1 conv{u(t+s,x+η),u(t+s,x+z+η)} (ξ)ρ (-s, -η)µ(z) ds dη dz
with the function 1 1 everywhere defined in [START_REF] Chen | Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients[END_REF].

Proof. First, let us prove that m and n and all their derivatives in (t, x) belong to L ∞ (R + × R d+1 ). We have for instance

∂ t m , ϕ D ,D = ∞ 0 R d+1 m(s, η, ξ)   ∞ 0 R d ϕ(t, x, ξ)∂ t ρ (t -s, x -η) dt dx   ds dη dξ,
for any ϕ ∈ D((0, ∞) × R d+1 ). By [START_REF] Constantin | Nonlinear maximum principles for dissipative linear nonlocal operators and applications[END_REF] we deduce that

| ∂ t m , ϕ D ,D | ≤ ∂ t ρ ∞ ν L ∞ (R) ϕ L 1 (R + ×R d+1 ) , which proves that ∂ t m ∈ L ∞ (R + × R d+1
). We argue the same way for the other derivatives in (t, x) of m and n . Now taking the convolution of the equation satisfied by χ in [START_REF] Del Teso | On distributional solutions of local and nonlocal problems of porous medium type[END_REF] gives

∂ t χ + F (ξ).∇ x χ + A (ξ)g x [χ ] = ∂ ξ (m + n ) in D ((0, ∞) × R d+1 ). We deduce that ∂ ξ (m + n ) ∈ L ∞ loc ([0, ∞) × R d+1 )
, by what precedes, which proves the first part of (i). The second part is also immediate from the above equation and Lemmas 31 and 21.

Let us now prove (ii). We use again [START_REF] Constantin | Nonlinear maximum principles for dissipative linear nonlocal operators and applications[END_REF] to see that

R d+1 (m + n )(t, x, ξ)ϕ(ξ) dx dξ = ∞ 0 R 2d+1 (m + n)(s, η, ξ) ρ (t -s, x -η) =ρ1((t-s)/ )ρ2((x-η)/ ) -d-1 ϕ(ξ) ds dx dη dξ ≤ ρ 1 ∞ R ν(ξ)ϕ(ξ) dξ,
for every t ≥ 0 and nonnegative ϕ ∈ D(R ξ ). Setting C := ρ1 ∞ , we infer

R d (m + n )(t, x, ξ) dx ≤ C ν(ξ),
for almost every ξ. We can replace the right-hand side by ν ∈ C 0 (R ξ ), if choosing such a ν satisfying ν ≥ C ν. This is the case if we take for instance

ν (ξ) := 2C |ξ| |ξ| |ξ|/2 ess sup |ζ|≥τ ν(ζ) dτ (recall that ν ∈ L ∞ 0 (R ξ ))
. The pointwise inequality in (ii) is then easily deduced from Fatou's lemma.

Let us finally prove (iii). Only at this point, we use in passing the regularization in ξ. We consider a kernel θ ∈ D(R ξ ) that we assume to be nonnegative, even, and such that θ = 1. Let us take the approximate unit Let us pass to the limit as δ ↓ 0 in order to obtain (iii). Note first that the left-hand side always converges towards (m + n )(t, x, ξ) by the item (i) established above.

θ δ (ξ) := 1 δ θ ξ δ and define (m + n ) δ := (m + n ) * ξ θ δ . For each (t, x, ξ) ∈ [0, ∞) × R d+1 , we have (m + n ) δ (t, x, ξ) = ∞ 0 R d+1 (m + n)(s, η, ζ)ρ (t -s, x -η)θ δ (ξ -ζ) ds dη dζ ≥ ∞ 0 R d+1 n(t + s, x + η, ξ + ζ)ρ (-s, -η)θ δ (ζ) ds dη dζ = ∞ 0 R 2d I δ (t,
As far as the right-hand side is concerned, we have

lim δ↓0 I δ = |A(u(t + s, x + z + η)) -A(ξ)| 1 1 conv{u(t+s,x+η),u(t+s,x+z+η)} (ξ)
for every fixed (s, η, z) ∈ R + × R 2d , taking into account the everywhere representation [START_REF] Chen | Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients[END_REF]. Indeed, this limit exists also for ξ being an extremity of the interval, in this case, the value 1 2 appears at the limit because the kernel θ is even. Fatou's lemma then completes the proof of (iii).

We are now ready to prove Lemma 30.

Proof of Lemma 30. Similarly to the formal computations, we will show that the right-hand side of ( 50) is nonnegative by integrating the equations in χ and χ . Recall that (51)

∂ t χ + F (ξ).∇ x χ + A (ξ)g x [χ ] = ∂ ξ (m + n )
(with a similar equation for χ ). Since the terms in F (ξ) and A (ξ) may not be integrable in ξ, we need to truncate. This amounts to rewrite (50) as ( 52)

Ṁ (t) = lim R→∞ R d R -R (sgn(ξ)∂ t χ -2 χ ∂ t χ ) dx dξ + R d R -R (sgn(ξ)∂ t χ -2χ ∂ t χ ) dx dξ , ∀t ≥ 0,
and estimate the terms in brackets before passing to the limit. Note that the above limit holds by Lemma 31. In the sequel > 0 is fixed.

For any R > 0, each term of (51

) belongs to C([0, ∞); L 1 (R d × (-R, R))
) by Lemmas 31 and 21. In particular, we can integrate (51) in x ∈ R d and ξ ∈ (-R, R) for any fixed t ≥ 0. Proceeding so by previously multiplying (51) by sgn(ξ) gives (53)

R d R -R sgn(ξ)∂ t χ dx dξ = R d R -R sgn(ξ)∂ ξ (m + n ) dx dξ.
Indeed, let us make precise that the contributions to this calculation from the convection and the nonlocal diffusion terms in (51) vanish, due to the integration by parts in x. Its validity is justified, in particular, by Lemma 31 which gives us enough regularity to apply (29): We get, e.g.,

R d R -R sgn(ξ)A (ξ)g x [χ ] dx dξ = 1 2 R 2d R -R
{sgn(ξ)A (ξ) -sgn(ξ)A (ξ)}

• {χ (t, x, ξ) -χ (t, y, ξ)} µ(x -y) dx dy dξ, which indeed equals zero. Similarly, we use Lemma 31 and the Fubini theorem to show that

R d R -R
sgn(ξ)F (ξ)∇ x χ dx dξ = 0, see also [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. Let us now integrate the right-hand side of (53) in ξ first. The regularity in Lemma 33(i) justifies that for any t ≥ 0 and almost every

x ∈ R d , R -R sgn(ξ)∂ ξ (m + n )(t, x, ξ) dξ = -2(m + n )(t, x, 0) + ± (m + n )(t, x, ±R).
Using Lemma 33(ii) to bound the terms in ±R after the integration in x, we conclude that for any t ≥ 0 and R > 0, (54)

R d R -R sgn(ξ)∂ t χ dx dξ = -2 R d (m + n )(t, x, 0) dx + o R (1),
where o R (1) → 0 as R → ∞. Note that o R (1) depends on but we do not need to care about it since is fixed up to the end.

The computation in (54) will serve us to bound the limiting right-hand side of (52). Let us leave it aside for a while and do another computation that will be needed. Now let us multiply (51) by χ and integrate as before. We get

R d R -R χ ∂ t χ dx dξ = R d R -R χ ∂ ξ (m + n ) dx dξ - R d R -R A (ξ) χ g x [χ ] dx dξ + R(u, ũ) =: I R (t) -J R (t) -R(u, ũ), ( 55 
)
where R(u, ũ) := -

R d R -R F (ξ) χ ∇ x χ dx dξ.
To compute the first integral, we write that

I R (t) = ∞ 0 R 2d R -R χ(t + τ, x + θ, ξ)∂ ξ (m + n )(t, x, ξ) dξ ρ (-τ, -θ) dτ dx dθ
where we first integrate in ξ. Recalling the definition of

χ(t + τ, x + θ, ξ) = χ(ξ; ũ(t + τ, x + θ))
given in [START_REF] Clavin | Instabilities and nonlinear patterns of overdriven detonations in gases[END_REF] and having in mind [START_REF] Cockburn | On convergence of entropy solutions to a single conservation law[END_REF], we get that

I R (t) = ∞ 0 R 2d (m + n )(t, x, T R (ũ(t + τ, x + θ)))ρ (-τ, -θ) dτ dx dθ - R d (m + n )(t, x, 0) dx (56)
with the truncation function T R (•) defined in [START_REF] Karlsen | Stability of entropy solutions for Lévy mixed hyperbolic parabolic equations[END_REF]. In this reasoning, the use of ( 22) is justified by Lemma 33(i). We can also split the right-hand side of (56) in two integrals since the last integral is finite by (ii) of the same lemma, which implies that the first one is finite as well. Applying now the item (iii), we deduce that

I R (t) ≥ I - R d (m + n )(t, x, 0) dx, (57) 
I := ∞ 0 ∞ 0 R 4d |A(u(t + s, x + z + η)) -A(T R (ũ(t + τ, x + θ)))| • 1 1 T R (ũ(t+τ,x+θ))∈conv{u(t+s,x+η),u(t+s,x+z+η)}
• ρ (-s, -η)ρ (-τ, -θ)µ(z) ds dτ dx dη dθ dz.

Let us rewrite I with the pushforward measure in [START_REF] Droniou | Global solution and smoothing effect for a nonlocal regularization of a hyperbolic equation[END_REF], which amounts to change the variables by (x, x + z) → (x, y). We get

I = ∞ 0 ∞ 0 R 4d |A(u(t + s, y + η)) -A(T R (ũ(t + τ, x + θ)))| • 1 1 T R (ũ(t+τ,x+θ))∈conv{u(t+s,x+η),u(t+s,y+η)} • ρ (-s, -η)ρ (-τ, -θ)µ(x -y) ds dτ dx dy dη dθ = ∞ 0 ∞ 0 R 4d |A(b) -A(T R (c))| 1 1 T R (c)∈conv{a,b}
• ρ (-s, -η)ρ (-τ, -θ)µ(x -y) ds dτ dx dy dη dθ, with the convenient notation (58)

         a := u(t + s, x + η), b := u(t + s, y + η), c := ũ(t + τ, x + θ), d := ũ(t + τ, y + θ);
note that d will appear later when doing the same computations for ũ. Using in addition [START_REF] Kawashima | Shock waves for a model system of a radiating gas[END_REF], we deduce from (57) that

I R (t) ≥ ∞ 0 ∞ 0 R 4d |A(T R (b)) -A(T R (c))| 1 1 T R (c)∈conv{T R (a),T R (b)} • ρ (-s, -η)ρ (-τ, -θ)µ(x -y) ds dτ dx dy dη dθ - R d (m + n )(t, x, 0) dx. (59) 
Let us now focus on the second integral in (55). Let us integrate it by parts as in [START_REF] Giga | A kinetic construction of global solutions of first-order quasilinear equations[END_REF] which is again justified by Lemma 31. We get

J R (t) = 1 2 R 2d R -R A (ξ) {χ (t, x, ξ) -χ (t, y, ξ)} { χ (t, x, ξ) -χ (t, y, ξ)} • µ(x -y) dx dy dξ.
After writing the formula of the convolution products, χ = χ * ρ and χ = χ * ρ , and using the convenient notation (58), we obtain that

J R (t) = 1 2 ∞ 0 ∞ 0 R 4d R -R A (ξ) {χ(ξ; a) -χ(ξ; b)} {χ(ξ; c) -χ(ξ; d)}
• ρ (-s, -η)ρ (-τ, -θ)µ(x -y) ds dτ dx dy dη dθ dξ.

Existence of kinetic solutions

Let us now prove the existence part in Theorem 13 that is to say the result below. The complete proof of Theorem 13 is given just after.

Theorem 34. Let u 0 ∈ L 1 (R d ) and assume (3)- [START_REF] Alibaud | Occurence and non-appearance of shocks in fractal Burgers equation[END_REF]. Then there exists at least a kinetic solution u of (1) which belongs to C([0, ∞); L 1 (R d )).

Theorem 34 can be proven from the kinetic approach without relying on entropy solutions, in the spirit of [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. However, in order to shorten the paper we will use the known existence result for entropy solutions [START_REF] Cifani | Entropy formulation for degenerate fractional order convectiondiffusion equations[END_REF].

Proof of Theorem 34. Let us define u k

0 := T k (u 0 ) ∈ L 1 ∩ L ∞ (R d )
, with the truncation function of [START_REF] Karlsen | Stability of entropy solutions for Lévy mixed hyperbolic parabolic equations[END_REF]. We have

u k 0 → u 0 in L 1 (R d ) as k → ∞.
Let u k be the associated entropy solutions given by Theorem 3. By the L 1 contraction principle,

u k -u p C([0,T ];L 1 (R d )) ≤ u k 0 -u p 0 L 1 (R d )
, for any T ≥ 0 and integers k, p. This Cauchy sequence thus converges towards some function u

∈ C([0, ∞); L 1 (R d )) in C([0, T ]; L 1 (R d ))
, for any T > 0, and almost everywhere in R + × R d (up to some subsequence). We will show that this u is the desired kinetic solution.

By Theorem 12, each u k is a kinetic solution with some measure m k satisfying the estimate of Lemma 28. Since

(T k (u 0 (x)) -ξ) ± 1 ±ξ>0 ≤ (u 0 (x) -ξ) ± 1 ±ξ>0 ,
we deduce that for all integer k and almost any ξ ∈ R,

(62) ∞ 0 R d (m k + n k )(t, x, ξ) dt dx ≤ ν(ξ), with the same fixed ν(ξ) = (u 0 -ξ) + 1 ξ>0 L 1 (R d ) + (u 0 -ξ) -1 ξ<0 L 1 (R d )
. By the weak compactness of measures, there is some q

∈ M 1 loc ([0, ∞) × R d+1 ) such that ∞ 0 R d+1 (m k + n k )(t, x, ξ)ϕ(t, x, ξ) dt dx dξ → ∞ 0 R d+1 q(t, x, ξ)ϕ(t, x, ξ) dt dx dξ,
for any ϕ ∈ C c (R d+2 ) (and up to another subsequence if necessary). This is sufficient to pass to the limit in (24

) since χ(ξ; u k ) → χ(ξ; u) in C([0, T ]; L 1 (R d+1 ))
for any T > 0. But, we get the measure q instead of m + n at the right-hand side. Nevertheless, we can rewrite q as m + n, for some nonnegative measure m, if we can prove that q ≥ n. Let us do so. For any 0

≤ ϕ ∈ C c (R d+2 ), ( 63 
) ∞ 0 R d+1 (m k + n k )ϕ dt dx dξ ≥ ∞ 0 R d+1 n k ϕ dt dx dξ = R d I k (z)µ(z) dz, I k (z) := ∞ 0 R d+1 |A(u k (t, x + z)) -A(ξ)|1 1 conv{u k (t,x),u k (t,x+z)} (ξ) =:Q k (t,x,z,ξ) ϕ(t, x, ξ) dt dx dξ.
Recall that u k (t, x) → u(t, x) almost everywhere, let us say for (t, x) / ∈ N with N ⊂ R + × R d negligible. For any z ∈ R d , we thus have u k (t, x + z) → u(t, x + z) for any (t, x) not in the negligible N -(0, z). Hence

lim k→∞ Q k (t, x, z, ξ) = |A(u(t, x + z)) -A(ξ)|1 1 conv{u(t,x),u(t,x+z)} (ξ) =:Q(t,x,z,ξ) , for any (t, x, ξ) ∈ R + × R d+1 such that (t, x) / ∈ N ∪ (N -(0, z)
) and ξ = u(t, x). We recognize the complementary of the graph of u; the latter has zero Lebesgue measure in R + × R d+1 . Fatou's lemma then implies that lim inf

k→∞ I k (z) ≥ ∞ 0 R d+1 Q(t, x, z, ξ)ϕ(t, x, ξ) dt dx dξ ∀z ∈ R d .
Applying again Fatou's lemma to the right-hand side of (63), we obtain q ≥ n. We thus have reached all the conditions required in Definition 8 excepted [START_REF] Constantin | Nonlinear maximum principles for dissipative linear nonlocal operators and applications[END_REF], but the latter is immediate from (62).

Proof of Theorem 13. It only remains to check the uniqueness of m. Note that the equation in [START_REF] Del Teso | On distributional solutions of local and nonlocal problems of porous medium type[END_REF] determines m for t > 0, since u is unique. But, the last condition of ( 26) implies moreover that m({t = 0}) = 0. This completes the proof. The integration by parts formula [START_REF] Del Teso | Uniqueness and properties of distributional solutions of nonlocal equations of porous medium type[END_REF] follows, as r ↓ 0, from the cutting

|z|>r (f (x + z) -f (x))ϕ(x)µ(z) dx dz = |z|>r f (x + z)ϕ(x) dx dz - |z|>r f (x)ϕ(x)µ(z) dx dz
and the changes of variables x + z → x and -z → z in the first integral.

Proof of Lemma 19. We have

I r := - |z|>r (f (x + z) -f (x)) f (x)µ(z) dx dz = |z|>r f (x) f (x)µ(z) dx dz - |z|>r f (x + z) f (x)µ(z) dx dz = |x-y|>r (f (x) -f (y)) f (x)µ(x -y) dx dy,
after having rewritten both the preceding integrals with the help of [START_REF] Droniou | Global solution and smoothing effect for a nonlocal regularization of a hyperbolic equation[END_REF]. We can exchange the roles of x and y thus getting also

I r = |x-y|>r (f (y) -f (x))µ(y -x) =-(f (x)-f (y))µ(x-y) f (y) dx dy.
Applying each of these formulas to half of I r , we get

I r = 1 2
|x-y|>r (f (x) -f (y))( f (x) -f (y))µ(x -y) dx dy.

Now we conclude by passing to the limit as r ↓ 0. This is justified since 

≤ f W 1,1 (R d ) f W 1,∞ (R d ) (|z| ∧ 2)(|z| ∧ 2)µ(z) dz,
which is finite by [START_REF] Alibaud | Optimal continuous dependence estimates for nonlinear fractional degenerate parabolic equations[END_REF].

Proof of Lemma 21. Use Lemma 17 to show that g x [f ] ∈ C([0, ∞); L 1 (R d+1 )) and Lemma 19 for the formula [START_REF] Giga | A kinetic construction of global solutions of first-order quasilinear equations[END_REF].

Appendix B. Proof of Proposition 11

We follow the guidelines of [START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF][START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. Let us first give technical results. (m + n)(t, x, ξ)ψ (ξ/R)Φ (ξ) dt dx dξ, thanks to Lemma 35 as well as [START_REF] Constantin | Nonlinear maximum principles for dissipative linear nonlocal operators and applications[END_REF] and the dominated convergence theorem. To continue, we need that to cancel the last integral as R → ∞. This will be the case if νΦ ∈ L ∞ 0 (R) with ν from [START_REF] Constantin | Nonlinear maximum principles for dissipative linear nonlocal operators and applications[END_REF]. For this sake, it suffices to fix a smaller Φ from the begining, if necessary, in order to have also this property. Letting R → ∞ then implies (66) thanks to the monotone convergence theorem to handle all the other terms.

Consider now Lebesgue points t k of t → u(t) such that t k ↓ 0 as k → ∞. By (66) and Lemma 37,{u (m + n) dt dx dξ.

The claim (67) is now obtained by using Lemma 35 to cancel the penultimate integral as M → ∞, as well as [START_REF] Constantin | Nonlinear maximum principles for dissipative linear nonlocal operators and applications[END_REF] and the dominated convergence theorem for the last integral.

Conclusion

. By (67) and the previous L 1 loc convergence, T R (u k ) → T R (u 0 ) in L 1 (R d ) for any R > 0 up to a subsequence. Hence u k → u 0 in L 1 (R d ) since lim R→∞ sup k |u k |>R |u k | = 0 by (66). This completes the proof of the middle line of [START_REF] Del Teso | On distributional solutions of local and nonlocal problems of porous medium type[END_REF]. Since the first line is immediate and the last one is a consequence of (66), the whole proof is complete.

3. 3 .

 3 Main properties of the nonlocal dissipation measure n. Let us end up with lemmas in relation with the function defined in[START_REF] Cifani | Entropy formulation for degenerate fractional order convectiondiffusion equations[END_REF]. The first one is the rigorous justification of[START_REF] Chen | Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations[END_REF].Lemma 22. Under the assumption (4), the formula (17) holds for all S ∈ C 2 (R) and a, b ∈ R (with β = S A ).Proof. Setting I := β(b) -β(a) -S (a)(A(b) -A(a)), we have to prove that[START_REF] Jakubowski | On a nonlinear elliptic/parabolic integro-differential equation with L 1 -data[END_REF] 

Lemma 23 .

 23 Assume (4). For a, b, c, d ∈ R, define F (a, b, c, d) := R A (ξ) (χ(ξ; a) -χ(ξ; b)) (χ(ξ; c) -χ(ξ; d)) dξ, G(a, b, c, d) := |A(b) -A(c)|1 1 conv{a,b} (c) + |A(d) -A(a)|1 1 conv{c,d} (a), having in mind (18). Then ∀a, b, c, d ∈ R there holds F (a, b, c, d) ≤ G(a, b, c, d).

  otherwise. This allows to precise again the preceding cases by • either a ≤ c < b and c < d, • or b < a and d < a ≤ c. Let us finally divide these cases into the four following ones: 1. either a < c < b and c < d, 2. or a = c < b and c < d, 3. or b < a and d < a < c. 4. or b < a and d < a = c.

  x, ξ; s, η, z)ρ (-s, -η)µ(z) ds dη dz, where I δ stands for the expressionR |A(u(t + s, x + z + η)) -A(ξ + ζ)| 1 1 conv{u(t+s,x+η),u(t+s,x+z+η)} (ξ + ζ)θ δ (ζ) dζ.

Appendix A . 1 0( 1

 .11 Proofs of Lemmas 17, 19 and 21 Proof of Lemma 17. The boundedness of g follows from the formula (64) g[f ](x) = |z|>r (f (x+z)-f (x))µ(z) dz+ |z|≤r -τ )∇ 2 f (x+τ z)z 2 µ(z) dz dτ.

R

  2d |f (x) -f (y)|| f (x) -f (y)|µ(x -y) dx dy = R 2d |f (x) -f (x + z)|| f (x) -f (x + z)|µ(z) dx dz (by (28))

Lemma 35 .

 35 Let φ, ϕ ∈ C ∞ b (R d ) and φ M (x) := φ(x/M ). Then g[φ M ϕ] → φ(0)g[ϕ]pointwise as M → ∞ while being bounded uniformly in large M . In particular g[φ M ] → 0 pointwise.Proof. The uniform bound in large M holds since g :C 2 b (R d ) → C b (R d ) is bounded. For the convergence, use (64) to write |g[φ M ϕ -φ(0)ϕ](x)| ≤ |z|>r |(φ M ϕ -φ(0)ϕ)(x + z) -(φ M ϕ -φ(0)ϕ)(x)| µ(z) dz + C |z|≤r z 2 µ(z) dzwith C independent of r > 0 and large M , and let then M → ∞ and r ↓ 0 successively.We can then use test functions as below.Lemma 36. Assume (3)-(6) and u ∈ L ∞ (R + ; L 1 (R d )) is a kinetic solution of (1) with initial data u 0 ∈ L 1 (R d ). Then, for any Lebesgue point T of the locally integrable functiont ∈ R + → u(t) ∈ L 1 and any ϕ ∈ C ∞ b (R d × R ξ ) compactly Φ(u 0 ) < ∞. 1 . We claim that for any Lebesgue point T of t → u(t), )(m + n)(t, x, ξ) dt dx dξ = R d Φ(u 0 ) dx.To prove this, take ϕ(x, ξ) := φ(x/M )ψ(ξ/R)Φ (ξ) in (65) with φ ∈ D(R d ) and 0 ≤ ψ ∈ D(R) such that ψ is even, nonincreasing on R + , and φ(0) = ψ(0) = 1. Letting M → ∞, R d+1 χ(ξ; u 0 (x))ψ(ξ/R)Φ (ξ) dx dξ = R d+1χ(ξ; u(T, x))ψ(ξ/R)Φ (ξ) dx dξ+ T 0 R d+1(m + n)(t, x, ξ)ψ(ξ/R)Φ (ξ) dt dx dξ

  k := u(t k , •)} k is relatively weakly compact in L 1 loc (R d ). Hence u k u in L 1 loc (R d )-w, χ(ξ; u k (x)) χ(x, ξ) in L ∞ (R d+1 )-w ,up to taking a subsequence if necessary. Taking eventually another subsequence,

t k 0 m 2 S 2 |u

 022 (t, x, ξ) dt m(x, ξ) in M 1 loc (R d+1 )-w thanks to[START_REF] Constantin | Nonlinear maximum principles for dissipative linear nonlocal operators and applications[END_REF]. Letting T = t k ↓ 0 in (65) implies thatR d+1 χ(ξ; u 0 (x))ϕ(x, ξ) dx dξ = R d+1 χ(x, ξ)ϕ(x, ξ) dx dξ + R d+1 m(x, ξ)∂ ξ ϕ(x, ξ) dx dξ, that is χ(x, ξ) -χ(ξ; u 0 (x)) = ∂ ξ m(x, ξ). Since R d m(x, ξ) dx ≤ ν(ξ) ∈ L ∞ 0 (R) by stability of (23) at the weak limit, m(x, ξ) = ξ -∞ (χ(x, ζ) -χ(ζ; u 0 (x))) dζ thanks to the item (i) of Lemma 38. The limit as ξ → +∞ then implies that χ(x, ζ) dζ = u 0 (x) and it follows that u = u 0 and m ≤ 0 by (ii). This nonnegative1 Take e.g. a regular version of ξ → k≥1 (|ξ| -r k ) + where k≥1 |u 0 |≥r k |u 0 | < ∞ for some fixed 0 = r 1 < r 2 < . . .measure is thus zero which implies that χ(x, ξ) = χ(ξ; u 0 (x)) and u k → u 0 strongly in L 1 loc (R d ) by (iii). Claim (24) ⇒ (26): Strong continuity in L 1 (R d ). Let R > 0 be arbitrarily fixed and let us prove that (67) supk∈N |x|≥M |T R (u k )| dx → 0 as M → ∞, with T R from (32). Consider a regularization of d dξ |T R (ξ)| given by S R * θ δ where S R (0) = 0, for |ξ| ≤ R, sgn(ξ)(R + 1 -|ξ|) for R < |ξ| < R + 1, 0 otherwise, and 0 ≤ θ δ ∈ D(R) is an approximate unit as δ ↓ 0. Note that (68) | • | ≥ S R (•) ≥ |T R (•)| and (S R * θ δ ) ≥ -1 (-R-1,-R)∪(-R,R+1) * θ δ . Now choose ϕ(x, ξ) := φ M (x)(S R * θ δ ) (ξ) in (65) where φ M (x) = φ(x/M ) with φ(x) := 0 for |x| ≤ 1/2, 1 for |x| ≥ 1,and 0 ≤ φ ≤ 1 elsewhere.Doing this with T = t k , we infer that|x|> M R * θ δ (u 0 (x)) dx + C R t k 0 R d+1 |χ(ξ; u)| (|∇φ M | + |g[φ M ]|) dt dx dξ ≥ |x|>M S R * θ δ (u(t k , x)) dx + t k 0 R d+1 (m + n)(t, x, ξ)φ M (x)(S R * θ δ ) (ξ) dt dx dξ,for some Lipschitz constant C R of F and A on the support of (S R * θ δ ) , thus independent of small δ. Letting δ → 0 while using (68) then implies that |x|>M |T R (u k )| dx ≤ |x|> M |χ(ξ; u)| (|∇φ M | + |g[φ M ]|) dt dx dξ +
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Applying [START_REF] Kawashima | Weak solutions with a shock to a model system of the radiating gas[END_REF], we infer that

A (ξ) {χ(ξ; T R (a)) -χ(ξ; T R (b))} {χ(ξ; T R (c)) -χ(ξ; T R (d))}

• ρ (-s, -η)ρ (-τ, -θ)µ(x -y) ds dτ dx dy dη dθ dξ.

Now substracting twice (55) to (54), while taking into account the preceding lower bound (59) of I R (t), we finally deduce that (60)

Inverting the roles of u and ũ, we get a similar estimate of the form (61)

Pk ρ (-s, -η)ρ (-τ, -θ)µ(x -y) ds dτ dx dy dη dθ,

We again recognize the F -term and G-term of Lemma 23 if adding (61) to (60), more precisely

which is nonnegative. Injecting the sum of ( 60) and ( 61) into (52) then implies that for any t ≥ 0,

thanks to an integration by parts in x justified by Lemma 31; see also [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. We get that Ṁ (t) ≤ 0 and complete the proof.

supported in ξ,

Proof. Take the test ϕ k (t)φ(x/M )ϕ(x, ξ) in [START_REF] De Pablo | A fractional porous medium equation[END_REF] where 

To establish the strong convergence, we will argue on the weak-limit of the kinetic functions and the properties below will be needed.

Lemma 38. Let us assume that u

See [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]Lem 2.3.1] for the proof of (i), [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]Lem 2.3.3] for the first part of (ii) and (iii), and [44, Thm 2.2.1] for the second part of (ii). We are now in position to prove the time continuity of kinetic solutions at t = 0 by reproducing the arguments of [START_REF] Chen | Well-posedeness for non-isotropic degenerate parabolichyperbolic equations[END_REF][START_REF] Perthame | Kinetic formulation of conservation laws[END_REF].

) be such that ( 23) holds. We have to prove that ( 24) ⇐⇒ (26), the difference being in the sense of the initial datum.