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INTRODUCTION

Over the last years randomized clinical trials have tried to show the benefits of cardiac resynchronization therapy (CRT) to reduce mortality and morbidity in patients with congestive heart failure. [START_REF] Cleland | and Cardiac Resynchronization-Heart Failure (CARE-HF) Study Investigators, "The e↵ect of cardiac resynchronization on morbidity and mortality in heart failure[END_REF] However, results have demonstrated that up to 30% of patients are non-responders to CRT 2 and that commonly used echocardiographic criteria cannot be recommended for patient selection and therapy optimization. [START_REF] Chung | Results of the predictors of response to crt (prospect) trial[END_REF] Mechanical indices for therapy optimization can also be obtained from either external sensors (seismocardiography) or implantable devices (peak endocardial acceleration) to measure myocardial contractility and hemodynamic heart function (max dp/dt). [START_REF] Bordachar | Validation of a new noninvasive device for the monitoring of peak endocardial acceleration in pigs: implications for optimization of pacing site and configuration[END_REF][START_REF] Halvorsen | Automatic real-time detection of myocardial ischemia by epicardial accelerometer[END_REF] More importantly they have been proposed as an optimization tool for CRT. [START_REF] Delnoy | Validation of a peak endocardial acceleration-based algorithm to optimize cardiac resynchronization: early clinical results[END_REF][START_REF] Olsen | Predicting response to cardiac resynchronization therapy with cross-correlation analysis of myocardial systolic acceleration: a new approach to echocardiographic dyssynchrony evaluation[END_REF] These indices are based on external or internal accelerometers that detect acceleration signals induced by the myocardium as a consequence of various mechanical forces that originate from myocardial contraction and blood flow at a single location.

Despite their high temporal sampling, accelerometers measure mechanical function locally, which might provide di culties in the global characterization of cardiac dyssynchronies. Also it was indicated that accelerometer measurements are influenced by patient orientation and gravity. [START_REF] Remme | Simulation model of cardiac three dimensional accelerometer measurements[END_REF][START_REF] Remme | Validation of cardiac accelerometer sensor measurements[END_REF] Using medical images, in addition to the non-invasiveness of the method for computing myocardial acceleration, has the advantage of estimating this information at every location of the myocardium. However, their processing requires being able to accurately segment the cardiac anatomy and track it along the cardiac cycle. Automatic segmentation at a given instant of the cycle can be addressed by recent techniques such as Active Shape Models (ASM), where correspondence between the model and the studied subject is computed through volumetric elastic registration. [START_REF] Frangi | Automatic construction of multipleobject three-dimensional statistical shape models: application to cardiac modeling[END_REF] The resulting correspondence has been used for simulation of cardiac electrical and haemodynamical function. [START_REF] Pashaei | E↵ect of scar development on fast electrophysiological models of the human heart: In-silico study on atlas-based virtual populations[END_REF][START_REF] Moosavi | Numerical simulation of blood flow in the left ventricle and aortic sinus using magnetic resonance imaging and computational fluid dynamics[END_REF] Tracking along the cardiac cycle can be addressed by recently proposed algorithms such as temporal di↵eomorphic free-form-deformation (TDFFD), which extends previous di↵eomorphic FFD algorithms to 3D+t. [START_REF] De Craene | Temporal di↵eomorphic free-form deformation: application to motion and strain estimation from 3d echocardiography[END_REF] The algorithm provides rather smooth displacements, both in time and space, which may be an advantage for the estimation of acceleration (second temporal derivative of displacement). In this paper, we present the results achieved on a synthetic heart phantom with known ground truth for displacement at specific locations.

MATERIALS AND METHODS

Imaging data

A dynamic multimodality heart phantom (DHP-01, Shelley Medical Imaging Technologies, London, ON, CA) was employed to provide data for validation of the acceleration measurement from images. This phantom mimics realistic anatomical geometry of the left and right ventricles of the human heart. It has two controlable actuation systems to simulate the required myocardial deformation. The experimental phantom setup is shown in Fig. 1. The study is repeated for two actuator configurations in which deformation of the myocardium follows linear and sinus wave form functions. All images were acquired with gating to a simulated vector ECG. Segmentation was performed at end-diastole. Acceleration was computed from 3D echocardiographic sequences (3DUS), and 2D sequences were used for ground truth checking directly from the images (using M-mode visualization). Temporal resolution was around 20 fps for 3D and > 100 fps for 2D. 

Deformation data

Segmentation of the left ventricle (LV) was first performed using 3D Active Shape Models (ASM). [START_REF] Van Assen | SPASM: a 3D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data[END_REF][START_REF] Tobon-Gomez | Automatic training and reliability estimation for 3d asm applied to cardiac mri segmentation[END_REF] The mesh resulting from the segmentation was matched to the 3DUS sequence and propagated along the cycle by means of a non-rigid image registration algorithm (TDFFD). With this segmentation-registration approach we can guarantee the anatomical correspondence of all points in the biventricular mesh. We used a two-level multiresolution implementation of the TDFFD, the initial grid size being of one control point per frame in the temporal direction, 5 control points in the short-axis direction and 3 control points in the long-axis direction. As similarity measure, we used the sum of squared di↵erences between the intensities of each frame and a reference (end-diastole) one. We used the limited memory Broyden-Fletcher-Goldfarb-Shannon minimization with simple-bounds as optimizer (L-BFGS-B). [START_REF] Byrd | A limited memory algorithm for bound constrained optimization[END_REF] The output of the algorithm is a 3D+t displacement field, from which acceleration is computed further on. The LV was divided using the 17-segment model as proposed by the American Heart Association (AHA). [START_REF] Cerqueira | Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association[END_REF] 

Computation of acceleration

The displacement vector and time interval between image sequences were used to approximate the acceleration vector. Numerical di↵erentiation was computed with a forward di↵erence scheme for the first derivative to compute the velocity of the points. Fig. 2 illustrates the reference and deformed configurations used to describe the formulation for computing acceleration. Consider a point p with position vector x n at reference time t n whose tracked position in time t n 1 and t n+1 is projected within the same coordinate system. Superscript n here indicates arbitrary time frame from image data. The displacement vector of this point is described by a scalar distance x and unit vector e, indexed by a and b for deformed configurations before and after this time frame. The unit vectors for these displacement vectors are computed as below:

e a = x n x n 1 |x n x n 1 |
, and e b =

x n+1 x n |x n+1 x n | . (1) 
Assuming uniform sampling of the temporal sequences ( t = t

n t n 1 = t n+1 t n )
, the speed of point p in the reference time frame n will be obtained from:

v n = v a + v b 2 , (2) 
This a pre-print version. The final document is available at http://spiedigitallibrary.org/proceedings/ (a) (b) where speed values v a and v b are computed from distance and timing data as

|x n x n 1 | t n t n 1 and |x n+1 x n | t n+1
t n , respectively. Velocity vector is defined as multiplication of v n to unit vector e n tang which is tangent to the point trace over time. Acceleration is the time rate of change of velocity vector,

d(v n e n tang )
dt . In the expanded form this derivative will be:

a n = dv n dt e n tang + v n de n tang dt , (3) 
and discretized as

a n = v b v a t e n tang + v n |e b e a | t e n norm . (4) 
Therefore, the acceleration vector is composed of two perpendicular components: e n tang which is tangent to the trajectory of the point and e n norm is normal to this trajectory (in the direction that unit tangent vector rotates). The following definitions for the unit vectors are used: 

Using these unit vectors, the acceleration vector can further be projected onto a local cardiac coordinate system to obtain the acceleration in the radial, circumferential and longitudinal directions. These directions are defined on the mesh obtained from segmenting the LV. Computation was repeated for all nodes in all time frames. Data for the first and last frames were computed under periodicity assumption (therefore implying the last and first frames, respectively).

RESULTS

Ground truth

2DUS sequences were used to estimate the ground truth displacement magnitude directly from images. This is performed at the apex location, as actuators are connected to the apex, and the displacement visible on the images directly relates to the actuator displacement. This process was realized for both linear and sinus waveforms, as presented in Fig. 3. The peak of displacement for the linear and sinus deformation is about 30 ± 1 mm, which is close to 28.5 mm, the setting for the stroke of the actuator in the phantom as used in the program.

This a pre-print version. The final document is available at http://spiedigitallibrary.org/proceedings/ 

Local displacements

The displacement map is calculated for each node of the mesh, along the cardiac cycle. The first time frame corresponds to the end-diastolic phase. Fig. 4 illustrates the recovered displacements magnitude at the apex (average over the 17th AHA segment), so that comparison with the 2D M-mode traces can be easily performed. For the linear waveform, results obtained with TDFFD are compared with the ones obtained with manual propagation of the ASM along the cycle, the latter being much noisier. Fig. 5 illustrates the recovered displacements magnitude at the apex using TDFFD and its comparison with an analytic sine wave function. TDFFD follows the configured displacement function, however comparison with M-mode shows that our image-based methods underestimates displacement magnitude. 

Local acceleration

Fig. 6 shows the acceleration of apex for the case with sine wave form displacement. The acceleration curve presents some fluctuations due to the second order di↵erentiation using a sparse number of time frames. The acceleration peak corresponds to the displacement peak that has the maximum deformation, resulting similar configuration as a sine wave as expected for the acceleration for apex. Fig. 6(b) provides the projection of the acceleration wave along the radial direction in the apex, presenting even less noise in the curve. 

Acceleration map

DISCUSSION

In this study, we have presented a method to compute myocardial acceleration from 3D image sequences. Computing myocardial acceleration from medical images has several advantages over other existing techniques: (1) the echocardiographic acquisition is non-invasive, and the invasiveness of the CT procedure could be overcome by directly segmenting echocardiographic data; (2) is less sensitive to environmental factors such as breath, sensor placement and gravity; (3) provides information at any location of the myocardium, and not a single one.

The results accuracy is highly conditioned by the temporal resolution, particularly critical in 3D, and source of noise for acceleration computations (second temporal derivative). Since the calculation of the acceleration depends on displacement fields obtained using ASM and TDFFD algorithms along heart cycle, imaging quality has a significant role. This a pre-print version. The final document is available at http://spiedigitallibrary.org/proceedings/ Note that the technique is not specific to 3D echocardiography and could be applied to any imaging modality, provided its quality and spatiotemporal resolution are enough. Further extension of the method will consist in its application to real patient data.

CONCLUSION

We demonstrated the feasibility of the methodology for acceleration computations. An advantage of our method is the use of non-rigid registration algorithm to estimate smooth myocardial velocities, thus obtaining a less noisy acceleration. Good correlation has been demonstrated between the displacement field computed from using construction of shape model and phantom setup. Due to the low number of time frames, the acceleration signals of points are sparse. The study suggests a non-invasive technique to measuring the cardiac acceleration that might be used to improve the monitoring of cardiac mechanics and optimization of CRT.
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 1 Figure 1. The dynamic heart phantom and related experiments: (a) a schematic of the phantom structure, including biventricular heart phantom, its chamber and related control system, (b) a closer view of the biventricular heart phantom and (c) a snapshot of 2D orthogonal cuts from a 3D echocardiographic sequence of the phantom.

Figure 2 .

 2 Figure 2. Reference and deformed configurations for computation of acceleration.

Figure 3 .

 3 Figure 3. 2D M-mode sequences used for estimating the ground truth deformation field for (a) linear and (b) sine wave form deformation of the phantom.

Figure 4 .

 4 Figure 4. Left ventricular apex displacement vector magnitude along one cardiac cycle given from manual segmentation (solid line), and TDFFD algorithm (dashed line) for the linear displacement programming.

Figure 5 .

 5 Figure 5. Left ventricular apex displacement along one cardiac cycle given from TDFFD algorithm (solid line) compared to an analytic sinus wave (dashed line). The TDFFD algorithm accurately follows the sine wave function, which is used for phantom configuration.

Fig. 7

 7 Fig.7shows the distribution of the acceleration map at di↵erent phases during heart cycle. In general apex region has the highest acceleration at di↵erent time frames, while lower values are observed for the basal level. The maximum acceleration distribution is observed in time 0 and time 1, when higher values of acceleration observed. Over the cycle, we obtained a rather smooth change on the spatial distribution.

Figure 6 .

 6 Figure 6. Acceleration of Left ventricular apex for the sine wave: (a) magnitude of computed acceleration vector and, (b) its projection along the radial direction.

Figure 7 .

 7 Figure 7. Spatial distribution of the acceleration map during the heart cycle over normalised time. Units in m.sec2.
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