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Abstract

Let (Xi, Yi)i∈Z be a stationary sequence of R2-valued random variables. To test if X1 and Y1 are
correlated in the sense of Kendall, we propose a robust correction of the usual Kendall test, valid for
a large class of dependent sequences. We also show that the condition on the dependency coefficients
is optimal in a certain sense, and we illustrate our results trough different sets of simulation.
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1 Introduction and definitions

Let (X,Y ) be a couple of real-valued and continuous random variables, and let (X∗, Y ∗) be an independent
copy of (X,Y ). The Kendall correlation coefficient τ between X and Y is then defined by

τ := 2
(
P ({(X∗ −X)(Y ∗ − Y ) > 0})− 0.5) . (1)

By definition, τ ∈ [−1, 1]. If τ = 0, there is no correlation in the sense of Kendall. If Y = f(X) for
some increasing (resp. decreasing) function f , then τ = 1 (resp. τ = −1). If τ > 0 (resp. τ < 0), there
is a positive correlation (resp. negative correlation), meaning that X and Y tend to vary in the same
direction (resp. the opposite direction).
Let now (Xi, Yi)i∈Z be a stationary sequence of R2-valued random variables, with the same marginal
distribution as (X,Y ). To test H0 : τ = 0 against H1 : τ 6= 0 from the sequence (Xi, Yi)1≤i≤n, one can
use the U -statistic

Un =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

1{(Xj−Xi)(Yj−Yi)>0} , (2)

which has been studied by Esscher [8], Lindeberg [15] [16], and Kendall [14] in the case where the random
variables (Xi, Yi) are independent and identically distributed (iid). In the general iid case (that is, without
assuming that X and Y are independent), the asymptotic normal distribution of

√
n(2Un−τ −1) is given

by Hoeffding [13] (see also van der Vaart [19], Example 12.5).
In Section 2 of the present paper, we extend Hoeffding’s result to the dependent case, and we propose an
estimator of the limiting covariance of

√
n(2Un−τ−1). From these two results we derive an asymptotically

valid procedure to test H0 : τ = 0 against H1 : τ 6= 0. Our results apply to a large class of dependent
sequences, under a condition on the β-dependence coefficients of the sequence (Xi, Yi)i∈Z, that are defined
below. To be complete, we show in Section 3 that the condition on the dependency coefficients is optimal
in a certain sense, and we illustrate our results trough different sets of simulation (see Section 4).

Let us now introduce these dependence coefficients.

Definition 1. Let Zi = (Xi, Yi)i∈Z be a strictly stationary sequence of random variables with values in R2.
Let P be the law of (X0, Y0) and P(Zi,Zj) be the law of (Zi, Zj). Define the σ-algebra F0 = σ(Zk, k ≤ 0),
let PZk|F0

be the conditional distribution of Zk given F0, and let P(Zi,Zj)|F0
be the conditional distribution

of (Zi, Zj) given F0 .
For any s, t ∈ R, z = (x, y) ∈ R2, we define the function

fz(s, t) := 1x≤s1y≤t − P(X0 ≤ s, Y0 ≤ t)

and the random variables

b(k) = sup
z∈R2

| PZk|F0
(fz) |,

b(i, j) = sup
(z1,z2)∈R2×R2

| P(Zi,Zj)|F0
(fz1 ⊗ fz2)− P(Zi,Zj)(fz1 ⊗ fz2) |,

where as usual fz1 ⊗ fz2(s, t) = fz1(t)fz2(s). Define now the coefficients

β̃1(k) = E(b(k)),

β̃2(k) = max{β̃1(k), sup
i>j≥k

E [b(i, j)]},

δ2(k) = sup
i>j≥k

E
(
1Xi≤Xj1Yi≤Yj − P(Xi ≤ Xj , Yi ≤ Yj)|F0

)
,

β2(k) = max{β̃2(k), δ2(k)}.
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Let us give some comments on these definitions. Our main result (Theorem 1 below) is stated under a
condition on the coefficient β2. The first important remark is that this coefficient is weaker than the usual
β-mixing coefficient of the sequence (Xi, Yi)i∈Z (see Volkonskii and Rozanov [20] for the definition of the
β-mixing coefficient). Hence all the results of the present paper hold true when replacing the coefficients
β̃1, β̃2, β2 by the usual β-mixing coefficients.
But in fact the coefficient β2 can be computed for a large class of processes, including many non-mixing
sequences in the sense of Rosenblatt [18]. This follows mostly from the paper by Dedecker and Prieur
[4], which provides many examples of (possibly non-mixing) processes for which the coefficient β̃2 can be
easily controlled (see also the monograph [2] for more examples and a comparison with other notions of
dependency). The coefficient β2 is a bit more restrictive than β̃2, because of the term δ2, which is not so
easy to handle. However, in many cases (if not all) the coefficient δ2 may be handled as β̃2 by following
the thread of Section 6 in Dedecker-Prieur [4].
Let us give a simple example. Assume that Zi = (Xi, Yi)

t is a R2-valued linear process, defined by

Zi =

∞∑
k=0

Akεi−k ,

where (εi) is a sequences of iid R2-valued random variables with mean 0 and square integrable coordinates,
and Ak is a deterministic sequence of 2 × 2 matrices such that

∑
k≥0 |Ak|2 < ∞ (here |Ak| is the usual

norm |Ak| = sup‖x‖=1 |Akx|, and ‖ · ‖ is the euclidean norm). Let FX,0 and FY,0 be the distribution
functions of X0 and Y0, and, for i > 0, let

FX,i(t) = P(Xi −X0 ≤ t) and FY,i(t) = P(Yi − Y0 ≤ t) .

If the functions FX,i, FY,i are uniformly Hölder of order γ ∈ (0, 1], meaning that there exists a positive
constant C such that

sup
i≥0
|FX,i(s)− FY,i(t)| ≤ C|t− s|γ ,

then (following [4], Section 6),

β2(n) ≤ C

∑
k≥n
|Ak|2


γ
γ+2

.

In particular, if |Ak| is geometrically decreasing, then so is β2(k) (whatever the index γ).
Note that, without extra assumptions on the distribution of ε0, such linear processes have no reasons to
be mixing in the sense of Rosenblatt. For instance, it is well known that the R-valued linear process

Xi =
∑
k≥0

εi−k
2k+1

, where P(ε1 = −1/2) = P(ε1 = 1/2) = 1/2,

is not α-mixing (see for instance Bradley [1]). Hence, if (Yi)i∈Z is a sequence of iid random variables,
independent of (Xi)i∈Z, then the sequence (Xi, Yi)i∈Z is not α-mixing. By contrast, for this particular
example, one can check that β2(k) is geometrically decreasing.

To conclude this section, let us quote that the asymptotic normality of Kendall’s U -statistic for dependent
sequences has been recently established by Dehling et al. [6] (note that these authors are able to deal with
a large class of U -statistics, and that they also prove a functional central limit theorem for U -processes).
Their result is valid for a large class of dependent sequences (including non-mixing sequences in the sense
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of Rosenblatt [18]), with a large intersection with our class of β2-dependent sequences. The advantage
of our approach is that we are able to prove that our condition on the coefficient β2 is optimal in some
sense (see Proposition 2 below). Moreover, If we consider only the class of β-mixing sequences, then our
results are valid under the condition

∑
k>0 β(k) < ∞, while the condition in [6] cannot be better than∑

k>0 kβ(k) <∞.

2 Main results

As in the introduction, (Xi, Yi)i∈Z is a stationary sequence of R2-valued random variables, with the same
marginal distribution as (X,Y ), and we denote by (X∗, Y ∗) an independent copy of (X,Y ). Recall that
Kendall’s correlation coefficient τ is defined in (1). Let then

π :=
τ

2
+ 0.5 = P ({(X∗ −X)(Y ∗ − Y ) > 0}) . (3)

Define also
F (x, y) = P (X < x, Y < y) , H(x, y) = P (X > x, Y > y) ,

and
FX(x) = P (X < x) , HX(x) = P (X > x) .

Our main result is the following theorem.

Theorem 1. Let (Xi, Yi)i∈Z be a stationary sequence of R2-valued random variables. Assume that

∞∑
k=1

β̃1(k) <∞ and k β2(k) −→
k→+∞

0 (4)

then, √
n (Un − π)

L−→
n→+∞

N (0, V ) ,

where

V = 4 Var(F (X0, Y0) + H(X0, Y0)) + 8
∞∑
k=1

Cov (F (X0, Y0) +H(X0, Y0), F (Xk, Yk) +H(Xk, Yk)) . (5)

Note that the statistic
√
n(Un−0.5) cannot be used directly to test H0 : τ = 0 against H1 : τ 6= 0. Indeed,

according to Theorem 1, the asymptotic distribution of
√
n(Un− 0.5) under H0 depends on the unknown

quantity V . To resolve this problem, we propose in the next proposition a consistent estimator of V .

Proposition 1. Let (Xi, Yi)i∈Z be a stationary sequence of R2-valued random variables. Assume that

∞∑
k=1

β̃2(k) <∞. (6)

Let

Fn(s, t) =
1

n

n∑
i=1

1Xi<t1Yi<t , Hn(s, t) =
1

n

n∑
i=1

1Xi>s1Yi>t , Gn(s, t) = 2 (Fn(s, t) +Hn(s, t)) ,
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and

γ̂(k) =
1

n

n−k∑
i=1

(Gn(Xi, Yi)− Ḡn)(Gn(Xi+k, Yi+k)− Ḡn),

where Ḡn = 1
n

∑n
i=1Gn(Xi, Yi). Let (an) be a sequence of positive integers tending to infinity as n tends

to infinity, such that an = o
(√
n/(log n)2

)
. Then,

Vn = γ̂(0) + 2

an∑
k=1

γ̂(k)

converges in L2 to the quantity V defined in (5).

Combining Theorem 1 and Proposition 1, we obtain that, under H0 : τ = 0 and if V > 0, the random
variables

Tn :=

√
n(Un − 1/2)√
|Vn|

converges in distribution to N (0, 1). (7)

Therefore, for a significance level α, the rejection region of the corrected Kendall test is of the form
Rn,α = {|Tn| > qα} where qα is the quantile of order 1− (α/2) of the standard normal distribution.

Remark 1. The choice of the sequence (an) is a delicate matter. If the coefficients β̃2(k) decrease very
quickly, then an should increase very slowly (it suffices to take an ≡ 0 in the iid setting). On the contrary,
if β̃2(k) = O(k−1(log k)−a) for some a > 1, then the terms in the covariance series have no reason to be
small, and one should take an close to

√
n to estimate many of these covariance terms. A data-driven

criterion for choosing an is an interesting (but probably difficult) question, which is beyond the scope of
the present paper.
However, from a practical point of view, there is an easy way to proceed: one can plot the estimated
covariances γ̂(k)’s and choose an (not too large) in such a way that

γ̂(0) + 2

an∑
k=1

γ̂(k)

should represent an important part of the unknown covariance series V defined in (5). As we shall see in
the simulations (Section 4), if the decay of the covariances terms

γ(k) = 2Cov (F (X0, Y0) +H(X0, Y0), F (Xk, Yk) +H(Xk, Yk))

is not too slow, this provides an easy and reasonable choice for an.
To conclude this remark, note that an estimator of V similar to Vn is also proposed in [6].

3 Optimality of the dependency conditions

In this section, we prove that the dependency condition (4) is essentially optimal. More precisely, we give
an example of a β-mixing sequences (Xi, Yi)i∈Z for which β(n) ∼ 1

n , and such that
√
n (Un − π) does not

converge in distribution.
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Proposition 2. There exists a stationary Markov chain (Xi)i∈Z with β-mixing coefficients β(n) ∼ 1
n and

invariant distribution U [−1
2 ,

1
2 ], such that

√
n√

log n
(Un(X,X2)− 0.5)

L−→
n→+∞

N (0, 1) , (8)

where

Un(X,X2) =
2

n(n− 1)

n∑
i=1

n∑
j=1
i<j

1{(Xj−Xi)(X2
j−X2

i )>0}. (9)

Remark 2. Taking Yi = X2
i , we infer from Proposition 2 that

√
n (Un − 0.5) does not converge in

distribution, and is not even stochastically bounded. This proves that the conclusion of Theorem 1 cannot
be true in general if we take β2(n) ∼ 1

n .

Proof. We start from the Markov chain introduced by Doukhan, Massart and Rio [7].
Let λ be the uniform distribution on [0, 1], and let ν be the probability with density g(x) = 2x1[0,1]. We
define now a strictly stationary Markov chain by specifying its transition probabilities K(x,A) as follows:

K(x,A) = (1− x)δx(A) + xν(A) ,

where δx denotes the Dirac measure. Then λ is the unique invariant probability measure of the chain
with transition probabilities K(x, ·). Let (Zi)i∈Z be the stationary Markov chain on [0, 1] with transition
probabilities K(x, ·) and invariant distribution λ. From [7], we know that the β-mixing coefficients of this
chain are such that β(n) ∼ 1

n .
We now define the random variables Xi = Zi − 0.5. Hence (Xi)i∈Z is a stationary Markov chain whose
β-mixing coefficients are such that β(n) ∼ 1

n . Moreover the Xi’s are uniformly distributed over [−0.5, 0.5].

Let Yi = X2
i . As quoted in Remark 3, the statistic

√
n/ log n(Un(X,X2)−0.5) in Proposition 2 is exactly√

n/ log n(Un−0.5). As in (11) (see the proof of Theorem 1), we have the Hoeffding decomposition (used
with π = 1/2): √

n√
log n

(Un − 0.5) = Tn +Rn , (10)

where

Tn :=
2√

n log n

n∑
i=1

(F (Xi, Yi) +H(Xi, Yi)− 0.5) ,

Rn :=
2

(n− 1)
√
n log n

n∑
i=1

n∑
j=i+1

(f(Zi, Zj) + f(Zj , Zi)) ,

f(Zi, Zj) := 1Xi<Xj1Yi<Yj − F (Xj , Yj)−H(Xi, Yi) + 1/4.

From the proof of Proposition 3, we get the upper bound

E(R2
n) ≤ C

n log n

(
1 +

n∑
k=1

kβ(k)

)
,

for some positive constant C. Since β(k) ∼ 1
k , we easily infer that Rn converges to 0 in L2. Hence, it

remains to prove (8) with Tn instead of
√
n/ log n(Un(X,X2)− 0.5).
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Let us compute F (X,X2) and H(X,X2). For x ∈ R and y > 0,

F (x, y) = P (X < x,X2 < y) = P (X < x, |X| < √y) = P (X < x,−√y < X <
√
y)

Consequently

F (x, y) = P (min(x,−√y) < X < min(x,
√
y))

= FX(min(x,
√
y))− FX(min(x,−√y)).

Since min(X, |X|) = X and min(X,−|X|) = −|X|, we infer that

F (X,X2) = FX(X)− FX(−|X|) = FX(X)−HX(|X|) .

In the same way, for x ∈ R and y > 0,

H(x, y) = P (X > x,X2 > y) = P (X > x, |X| > √y)

= P (X > max(x,
√
y)) + P (x < X < −√y)

= HX(max(x,
√
y)) + [FX(−√y)− FX(x)]1x<−√y

In our case, since 1X<−|X| = 0, we infer that

H(X,X2) = HX(max(X, |X|)) = HX(|X|).

Altogether, this proves

F (X,X2)+H(X,X2) = FX(X).

Note also that, since Xi = Zi − 0.5, we have: FX(Xi) = Zi. Consequently

Tn =
2√

n log n

n∑
i=1

(Zi − 0.5) .

Proposition 2 then follows from Lemma 1 below, whose proof will be done in Appendix.

Lemma 1. Let (Zi)i∈Z be the stationary Markov chain on [0, 1] with transition probabilities K(x, ·) and
invariant distribution λ. Then

2√
n log n

n∑
i=1

(Zi − 0.5)
L−→

n→+∞
N (0, 1) .

Remark 3. This lemma can be proved by using Proposition 4 in [21]. However, checking the conditions
given in that Proposition is quite long and not so easy. For the sake of clarity, we will provide a direct
proof of Lemma 1, going back to the initial result by Feller [10].

4 Simulations

In this section, we compare the usual Kendall test with our corrected test in three different cases.
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4.1 First example

In this first example, we consider two stationary sequences (Xi) and (Yi), with (Xi) independent of (Yi).
More precisely, we shall simulate Xi and Yi according to the auto-regressive mechanisms:

•
{
Xi = 1

2 (Xi−1 + εi) with (εi)i≥1 iid, and εi v B
(

1
2

)
X0 v U [0, 1] with X0 independent of (εi)i≥1

•
{
Yi = 1

2 (Yi−1 + ε′i) where (ε′i)i≥0 iid, and ε′i v B
(

1
2

)
Y0 v U [0, 1] with Y0 independent of (ε′i)i≥1

We assume moreover that (X0, (εi)) is independent of (Y0, (ε
′
i)), so that the sequence (Yi) is an independent

copy of (Xi). Moreover, it is well known that the uniform distribution U [0, 1] is the unique invariant
distribution of the auto-regressive process (Xi); consequently, the two sequences (Xi) and (Yi) are strictly
stationary. Note also that the stationary process (Xi, Yi) is not mixing in the sense of Rosenblatt (see for
instance [18]). However, it follows from [4] that the coefficients β2(k) converge to zero at an exponential
rate.
Since, for any positive integer i, the random variable Xi is independent of Yi, it follows that π = 1/2.
Hence, the statistic Tn defined in (7) converges in distribution to the N (0, 1) distribution as n→∞.
We now simulate the random variables (Xi, Yi) for i = 1, . . . , n, and we study the behavior of Tn for
different choices of an (recall that an appears in the definition of the estimator Vn). As explained in
Remark 2, the choice of an may be done by analyzing the graph of the auto-covariances γ̂(k) defined in
Proposition 1.
We compute Tn for different choices of n from 150 to 600. We estimate the quantities Var(Tn) and
P(|Tn| > 1.96) (the estimated level) via a classical Monte-Carlo procedure, by averaging over N = 2000
independent trials. This procedure will also be applied in the two following Subsections 4.2 and 4.3.
If an is well chosen, the estimate of Var(Tn) should be close to 1 and the estimated level should be close
to 0.05. The graph of the auto-covariances suggests a choice of an = 1 or an = 2 (see Figure 1).
The results for an = 1 and an = 2 are presented below. We also give the rejection frequency of the usual
(non corrected) Kendall test.

• an = 1

n 150 200 250 300 350 400 500 600

Estimated variance 1.146 1.173 1.125 1.1667 1.138 1.072 1.147 1.115

Estimated level 0.071 0.074 0.066 0.076 0.063 0.055 0.064 0.064

Kendall test 0.119 0.131 0.129 0.133 0.126 0.116 0.136 0.128

• an = 2

n 150 200 250 300 350 400 500 600

Estimated variance 1.177 1.077 1.045 1.079 1.066 1.138 1.043 1.066

Estimated level 0.066 0.067 0.061 0.057 0.0595 0.067 0.051 0.052

Kendall test 0.132 0.127 0.1145 0.125 0.129 0.144 0.125 0.131

As suggested by Figure 1, the choice an = 1 or an = 2 gives a reasonable estimated variance.
However, for an = 2, the estimated variance is closer to 1 and the estimated level of the corrected test is
closer to 0.05. For an = 2 the estimated level lies always between 5% and 7% even for moderately large
samples (n = 150); for n ≥ 500 it is around 0.052, which is quite satisfactory.
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Figure 1: Graph of the auto-covariances γ̂(k) for example 1, with n = 150

The estimated level of the uncorrected Kendall test is around 0.13 instead of 0.05; this is due to the fact
that the usual Kendall test does not take into account the dependency of the variables.

4.2 Second example

This is an example where (Xi, Yi)i∈Z is a sequence of iid random vectors, but the random variables Xi

and Yi are dependent.
More precisely, let (Xi)i∈Z and (εi)i∈Z be two independent sequences of iid random variables, with Xi v
U [0, 1] and P(εi = 1) = P(εi = −1) = 1

2 . Define then Yi = Xiεi.
First, we compute the value of π.

π = P ((X2 −X1)(Y2 − Y1) > 0)

= P
(
{(X2 −X1)2 > 0} ∩ {ε1 = ε2 = 1}

)
+ P

(
{−(X2 −X1)2 > 0} ∩ {ε1 = ε2 = −1}

)
+ P ({(X2 −X1)(X2 +X1) > 0} ∩ {ε1 = −1, ε2 = 1})
+ P ({−(X2 −X1)(X2 +X1) > 0} ∩ {ε1 = 1, ε2 = −1})

=
1

4
+ 0 +

1

8
+

1

8
=

1

2
.

For this example, it is clear that Xi and Yi are not independent; however π = 1/2 (and hence τ = 0)
which means that there is no correlation in the sense of Kendall.

For the simulations, since we are in the usual situation where (Xi, Yi)i∈Z is a sequence of independent and
identically distributed random vectors, we take an = 0, and we use the statistic Tn defined in (7) with
Vn = γ̂(0). The results are given below
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n 150 200 250 300 350 400 500 600

Estimated variance 1.105 1.077 1.07 1.085 1.045 1.035 0.981 1.029

Estimated level 0.059 0.059 0.058 0.055 0.056 0.056 0.051 0.051

Kendall test 0.248 0.255 0.253 0.254 0.26 0.262 0.242 0.265

As expected, the estimated variance is around 1 and the estimated level of the corrected test is around
0.05, even for moderately large samples.
It is important to notice that the usual Kendall test is not well calibrated in that case, with an estimated
significance level around 0.25 instead of 0.05. The reason is in fact simple: the usual Kendall test is well
calibrated if Xi and Yi are independent (because in that case the term Var(F (X1, Y1) + H(X1, Y1)) can
be explicitly computed), but it is not under the general hypothesis H0 : π = 1/2. The conclusion is that:
even in the usual case where (Xi, Yi)i∈Z is a sequence of iid random vectors, a correction should be made
on the usual Kendall test. More precisely, to get an asymptotically well calibrated test procedure, the
statistic Tn should be used with Vn = γ̂(0).

4.3 Third example

In this last example, the Xi’s are dependent random variables, and so are the Yi’s. Moreover, the variables
Xi and Yi are also dependent.
Let first (Zi) be generated according to the auto-regressive mechanism:{

Zi = 1
2 (Zi−1 + εi) with (εi)i≥1 iid, and εi v B

(
1
2

)
Z0 v U [0, 1] with Z0 independent of (εi)i≥1.

Define then Xi = Zi − 0.5 and Yi = X2
i . Once again, one can easily check that π = 0.5, meaning that

there is no correlation in the sense of Kendall.
For the simulations, the graph of the auto-covariances suggests to take an = 4 or an = 5 (see Figure 2).
The results for an = 4 and an = 5 are given below.
• an = 4

n 150 200 250 300 350 400 500 600

Estimated variance 1.395 1.288 1.181 1.242 1.138 1.124 1.087 1.093

Estimated level 0.096 0.083 0.072 0.078 0.066 0.064 0.065 0.064

Kendall test 0.525 0.515 0.518 0.522 0.516 0.516 0.514 0.513

• an = 5

n 150 200 250 300 350 400 500 600

Estimated variance 1.383 1.341 1.178 1.284 1.155 1.113 1.051 1.044

Estimated level 0.092 0.088 0.074 0.082 0.068 0.063 0.06 0.059

Kendall test 0.512 0.53 0.50 0.522 0.522 0.495 0.502 0.507

One can see that the choices an = 4 and an = 5 lead to similar results, except for large sample (n ≥ 500)
where the estimated level is slightly better for an = 5 (around 6%), in accordance with Proposition 1.
For this example, the usual Kendall test leads to a disastrous result, with an estimated level around 51%.
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Figure 2: Graph of the auto-covariances γ̂(k) for example 3, with n=150

5 Proofs

5.1 Proof of Theorem 1

We first recall the Hoeffding decomposition (see for instance Hoeffding [13]):

√
n(Un − π) = Tn +Rn , (11)

where Tn :=
2√
n

n∑
i=1

(F (Xi, Yi) +H(Xi, Yi)− π) ,

Rn :=
2√

n(n− 1)

n∑
i=1

n∑
j=i+1

(f(Zi, Zj) + f(Zj , Zi)) ,

and f(Zi, Zj) := 1Xi<Xj1Yi<Yj − F (Xj , Yj)−H(Xi, Yi) + π/2.

The term Tn is the main term of this decomposition, and the term Rn is asymptotically negligible, as
shown by the following proposition.

Proposition 3. Let (Xi, Yi)i∈Z be a stationary sequence of R2-valued random variables. If

k β2(k) −→
k→+∞

0 ,

then

Rn
L2

−→
n→+∞

0.

11



Let us first admit this proposition. It remains to show that, under H0 and some condition on the β̃-
dependence coefficient,

Tn
L−→

n→+∞
N (0, V ) . (12)

According to Gordin [11] or Dedecker and Rio [5], if

n∑
i=1

‖E (F (Xi, Yi) +H(Xi, Yi)− π|F0)‖1 < +∞, (13)

then Tn converges in distribution to a mixture of Gaussian random variables. Now, if moreover β̃2(k)→ 0
as k →∞ then the conditional variance in [5] is non random and (12) holds. Hence, it remains to check
(13).
We first note that π = 2π1 where π1 = P (X∗ < X,Y ∗ < Y ). Indeed,

π := P ({(X∗ −X)(Y ∗ − Y ) > 0})
= P ({{X∗ < X} ∩ {Y ∗ < Y }} ∪ {{X∗ > X} ∩ {Y ∗ > Y }})
= P ({{X∗ < X} ∩ {Y ∗ < Y }}) + P ({{X∗ > X} ∩ {Y ∗ > Y }}) = 2π1.

In order to verify (13), we control the conditional expectation of F (Xi, Yi) +H(Xi, Yi)− π.
Note first that,

E (F (X1, Y1)) = E
[
1(X∗<X1,Y ∗<Y1)

]
= P (X∗ < X1, Y

∗ < Y1) = π1. (14)

Hence

E [F (Xi, Yi)− π1|F0] =

∫
[E (1x<Xi1y<Yi |F0)− E (1x<Xi1y<Yi)]P(X,Y )(dx, dy) ,

and by definition of the coefficient β̃1,

‖E [F (Xi, Yi)− π1|F0]‖1 ≤
∫
‖E (1x<Xi1y<Yi |F0)− E (1x<Xi1y<Yi)‖1 P(X,Y )(dx, dy) ≤ β̃1(i). (15)

It follows that

n∑
i=1

‖E (F (Xi, Yi) +H(Xi, Yi)− π|F0)‖1

≤
n∑
i=1

‖E (F (Xi, Yi)− π1|F0)‖1 +
n∑
i=1

‖E (H(Xi, Yi)− π1|F0)‖1 ≤ 2
n∑
i=1

β̃1(i).

Hence, (13) is satisfied as soon as
∑∞

k=1 β̃1(k) <∞, which concludes the proof of Theorem 1.

5.2 Proof of Proposition 3

We shall prove that:

E


 2

n
√
n

n∑
i=1

n∑
j=1
i<j

f(Zi, Zj)


2 =

4

n3

n∑
i=1

n∑
j=1
i<j

n∑
k=1

n∑
l=1
k<l

E [f(Zi, Zj)f(Zk, Zl)] −→
n→+∞

0 . (16)

12



There are many different cases, but it suffices to deal with the sum over the two sets

Γ1 = {(i, j, k, l) : i < j ≤ k < l} and Γ2 = {(i, j, k, l) : i < k < l < j} ,

and the other cases can be handled in the same way (up to index permutations).
To prove the inequality (16), it remains to prove that

1

n3

∑
(i,j,k,l)∈Γ1

|E[f(Zi, Zj)f(Zk, Zl)]| −→
n→+∞

0 and
1

n3

∑
(i,j,k,l)∈Γ2

|E[f(Zi, Zj)f(Zk, Zl)]| −→
n→+∞

0.

For each case we proceed in two steps:

• First case.

Step 1. Let (i, j, k, l) ∈ Γ1,1 = {(i, j, k, l) : i < j ≤ k < l, l − k > k − j}. We start from the inequality

|E [f(Zi, Zj)f(Zk, Zl)]| =
∫
|E [f(Zi, Zj)f(Zk, Zl)|Zi = zi, Zj = zj , Zk = zk]|P(Zi,Zj ,Zk)(dzi,dzj , dzk)

≤
∫
|f(zi, zj)| · |E [f(zk, Zl)|Zi = zi, Zj = zj , Zk = zk]|P(Zi,Zj ,Zk)(dzi, dzj ,dzk).

Since |f(x, y)| ≤ 2,

|E [f(Zi, Zj)f(Zk, Zl)]|

≤ 2

∫
|E [1xk<Xl1yk<Yl − F (Xl, Yl)−H(xk, yk) + π1|Zi = zi, Zj = zj , Zk = zk]|P(Zi,Zj ,Zk)(dzi, dzj ,dzk)

≤ 2

∫
|E [1xk<Xl1yk<Yl −H(xk, yk)|Zi = zi, Zj = zj , Zk = zk]|P(Zi,Zj ,Zk)(dzi,dzj , dzk)

+ 2

∫
|E [F (Xl, Yl)− π1|Zi = zi, Zj = zj , Zk = zk]|P(Zi,Zj ,Zk)(dzi, dzj ,dzk) .

For the first term on the right hand side, we use the fact that

E [1xk<Xl1yk<Yl ] = P(xk < Xl, yk < Yl) = H(xk, yk),

and the definition of β̃1. It follows that∫
| E [1xk<Xl1yk<Yl −H(xk, yk)|Zi = zi, Zj = zj , Zk = zk] | P(Zi,Zj ,Zk)(dzi,dzj , dzk)

≤
∫

sup
(x,y)∈R2

|E [1x<Xl1y<Yl −H(x, y)|Zi = zi, Zj = zj , Zk = zk]|P(Zi,Zj ,Zk)(dzi,dzj , dzk)

≤

∥∥∥∥∥ sup
(x,y)∈R2

|E [1x<Xl1y<Yl −H(x, y)|Zi, Zj , Zk]|

∥∥∥∥∥
1

≤ β̃1(l − k).

Let us now control the second term. From (15), we have

‖E [F (Xl, Yl)− π1|Zi, Zj , Zk]‖1 ≤ β̃1(l − k).

13



Consequently,

1

n3

∑
(i,j,k,l)∈Γ1,1

|E [f(Zi, Zj)f(Zk, Zl)]| ≤
1

n3

n∑
i=1

n∑
j=i+1

n∑
k=j+1

n∑
l=k+1

4β1(l − k)1l−k>k−j .

Setting l − k = t, we get that

1

n3

∑
(i,j,k,l)∈Γ1,1

|E [f(Zi, Zj)f(Zk, Zl)]| ≤
4

n3

n∑
t=1

β1(t)

n∑
i=1

n∑
j=i+1

n∑
k=j+1

1k<t+j

≤ 2

n

n∑
t=1

t · β̃1(t).

Conclusion of Step 1: If kβ̃1(k) −→
k→+∞

0 then

4

n3

∑
(i,j,k,l)∈Γ1,1

|E [f(Zi, Zj)f(Zk, Zl)]| −→
n→+∞

0. (17)

Step 2. Let (i, j, k, l) ∈ Γ1,2 = {(i, j, k, l) : i < j ≤ k < l, k − j > l − k}. We start from the elementary
decomposition

E [f(Zi, Zj)f(Zk, Zl)] = E [f(Zi, Zj) [f(Zk, Zl)− Ef(Zk, Zl)]] + Ef(Zi, Zj) · Ef(Zk, Zl). (18)

For the first term on the right hand side of (18), we work conditionally on Zi, Zj .

|E [f(Zi, Zj) [f(Zk, Zl)− Ef(Zk, Zl)]]| ≤ E [|f(Zi, Zj)E [f(Zk, Zl)− Ef(Zk, Zl)|Zi, Zj ]|]
≤ 2 ‖E [f(Zk, Zl)− Ef(Zk, Zl)|Zi, Zj ]‖1 .

Recall that f(Zk, Zl) = 1Xk<Xl1Yk<Yl − F (Xl, Yl)−H(Xk, Yk) + π1. Hence

‖E [f(Zk, Zl)− Ef(Zk, Zl)|Zi, Zj ]‖1 = ‖E [1Xk<Xl1Yk<Yl − E(1Xk<Xl1Yk<Yl)|Zi, Zj ]‖1
+ ‖E [F (Xl, Yl)− EF (Xl, Yl)|Zi, Zj ]‖1
+ ‖E [H(Xk, Yk)− EH(Xk, Yk)|Zi, Zj ]‖1 .

We shall now give an upper bound for the last three terms by using the properties of the coefficient β2.

‖E [1Xk<Xl1Yk<Yl − E[1Xk<Xl1Yk<Yl ]|Zi, Zj ]‖1 ≤ δ2(k − j) ≤ β2(k − j). (19)

From (15), we infer that

‖E [H(Xk, Yk)− E(H(Xk, Yk))|Zi, Zj ]‖1 = ‖E [H(Xk, Yk)− π1|Zi, Zj ]‖1 ≤ β̃1(k − j) ≤ β2(k − j). (20)

For the last term, we use also the fact that l − j > k − j, and that the coefficient β̃1 is decreasing. So

‖E [F (Xl, Yl)− E(F (Xl, Yl))|Zi, Zj ]‖1 ≤ β̃1(l − j) ≤ β̃1(k − j) ≤ β2(k − j). (21)

It follows from (19), (20) and (21) that

‖E [f(Zk, Zl)− Ef(Zk, Zl)|Zi, Zj ]‖1 ≤ 6β2(k − j).
14



Therefore,

1

n3

∑
(i,j,k,l)∈Γ1,2

|E [f(Zi, Zj) [f(Zk, Zl)− Ef(Zk, Zl)]]| ≤
6

n3

n∑
i=1

n∑
j=i+1

n∑
k=j+1

n∑
l=k+1

β2(k − j)1k−j>l−k.

Setting k − j = s and l − k = t, we obtain

1

n3

∑
(i,j,k,l)∈Γ1,2

|E [f(Zi, Zj) [f(Zk, Zl)− Ef(Zk, Zl)]]| ≤
6

n3

n∑
i=1

n∑
j=i+1

n∑
t=1

n∑
s=1

β2(s)1s>t

≤ 3

n

n∑
s=1

s β2(s).

Hence, we have proved that: if kβ2(k) −→
k→+∞

0, then

1

n3

∑
(i,j,k,l)∈Γ1,2

|E [f(Zi, Zj) [f(Zk, Zl)− Ef(Zk, Zl)]]| −→
n→+∞

0. (22)

In the rest of the proof of Step 2, we control the second term on the right hand side of (18). We first note
that

|Ef(Zi, Zj)| ≤
∫
|E [f(zi, Zj)|Zi = zi]|PZi(dzi)

≤
∫

sup
z∈R2

|E [f(z, Zj)|Zi = zi]|PZi(dzi)

≤
∥∥∥∥ sup
z∈R2

|E [f(z, Zj)|Zi]|
∥∥∥∥

1

≤
∥∥∥∥ sup
z∈R2

∣∣E [1x<Xj1y<Yj −H(x, y)|Zi
]∣∣∥∥∥∥

1

+

∥∥∥∥ sup
z∈R2

|E [F (Xj , Yj)− π1|Zi]|
∥∥∥∥

1

≤ 2β̃1(j − i).

In the same way
|Ef(Zk, Zl)| ≤ 2β̃1(l − k).

Clearly
|Ef(Zi, Zj) · Ef(Zk, Zl)| ≤ 2 min{β̃1(j − i), β̃1(l − k)}.

Hence

1

n3

∑
(i,j,k,l)∈Γ1,2

|Ef(Zi, Zj) · Ef(Zk, Zl)| ≤
2

n3

n∑
i=1

n∑
j=i+1

n∑
k=j+1

n∑
l=k+1

min{β̃1(j − i), β̃1(l − k)}

≤ 2

n

n∑
p=1

n∑
t=1

min{β̃1(p), β̃1(t)}. (23)

Since the coefficients β̃1(k) are decreasing, we get that min{β̃1(p), β̃1(t)} = β̃1(p)1t<p + β̃1(t)1p≤t, and
consequently,

1

n3

∑
(i,j,k,l)∈Γ1,2

|Ef(Zi, Zj) · Ef(Zk, Zl)| ≤
2

n2

n∑
p=1

n∑
t=1

β̃1(p)1t<p +
2

n2

n∑
p=1

n∑
t=1

β̃1(t)1p≤t ≤
4

n

n∑
t=1

tβ̃1(t).
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Hence, we have proved that: if kβ̃1(k) −→
k→+∞

0, then

1

n3

∑
(i,j,k,l)∈Γ1,2

|Ef(Zi, Zj) · Ef(Zk, Zl)| −→
n→+∞

0. (24)

Conclusion of Step 2: From (22) and (24), we infer that, if kβ2(k) −→
k→+∞

0 then

1

n3

∑
(i,j,k,l)∈Γ1,2

|E[f(Zi, Zj)f(Zk, Zl)]| −→
n→+∞

0. (25)

Conclusion of the first case: From (17) and (25) we infer that, if kβ2(k) −→
k→+∞

0, then

1

n3

∑
(i,j,k,l)∈Γ1

|E[f(Zi, Zj)f(Zk, Zl)]| −→
n→+∞

0. (26)

• Second case.

Step 1. Let (i, j, k, l) ∈ Γ2,1 = {(i, j, k, l) : i < k < l < j, j − l > l − k}. Following the same strategy as to
deal with Γ1,1, we have that

|E[f(Zi, Zj)f(Zk, Zl)]| ≤ 4β̃1(j − l).
Then, setting j − l = t, we get

1

n3

∑
(i,j,k,l)∈Γ2,1

|E [f(Zi, Zj)f(Zk, Zl)]| ≤
4

n3

n∑
i=1

n∑
k=i+1

n∑
l=k+1

n∑
j=l+1

β̃1(j − l)1j−l>l−k

≤ 2

n

n∑
t=1

tβ̃1(t).

Conclusion of Step 1: If k β̃1(k) −→
k→+∞

0 then

1

n3

∑
(i,j,k,l)∈Γ2,1

|E [f(Zi, Zj)f(Zk, Zl)]| −→
n→+∞

0. (27)

Step 2. Let (i, j, k, l) ∈ Γ2,2 = {(i, j, k, l) : i < k < l < j, l−k > j− l}. Let also (Z∗i )i∈Z be an independent
copy of (Zi)i∈Z, and let us write

E [f(Zi, Zj)f(Zk, Zl)]

= E [f(Zi, Zj)f(Zk, Zl)]− E
[
f(Zi, Z

∗
j )f(Zk, Z

∗
l )
]

+ E
[
f(Zi, Z

∗
j )f(Zk, Z

∗
l )
]

= E
[
(f(Zi, Zj)f(Zk, Zl))−

∫
f(Zi, zj)f(Zk, zl)P(Zj ,Zl)(dzj ,dzl)

]
+ E

[
f(Zi, Z

∗
j )f(Zk, Z

∗
l )
]
.

Let us first control the first term on the right hand side.∣∣∣∣E [f(Zi, Zj)f(Zk, Zl)−
∫
f(Zi, zj)f(Zk, zl)P(Zj ,Zl)(dzj ,dzl)

]∣∣∣∣
=

∣∣∣∣∫ E
[[
f(zi, Zj)f(zk, Zl)−

∫
f(zi, zj)f(zk, zl)P(Zj ,Zl)(dzj ,dzl)

]
|Zi = zi, Zk = zk

]
P(Zi,Zk)(dzi,dzk)

∣∣∣∣
≤

∥∥∥∥∥ sup
(z1,z2)∈R2×R2

|E [f(z1, Zj)f(z2, Zl)|Zi, Zk]− E [f(z1, Zj)f(z2, Zl)]|

∥∥∥∥∥
1

.
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Now, by definition of f and of the coefficients β̃2, and since l − k < j − k, we easily infer that∣∣∣∣E [f(Zi, Zj)f(Zk, Zl)−
∫
f(Zi, zj)f(Zk, zl)P(Zj ,Zl)(dzj , dzl)

]∣∣∣∣ ≤ 9β̃2(l − k) (28)

Consequently, setting l − k = t and j − l = p, we get

1

n3

∑
(i,j,k,l)∈Γ2,2

∣∣∣∣E [f(Zi, Zj)f(Zk, Zl)−
∫
f(Zi, zj)f(Zk, zl)P(Zl,Zj)(dzl,dzj)

]∣∣∣∣
≤ 9

n3

n∑
i=1

n∑
k=i+1

n∑
t=1

n∑
p=1

β̃2(t)1p<t ≤
9

n

n∑
t=1

t β̃2(t).

Hence, we have proved that: if k β̃2(k) −→
k→+∞

0, then

1

n3

∑
(i,j,k,l)∈Γ2,2

∣∣∣∣E [f(Zi, Zj)f(Zk, Zl)−
∫
f(Zi, zj)f(Zk, zl)P(Zl,Zj)(dzl, dzj)

]∣∣∣∣ −→n→+∞
0. (29)

Now, it remains to control the term E[f(Zi, Z
∗
j )f(Zk, Z

∗
l )]. Since Z and Z∗ are independent, one can

consider that either Z or Z∗ are fixed. Hence, we obtain the upper bound∣∣E [f(Zi, Z
∗
j )f(Zk, Z

∗
l )
]∣∣ ≤ 2 ·min{β̃1(j − l), β̃1(k − i)}.

Therefore, setting p = j − l, t = l − k, s = k − i, we get

1

n3

∑
(i,j,k,l)∈Γ2,2

∣∣E [f(Zi, Z
∗
j )f(Zk, Z

∗
l )
]∣∣ ≤ 2

n3

n∑
i=1

n∑
k=i+1

n∑
l=k+1

n∑
j=l+1

min{β̃1(j − l), β̃1(k − i)}

≤ 2

n

n∑
p=1

n∑
s=1

min{β̃1(p), β̃1(s)}

This upper is the same as in (23) and can be handled in the same way. It follows that: if kβ̃1(k) −→
k→+∞

0,

then
1

n3

∑
(i,j,k,l)∈Γ2,2

∣∣E [f(Zi, Z
∗
j )f(Zk, Z

∗
l )
]∣∣ −→

n→+∞
0. (30)

Conclusion of Step 2: From (29) and (30), we infer that, if kβ̃2(k) −→
k→+∞

0 then

1

n3

∑
(i,j,k,l)∈Γ2,2

|E [f(Zi, Zj)f(Zk, Zl)]| −→
n→+∞

0. (31)

Conclusion of the second case, and of the proof: From (27) and (31), we infer that

1

n3

∑
(i,j,k,l)∈Γ2

|E [f(Zi, Zj)f(Zk, Zl)]| −→
n→+∞

0. (32)

Combining (26) and (32), the proof of Proposition 3 is complete.
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5.3 Proof of Proposition 1

This proof consists of three steps.

First step : We first introduce the function G(s, t) = 2(F (s, t) +H(s, t)). Let now

γ∗(k) =
1

n

n−k∑
i=1

(G(Zi)− 2π)(G(Zi+k)− 2π) and γ(k) = Cov (G(Z0), G(Zk))

We shall proove that V ∗n := γ∗(0) + 2
∑an

k=1 γ
∗(k) converges in L2 to V defined in Theorem 1.

We first note that

E (γ∗(k)) =
1

n

n−k∑
i=1

E ((G(Zi)− 2π)(G(Zi+k)− 2π)) =
n− k
n

γ(k).

From (15) we get that |γ(k)| ≤ 4β̃1(k). Since
∑

k>0 β̃1(k) < ∞ and since an → ∞ as n → ∞, we infer
from the dominated convergence theorem that E(V ∗n ) converges to V . Hence, it remains to show that

Var(V ∗n ) −→
n→+∞

0. (33)

By the ergodic theorem γ∗(0) converge in L2 (and almost surely) to Var(G(X1, Y1)). Hence, we only deal
with the term

Var

(
an∑
k=1

γ∗(k)

)
= Var

(
1

n

an∑
k=1

n−k∑
i=1

(G(Zi)− 2π)(G(Zi+k)− 2π)

)
.

For the sake of clarity, let Ti = G(Zi)− 2π, and note that E (TiTi+k) = γk. Then

Var

(
an∑
k=1

γ∗(k)

)
= Var

(
1

n

an∑
k=1

n−k∑
i=1

TiTi+k

)

=
1

n2

an∑
k=1

an∑
l=1

n−k∑
i=1

n−l∑
j=1

Cov (TiTi+k, TjTj+l)

=
1

n2

an∑
k=1

an∑
l=1

n−k∑
i=1

n−l∑
j=1

E [(TiTi+k − γk) (TjTj+l − γl)] .

We shall now control the terms E[(TiTi+k−γk)(TjTj+l−γl)] with the help of the coefficients β̃. As usual,
this control depends on the gap between i, i+ k, j and j+ k. Clearly, it suffices to deal with the sum over
the set Γ := {i ≤ j}. We then consider three distinct cases.

The sum over Γ1 = {i+ k ≤ j}. In that case

|E [(TiTi+k − γk) (TjTj+l − γl)] | ≤ 2β̃2(j − i− k).

Then for some positive constant C, we have (changing the indexes):

1

n2

an∑
k=1

an∑
l=1

n−k∑
i=1

n−l∑
j=1

|E [(TiTi+k − γk) (TjTj+l − γl)] |1Γ1 ≤
2

n2

an∑
k=1

an∑
l=1

n∑
i=1

∑
j≥0

β̃2(j) ≤ Ca2
n

n
.
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The sum over Γ2 = Γ ∩ {j ≤ i+ k ≤ j + l}

|E [(TiTi+k − γk) (TjTj+l − γl)] | = |E [(TiTi+k − γk)TjTj+l] | ≤ 2β̃1(j + l − i− k).

Then for some positive constant C, we have:

1

n2

an∑
k=1

an∑
l=1

n−k∑
i=1

n−l∑
j=1

|E [(TiTi+k − γk) (TjTj+l − γl)] |1Γ2 ≤
2

n2

an∑
k=1

an∑
l=1

n∑
i=1

∑
j≥0

β̃1(j) ≤ Ca2
n

n
.

The sum over Γ3 = Γ ∩ {i+ k ≥ j + l}

|E [(TiTi+k − γk) (TjTj+l − γl)] | = |E [(TjTj+l − γl)TiTi+k] | ≤ 2β̃1(i+ k − j − l).

Then for some positive constant C, we have:

1

n2

an∑
k=1

an∑
l=1

n−k∑
i=1

n−l∑
j=1

|E [(TiTi+k − γk) (TjTj+l − γl)] |1Γ3 ≤
2

n2

an∑
k=1

an∑
l=1

n∑
j=1

∑
i≥0

β̃1(i) ≤ Ca2
n

n
.

Consequently, from the last three upper bounds, we get

1

n2

an∑
k=1

an∑
l=1

n−k∑
i=1

n−l∑
j=1

|E [(TiTi+k − γk) (TjTj+l − γl)] |1Γ ≤
3Ca2

n

n
.

Note that this result is still true on Γc := {i > j} (interchanging i and j), in such a way that

1

n2

an∑
k=1

an∑
l=1

n−k∑
i=1

n−l∑
j=1

|E [(TiTi+k − γk) (TjTj+l − γl)] | ≤
6Ca2

n

n
.

Finally, using the fact that an = o(
√
n), we conclude that

∑an
k=1 γ

∗(k) converges in L2 to
∑

k≥1 γ(k), and

V ∗n
L2

−→
n→+∞

V . (34)

Second step : We shall prove that∥∥∥∥∥ sup
(s,t)∈R2

|Gn(s, t)−G(s, t)|

∥∥∥∥∥
2

2

≤ C (log(n))4

n

n∑
k=0

β̃1(k). (35)

In fact, it suffices to prove (35) for Fn(s, t) − F (s, t), since the term involving Hn(s, t) − H(s, t) can be
handled similarly.
We define the empirical process by

µn(s, t) =
√
n (Fn(s, t)− F (s, t)) .

To simplify the rest of the proof, we reduce the interval of definition of (s, t) from R2 to [0, 1]2. We define
a random variable (Ui, Vi)i∈Z with values in [0, 1]2, such that (Ui, Vi) = (FX(Xi), FY (Yi)).
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Without loss of generality, assume that the distribution functions FX and FY are continuous, so that the
random variables (Ui, Vi) have a uniform distribution. Then,∥∥∥∥∥ sup

(s,t)∈R2

|Fn(s, t)− F (s, t)|

∥∥∥∥∥
2

2

=

∥∥∥∥∥ sup
(u,v)∈[0,1]2

| 1
n

n∑
i=1

(1Ui≤u,Vi≤v − P(U0 ≤ u, V0 ≤ v)) |

∥∥∥∥∥
2

2

In the rest of the proof, we apply a dyadic chaining (following [17], Chapter 7). Let K be some non-
negative integer and, for any z = (z1, z2) in the unit square ]0, 1]2, let

ΠK(z) = (ΠK(z1),ΠK(z2)), with ΠK(z1) = 2−K [2Kz1].

Let N be the unique integer such that 2N−1 < n ≤ 2N . Clearly

µn(z) = µn(z)− µn(ΠN (z)) + µn(ΠN (z)).

Consequently,
sup

z∈[0,1]2
|µn(z)| ≤ sup

z∈[0,1]2
|µn(z)− µn(ΠN (z))|︸ ︷︷ ︸

RN

+ sup
z∈[0,1]2

|µn(ΠN (z))|︸ ︷︷ ︸
∆

.

Let us first control the main term ∆. For any z = (z1, z2) in the unit square ]0, 1]2, let ]0, z] =]0, z1]×]0, z2].
For any j ∈ (1, 2) and any natural integer M ,

]0,ΠM (zj)] =

M⋃
Lj=0

]ΠLj−1(zj),ΠLj (zj)].

with the convention Π−1(zj) = 0. Then

]0,ΠM (z)] =
⋃

L∈[0,M ]2

2∏
j=1

]ΠLj−1(zj),ΠLj (zj)].

Let DL be the class of dyadic boxes
∏2
i=1](ki − 1)2−Li , ki2

−Li ] where k = (k1, k2). Let Zn =
√
n(Pn − P )

be the empirical and centered empirical measure where P denote the common marginal distribution of
(Ui, Vi) and Pn the empirical measure. Define

∆L := sup
S∈DL

|Zn(S)|.

Then
∆ ≤

∑
L∈[0,N ]2

∆L. (36)

Moreover,

‖Zn(S)‖22 = E

( 1√
n

n∑
i=1

1(Ui,Vi)∈S − P((Ui, Vi) ∈ S)

)2


≤ Var
(
1(U0,V0)∈S

)
+ 2

n−1∑
k=1

∣∣E ((1(U0,V0)∈S − P((Ui, Vi) ∈ S)
) (
1(Uk,Vk)∈S − P((Ui, Vi) ∈ S)

))∣∣
≤ Var

(
1(U0,V0)∈S

)
+ 2

n−1∑
k=1

∣∣E (1(U0,V0)∈S
(
1(Uk,Vk)∈S − P((Ui, Vi) ∈ S)

))∣∣ .
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Let F0 = σ((Ui, Vi), i ≤ 0), then

≤ Var
(
1(U0,V0)∈S

)
+ 2

n∑
k=1

∣∣E (1(U0,V0)∈SE
(
1(Uk,Vk)∈S − P((Ui, Vi) ∈ S)|F0

))∣∣
≤ Var

(
1(U0,V0)∈S

)
+ 2

n∑
k=1

∣∣E (1(U0,V0)∈S b(k)
)∣∣

≤ E

(
1(U0,V0)∈S

(
1 + 2

n∑
k=1

b(k)

))
.

Hence,

‖∆L‖22 ≤
∑
S∈DL

‖Zn(S)‖22 ≤
∑
S∈DL

E

(
1(U0,V0)∈S

(
1 + 2

n∑
k=1

b(k)

))

≤ E

 ∑
S∈DL

1(U0,V0)∈S

(
1 + 2

n∑
k=1

b(k)

) .

Using the definition of β̃1 and the fact that
∑

S∈DL 1(U0,V0)∈S = 1, we infer that

‖∆L‖22 ≤

(
1 + 2

n∑
k=1

β̃1(k)

)
. (37)

Combining (36) and (37), we obtain that

‖∆‖2 =
∑

L∈[0,N ]2

‖∆L‖2 ≤ N
2

(
1 + 2

n∑
k=1

β̃1(k)

)1/2

. (38)

We shall now give an upper bound for the term E(R2
N ). Using the result of Rio [17] (Chapter 7, page

123),

RN ≤ 2
√
n2−N +

2∑
j=1

sup
zj∈[0,1]

√
n
(
Fn,j(ΠN (zj) + 2−N )− Fn,j(ΠN (zj))

)
where Fn,1 (resp. Fn,2) is the empirical distribution function of the variables U1, . . . , Un (resp. V1, . . . , Vn).
Let

∆N,j = sup
zj∈[0,1]

√
n
(
Fn,j(ΠN (zj) + 2−N )− Fn,j(ΠN (zj))

)
In order to give an upper bound for ∆N,j , we use exactly the same strategy as for ∆L (with dyadic
intervals instead of dyadic boxes), which gives

‖∆N,j‖22 ≤ 1 + 2

n∑
k=1

β̃1(k).

Hence

‖RN‖2 ≤ 2
√
n2−N +

(
1 + 2

n∑
k=1

β̃1(k)

)1/2

. (39)
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Combining the inequalities (38) and (39), we obtain that there exists a positive constant K such that∥∥∥∥∥ sup
z∈[0,1]2

|µn(z)|

∥∥∥∥∥
2

2

≤ Kn2−2N +KN4

(
1 + 2

n∑
k=1

β̃1(k)

)
.

Taking N = [(2 log 2)−1 log n], we infer that there exists a positive constant C such that∥∥∥∥∥ sup
z∈[0,1]2

|µn(z)|

∥∥∥∥∥
2

2

≤ C(log(n))4
n∑
k=0

β1(k) ,

which is exactly (35).

Last step :

Using (35), we see that we can replace the non-observable quantity γ∗(k) by the estimator γ̂(k) in the
expression of V ∗n , provided that an(log(n))2n−1/2 tends to zero as n tends to infinity. This completes the
proof of Proposition 1.

6 Appendix

In this section, we prove Lemma 1. We first recall some elementary facts given in [3]. Let (Tk)k≥0 be the
sequence of stopping times defined by

T0 = inf{i > 1 : Zi 6= Zi−1} and Tk = inf{i > Tk−1 : Zi 6= Zi−1} for k > 0.

Let τk = Tk+1 − Tk. The random variables (ZTk , τk)k≥0 are iid, ZTk has law ν, and the conditional
distribution of τk given ZTk = x is the geometric distribution G(x). Note that τ0 has a weak moment of
order 2: there exists c > 0 such that P(τ0 > x) ≤ cx−2 for any x > 0.
Let now N(n) = inf{Tk : Tk ≤ n}. We can write

n∑
i=1

(Zi − 0.5) = (T0 − 1)(Z1 − 0.5) +

N(n)−1∑
k=0

τk(ZTk − 0.5) + (n− TN(n))(ZTN(n)
− 0.5) . (40)

Clearly (T0 − 1)(Z0 − 0.5)/
√
n log n converges to 0 in probability, so this term is negligible for the con-

vergence in distribution. Let us now consider the last term in (40), which is a bit more complicated. We
first note that

|(n− TN(n))(ZTN(n)
− 0.5)| ≤ n− TN(n) . (41)

Let t be any integer in [0, n− 2], then

P(n− TN(n) > t) =
n−t−1∑
k=1

P(TN(n) = k) =
n−t−1∑
k=1

k∑
l=1

P(Tl = k,N(n) = l)

=

n−t−1∑
k=1

k∑
l=1

P(Tl = k, Tl+1 > n) =

n−t−1∑
k=1

k∑
l=1

P(Tl = k, τl > n− k) .

Since Tl is independent of τl, and since the τi’s are iid, we get

P(n− TN(n) > t) =
n−t−1∑
k=1

k∑
l=1

P(Tl = k)P(τ0 > n− k) ≤
n−t−1∑
k=1

P(τ0 > n− k) .
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Recall that τ0 has a weak moment of order 2. Hence

P(n− TN(n) > t) ≤ c
n−t−1∑
k=1

1

(n− k)2
≤ c′

t
(42)

for some c′ > 0. From (41) and (42) we easily infer that (n− TN(n))(ZTN(n)
− 0.5)/

√
n log n converges to

zero in probability.
From these considerations, we see that to prove Lemma 1, it is equivalent to prove that

2√
n log n

N(n)−1∑
k=0

τk(ZTk − 0.5)
L−→

n→+∞
N (0, 1) . (43)

To do this, the main point is to prove that the random variable τ0(ZT0 −0.5) has a weak moment of order
2, and to apply a result of Feller [10] on the domain of attraction of the normal distribution. So, let us
compute the tails of τ0(ZT0 − 0.5). If t > 0,

P(τ0(ZT0 − 0.5) > t) = 2

∫ 1

1/2
x(1− x)[t/(x−0.5)]dx ,

and one can easily see that
lim
t→∞

t2P(τ0(ZT0 − 0.5) > t) = 0 .

Now, for t > 0,

P(τ0(ZT0 − 0.5) < −t) = P(τ0(0.5− ZT0) > t) = 2

∫ 1/2

0
x(1− x)[t/(0.5−x)]dx ,

Hence

P(τ0(ZT0 − 0.5) < −t) =
2

t2

∫ t/2

0
y(1− (y/t))[t/(0.5−(y/t))]dy ,

and by the dominated convergence theorem, we obtain that

lim
t→∞

t2P(τ0(ZT0 − 0.5) < −t) = 2

∫ ∞
0

y exp(−2y)dy = 0.5 .

It follows that τ0(ZT0 − 0.5) is in the domain of attraction of the normal distribution (see Feller [10] and
also Gouëzel [12], Section 1.2.2, for a short exposition), and that

√
2√

n log n

n−1∑
k=0

τk(ZTk − 0.5)
L−→

n→+∞
N (0, 1) . (44)

To conclude, it remains to replace n by N(n) in (44), in order to get (43). More precisely, we shall prove
that,

1√
n log n

∣∣∣∣∣∣
[n/E(τ0)]−1∑

k=0

τk(ZTk − 0.5)−
N(n)−1∑
k=0

τk(ZTk − 0.5)

∣∣∣∣∣∣ P−→
n→+∞

0 . (45)

Note that E(τ0) = 2, and recall that N(n)/n converges almost surely to 1/E(τ0) = 1/2.
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Let us prove (45). Let ε > 0, δ > 0, and let Wk = τk(ZTk − 0.5). We have

P

∣∣∣∣∣∣
[n/2]−1∑
k=0

Wk −
N(n)−1∑
k=0

Wk

∣∣∣∣∣∣ > ε
√
n log n

 ≤ P(|N(n)− [n/2]| > δn)

+ P

∣∣∣∣∣∣
[n/2]−1∑
k=0

Wk −
N(n)−1∑
k=0

Wk

∣∣∣∣∣∣ > ε
√
n log n , |N(n)− [n/2]| ≤ δn

 . (46)

Now, the first term on right hand in (46) tends to zero as n → ∞. For the second term, we easily see
that it is smaller than

2P

(
max

1≤k≤δn

∣∣∣∣∣
k∑
i=1

Wi

∣∣∣∣∣ > ε
√
n log n

)
.

Using Etemadi’s inequality [9], we get that

P

(
max

1≤k≤δn

∣∣∣∣∣
k∑
i=1

Wi

∣∣∣∣∣ > ε
√
n log n

)
≤ 3 max

1≤k≤δn
P

(
3

∣∣∣∣∣
k∑
i=1

Wi

∣∣∣∣∣ > ε
√
n log n

)
. (47)

Since (n log n)−1/2
∑n

i=1Wk converges in distribution (see (44)), we easily see that

lim
δ→0

lim sup
n→∞

max
1≤k≤δn

P

(
3

∣∣∣∣∣
k∑
i=1

Wi

∣∣∣∣∣ > ε
√
n log n

)
= 0 .

Going back to (46), we obtain that, for any ε > 0,

lim
n→∞

P

∣∣∣∣∣∣
[n/2]−1∑
k=0

Wk −
N(n)−1∑
k=0

Wk

∣∣∣∣∣∣ > ε
√
n log n

 = 0 ,

and (45) is proved.
Combining (44) and (45), and bearing in mind that E(τ0) = 2, we infer that

2√
n log n

N(n)−1∑
k=0

τk(ZTk − 0.5)
L−→

n→+∞
N (0, 1) , (48)

which is exactly (43). This completes the proof of Lemma 1.
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Ann. Inst. H. Poincaré Probab. Statist., 36(1):1–34, 2000.

[6] Herold Dehling, Daniel Vogel, Martin Wendler, and Dominik Wied. Testing for changes in Kendall’s
tau. Econometric Theory, 33(6):1352–1386, 2017.

[7] Paul Doukhan, Pascal Massart, and Emmanuel Rio. The functional central limit theorem for strongly
mixing processes. Ann. Inst. H. Poincaré Probab. Statist., 30(1):63–82, 1994.
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