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Abstract. This paper targets the specific issue of out-of-sample inter-
polation when mapping individuals to a learnt manifold. This process
involves two successive interpolations, which we formulate by means
of kernel functions: from the ambient space to the coordinates space
parametrizing the manifold and reciprocally. We combine two existing
interpolation schemes: (i) inexact matching, to take into account the
data dispersion around the manifold, and (ii) a multiscale strategy, to
overcome single kernel scale limitations. Experiments involve synthetic
data, and real data from 108 subjects, representing myocardial motion
patterns used for the comparison of individuals to both normality and
to a given abnormal pattern, whose manifold representation has been
learnt previously.

1 Introduction

In this paper, we address the specific issue of out-of-sample interpolation when
mapping individuals to a learnt manifold. This process aims at estimating the el-
ement of the manifold that shares the same coordinates than a tested individual,
possibly out of this manifold. This approach shares similar objectives with the
“pre-image” problem [10], but di↵ers in that it explicitly looks for a formulation
of the correspondence functions between the ambient space and the manifold [9]
[8].

The estimation of these functions consists of two separated interpolation
problems, from the ambient space to the space of coordinates parametrizing the
manifold, and reciprocally [6]. Each of them can be formulated by means of kernel
functions. In particular, the framework of reproducible Kernel Hilbert spaces
(RKHS) allows setting the mathematical foundations to solve this problem. Its
formulation is similar to the Nyström extension, and was used as the out-of-
sample extension in the field of manifold learning in [2]. Some analogies to the
Ridge regression and Kriging technique [13] were also reported in [4].
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Variants of this interpolation problem including regularization were also pro-
posed in [1]. In the context of our application, this means assuming that the
manifold may not pass exactly by the training set, namely that some dispersion
of the data around the manifold can be tolerated. The interpolation can there-
fore be written as an exact or inexact matching problem, or a combination of
both, depending on the assumptions made on the studied data [6].

However, such formulations only consider a unique scale of extension (a
unique kernel bandwidth), which may be set as the average distance between
the k-nearest neighbors (k-NN) over the whole dataset [9]. In fact, the data dis-
tribution and its local density (when non-uniformly distributed) may turn the
issue of choosing an appropriate kernel bandwidth critical. This is likely to be
the case when processing real data. Some proposed alternatives consisted in lo-
cally adapting the neighborhood size (number of k-NN) and using equal weights
instead of using a kernel with a certain bandwidth [14], or locally adapting the
kernel bandwidth to the neighborhood size [6]. The latter has the advantage of
maintaining a kernel-based formulation of the interpolation problem, but results
in a loss of symmetry of the considered kernel.

Alternatively, a multiscale scheme for kernel-based interpolation was pro-
posed in [4], which relied on a family of functions called geometric harmonics.
The algorithm was recently detailed in [3], but the technique was only described
for the exact matching procedure.

In the present paper, we combine both the multiscale extension and inexact
matching schemes and apply this to the above-mentioned problem of mapping
individuals to a learnt manifold. Special attention is paid to the estimation of
the involved parameters (the weighting term in the regularization part of the
interpolation and the smallest scale performing the analysis). Experiments in-
volve synthetic data and the real data used in [6]. Such data was previously used
for the characterization of the myocardial motion pattern of a given individual
with respect to normality and to a given (abnormal, in our case) pattern, whose
representation had been learnt using manifold learning techniques.

2 Methods

2.1 Inexact matching problem

We formulate the interpolation problem as follows. We denote by f : A ! C
the function to be interpolated, whose values are only known at the sample
locations {Ii}i2[0,N ] ⇢ A, namely {xi = f(Ii)}i2[0,N ] ⇢ C. The dimensionalities
of A and C are P and M , respectively. The metrics on these spaces are denoted
by SA : A⇥A ! R+ and SC : C ⇥ C ! R+.

We may want to constrain the interpolation to be exact at some specific
locations (Fig.1a). Without loss of generality, we assume in the following that
this subset is made of the first J points. Thus, we look for a function f solution
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Fig. 1: (a) Synthetic dataset interpolated using single scale interpolation (inexact
matching), without/with the addition of a constraint forcing the curve to pass by the
point indicated by the arrow. (b) Synthetic dataset with varying density due to varying
frequencies of the function parametrizing the dataset. Interpolation (exact matching
for all points) using either single scale extension, the choice of a given kernel bandwidth
being not robust to local variations in the density of the dataset (black arrow), or the
multiscale extension scheme, which provides such a robustness.
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Here, �f is a weighting coe�cient balancing the smoothness of the interpolation
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real-valued matrices) is the reproducible kernel of F , and ci 2 C.
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is arbitrarily chosen as kF (I,J) = exp
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being its bandwidth.

2.2 Multiscale extension

The multiscale extension algorithm consists in iterating such a process across
scales s (from large to small scales, the kernel bandwidth being set to �F = T/2s,
with T > 0).

The function to be interpolated at scale s is f �F

(s�1), the algorithm being
initialized with F

(�1) = 0. The application of the previously described interpo-
lation scheme results in an approximation f

(s) of f�F

(s�1), and therefore to an
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approximation F

(s) of the original function f by setting: F (s) = F

(s�1) + f

(s).
Details about up to which scale iterate this procedure are given in Sec.2.4.

The algorithm is fully detailed in [3]. It features a pre-processing step select-
ing the columns of KI to work at the e↵ective rank of this matrix, as the original
function f may be oversampled in some regions. The tests performed in Sec.3 of
the present paper do not include such a pre-processing, the reason for it being
that this involves a random selection of the e↵ective samples. In such a case, the
“optimal” parameters selected would be specific to this random selection, which
is not desirable.

The results obtained by single or multiscale extension schemes are illustrated
in Fig.1b.

2.3 Manifold learning and mapping new subjects to it

The interpolation scheme described above is inserted in our method for matching
individuals samples, which belong to an ambient space A ⇢ RP , to a learnt
manifold M ⇢ A of estimated dimensionality M  P . The input for the learning
process is made of N+1 samples {Ii}i2[0,N ] ⇢ A. Learning is performed through
the isomap algorithm [12], which consists in building a k-NN graph that defines
a geodesic distance between any pair of samples, and an Euclidean embedding
of this graph that provides a set of coordinates {xi}i2[0,N ] ⇢ C, where C ⇢ RM

is the coordinate space of the surface defining the manifold.
Any new sample I 2 A is then associated to another sample Î laying on the

manifold, using the composition of the correspondence functions f : A ! C and
g : C ! A,

Î = g � f(I). (3)

Both functions are known at the samples locations
�
(Ii,xi)

 
i2[0,N ]

, and inter-

polated over the whole sets A and C as described in Sec.2.1 and 2.2, the only
di↵erence between them being the interchanged roles of images and coordinates.

2.4 Parameters estimation

Assuming that the manifold learning parameters have been estimated earlier (for
the isomap algorithm: the number of k-NN and the dimensionality M , mainly,
see [6] for details), the interpolation part of the method requires a few additional
parameters to be estimated: the regularization weights �f and �g, and the range
of scales to run the multiscale extension algorithm. This process is illustrated in
Fig.2.

We use an initialization similar to the one described in [3], setting that the
starting scale s = 0 corresponds to the interval spanned by the set of known
samples: T = D

2
/2, where D is the distance between the most distant pair to

be interpolated. The procedure is then iterated across scales, and stopped once
the resolution of the known samples is reached, namely when T/2s  2ḋ, where
d is the average 1-NN distance over this dataset.
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(C) Optimal estimated weight = 1e-0.5
Error threshold = 3 · noise (iteration 7)

(A) Low weight = 1e-1.5
Error threshold = noise (iteration 41)

(B) High weight = 1e2.2
Error threshold = noise (iteration 6)

(O) Optimal estimated weight = 1e-0.5
Error threshold = noise (iteration 10)

(D) Optimal estimated weight= 1e-0.5
Error threshold = 1/3 · noise (iteration 19)
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Fig. 2: Heuristic tests to determine the multiscale extension parameters: final resolution
and retained regularization weight. The Euclidean distance was used for both SA and
SC .

Heuristic tests are performed to determine the optimal regularization weights
�f and �g. In case the noise level a↵ecting the samples is known (Sec.3.1), the
retained regularization weights correspond to the smallest pair (�f , �g) above
which the reconstruction error kI � g � f(I)k is within this noise level. Note
that this error is calculated on the known samples only, and there may be a
more optimal weight with respect to the noiseless version of this data, but such
a ground truth is usually unknown and cannot therefore be considered in this
procedure.

In case the noise level a↵ecting the samples is unknown (which is the case for
the real data tested in the present paper, Sec.3.2), an alternative is to determine
the weights to be used as the ones minimizing the generalization ability over
the available dataset (the reconstruction error for points included within the
range of noise of the available set, this being obtained by leave-one-out over the
available samples).

3 Results

3.1 Synthetic data

We first applied the “mapping” part of the proposed method to a synthetic
dataset similar to the one tested in Figs.1 and 2. Note that, here, the spaces
A and C are respectively 2D (x � y position) and 1D (parametrization by the
curve length). On the contrary, Figs.1 and 2 only served for illustrating the
interpolation part of the method, which was therefore 1D to 1D (x position to
y position).
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Fig. 3: Mapping individual samples to the learnt manifold: synthetic data. Heuristic
tests to determine the regularization weights �f and �g involved in the multiscale
extension. The Euclidean distance was used for both SA and SC .

This experiment is summarized in Fig.3. It confirms that the combination
of the correspondence functions f and g results in mapping individual samples
(originally belonging to the “high-dimensional” ambient space) to the expected
“low-dimensional” structure. In this concrete example, the main errors made
with respect to the ground truth (oscillations in the low frequency part of the
curve, and first high frequency wave) are only due the reduced number of samples
at these locations.

3.2 Real data

The whole method was then applied to real data from 108 subjects (21 healthy
volunteers and 87 patients before their treatment through cardiac resynchroniza-
tion therapy [CRT]).

Each individual underwent a 2D echocardiographic examination. Motion
(myocardial velocities) was estimated along the sequences in a 4-chamber view,
using temporal di↵eomorphic free-form deformation (TDFFD [5]). These veloc-
ities were spatiotemporally aligned to a common reference using the framework
of [7]. This allowed the computation of a 2D spatiotemporal abnormality map
for each individual, the range for normality being defined by the subpopulation
of 21 healthy volunteers.

56 patients shared a specific abnormal motion pattern of intra-ventricular
dyssynchrony at baseline, also referred to as septal flash (SF) [11], the presence
of which was shown to be a high determinant of CRT response.

Manifold learning was done on a subgroup of 50 SF patients, to which a
synthetic image I0 having value 0 at every pixel was added, thus corresponding
to a perfectly normal motion pattern. On this data, this learning process can be
seen as a way to characterize a given pathological pattern as a deviation from
normality along a manifold structure. The interpolations leading to f and g were
set to pass exactly by this point {Ii,xi}, while inexact matching was retained
for the rest of the samples (Eq.1).

The composition of f and g (Eq.3) allows defining two distances A ! R+:
dP , between any image I 2 A and the manifold [9], and dM , which compares
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Fig. 4: Mapping individual samples to the learnt manifold: real data. Each sample cor-
responds to the motion pattern of a given individual (subpopulations being: healthy
volunteers, CRT candidates with SF [one subgroup being used to learn the manifold
representation], and CRT candidates with another abnormal pattern). Exhaustive tests
to determine the regularization weights involved in the multiscale extension (generaliza-
tion ability, Sec.2.4, median and first/third quartiles), and comparison with the results
obtained using a kernel with locally varying bandwidth, as proposed in [6].

individuals to normality along the manifold structure:

dP (I) = SA(Î, I) and dM (I) = SC
�
f(I), f(I0)

�
. (4)

In practice, we used the Euclidean distance for both SA and SC . The two dis-
tances dP and dM provide a 2D space into which any image I 2 A is mapped
(Fig.4). On this specific data, they can be interpreted as distance to the SF
pattern, and distance to normality along the estimated manifold, respectively.

Dimensionality and number of k-NN were estimated to be M = 4 and K = 5
[6]. Optimal values for the regularization weights were found to be log(�f ) =
�1.25 and log(�g) = �0.75 (Fig.4), and were determined as explained in Sec.2.4.

The distribution of the di↵erent subpopulations of subjects is very similar
to the one obtained using the method of [6], up to a scaling factor. The ar-
rangement of patients with SF (both training set and tested subjects) according
to dM corresponds to the amount of abnormality observed in each map, when
looked at individually. They also have low dP , the value of which (for the train-
ing ones) reflects the adherence to the data retained in the inexact matching
problem). Patients with an abnormal pattern di↵erent from SF are farther from
the manifold (higher dP ) and out of the normality range.

4 Conclusion

We presented a way to achieve multiscale interpolation within an inexact match-
ing scheme, and provided insights into how to choose its intrinsic parameters. The
technique was used in a specific application targeting the mapping of individuals
to a learnt manifold, and involving two successive interpolations. Experiments
on synthetic and real data confirmed the soundness of the method. Results were
comparable to the ones obtained by the use of a varying bandwidth kernel [6],
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but with the advantage that the problem of adding robustness to variations in
the local density of the available samples is now well-posed.
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