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SIGNATURE AND CONCORDANCE OF POSITIVE KNOTS

S. BAADER, P. DEHORNOY, AND L. LIECHTI

Abstract. We derive a linear estimate of the signature of positive
knots, in terms of their genus. As an application, we show that every
knot concordance class contains at most finitely many positive knots.

1. Introduction

Algebraic links arise in the context of plane curve singularities. In terms
of knot theory, they are certain iterated cables of torus links. Their classi-
fication is well-understood, even on the level of smooth concordance: con-
cordant algebraic links are equal [13]. This feature is believed to extend to
various larger classes of knots, in particular to closures of positive braids.
As pointed out by Baker, this would follow from the Slice-Ribbon Con-
jecture [2]. Stoimenow proposed a weaker formulation that is supposed to
hold for the much larger class of positive knots and proved it for closures
of positive braids [19], as well as special alternating knots [20]. As we will
see, an extension of his technique works for positive knots.

Theorem 1. Every topological, locally-flat knot concordance class contains
at most finitely many positive knots.

No larger class of knots is likely to share this feature. Rudolph’s construc-
tion of transverse C-links yields infinite families of smoothly slice quasipos-
itive knots [17]. Furthermore, Baker describes infinite families of smoothly
concordant (in fact, ribbon concordant) strongly quasipositive knots [2],
based on Hedden’s work on Whitehead doubles [9]. Our proof relies on
a careful analysis of the signature function of positive knots. The main
ingredient is a linear estimate of the signature invariant σ of positive links.

Theorem 2. The following inequalities hold for all positive links L:

1

24
b1(L) 6 σ(L) 6 b1(L).

Here b1(L) denotes the minimal first Betti number of all Seifert surfaces
of the link L. The earliest result in this direction is due to Rudolph [16]:
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closures of positive braids have positive signature1. This was independently
extended to positive knots by Cochran and Gompf [3] and to positive links
by Traczyk and Przytycki [21, 15]. Later Stoimenow improved Rudolph’s
result by showing that the signature is bounded by an increasing function
of the first Betti number [19]. The first linear bound for positive braid links
was derived by Feller [5]:

1

100
b1 6 σ 6 b1.

Recently, the lower bound has been improved to 1
8
b1 by the same author [6].

He conjectures the optimal bound to be 1
2
b1 and proves this for closures

of positive 4-braids. An extension of this conjecture to the larger class of
positive links is conceivable, as confirmed by examples with small crossing
number.

Theorem 2 yields a linear bound for the topological 4-genus g4 of positive
knots, in terms of their genus:

1

24
g(K) 6 g4(K).

This follows from Kauffman and Taylor’s signature bound [10], σ 6 2g4(K),
combined with the equality 2g(K) = b1(K), valid for all knots K. Again,
this does not extend to (strongly) quasipositive knots, thanks to a result by
Rudolph [17]: every Seifert form can be realized by a quasipositive surface.
In particular, there exist topologically slice, strongly quasipositive knots of
arbitrarily high genus.

The following section contains basic facts about the signature function,
non-orientable spanning surfaces and the signature formula of Gordon and
Litherland [8]. The proofs of Theorems 1 and 2 are contained in Sections 4
and 3, respectively.

Acknowledgements. We would like to thank Peter Feller for all the
inspiring discussions we have had.

2. The signature function

Let L be a link and ω ∈ S1. Levine and Tristram defined the ω-signature
σω(L) of L to be the signature of the hermitian matrix

Mω = (1− ω)A+ (1− ω̄)At,

where A is a Seifert matrix for the link L [12, 22]. This does not depend on
the choice of Seifert matrix A and for ω = −1, it equals Trotter’s definition

1There exist two opposite conventions concerning the sign of the signature. Here we
adopt Rudolph’s convention: positive links have positive signature.
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of the classical signature invariant σ(L) [23]. Furthermore, since

det(Mω) = det(−(1− ω̄)(ωA− At)) = det(−(1− ω̄))∆L(ω),

the signature function is locally constant except at zeroes of the Alexander
polynomial ∆L, i.e. at finitely many points. A crossing of an oriented link
diagram is positive if, when following the bottom strand, the top strand
comes from the left, and negative otherwise (see Fig. 1). An oriented link
is positive if it admits a diagram with only positive crossings. We will use
that changing a positive crossing to a negative one does not increase the
ω-signature for any ω ∈ S1.

2.1. Gordon and Litherland’s formula for the signature σ(L). Given
a surface S (orientable or not) embedded in the 3-sphere and a curve x
on S, the normal displacement x± of x is the multi-curve in S3 \S obtained
by slightly pushing x normally off the surface in both directions. It is
connected if and only if x is connected and has a non-orientable annular
neighbourhood. The Goeritz form of S is the symmetric bilinear form GS

on H1(S,Z) defined by GS(x, y) = lk(x±, y) [7]. If S is orientable, the
Goeritz form coincides with the symmetrised Seifert form.

positive positive negative negative

type I type II type I type II

Figure 1. The sign of a crossing depends on the orientation of
the strands and the type depends on whether the orientations of
the two strands both agree with a local orientation of the spanning

surface.

The complement of every link diagram in the plane admits two checker-
board colourings. To each of them is associated a spanning surface for the
link obtained by lifting the black faces to 3-space (see Fig. 2). Since they
need not be orientable, the surfaces may have much smaller genus than the
link. Building on the work of Goeritz [7], Gordon and Litherland gave a
formula for computing the signature of the link using this data only [8]. For
an oriented link diagram D with a given checkerboard colouring of R2 \D,
we denote by SD the associated checkerboard surface. A crossing of D is of
type I if the orientation of the two strands induce the same local orientation
on SD and of type II otherwise (see Fig. 1). The formula of Gordon and
Litherland, stated below, contains a quantity µ(SD). In the case of positive
diagrams D, it is simply the number of type II crossings.
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Figure 2. The two checkerboard surfaces associated to a pos-
itive planar link diagram and two bases of their first homology
group (in red).

Theorem 3 (compare [8] Thm 6′′). For D a positive link diagram and
SD the surface associated to a checkerboard colouring, the signature of the
associated link is equal to sign(GSD

) + µ(SD).

In order to compute the signature of the Goeritz form, we assume that
the diagram D is reduced. This means that smoothing any crossing of
D does not split off a link component. Furthermore, we use a particular
basis of H1(S,Z): for every white face of the checkerboard colouring except
one, there is a generator γ that runs around it (see Fig. 2). For such a
generator γ, we denote by fr(γ) the number of type I crossings minus the
number of type II crossings along γ. For two generators γ and γ′, we denote
by i(γ, γ′) their signed number of intersection, that is, the number of type
I common crossing points minus the number of type II common crossing
points. Reducedness guarantees that no generator γ runs twice through the
same crossing. In this basis, the coefficients of the Goeritz form are given
by (GSD

)i,i = fr(γi) for i = j and (GSD
)i,j = −i(γi, γj) otherwise [7].

2.2. The first Betti number of a positive link. Given a positive, non-
split diagram D of a link L, Seifert’s algorithm yields a canonical orientable
surface SD. Cromwell proved that this surface is genus-minimising [4].
Let s(D) be the number of Seifert circles and let c(D) be the number of
crossings of D. By Cromwell’s theorem, we have b1(L) = c(D)− s(D) + 1.

3. Proof of Theorem 2

Let D be a reduced positive diagram of a link L. In particular, there
are no faces with only one edge. We will modify the diagram D at certain
faces with two edges. There are two types of these depending on whether
the boundary builds a Seifert circle or not (see Fig. 3). If yes, there are still
two distinct possibilities. Untwisting the full twist given by both crossings
does or does not reduce the first Betti number (see Fig. 4). Actually, by the
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formula b1(L) = c(D) − s(D) + 1, untwisting does not reduce the genus if
and only if the Seifert circle in question is connected to two distinct other
Seifert circles. We choose to untwist those full twists where untwisting does
not reduce the first Betti number. By this procedure, we obtain a reduced
diagram D′ = D(L′) of a new positive link L′ such that b1(L) = b1(L

′).
Furthermore we have σ(L) > σ(L′), since the untwisting can be realised by
positive-to-negative crossing changes. We now show σ(L′) > 1

24
b1(L

′) for
the new link L′. This implies the same inequality for the link L.

Figure 3. A face with two edges may (right) or may not (left)
produce a Seifert circle.

Figure 4. Untwisting the full twist given by two crossings that
would yield a Seifert circle either reduces by two the number of
crossings and the number of Seifert circles (left) or only reduces
the number of crossings (right).

Choose a checkerboard colouring of the diagram D′ and let S = SD′ be
the surface defined by the black regions. We further distinguish the basis
curves {γi} of H1(S,Z) described above. We say that the curve γi is of type
(m,n) if it runs through m crossings of type I and n crossings of type II, so
fr(γi) = m−n. By considering the boundary orientation along a white face,
we get that m is always even (see Fig. 5). By our simplifications of the link
diagram, we removed all curves of type (0, 1). Furthermore, all curves γi of
type (0, 2) correspond to Seifert circles with two edges we did not untwist
before. If two such Seifert circles meet at a crossing, then they meet at two
crossings (otherwise untwisting a corresponding full twist would not reduce
the first Betti number) and the corresponding part of D′ corresponds to a
2-component Hopf link split from the rest of the link. Hence we can assume
without loss of generality that no two such Seifert circles meet at a crossing,
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so that the number µ = µ(SD′) of crossings of type II is at least twice the
number of curves γi of type (0, 2).

II

I
I

I

II

III
Figure 5. Since type I crossings reverse the orientation around
a white face, there is an even number of them.

Writing γ(m,n) for the number of curves γi of type (m,n), we get that
γ(0, 1) = γ(1, n) = 0 and γ(0, 2) 6 1

2
µ. Furthermore, writing γ<0 for the

number of γi with fr(γi) < 0, we have

γ<0 = γ(0, 2) +
∑
n>m
n>2

γ(m,n).

Since every crossing of type II is met by at most two curves γi, we get

2µ > 2γ(0, 2) +
∑
n>m
n>2

nγ(m,n) > 2γ(0, 2) +
∑
n>m
n>2

3γ(m,n)

and, by combining with the equation above, we obtain

3γ<0 = 2γ(0, 2) +
∑
n>m
n>2

3γ(m,n) + γ(0, 2)

6 2µ+ γ(0, 2)

6 2µ+
1

2
µ

=
5

2
µ,

and therefore γ<0 6 5
6
µ.

Now we estimate the signature of L′ using the formula of Gordon and
Litherland (Theorem 3) discussed in Section 2.1. We actually need to esti-
mate sign(GS). In order to do this, we consider the curves γi with fr(γi) > 0.
Let Γ be the graph with a vertex vi for each curve γi with fr(γi) > 0 and
an edge between two distinct vertices vi and vj if and only if i(γi, γj) 6= 0.
Being defined via a planar construction, the graph Γ is planar. From the
four-colour theorem2 it follows that one can choose a bipartite subgraph

2One could also use five-colourability instead of four-colourability. This would cause
a drop in the constant of Theorem 2 to 1

30 .



SIGNATURE AND CONCORDANCE OF POSITIVE KNOTS 7

Γ′ ⊂ Γ containing at least one half of the vertices [1]. The Goeritz form
restricted to the subspace generated by the curves γi corresponding to the
vertices of Γ′ is given by a block matrix(

D1 X
X> D2

)
,

where D1 and D2 are non-negative diagonal matrices. Since the signature
of such a matrix is non-negative, this gives a subspace of dimension at least

1

2
γ>0 =

1

2
((fw − 1)− γ<0)

restricted to which the Goeritz form GS has non-negative signature, where
fw is the number of white regions in the checkerboard colouring of R2 \D′,
so dim(H1(S,Z)) = fw − 1. Plugging this into the formula of Gordon and
Litherland, we obtain

σ(L′) = µ+ sign(GS)

> µ− (fw − 1) +
1

2
((fw − 1)− γ<0)

> µ− (fw − 1) +
1

2
(fw − 1)− 1

2
(
5

6
µ)

=
7

12
µ− 1

2
(fw − 1).

Using the other checkerboard surface, we have that white faces become
black faces and vice versa, and crossings of type I become crossings of type
II and vice versa. By exactly the same procedure, we get

σ(L′) >
7

12
(c(D′)− µ)− 1

2
(fb − 1).

Finally, we sum both inequalities for σ(L′), observe fw +fb−2 = c(D′), use
c(D′) > b1(L

′) and obtain

2σ(L′) >
7

12
(µ+ c(D′)− µ)− 1

2
(fw + fb − 2)

=
7

12
c(D′)− 1

2
c(D′)

=
1

12
c(D′)

>
1

12
b1(L

′).



8 S. BAADER, P. DEHORNOY, AND L. LIECHTI

4. Proof of theorem 1

Suppose that there exists a topological, locally-flat concordance class K
containing infinitely many positive knots Ki. The average signature func-
tion depends only on the topological, locally-flat concordance class of a knot,
so all the Ki have identical signature function outside the zeroes of their
Alexander polynomials [14]. In particular, all the Ki have the same signa-
ture σ = σ(K) ∈ N. Thus, by Theorem 2, the genera of the knots Ki are
bounded from above by 12σ. It then follows from a theorem of Stoimenow
that there exist finitely many positive knot diagrams Dj, such that every
knot Ki is obtained from one of the Dj by inserting a certain number of
positive full twists at the crossings of Dj (see Fig. 6) [18, Theorem 3.1].

insert positive full twist

Figure 6. Inserting a positive full twist at a crossing. Note
that this operation can be reversed by a positive-to-negative
crossing change.

Since there are infinitely many Ki but only finitely many Dj, we can
assume without loss of generality that all the knots Ki are obtained from
one single reduced diagram D by inserting a certain number of positive
full twists at the crossings c1, . . . , cn of D. Again, since there are infinitely
many Ki but only finitely many crossings, we can assume that the number
of inserted full twists at one of the crossings, say c1, becomes arbitrarily
large as i tends to infinity. Now let K(N) be the knot obtained by starting
from the diagram D and inserting N positive full twists at c1 and let L be
the link obtained from D by smoothing the crossing c1 as in Fig. 7.

smooth crossing
c1

L

Figure 7. The oriented smoothing of a crossing of a positive
knot diagram yields a positive link diagram.

Since the number of inserted positive full twists at the crossing c1 becomes
arbitrarily large as i tends to infinity, for every N ∈ N, the knot K(N)
can be obtained from one of the Ki by applying some positive-to-negative
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crossing changes. In particular, we have

σω(K) > σω(K(N))

for all non-algebraic ω ∈ S1 and N ∈ N. Here and in the following, we
consider non-algebraic numbers ω ∈ S1, guaranteeing that σω as defined in
Section 2 is a concordance invariant of knots. Since K is the concordance
class of a knot, σω(K) = 0 for ω close enough to 1 ∈ S1. Choose ω0 such
that σω0(K) = 0 and ∆L(ω0) 6= 0. The second condition can be achieved
since the coefficient of the linear term of the Conway polynomial of a two-
component link equals the linking number of its components and thus the
Alexander polynomial ∆L is not identically zero. Here we use that L is
non-split (otherwise D would not be reduced) and positive. We now show
that N can be chosen so that σω0(K(N)) > 0. This will be the contradiction
we are looking for.

Since a Seifert surface for K(N) can be obtained from a Seifert surface
of L by glueing a suitably twisted ribbon, a Seifert matrix for K(N) can be
chosen to be

A =

(
x w
v B

)
,

where B is a Seifert matrix for L, v is a column vector, w is a row vector
and x is a natural number. In fact, nothing depends on N except for x
and x > N

2
. We are interested in σω0(K(N)), which is the signature of the

matrix

SN =

(
(2− 2Re(ω0))x (1− ω0)w + (1− ω̄0)v

t

(1− ω0)v + (1− ω̄0)w
t (1− ω0)A+ (1− ω̄0)A

t

)
=:

(
x′ ∗
∗ B′

)
.

The determinant of this matrix equals x′det(B′) + r, where r ∈ N does
not depend on N and det(B′) 6= 0 since ∆L(ω0) 6= 0. From this it follows
that for large enough N , the determinant of SN has the same sign as the
determinant of B′. In particular, the matrix SN has one more positive
eigenvalue than B′. A theorem by Przytycki implies σω0(L) > 0 since L is
a positive link [15]. Therefore the signature of SN is strictly positive for N
large enough. In particular, this implies σω0(K) > 0, a contradiction.

Remark 4. For positive knots, the smooth 4-genus equals the Seifert genus,
by a theorem of Kronheimer and Mrowka [11]. Using this, our proof of
Theorem 1 works in the smooth category without referring to Theorem 2.
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