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1 Hospital Cĺınic - IDIBAPS - Universitat de Barcelona, Spain
2 Universitat Pompeu Fabra, Barcelona, Spain

3 ICREA, Barcelona, Spain
4 Philips Research, Medisys, Suresnes, France

Abstract. The present paper aims at quantifying the evolution of a
given motion pattern under cardiac resynchronization therapy (CRT). It
builds upon techniques for population-based cardiac motion quantifica-
tion (statistical atlases, for inter-sequence spatiotemporal alignment and
the definition of normal/abnormal motion). Manifold learning is used on
spatiotemporal maps of myocardial motion abnormalities to represent a
given abnormal pattern and to compare any individual to that pattern.
The methodology was applied to 2D echocardiographic sequences in a
4-chamber view from 108 subjects (21 healthy volunteers and 87 CRT
candidates) at baseline, with pacing ON, and at 12 months follow-up.
Experiments confirmed that recovery of a normal motion pattern is a
necessary but not su�cient condition for CRT response.

1 Introduction

Mechanisms-based characterization of motion and deformation has recently shown
its potential to improve our understanding of the etiologies of heart failure [2].
In the context of cardiac resynchronization therapy (CRT), where the impor-
tant rate of non-response still needs to be reduced [3], mechanical dyssynchrony
is recommended to be assessed before and after treatment. However, due to
the complexity of the observable patterns, single measurements of mechanical
dyssynchrony (in particular, time-to-event and peak magnitude measurements)
rapidly showed strong limitations [8]. For a more comprehensive analysis, re-
cently published studies recommend to first identify potential sources of dyssyn-
chrony by looking at specific motion and deformation patterns. This can be
achieved through visual inspection or pattern-specific measurements [13] [11].

Learning the representations of such patterns is mostly done visually by each
clinician as part of his/her clinical routine. Furthermore, current quantification
tools are not targeted towards intra- and inter-subject comparison of patterns.
Main limitations hampering this are the lack of (i) a common spatiotemporal
reference system to compare subjects, and of (ii) e�cient pattern analysis tools
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Fig. 1: 2D maps of spatiotemporal motion abnormalities used as input for the method
presented in this paper. A variety of the patterns that may be observed.

to actually compare patterns and not only information at each voxel or segment
separately. The first point has been addressed by methods derived from com-
putational anatomy (an overview of recent advances is given in [12]), providing
both an anatomical reference and a framework to transport subject-specific in-
formation to this reference. The second point may be addressed by the use of
dimensionality reduction techniques to describe the principal characteristics of
the studied patterns. One of the main issues here is whether the inter-subject
variability (and therefore, the studied pattern) can be accurately described by
linear or non-linear techniques (a selected review is done in [1]).

In the present paper, we are interested in characterizing the motion patterns
of a population of CRT candidates from 2D echocardiographic sequences before
and after the therapy (baseline, with pacing ON, and at follow-up). We build
upon recent methods for the spatiotemporal alignment of motion information
(myocardial velocities) to a common reference and population-wise characteriza-
tion of normality (statistical atlas of motion [5]). This allows local quantification
of abnormal motion and qualitative observations of the variety of abnormal mo-
tion patterns in CRT candidates, in relation to CRT response [7]. However, these
methods still do not reach a quantification (of CRT-induced changes) based on
pattern comparison. In the present paper, we use a recent method representing
a specific abnormal motion patterns as a pathological deviation from normality
[6]. We extend this analysis to a pattern-wise understanding of CRT-induced
changes in myocardial motion and their relation with CRT response.

2 Methods

2.1 Learning the pattern representation as manifold

Manifold learning is first used on a population with a specific abnormal mo-
tion pattern, assuming that this pattern can be represented by a (non-linear)
manifold. Maps of motion abnormalities [5], representing patterns of (ab)normal
motion (Fig.1), are used as input images for our method. However, our algo-
rithm is independent of the input image type, provided the above-mentioned
hypothesis holds. For this reason, we kept the formulation general in this sec-
tion. Application-oriented details and interpretation are given further.

All the images considered in this paper belong to an ambient space A ⇢ RP ,
where P is the number of pixels in each image, and are compared according to
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the metric SA : A⇥A ! R+. The subgroup of N + 1 images used for learning
the manifold M ⇢ A is denoted I = {I0, ..., IN} ⇢ A.

Learning is performed through the isomap algorithm [14], which provides
a set of coordinates X = {x0, ...,xN} ⇢ C, where C ⇢ RM is the coordinate
space of the surface defining the manifold, of estimated dimensionality M , and
equipped with the metric SC : C ⇥ C ! R+.

2.2 Mapping new subjects

Any image I 2 A is then associated to another image in the manifold Î 2 M,
using the composition of the correspondence functions f : A ! C and g : C ! A,

Î = g � f(I). (1)

In the following, we assume that the manifold may not pass exactly by the
training set (I 6⇢ M) for all but one image, used as origin, by convention chosen
to be I0. In the specific context of our application, where images correspond to 2D
maps of abnormality, the origin I0 corresponds to a synthetic image representing
a perfectly normal motion pattern (0 value at every pixel, Sec.3.2), and is added
to the real dataset {I1, ..., IN} before any computation.

f and g can be estimated using interpolation techniques, inspired from the
concept of principal curves [10]. Under the assumption that I 6⇢ M, this can be
formulated as an inexact matching problem, adapted to force the interpolation
function to pass by the origin coordinates x0 or image I0 (in the case of f or
g, respectively). For the sake of clarity, we detail the formulations for f only,
similar expressions being obtained for g by interchanging the role of images and
coordinates. Using the framework of reproducible kernel Hilbert spaces (RKHS,
see [6] for further details on the present application), this leads to set:

f(I) =
NX

i=0

kF (I, Ii) · ci with C =
�
KI +

1

�f
M

��1 ·X, (2)

where �f is a weighting coe�cient balancing the smoothness of the interpolation
and the adherence to the data, C = (c0, . . . , cN )t and X = (x0, . . . ,xN )t both
2 MN+1,M (the set of (N+1)⇥M -dimensional real-valued matrices), and KI =�
kF (Ii, Ij)

�
(i,j)2[0,N ]2

and M =
�
Mi,j

�
(i,j)2[0,N ]2

both 2 MN+1,N+1, with Mi,i =

1 8i 6= 0 and 0 otherwise. The scalar function kF defining the kernelKF is chosen
as kF (I,J) = exp

�
� SA(I,J)2/�2

F
�
, with (I,J) 2 A2, �F being its bandwidth.

2.3 Distance computation and statistical analysis

The composition of f and g (Eq.1) allows defining two distances A ! R+:
dP , between any image I 2 A and the manifold [9], and dM , which compares
individuals to the origin along the manifold structure:

dP (I) = SA(Î, I) and dM (I) = SC
�
f(I),x0

�
. (3)
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These two distances provide a 2D space into which any image I 2 A is
mapped. In the case of our application (Sec.3), each image corresponds to (the
motion abnormalities of) one subject at a given stage of the therapy. The vi-
sualization of individual data in this 2D space was complemented by groupwise
statistical comparisons of 2D unpaired and paired data. Fisher’s linear discrimi-
nant was used to find the direction of maximum separation between each pair of
compared groups, and 1D statistical tests were performed along this direction:
Mann-Whitney U -test (inter-group comparison), and Wilcoxon signed-rank test
(paired data). Non-parametric tests were preferred due to the limited number
of samples in each class. p-values below 0.05 were considered as statistically sig-
nificant di↵erence between the tested groups. All data were analyzed using the
SPSS statistical package v.15.0 (SPSS Inc., Chicago, IL).

3 Experiments and results

3.1 Dataset description

The method was applied to a database of 108 subjects (21 healthy volunteers
and 87 CRT candidates acquired at baseline, with CRT pacing ON, and at 12
months paced follow-up). 56 patients shared a specific abnormal motion pattern
of intra-ventricular dyssynchrony at baseline, also referred to as septal flash (SF)
or septal rebound stretch [13] [11]. This pattern is highly related to the pres-
ence of left bundle branch block and has been shown to highly determine CRT
response, although the link between this electrical dyssynchrony and its mechan-
ical manifestations has not been fully established yet. It is characterized by a
fast inward/outward motion of the septum during the isovolumic contraction,
and is visible on radial displacement and velocity traces. 2D echocardiographic
sequences were acquired for these subjects in a 4-chamber view, in which the sep-
tum is fully visible from base to apex, with a temporal resolution high enough to
accurately characterize fast patterns such as a SF (around 60 fps for the volun-
teers and 30 fps for the CRT candidates, who have dilated hearts and therefore
require the use of a broader ultrasound sector, resulting in a lower frame rate).

Clinical characteristics about the groups of volunteers and CRT candidates
were detailed in [7]. From a statistical point-of-view, additional justifications
about the use of such a population were extensively described in [5].

3.2 Input images: 2D spatiotemporal maps of motion abnormalities

Motion (myocardial velocities) was estimated along these sequences using tem-
poral di↵eomorphic free-form deformation (TDFFD [4]), which enforces tempo-
ral consistency and provides di↵erentiable velocities. These velocities were spa-
tiotemporally aligned to a common reference using the framework of [5], and the
2D spatiotemporal abnormality maps were computed (Fig.1). In these maps, the
horizontal and vertical axes are time (systole only) and space (position along the
septum, from base to apex), respectively. Each pixel of a given map corresponds
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N dM dP p vs. BAS p vs. Healthy
Healthy 19 BAS 16.5± 9.3 21.3± 15.8 . .

SF (training + tested) 56
BAS 60.6± 27.5 10.1± 5.5 . < 0.001
ON 32.4± 19.9 32.5± 15.6 < 0.001 0.002
FU 33.5± 17.3 34.0± 16.6 < 0.001 < 0.001

Other 31
BAS 32.1± 17.9 26.4± 14.2 . 0.037
ON 36.2± 27.7 32.2± 12.7 0.014 0.012
FU 28.2± 15.2 41.6± 30.0 0.002 0.006

Table 1: Average values of dP and dM for each subpopulation at baseline (BAS), with
pacing ON, and follow-up (FU).

to a statistical index computed at this spatiotemporal location to estimate ab-
normality (p-value resulting from the Mahalanobis distance when comparing the
studied subject to the healthy population of 21 healthy volunteers; in the present
application, the logarithm of this p-value is used to get better readability of the
abnormality scale, and multiplied by the sign of the radial velocity to di↵erenti-
ate between inward and outward motion of the septum [5]). According to these
conventions, the origin image I0 (Sec.2.2) is defined as an image having 0 value
at every pixel, which therefore corresponds to a perfectly normal motion pattern.

3.3 Parameters optimization

Optimal values for the method parameters were previously estimated for this
dataset [6], and are only listed here due to text extent constraints. Training
was done on a subgroup of 50 SF patients. Dimensionality and number of K-
NN were estimated to be M = 4 and K = 5. Kernels bandwidths were locally
adapted depending on the neighborhood size to prevent from non-uniformities
in the points distribution, and set to the average distance between the K-NN
[6]. The weighting terms were found to be log(�f ) = 1 and log(�g) = 0.5.

3.4 Pattern-based analysis of CRT induced-changes

The analysis was performed in the 2D space defined by dP and dM (interpretable
here as distance to the SF pattern, and distance to normality along the estimated
manifold, respectively). Normality range was defined relatively to the covariance
computed for the healthy population (19 healthy volunteers; two of them were
considered as outliers due to high velocities [and therefore higher abnormality
values], but normal velocity patterns). It corresponded to the ellipse of semi-
minor/major axes twice bigger than the one obtained from PCA on this sub-
population (in this 2D space). This value was used as threshold to label patients
who (at follow-up) recovered a normal motion pattern and the ones remaining
abnormal.

Analysis per population Fig.2a represents the 2D space formed by dP and
dM including all subjects. At baseline, patients with SF have low dP (both
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N dM dP p vs. BAS p vs. Healthy

Resp., recov. 22
BAS 65.8± 29.6 11.6± 6.0 . < 0.001
ON 32.8± 20.4 34.0± 18.7 < 0.001 0.008
FU 19.5± 7.7 26.7± 9.6 < 0.001 NS

Resp., non-recov. 21
BAS 54.4± 23.5 8.6± 5.0 . < 0.001
ON 26.3± 14.9 31.4± 13.2 0.005 < 0.001
FU 48.0± 15.1 33.7± 16.7 0.002 0.001

Non-resp. 12
BAS 61.0± 31.1 10.5± 5.3 . < 0.001
ON 43.5± 25.2 27.8± 7.8 < 0.001 NS
FU 33.9± 11.9 48.0± 18.8 < 0.001 < 0.001

Table 2: Average values of dP and dM for each subgroup of SF patients at baseline
(BAS), with pacing ON, and follow-up (FU). NS: non-significant p-value.

training set and tested subjects; the value of dP for the training ones reflects
the adherence to the data retained in the inexact matching problem). Their
arrangement according to dM actually corresponds to the amount of abnormality
observed in each map, when looked at individually. Patients with an abnormal
pattern di↵erent from SF are farther from the manifold (higher dP ) and out
of the normality range. The limits of more conventional approaches to perform
the same analysis were discussed in detail in [6], including concrete comparisons
with the linear case (PCA).

Under the e↵ect of pacing (both CRT ON and follow-up), patients with SF
at baseline reach higher values of dP , reflecting that the SF pattern tends to
disappear, and lower values of dM , meaning either that they get closer to nor-
mality, or that their new motion pattern cannot be accurately reconstructed
from the training population. However, the first hypothesis can be confirmed
from a direct look at echocardiographic sequences. Patients without SF at base-
line tend to reduce abnormalities, and the observed pattern does not turn into
a SF. Statistical analysis of these values is given in Tab.1 as complement.

Link with CRT response (SF only) Fig.2b relates the previous analysis
with CRT response (defined as a reduction � 15% in left-ventricular end-systolic
volume, without heart transplantation). This analysis is performed for the subset
of SF patients only. Indeed, for the patients without SF at baseline (with another
abnormal pattern), our method is only able to tell if the pattern got closer to
SF/normality, but not if this abnormal pattern is still present or not (as the
manifold is learnt from a subgroup of SF patients only). Patients are divided into
responders who recovered a normal motion at follow-up (who went within the
normality range defined by the healthy population covariance), responders for
which abnormal motion is still present (out of this range), and non-responders.
At baseline, no di↵erence is visible between these subgroups, meaning that the
presence of SF is not a su�cient condition for CRT response. In these subgroups,
the SF pattern tends to disappear with pacing ON (higher dP ) and motion
gets closer to normality (lower dM ), but the three groups are still mixed. On
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Fig. 2: 2D representation of the studied subjects (according to dP and dM ) at baseline,
with pacing ON, and follow-up (FU). (a) all subjects; (b) SF patients only.

the contrary, larger inter-group separation is observed at follow-up. Patients
who recovered normal motion are within the range of healthy volunteers (by
definition), and are almost all responders. Patients with abnormal motion still
present may eventually be responders or not. This confirms that the recovery
of a normal motion pattern is a necessary but not su�cient condition for CRT
response. Statistical analysis of these values is given in Tab.2 as complement.

Limitations Note that our objective is not to achieve perfect clustering be-
tween the di↵erent subgroups. Our method compares individuals to the manifold
learnt for SF only, meaning that clustering between the other classes may not be
achieved. The tolerance to the data dispersion around the learnt manifold may
also lower the clustering ability, when comparing individuals to the SF pattern.

One should remember that the overall evolution of individuals with CRT is
probably more complex than uniquely motion-based observations. The correction
of motion abnormalities is one characteristic to look at, among others such as
clinical condition and remodeling. However, the population analysis presented
here already allows to understand part of the overall evolution of the considered
subpopulations, and the statistical tests used (dealing with groups means and
distribution) served for adding a quantitative index to this evolution.

4 Conclusion

We presented a method for the comparison of myocardial motion patterns, in-
cluding a way to represent a given abnormal pattern as a deviation from nor-
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mality. In the context of CRT, the interest of our method resides in performing
population-wise analysis of relevant patterns and quantifying therapy-induced
changes of these patterns, which may overcome the limitations of current quan-
titative studies. Additionally, this approach allows to identify patients that have
a non-typical behavior (e.g. responders with still abnormal motion). Investigat-
ing this further on from a clinical point-of-view might open up new directions
towards understanding cardiovascular diseases.
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