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Abstract Weanalyse the secular dynamics of planets onS-type coplanar orbits in tight binary
systems, based on first- and second-order analytical models, and compare their predictions
with full N-body simulations. The perturbation parameter adopted for the development of
these models depends on the masses of the stars and on the semimajor axis ratio between
the planet and the binary. We show that each model has both advantages and limitations.
While the first-order analytical model is algebraically simple and easy to implement, it is
only applicable in regions of the parameter space where the perturbations are sufficiently
small. The second-order model, although more complex, has a larger range of validity and
must be taken into account for dynamical studies of some real exoplanetary systems such
as γ Cephei and HD 41004A. However, in some extreme cases, neither of these analytical
models yields quantitatively correct results, requiring either higher-order theories or direct
numerical simulations. Finally, we determine the limits of applicability of each analytical
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406 E. Andrade-Ines et al.

model in the parameter space of the system, giving an important visual aid to decode which
secular theory should be adopted for any given planetary system in a close binary.

Keywords Secular dynamics · Binary star · Second-order · Perturbation theory · Planets
in binaries

1 Introduction

Binary stars are frequent in the universe, composing approximately 50% of main sequence
stars (Abt 1979; Duquennoy and Mayor 1991; Raghavan et al. 2010). Due to inherent diffi-
culties in monitoring the radial velocities of multi-star systems, these have not been primary
targets in exoplanet surveys (Eggenberger and Udry 2010). Still, at least 10% of the currently
known extra-solar planets are hosted in binary stars (Roell et al. 2012).

The gravitational perturbations of a binary star can drastically influence the motion of
planetary systems. The dynamical stability of planets in such environments depends strongly
on the orbital and physical parameters of the system (Rabl and Dvorak 1988; Holman and
Wiegert 1999; Pilat-Lohinger and Dvorak 2002; Morais and Giuppone 2012; Andrade-Ines
and Michtchenko 2014). The dynamical effects of the perturbation due to a secondary star
can also affect the planetary formation, and even though many studies on this subject have
been made (Nelson 2000; Boss 2006; Haghighipour 2006; Kley and Nelson 2008; Thébault
et al. 2009; Giuppone et al. 2011), recent theories still struggle to explain how giant planets
can be formed so close to the stability boundary in close binaries (Thebault 2011; Martí and
Beaugé 2012, 2015; Silsbee and Rafikov 2015).

Nevertheless, secular perturbations rule the dynamics ofmany of these subjects. Giuppone
et al. (2011) showed that the planet formation appearsmore favorable in orbital configurations
corresponding to the secular stationary solution. During the later stages of the formation,
Michtchenko and Rodríguez (2011) showed that the migrating planets tend towards sta-
tionary configurations, independent of the specific migration mechanism. Andrade-Ines and
Michtchenko (2014) studied the orbital stability of the secular stationary solution. For the
particular case of the Habitable Zone of the α Centauri binary system, they also showed that,
for orbits close to the secular stationary solution, the variation of the orbital distance to the
central star is comparable to that suffered by the Earth despite the strong perturbations of the
companion star.

Due to high eccentricities and larger perturbing masses usually found in close binary
systems, the classical secular theories based on the Laplace expansion of the disturbing
function (e.g. Brouwer and Clemence 1961) are of limited use. An alternative approach is
the use of the Legendre expansion of the disturbing function (Heppenheimer 1978; Ford et al.
2000; Georgakarakos 2003, 2005; Laskar and Boué 2010). Even though this expansion has a
larger radius of convergence in terms of the eccentricity, it has a slow convergence rate with
respect to the semimajor axis ratio, and is thus usually applied only in hierarchical systems.

Another possible approach is the constructionof a semi-analyticalmodel (e.g.Michtchenko
and Malhotra 2004), as applied by Andrade-Ines and Michtchenko (2014). In this case, the
averaging over short-period perturbations is performed numerically over the exact expres-
sion of the disturbing function, resulting in a model with no constraints in eccentricities
or semimajor axis. However, the procedure is still limited to first-order averaging theories
(Giuppone et al. 2011; Andrade-Ines andMichtchenko 2014). Still in the planetary case, Lib-
ert and Sansottera (2013) developed an analytical second-order in the masses secular model
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Secular dynamics of S-type planetary orbits in binary systems 407

using Laplace coefficients, up to a high degree in the eccentricities. Their model displayed a
significant improvement over the first-order model in comparison with the integrations of the
exact equations of motion of extra-solar planetary systems, specially close to mean motion
resonances. The development, however, was explicitly displayed only for the υ Andromedae
system.

A second-order (in the masses) coplanar analytical secular model was developed for the γ

Cephei binary system, byGiuppone et al. (2011) using a Legendre expansion of the disturbing
function. Using Lie-series canonical perturbation theory and considering the restricted case
(when the gravitational effects of the planet over the binary stars were neglected), the authors
constructed an analytical model that was able to match numerical integrations, at least for
initial conditions close to the observed planet. However, the authors also have emphasized
that their full model was overly complex and preferred the use of empiric corrections specific
for the γ Cephei binary system.

Due to the difficulty of constructing and implementing a second-order model, it is of the
utmost interest to determine for which orbital configurations the first or second-order models
are applicable. The aim of this paper is to develop a general approach for the second-order
coplanar secular model and determine the regimes of applicability of the first- and second-
order secular models. The limits of applicability will be evaluated in the space of parameters
of the problem for planets in S-type orbits (Dvorak 1984), comparing the predictions of each
analytical model with direct numerical integrations of the exact equations of motion.

The paper is structured as follows. Section 2presents the analytical foundation of thiswork,
with the expansion of the disturbing function and the application of a canonical perturbation
theory for the construction of the first- and second-order secular models. Section 3 presents a
numerical method to obtain the main features of the mean secular motion from direct N-body
simulations. A comparison between different analytical models and numerical integrations
is presented in Sect. 4. Section 5 presents the range of validity of each model in different
parametric planes, while applications to real exoplanetary systems are discussed in Sect. 6.
Conclusions close the paper in Sect. 7.

2 Analytical models

2.1 The disturbing function

Let us consider a system composed by a main star of mass m0, a planet of mass m1 and a
secondary star of mass m2 in the Jacobian reference frame centered in m0. We denote the
position vector ofm1 with respect tom0 as r1, while r2 marks the position vector ofm2 with
respect to the center of mass of m0 and m1 (Fig. 1). We assume that |r1| < |r2| for all time.

The Hamiltonian of the three-body system in these coordinates is given by

Fig. 1 The dynamical system
under study in the Jacobian
reference frame centered at m0.
CM01 is the center of mass of
bodies m0 and m1
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H = HK + R, (1)

where HK is the Keplerian part and R is the disturbing function, both given by

HK = −Gm0m1

2a1
− G(m0 + m1)m2

2a2
, (2)

R = −Gm0m2

r02
− Gm1m2

r12
+ G(m0 + m1)m2

r2
, (3)

In the expressions above, ai is the Jacobian osculating semimajor axis of the i th orbit and
ri j is the distance between the bodies i and j , respectively; G is the gravitational constant.
Terms 1/r02 and 1/r12 can be expanded in Legendre polynomials, from which the disturbing
function acquires the form

R = − G
a2

∞∑

n=2

Mnα
n γ n

1

γ n+1
2

Pn(cosΦ), (4)

where Pn(x) is the Legendre polynomial of degree n, Φ is the angle between r1 and r2, α =
a1/a2, γ j = r j/a j and

Mn = m0m1m2
mn−1

0 − (−m1)
n−1

(m0 + m1)n
. (5)

The Legendre polynomials may be written as

Pn(cosΦ) =
n∑

q=0

fn,q ei(2q−n)Φ, (6)

(Whittaker and Watson 1963; Laskar and Boué 2010) where

fn,q = (2q)!(2n − 2q)!
22n((n − q)!)2(q!)2 . (7)

Substituting (6) into (4) leads to

R = − G
a2

∞∑

n=2

n∑

q=0

Mnα
n γ n

1

γ n+1
2

fn,qe
i(2q−n)Φ. (8)

In the planar problem, the angle Φ is given by

Φ = ( f1 − f2) + Δ�, (9)

where Δ� = �1 − �2 and f j and � j are the true anomaly and longitude of the pericenter
of the j th body. The transformation to mean anomalies can be accomplished using Hansen
coefficients and Newcomb operators (Plummer 1918; Kaula 1962; Hughes 1981)

γ n
j e

im f j =
∞∑

k j=−∞
Xn,m
k j

(e j )e
ik j M j =

∞∑

k j=−∞

∞∑

s j=0

Yn,m
s j+u1 j ,s j+u2 j e

(2s j+|m−k j |)
j eik j M j (10)

where Xn,m
ki

are the Hansen coefficients, u1 j = max(0, s j −k j ), u2 j = max(0, k j −s j ). Sim-

ilarly, Ya,b
c,d are the Newcomb operators and Mj and e j are (respectively) the mean anomaly

and eccentricity of the j th orbit. Introducing (10) into (8) we obtain

R = − G
a2

∞∑

n=2

n∑

q=0

∞∑

k1=−∞

∞∑

k2=−∞

∞∑

s1=0

∞∑

s2=0

MnT
n,q
k1,k2,s1,s2

× αne2s1+|2q−n−k1|
1 e2s2+|n−2q−k2|

2 ei[(2q−n)Δ�+k1M1+k2M2], (11)
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where
T n,q
k1,k2,s1,s2

= fn,qY
n,(2q−n)
s1+uA,s1+uB Y

−(n+1),(n−2q)
s2+uC ,s2+uD . (12)

In this last expression we have denoted uA = max(0, k1 − 2q + n), uB = max(0, 2q − n −
k1), uC = max(0, k2 − n + 2q) and uD = max(0, n − 2q − k2).

The Newcomb operators can be obtained using recurrence relations (Hughes 1981; Ellis
and Murray 2000), although this calculation can be extremely costly in CPU time. The good
news is that T n,q

k1,k2,s1,s2
are independent of both initial conditions and the parameters of the

system and need only be calculated once.
We calculated the coefficients T n,q

k1,k2,s1,s2
for every value of the set {n, q, k1, k2, s1, s2},

truncating the series expansion of the disturbing function considering values of the indexes
in the range 2 ≤ n ≤ 6,−10 ≤ (k1, k2) ≤ 10 and 0 ≤ (s1, s2) ≤ 8. We verified that the
error caused by this truncation is of the order of the numerical error when comparing the
integration of the complete equations of motion of the Hamiltonian to the exact problem
for any orbit with α < 0.4 and e1, e2 < 0.5. Therefore, this truncation guarantees that
any difference between the results of the secular models and the numerical simulations of
the exact problem will be only due to the averaging theory adopted in the parameter range
α < 0.4 and e1, e2 < 0.5, as we discuss in Sect. 5.

The advantage of this method is that the factor T n,q
k1,k2,s1,s2

is calculated just once and then
can be applied to any system with α < 0.4 and e1, e2 < 0.5 by just reading a file of N lines.
We re-indexed our sum with respect of the line i of that file and we reordered the lines of the
file with respect to the magnitude of the term T n,q

k1,k2,s1,s2
αne2s1+|2q−n−k1|

1 e2s2+|n−2q−k2|
2 , for

α = 0.4 and e1 = e2 = 0.5 (for more details see Appendix 1). This allows us to rewrite the
disturbing function as

R = − G
a2

N∑

i=1

Mni Tiα
ni eci1 e

di
2 ei(p

(1)
i M1+p(2)

i M2+p(3)
i Δ�), (13)

where we introduced p(1)
i = k1i , p

(2)
i = k2i , p

(3)
i = 2qi − ni , ci = 2s1i + |2qi − ni − k1i |

and di = 2s2i + |ni − 2qi − k2i | with respect to the new index i . The calculated coefficients
of the disturbing function are available as an Electronic Supplementary Material, with the
files description presented in Appendix 1.

2.2 Angle-action variables

To construct our secular model we applied Hori’s perturbation theory (Hori 1966; see also
Ferraz-Mello 2007) to eliminate the short-period terms associated to the mean anomalies. In
the particular case when a1 � a2, the mean motions of both bodies n1 and n2 are of different
orders of magnitude and only one of the fast angles has to be eliminated. However, in the
general case when n2 is of the same order of n1, we should eliminate both the fast angles.
Our set of canonical variables is given by

M1, L1 = β1
√
a1μ1,

M2, L2 = β2
√
a2μ2,

Δ� = �1 − �2, G1 = L1

√
1 − e21,

�2, G1 + G2 = L1

√
1 − e21 + L2

√
1 − e22,

(14)

where βi = miσi−1, μi = Gσi and σi = ∑i
j=0 m j . At this point, we notice that the

disturbing function (13) does not depend on �2. Therefore its conjugated action G1 + G2
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410 E. Andrade-Ines et al.

(i.e. the total angular momentum) is a constant of motion and the problem can be reduced to
three degrees-of-freedom.

From (1), (2) and (13), and introducing the definition of Li = βi
√
aiμi , the complete

Hamiltonian can be written as

H = − G2m3
0m

3
1

2(m0 + m1)

1

L2
1

− G2(m0 + m1)
3m3

2

2(m0 + m1 + m2)

1

L2
2

− G2
N∑

i=1

TiMniQni L
ai
1 L

bi
2 e

ci
1 e

di
2 ei(p

(1)
i M1+p(2)

i M2+p(3)
i Δ�), (15)

where ai = 2ni and bi = −2(ni + 1) and

Qni =
(

m2

m0m1

)2ni m2
2(m0 + m1)

3ni+2

(m0 + m1 + m2)ni+1 . (16)

Taking the real part of (15) and introducing the Keplerian terms into the sum as the terms
with i = −1 and i = 0 by defining the coefficients

T−1 = 1, T0 = 1
n−1 = −1 n0 = 0
M−1 = 1 M0 = 1

Q−1 = m3
0m

3
1

2(m0 + m1)
Q0 = m3

2(m0 + m1)
3

2(m0 + m1 + m2)
a−1 = −2 b0 = −2,

(17)

and b−1 = c−1 = d−1 = p(1)
−1 = p(2)

−1 = p(3)
−1 = a0 = c0 = d0 = p(1)

0 = p(2)
0 = p(3)

0 = 0,
we obtain

H = −G2
N∑

i=−1

TiMniQni L
ai
1 L

bi
2 e

ci
1 e

di
2 cos(p(1)

i M1 + p(2)
i M2 + p(3)

i Δ�). (18)

2.3 Canonical perturbation theory

The first step in the application ofHori’smethod is to reorganize the terms of theHamiltonian,
separating the integrable part (function only of the actions), the secular part (function of the
actions and the secular angle Δ� ) and the short-period part (function of all variables). We
rearranged the terms of the disturbing function such that:

– for −1 ≤ i ≤ N0, all the terms have no angular dependence, that is, p(1)
i = p(2)

i =
p(3)
i = 0;

– for N0 < i ≤ NS , all the terms depend only of the angle Δ� , that is p(1)
i = p(2)

i = 0

and p(3)
i �= 0;

– for NS < i ≤ N , all the other terms.

Finally, for the small parameter of the problem, we adopted

ε = α2m2

m0
=

(
L1

L2

)4 m5
2(m0 + m1)

6

m5
0m

4
1(m0 + m1 + m2)2

. (19)

This choice for ε allows the perturbation theory to be applied even to the case where the
mass of the perturber m2 is larger than the mass of the central body m0, provided that α2 is
small enough. We can therefore formally express the complete Hamiltonian function as
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Secular dynamics of S-type planetary orbits in binary systems 411

H(θi , Ji ) = H0(Ji ) + εH1(θi , Ji ) (20)

where θ1 = M1, θ2 = M2 and θ3 = Δ� are the angle variables, J1 = L1, J2 = L2 and
J3 = G1 are their respective conjugated actions and

H0 = − G2
N0∑

i=−1

TiMniQni L
ai
1 L

bi
2 e

ci
1 e

di
2 , (21)

H1 = − G2
NS∑

i=N0+1

TiMniKni L
ai−4
1 Lbi+4

2 eci1 e
di
2 cos(p(3)

i Δ�)

−G2
N∑

i=NS+1

TiMiKi L
ai−4
1 Lbi+4

2 eci1 e
di
2 cos(p(1)

i M1 + p(2)
i M2 + p(3)

i Δ�), (22)

where e1 and e2 are functions of the variables L1, L2 and G1 and of the constant of motion
G1 + G2, and we introduced a new mass factor

Ki = m2i−3
2

m2i−5
0 m2i−4

1

(m0 + m1)
3i−4

(m0 + m1 + m2)i+1 . (23)

To construct our second-order secular theory, our goal is to find a Lie-type transformation
EB∗ of the variables (θi , Ji ), generated by the function

B∗(θ∗
i , J ∗

i ) = εB∗
1 (θ∗

i , J ∗
i ) + ε2B∗

2 (θ∗
i , J ∗

i ) + O(ε3) (24)

to a new set of variables (θ∗
i , J ∗

i ), such that the new Hamiltonian

EB∗H(θ∗
i , J ∗

i ) = H∗(θ∗
3 , J ∗

i )

= H∗
0(J

∗
i ) + εH∗

1 (θ∗
3 , J ∗

i ) + ε2H∗
2(θ

∗
3 , J ∗

i ) + �(θ∗
3 , J ∗

i , ε3)
(25)

is independent of the angles M∗
1 and M∗

2 , and � is the remainder of order O(ε3).
Recalling that the Hamiltonian is time independent, expanding the Lie series on the left-

hand side of (25) and identifying the terms in same order in ε, we get

H∗
0 = H0,

H∗
1 = H1 + {H0, B

∗
1

}
, (26)

H∗
2 = H2 + 1

2

{H1 + H∗
1, B

∗
1

} + {H0, B
∗
2

}
.

From Eq. 26 we identify the homological equation

ν1
∂B∗

k

∂M∗
1

+ ν2
∂B∗

k

∂M∗
2

+ ν3
∂B∗

k

∂Δ� ∗ = Ψk − H∗
k , (27)

where νi are the three frequencies of non-resonant coplanar problem, defined by νi =
∂H∗

0/∂ J
∗
i (see Appendix 2), andΨk is a known function once all the previous (k−1) normal-

ization steps are performed (for more details, see Ferraz-Mello 2007, chapter 6). However,
in (27) both functions B∗

k and H∗
k are unknown. This indetermination is solved, without loss

of generality, by adopting the averaging rule:

H∗
k = 〈Ψk〉M∗

1 ,M∗
2
. (28)
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From (22) and (28), for k = 1, we obtain the first-order solution:

H∗
1 = − G2

NS∑

i=N0+1

TiMniKni L
∗ai−4
1 L

∗bi+4
2 e∗ci

1 e∗di
2 cos(p(3)

i Δ� ∗). (29)

where e∗
1 and e

∗
2 are expressed as functions ofG

∗
1 and of the parameters L∗

1, L
∗
2 andG

∗
1 +G∗

2.
From this point forward, we will refer to the model composed byH∗

0+εH∗
1 as the First-order

secular model. From (27) and (29) the first-order of the generating function can be calculated
and yields

B∗
1 = −G2

N∑

l=NS+1

TlMnlKnl L
∗al−4
1 L∗bl−4

2 e∗cl
1 e∗dl

2

p(1)
l ν1 + p(2)

l ν2 + p(3)
l ν3

sin(p(1)
l M∗

1 + p(2)
l M∗

2 + p(3)
l Δ� ∗).

(30)
Introducing (29) and (30) into (27) and applying the averaging rule (28) for k = 2, after

a long but straightforward calculation, we finally obtain the second-order solution, which,
explicitly, is written as:

H∗
2 = G4

4

{ N∑

i=N0+1

N∑

j=NS+1

σiδp(1)
j ,−p(1)

i
δ
p(2)
j ,−p(2)

i
TiMniKni TjMn jKn j

−p(1)
i ν1 − p(2)

i ν2 + p(3)
j ν3

× L
∗ai+a j−8
1 L

∗bi+b j−8
2 e

∗ci+c j
1 e

∗di+d j
2

×
[

p(1)
i

(
a j + ai − c j − ci

L∗
1

+ c j + ci
L∗
1e

∗2
1

)
− p(2)

i

(
b j + bi − d j − di

L∗
2

+ d j + di
L∗
2e

∗2
2

)

+ p(3)
i

(d j

√
1 − e∗2

2

L∗
2e

∗2
2

−
c j

√
1 − e∗2

1

L∗
1e

∗2
1

)
− p(3)

j

(di
√
1 − e∗2

2

L∗
2e

∗2
2

−
ci

√
1 − e∗2

1

L∗
1e

∗2
1

)]

× cos[(p(3)
i + p(3)

j )Δ� ∗]
}

+ G4

4

{ N∑

i=N0+1

N∑

j=NS+1

σiδp(1)
j ,p(1)

i
δ
p(2)
j ,p(2)

i
TiMniKni TjMn jKn j

p(1)
i ν1 + p(2)

i ν2 + p(3)
j ν3

× L
∗ai+a j−8
1 L

∗bi+b j−8
2 e

∗ci+c j
1 e

∗di+d j
2

×
[

− p(1)
i

(
a j − a j − ci + c j

L∗
1

+ c j − ci
L∗
1e

∗2
1

)
− p(2)

i

(
b j − d j − bi + d j

L∗
2

+ d j − di
L∗
2e

∗2
2

)

− p(3)
i

(d j

√
1 − e∗2

2

L∗
2e

∗2
2

−
c j

√
1 − e∗2

1

L∗
1e

∗2
1

)
− p(3)

j

(di
√
1 − e∗2

2

L∗
2e

∗2
2

−
ci

√
1 − e∗2

1

L∗
1e

∗2
1

)]

× cos[(p(3)
i − p(3)

j )Δ� ∗]
}
, (31)

where e∗
1 and e

∗
2 are expressed as functions of G

∗
1 and of the parameters L∗

1, L
∗
2 and G

∗
1 +G∗

2
and we introduced σl , defined as

σl =
⎧
⎨

⎩

0, for l ≤ N0;
2, for N0 < l ≤ NS ;
1, for l > NS ;

(32)
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and δi, j is the Kronecker delta, defined as

δi, j =
{
1, for i = j;
0, for i �= j; (33)

It is worthy emphasizing that the second-order solution presented above is only valid when
we consider the non-resonant condition iν1 + jν2 + kν3 �= 0, with (i, j, k) ∈ Z

3{(0, 0, 0)}.
Finally, the complete secular Hamiltonian up to second order in ε is given by

H∗ = H∗
0 + εH∗

1 + ε2H∗
2, (34)

with H∗
0,H∗

1 andH∗
2 given by (21), (29) and (31), respectively. From this point forward, we

will refer to this model as the second-order secular model, and the equations of motion of
the one degree-of-freedom system are given by

∂H∗

∂Δ� ∗ = −dG∗
1

dt
,

∂H∗

∂G∗
1

= dΔ� ∗

dt
, (35)

and, L∗
1, L

∗
2, and G∗

1 + G∗
2 are constants of motion, since their conjugated angle variables

(M∗
1 , M∗

2 and � ∗
2 , respectively) do not appear explicitly in the secular Hamiltonian. Let us

remark that the secular Hamiltonians possessing only one degree-of-freedom are integrable.
As a consequence, chaotic motions cannot be produced by these models. The evolution of
the orbital parameters of the secular problem can be obtained by simultaneously integrating
Eqs. (35) numerically.

2.4 Representation of the secular motion using the classical model of
Heppenheimer (1978)

Although the model developed above was constructed for the general three-body problem,
most secular models assume that m1 � m0,m2. In the limit of the restricted three-body
problem (m1 → 0), bodies m0 and m2 move in fixed ellipses as described by the two-
body problem. Up to first-order in the masses, it is possible to obtain an expression of the
disturbing function which is exact with respect to e2 (e.g., Kaula 1962; Laskar and Boué
2010). Limiting the expansion in Legendre polynomials to P2 (quadrupole problem) and
truncating the perturbation to order O(e21), Heppenheimer (1978) obtained the averaged
disturbing function in orbital elements as

RHep = Gm2

(1 − e22)
3/2

a21
a32

[
1

4
+ 3

8
e21 − 15

16

a1
a2

e1e2
(1 − e22)

cos(Δ�)

]
, (36)

where we omitted the constant terms. Introducing the non-singular variables

h = e1 sin(Δ�),

k = e1 cos(Δ�),
(37)

the modified Lagrange–Laplace planetary equations will be, up to orderO(e21) (Brouwer and
Clemence 1961):

dh

dt
= gs(k − e1F ),

dk

dt
= −gsh, (38)

where

gs = 3

4

m2

m0

a31
a32

n1
(1 − e22)

3/2
(39)
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is the forced secular frequency and

e1F = 5

4

a1
a2

e2
(1 − e22)

(40)

is the forced eccentricity. In both equations n1 =
√
Gm0/a31 is the mean-motion of the planet.

The general solution of the system of Eqs. (38) acquire the form

k(t) = e1p cos(gst + φ0) + e1F , (41)

h(t) = e1p sin(gst + φ0), (42)

where e1p (proper eccentricity) and φ0 (phase angle) are constants of integration determined
by the initial conditions. We can see from Eqs. (39) and (40) that gs and e1F are functions
only of the parameters of the problem. According to Eqs. (41) and (42), the secular orbits
define circles in the k, h plane centered in k = e1F and with only a single frequency gs . Both
are independent of the initial conditions of the planetary orbit.

The trajectory starting with e1p = 0 gives h(t) = 0 and k(t) = e1F , and therefore
e1(t) = e1F , is a stationary solution or fixed point. Since there is only one fixed point,
located in the semi-plane k > 0, we can conclude that the secular angle Δ� will either
circulate or oscillate around 0. The resulting oscillation around Δ� = 0 is also known as
Mode I (Michtchenko and Ferraz-Mello 2001).

2.5 Extension to higher-order theories

The model of Heppenheimer (1978) is a good approximation to the problem if a1/a2 and e1
are sufficiently small. For larger values of these quantities, the expressions presented above
for both gs and e1F no longer yield quantitatively accurate values, although the topology of
the secular problem remains unaltered (Giuppone et al. 2011).

Analytical approximations for the solutions including second-order terms have so far been
estimated either by empirical approximations (e.g. Thébault et al. 2006) or by functional
approximations (Giuppone et al. 2011). In both cases, however, the resulting expressions for
gs and e1F are not general and valid only for a sub-set of the parameter space. In particular,
the expressions for gs found by these authors are only valid for γ Cephei, but fail for other
values of the perturbing mass and eccentricity.

In order to obtain better estimations, we can use the first- and second-order secular models
presented in Sect. 2.3. However, since the expressions for the averaged Hamiltonian are too
complex, we must open hand of explicit close formulas and determine gs and e1F numer-
ically. This can be achieved employing the geometric method introduced by Michtchenko
and Malhotra (2004) and later applied by Michtchenko et al. (2006) and Andrade-Ines and
Michtchenko (2014). This method consists in finding the eccentricity e1F that gives the
extreme value of the Hamiltonian for Δ� = 0 and given values of the parameters L1, L2

andG1+G2 (the reader is referred toMichtchenko andMalhotra 2004 for a detailed descrip-
tion).

In particular, the forced eccentricity is the solution of the algebraic equation

∂H
∂G1

∣∣∣
G1F ,Δ�=0

= 0, (43)
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where G1F = L1

√
1 − e21F . Similarly, the secular frequency for the first- and second-order

models are given by

gs = ∂

∂G1
〈H〉Δ� , (44)

where G1 = L1

√
1 − e21. The analytical expressions of the secular frequencies for the first-

and second-order models are presented at the Appendix 2.

3 Numerical simulations

Since any analytical theory is expected to be valid only for certain initial conditions or values
of the parameters of the system, it is important to be able to deduce the main features of the
secular solutions using numerical integration of Newton’s equations ofmotion. In this section
we show how to determine the families of forced eccentricities and secular frequencies from
N-body simulations.

3.1 Numerical determination of the forced eccentricity and secular frequency

In the secular problem, the fixed point at e1 = e1F and Δ� = 0 is a stationary orbit with
zero secular amplitude. When the averaged variables are transformed back to osculating
values, the resulting trajectory will be a quasi-periodic solution with 3 main frequencies
ν1 = n1, ν2 = n2 and ν3 = gs , although with a zero amplitude associated with the secular
frequency ν3 = gs . Therefore, a fixed point in the secular (averaged) problemwill correspond
to a quasi-periodic orbit in osculating elements with frequencies n1 and n2.

Determining such a quasi-periodic solution fromN-body simulations can be a challenging
task. Fortunately, there exist several numerical tools that can be employed to simplify this
work. One was used by Noyelles et al. (2008) and later by Couetdic et al. (2010) based
on frequency analysis of the numerical integration (Laskar 1990; Michtchenko et al. 2002).
This method has proved to be very efficient and yields accurate results. Its main steps are
summarized as follows:

1. Numerical integration of an orbit for a given set of initial conditions;
2. Harmonic decomposition of the time series of the orbital elements to determine the

fundamental frequencies;
3. Quasi-periodic decomposition of the time series in function of the fundamental frequen-

cies;
4. Elimination of the terms depending on ν3 and construction of a new time series of the

orbital elements;
5. Determination of a new set of initial conditions from the time series of the orbital elements

with ν3 suppressed.

This process is iterative in nature, with each new set of initial conditions being closer to
the solution and the convergence is generally fast, reducing the amplitudes of the secular
components by 2 orders of magnitude in just 4 steps (Couetdic et al. 2010).

In order to identify all the 3 frequencies of motion with the harmonic decomposition, the
integrations must be long enough to include at least one secular period. Moreover, the inte-
gration step must be small enough such that the Keplerian period of the planet is identifiable.
For the present work, we used the NAFF (Laskar 1999) algorithm for the harmonic decom-
position, with a time step of Δt = 2π/(3n1) and a total time of integration of T = 12π/gs ,
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where an approximate value for gs was adopted following (39). Since we expect the real
secular frequency to be different from that estimated from first-order models, we used a total
integration time at least 6 times the approximate secular period.

The iterative process was stopped whenever the relative difference between the initial
eccentricities of the planet in two consecutive iterations was smaller than 0.1%. Once the
initial conditions of the quasi-periodic orbit were determined, the forced eccentricity was
estimated by

e1F = 〈e1(t) cos(Δ�(t))〉T , (45)

with the secular frequency ν3 obtained at the quasi-periodic decomposition step of the last
iteration of the method.

3.2 Non-convergent cases

The method described above provides an accurate approximation of the fundamental fre-
quencies as long as the trajectory satisfies two conditions: (i) is regular (i.e. not chaotic), and
(ii) is not dominated by mean-motion resonances (MMRs). If one of these conditions is met,
then the quasi-periodic secular approximation is no longer valid and the iterative process
will not be convergent. Even though these cases are not covered by the secular models, the
analysis of these orbits is important in order to compare the predictions of the analytical
models with N-body simulations.

Applying the quasi-periodic decomposition method in an unstable or a resonant orbit will
lead to an inaccurate determination of the fundamental frequencies that will compromise the
convergence of the method. For this reason, it was imposed in the algorithm that if the con-
vergence condition was not satisfied in 20 steps, the orbit would go through a stability check.

The stability of the orbits was numerically estimated by determining the proper mean
motion of the planet n1 with a quasi-periodic decomposition routine (Robutel and Laskar
2001): the analysis of the first two thirds of the data defined a value n1a for the mean-motion,
while the last two thirds of the data was used to calculate a second value n1b. If the difference
|n1a − n1b|/n1a was found to be greater than 10−3, the orbit was considered unstable and
the algorithm issued fictitious values of eF = 1 and gs = 0.

4 Accuracy of different analytical models

To assess the quality of the analytical secular models, in this section we compare the results
obtained from our first- and second-order models (Sect. 2.3), with the classical model of
Heppenheimer (1978) (Sect. 2.4) and with numerical simulations (Sect. 3.1), which we will
take as the exact solution. As a working example we chose the binary star systemHD 196885
AB; physical and orbital data of this system, as well as the data of the detected planet around
the star A, are presented in Table 1.

4.1 Forced eccentricity

Figure 2a shows the family of stationary secular solutions (i.e. forced eccentricity e1F ) as
function of the semimajor axis of the planet a1, for the system HD 196885 AB. All other
parameters of the system were fixed according to the values given by Table 1. The red
circles correspond to the result obtained from the numerical integrations, the magenta curve
shows the solution using the model by Heppenheimer (1978), while the blue and green
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Table 1 Physical and orbital parameters of the system HD 196885 AB (Chauvin et al. 2011)

Body a (au) e i (deg) M (deg) ω (deg) Ω (deg) m(M�)

A – – – – – – 1.3

B 21 0.42 116.8 121 241.9 79.8 0.45

b 2.6 0.48 116.8a 349 93.2 79.8a or 259.8a 3.186 × 10−3a

a Most stable/probable solution according to Giuppone et al. (2012)

Fig. 2 a Secular forced eccentricity e1F as function of the semimajor axis a1, calculated with different
analytical models, compared with the results of numerical simulations (red dots) The black curve shows
the amplitude of the short-period variations. (b) Averaged mean-motion ratio n1/n2, as function of the initial
osculating semimajor axis a1, calculated fromN-body simulations. The location of several first-degreeMMRs
are marked with horizontal lines. c Secular frequency gs , as function of the semimajor axis a1, calculated for
different models, as well as with the numerical integration (red dots). d Secular frequency as function of the
eccentricity e1 of the perturber for a1 = 2.6 au. In all panels the values of a1 and e1 of the planet are marked by
dashed vertical lines. The scattered red dots are non-convergent solutions obtained by the numerical method
(see Sect. 3.2)

curves present the solutions obtained from our first- and second-order models, respectively.
The dashed vertical line marks the present osculating semimajor axis of the detected planet
(a1 = 2.6 au).

Both first-order models show a linear dependence of the forced eccentricity with the
semimajor axis, while the second-order model and the numeric solution show a significant
quadratic component. As expected, for sufficiently small values of a1 all models coincide,
while increasingly large deviations are seen for orbits closer to the perturber. At the present
location of the planet the predictions of the first-order model are not quantitatively correct,
indicating that anymodel for the secular dynamics of this system should include second-order
terms.
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In the same frame, the black curve represents the amplitude of the short period oscillations,
calculated as the difference between the maximum and minimum values that e1 reached in
a single Keplerian period of the star. This amplitude shows a strong correlation with the
difference in forced eccentricity between both the first- and second-order models. This is
not surprising, since the magnitude of the second-order terms scales with the short-period
variations (see Eq. 30).

4.2 Mean-motion resonances

Figure 2b shows the dependence of the numerically determined mean motion ratio n1/n2
with the semimajor axis of the planet, close to the family of secular stationary solutions.

As discussed in Sect. 3.2, the crossing of MMRs, defined by the condition in1 + jn2 ≈
0, i, j ∈ Z, can lead to instabilities that can hinder the convergence of the iterative method
described at Sect. 3.1. As a result, due to the MMRs, we see “gaps” in the curve of Fig. 2b.
We have found that the gaps appear for each n1/n2 ≈ i, 9 ≤ i ≤ 18 ∈ Z, with the gaps
getting larger with the decrease of i , up until n1/n2 ≈ 9, when we have the stability limit for
this system.

Even though the resonant problem is a complex subject and each MMR should be studied
individually, we can still estimate empirically where in the phase space theMMRsmay begin
to play an important part in the dynamical evolution of this system. For instance, we identify
the first significant resonance as the gap with the lowest semimajor axis, that appears at the
18:1 MMR, at a1 ≈ 2.8 au. We see that the planet is located very close to the 20:1 MMR,
but the short time dynamical effects of this resonance were not detected by this method and
therefore we conclude that the secular dynamics will still play themajor part in the dynamical
evolution of this system.

4.3 Secular frequencies

Figure 2c shows the variation of the secular frequency gs as function of a1. As before, all other
parameters were taken from Table 1. In both panels we present the first- and second-order
models (blue and green curves, respectively), the Heppenheimer (1978) model (magenta
curves) and the solution obtained from the exact equations of motion (red circles).

As before, the second-order solution presents an excellent agreement with the numerical
results, while the first-order models predict smaller values of the secular frequency for initial
conditions closer to the perturber. Also, it is interesting to note that our first-order version now
shows a noticeable (albeit small) deviation with respect to Heppenheimer’s version, which
was not evident in the case of the forced eccentricity. The scatter of the numerical results for
larger semimajor axis is due to the effect of mean-motion resonances. In particular, the 10/1
MMR, located at a1 � 4 au caused non-convergence of the numerical method formany initial
conditions, assigning to them an artificial value gs = 0. Other mean-motion resonances are
also noticeable, although with smaller effect.

These results are similar to those found by Giuppone et al. (2012) in the case of γ Cephei,
indicating that a second-order secular theorymay be not only desirable but actually necessary
in many planetary systems around close binary stars.

While the analytical models of Heppenheimer (1978) and Giuppone et al. (2012) assumed
zero-amplitude secular solutions at the fixed point, our model has the advantage of allowing
to map finite amplitude oscillations and find the complete secular solutions of the system
even if the initial conditions are far from the stationary value. These will occur whenever the
initial value of the eccentricity e1 is different from the forced value e1F and/or Δ� �= 0.
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Fig. 3 Time evolution e1 for the
planet around HD 196885
considering different initial
values (indicated on top of each
frame). Results obtained from
N-body simulations are shown in
gray, while predictions of
different analytical models are
indicated in color curves. Note
that Heppenheimer’s model
shows a good fit for the secular
frequency for eini = 0.62 in
accordance with the lower-right
panel at Fig. 2

One of the consequences of finite-amplitude oscillations is that the secular frequency is
different from that given by its stationary value. Figure 2d shows the dependence of gs with
the initial eccentricity of the planet. It has a maximum value at e1 = e1F , and decreases for
increasing amplitudes of oscillation. Our second-order model shows a very good agreement
with the full numerical simulations up to e1 ≈ 0.8, a value higher than expected due to the
truncation of the disturbing function for e1 < 0.5.

In contrast, the secular frequency predicted by Heppenheimer’s model shows no depen-
dencewith e1. Therefore, there should be always a value of e1 for which the secular frequency
determined from both the second-order and Heppenheimer’s models coincide. Particularly
for the system HD 196885, with a1 = 2.6 au, this happens for e1 ≈ 0.6, which is close to
the current value of the eccentricity of the planet (see the dashed vertical line in Fig. 2c). We
emphasize, however, that this is a coincidence and there is no way of predicting with just
first-order models for which value of e1 this will happen for different systems.

To illustrate the dependency of gs with e1, Fig. 3 shows (in gray) the result of five numerical
integrations which differ only in the initial values of the eccentricity. The predictions of the
different analytical models are depicted in colored lines. In all cases our second-order model
shows averygood agreementwith theN-body results, not onlywith respectwith the frequency
but also in the amplitude of oscillation. None of the other models appear reliable, although,
again, Heppenheimer’s solution does show a good fit for the frequency for e1ini = 0.62.
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5 Applicability limits

Although the example described above shows that a second-order secular model must be
employed in some real planetary systems around binary stars, others are not so extreme and
may be adequately mapped with a simple first-order model. Since the second-order theory
is, by construction, much more complex, it is important to predict when it is really necessary
and when it may be avoided. Similarly, even a second-order model will breakdown for initial
conditions too close to the perturber, and it is also important to have some idea of its range
of validity.

In this section we present a graphical representation of the Limits of Applicability of
each analytical secular model, in terms of the main parameters of the system: mass and
orbit of the secondary star, and semimajor axis of the planet. As proxy we adopt the forced
eccentricity determined by each model, as compared with the value obtained from direct
numerical integrations.

5.1 Definition of the limits

The top panel of Fig. 4 shows the variation of e1F and the amplitudes of short-period oscil-
lations as function of the initial semimajor axis, for a fictitious system with parameters
m0 = m2 = 1M�,m1 = 10−4M�, a2 = 1 au and e2 = 0.2. In the case of the forced
eccentricity, numerical results are again shown in red circles, while colored curves indicate
the predictions of different analytical models. We will denote by:

Δe1F = |e1Fmodel − e1F exact|
e1F exact

(46)

as the relative error of the forced eccentricity estimated by a given model, with respect to its
exact (numerically determined) value. The amplitude of the short-period variations are shown
with a black curve and were determined numerically with an N-body simulation. Finally, the
bottom panel shows the mean-motion ratio n1/n2 as function of the semimajor axis ratio
a1/a2.

The vertical dashed lines in both graphs represent a series of characteristic limits, defined
as:

– FO: Value of a1/a2 where Δe1F = 0.1, calculated with the 1st-order model;
– SO: Value of a1/a2 where Δe1F = 0.1, calculated with the 2nd-order model;
– MMR: Lowest value of a1/a2 for which mean-motion resonances cause significant non-

convergence of the secular models;
– SP: Value of a1/a2 where the amplitude of the short-period oscillations equals the forced

eccentricity;
– INST: Lower limit of a1/a2 leading to orbital stability. Beyond this point some (but not

all) initial conditions result in collision or in an expulsion of the planet from the binary
system.

– MAcD: Upper limit of a1/a2 leading to orbital stability. Beyond this point all initial
conditions result in collision or in an expulsion of the planet from the binary system.

The SP limit is an estimative of the region where the short-period dynamics may play an
important role, and where their amplitude rivals that of the secular dynamics. As discussed
in Sect. 4.1, the generating function B∗

1 (Eq. 30) depends only on the short-period terms;
consequently, the larger the amplitude of these terms, the higher the order of the averaging
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Fig. 4 Families of stationary secular solutions for a fictitious binary system with m0 = m2 = 1M�,m1 =
10−4M�, a2 = 1 au, e2 = 0.2 and Δ� = 0. Top panel forced eccentricity as function of the semimajor axis
ratio determined from numerical simulations (red circles). The error bars correspond to a relative error of
10%. Color curves show the predictions of different analytical models: first- and second-order models (blue
and green, respectively) and Heppenheimer (1978) model (magenta). Numerical estimation of the amplitude
of short-period oscillations are indicated in black. The vertical dashed lines represent the characteristic limits
FO (blue), SO (green) and SP (black); see text for details. Bottom panel: Mean-motion ratio as function of the
semimajor axis ratio. The vertical dashed lines represent the MMR (red) and INST (magenta) characteristic
limits. The MAcD limit (Andrade-Ines and Michtchenko 2014) occurs for larger semimajor axis and is not
drawn in this plot

theory we may need to apply. Therefore, the applicability limits FO and SO should be
correlated with the SP limits.

The lower instability limit INST signals the appearance of resonance overlap where some
(but not all) initial conditions exhibit unstable motion. Full orbital instability (for all initial
conditions) roughly corresponds to the limit MAcD, which was estimated following the
criterion developed in Andrade-Ines andMichtchenko (2014), adopting e1 = e1F . According
to this model, global instability is said to occur for all values of the semimajor axis satisfying
the condition:

a1(1 + e1F ) ≥ Rcr , (47)

where

Rcr/a2 ≈ 0.66823 − 0.63740e2 − 0.74549(m2/m0) + 0.45496e2(m2/m0)

+ 1.0492(m2/m0)
2 − 0.23179e2(m2/m0)

2 − 0.87722(m2/m0)
3

+ 0.31541(m2/m0)
4, (48)

for 0.1 ≤ m2/m0 ≤ 1.0, and

Rcr/a2 ≈ 0.45265 − 0.41921e2 − 0.070754(m2/m0) + 0.039617e2(m2/m0)

+ 0.010865(m2/m0)
2 − 2.1394 × 10−3e2(m2/m0)

2

− 9.3729 × 10−4(m2/m0)
3 + 3.3886 × 10−5(m2/m0)

4, (49)

for 1.0 < m2/m0 ≤ 10.0.
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Fig. 5 Limits of applicability of
first-order secular models (area
in blue) and second-order models
(area in green) in the (e2, a1/a2)
parametric plane, for seven
different values of m2/m0. The
region in white denotes initial
conditions where the relative
error of the second-order model
surpasses 10%, but still with no
detected influence of mean
motion resonances. The black
curve marks the semimajor axis
where the amplitude of
short-period terms is equal to e1F
(i.e. SP), while the lower limit of
semimajor axis where significant
mean-motion resonances were
detected are shown by the red
curve. The region in magenta
correspond to initial conditions
found to be dynamically unstable
(i.e. INST), while the initial
conditions above the limit
predicted by the MAcD-criterion
are colored orange

Note that we assume that the initial conditions of the planet coincide with the stationary
secular solution, which is not necessarily the case (e.g. HD196885). However, it is sufficient
for most purposes and serves as a proxy for the stability limit for S-type orbits in binary
systems.

5.2 Parametric planes

We calculated the characteristic limits defined in Sect. 5.1 for fictitious binary systems with
a central mass of m0 = 1M� and seven different values for the secondary mass: m2/M� =
(0.1, 0.2, 0.5, 1, 2, 5, 10). These values were chosen to include cases in which the planet
orbits the most massive component, as well as situations in which the opposite occurs. The
semimajor axis of the binary was set at a2 = 1 au, and the eccentricity was again varied,
this time taking values e2 = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6). The mass of the planet was chosen
equal to m1 = 10−4M� (roughly, twice the mass of Neptune) and its initial semimajor axis
varied in the interval a1 ∈ [0.01, 0.6] au.

Results are summarized in Figs. 5 and 6. The first shows seven parametric plots in the
(e2, a1/a2) plane, constructed for different values of the mass ratio m2/m0. Figure 6 shows
six parametric plots in the (m2/m0, a1/a2) plane, each for a different value of the eccentricity
e2. The definition of each colored region is specified in the captions.
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Fig. 6 Limits of applicability of
first-order secular models (area
in blue) and second-order models
(area in green) in the
(m2/m0, a1/a2) parametric
plane, for six different values of
e2. The color code is the same as
in the previous figure. The black
crosses represent the location of
planets in real binary systems, as
summarized in Table 2

As expected, the applicability of the first-order model decreases with larger values of m2

and e2, but even in the most favorable cases it never exceeds a1/a2 � 0.2, reaching values
below a1/a2 � 0.1 for massive binary companions in eccentric orbits. Even so, as indicated
by the black crosses in Fig. 6, the secular dynamics of a few known planetary systems may be
well described by this simple analytical model. The second-order model has a larger region of
applicability, reaching approximately twice the range in a1/a2 for a given binary companion.

Figure 5 shows that, for a fixed value for the mass ratio, the influence of e2 on the limits
of applicability of the analytical secular models is mostly due to the stability boundary (area
in magenta). For example, we can see at the bottom plane, with m2/m0 = 10, that the
applicability limits are approximately constant as function of e2. More details of this feature
will be discussed in Sect. 5.3.

Figure 6 shows that the white region is larger for lower values of e2. For the case e2 = 0.1,
we can see a white region even for the mass ratio m2/m0 = 0.1, and, as the mass ratio gets
larger, the white region also gets wider.

Both Figs. 6 and 5 show that the only case that there is a white region above the curve in
black is for the case e2 = 0.6. However, we must remember that the disturbing function was
developed to describe precisely systems with ei ≤ 0.5 (Sect. 2.1). Therefore, this difference
may be due to the inadequate development of the disturbing function for this case specifically,
even though we can see that the models are applicable to most of the space of parameters.

For the cases where e2 ≤ 0.5 we can see that the regions in white are always located
above the curves in black, which indicates that, in fact, these are regions strongly influenced
by the short-periodic terms. As it was discussed in Sect. 2.5, this is a strong evidence that
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the regions in white should be able to be properly described by extending the perturbation
theory to third or higher order.

We can see as well that there is a large portion of the green regions that are located above
the curves in red. This indicates that the width of the first detected MMRs are narrow enough
such that the dynamics in their neighborhood is still strongly secular. At this point, it is also
worthy emphasizing that the stability limits presented in both Figs. 6 and 5 were calculated
for coplanar systems with e1 close to the stationary solution and for the initial values of
the angular variables at 0. All these regions were located above the curves in red, therefore
MMRs could play a meaningful part in the system dynamics such as to form stability islands
for higher values of eccentricity in the space of parameters. Andrade-Ines and Michtchenko
(2014) shows as well that there is a very high dependence to the planetary initial eccentricity
and inclination to the plane of the binaries in the system dynamics and stability.

5.3 Families of secular stationary solutions

Figure 7 shows the families of forced eccentricities (left panels) and secular frequencies
(right panels) for zero-amplitude secular solutions as function of the semimajor axis ratio
a1/a2. These were calculated for m0 = 1M�,m1 = 10−4M�, a2 = 1 au, Δ� = 0 and
three different values of e2. Within each plane we also varied the mass ratio between the
secondary and central star.

For the forced eccentricities, the second-order secular model yields very accurate results
in the case m2/m0 = 0.1, even for large values of e2 and a1/a2. Thus, this theory appears
very reliable in systems orbiting the larger of the binary components. For equal mass binaries
(m2/m0 = 1), the precision of the analytical model is restricted to smaller values of the
semimajor axis, especially for binaries in more circular orbits. Finally, less accurate results
are obtained for m2/m0 = 10, indicating that our theory has limited applicability in systems
where the planet orbits the less massive star.

For the secular frequencies (right-hand panels), the second-order model presents a good
approximation to the exact solution in all cases, even in the case of planets orbiting the
less massive star. The first-order frequencies, however, are only reliable for small values of

Fig. 7 Forced eccentricities (left
panels) and secular frequencies
(right panels) of stationary
secular solutions calculated with
the first- and second-order
models (blue and green curves,
respectively), as well as values
obtained from N-body
simulations (black curves). The
top panels show the results
obtained for e2 = 0.1, the middle
panels for e2 = 0.3 and the
bottom panels for e2 = 0.5
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semimajor axis. The difference in values of gs between both models can reach up to a factor
two, depending on the parameters of the system.

It is also worth mentioning that, while the general behavior of gs of the different models
is scaled by the semimajor axis ratio, the values of the secular frequencies will depend on the
individual values of a1 and a2. The secular frequencies will also depend on the initial value
of the planetary eccentricity e1, as was discussed in Sect. 4.3.

6 Application to detected planetary systems

The black crosses in Fig. 6 show the location of several exoplanetary systems of interest in
the parametric plane. These include both confirmed and unconfirmed planetary candidates
orbiting one component in a tight binary system (orbital separation between stars a2 < 50 au).
The orbital and physical parameters of these systems are shown in Table 2. For a quantitative
comparison between the efficiency of the different models, we present in Table 3 the forced
eccentricity eF and the secular frequency gS calculated with the second-order secular model,
as well as the error in percentage one would have by adopting the first-order model for each
system.

In the following we analyse each system individually:

– ν Oct Ab—Located in the orange region, indicating strong orbital instability. This system
has been the subject of discussion in many works (Eberle and Cuntz 2010; Quarles et al.
2012, Goździewski et al. (2013); among others), suggesting that the planet may orbit the
central star in a retrograde orbit.

Table 2 Physical and orbital parameters of planets and candidates in S-type orbits with a2 < 50 au

System m0 m1 sin(i) m2 a1 a2 e1 e2 Ref
(M�) (10−3M�) (M�) (au) (au)

ν Oct Aba 1.4 2.386 0.5 1.2 2.55 0.123 0.2359 (1)

ν Oct Triplea 0.496 42 1.4 0.524 2.565 0.67 0.2504 (2)

KOI-1257b 0.99 1.384 0.7 0.382 5.3 0.772 0.31 (3)

HD 41004 Ab 0.700 2.424 0.420 1.60 20.0 0.48 0.40 (4), (5)

HD 41004 Bb 0.420 17.53 0.700 0.0177 20.0 0.081 0.40 (4), (5), (6)

γ Ceph Ab 1.40 1.765 0.410 2.05 20.2 0.05 0.41 (7), (8), (9)

HD 196885 Ab 1.33 2.815 0.450 2.60 21.0 0.48 0.42 (10)

α Cen Bbc 0.934 0.003435 1.10 0.04 23.4 0.0 0.518 (11), (12)

Gl 86 Ab mind 0.8 3.827 0.59 0.11 30.58 0.046 0.1 (13), (14)

Gl 86 Ab maxd 0.8 3.827 0.59 0.11 69.8 0.046 0.61 (13), (14)

HD 126614 Ab 1.15 0.3626 0.320 2.35 36.2 0.30 ≤0.6 (15)

References: (1) Ramm et al. (2009), (2) Morais and Correia (2012), (3) Santerne et al. (2014), (4) Zucker et al.
(2004), (5) Roell et al. (2012), (6) Santos et al. (2002), (7) Neuhäuser et al. (2007), (8) Endl et al. (2011), (9)
Reffert and Quirrenbach (2011), (10) Chauvin et al. (2011), (11) Pourbaix et al. (1999), (12) Dumusque et al.
(2012), (13) Queloz et al. (2000), (14) Farihi et al. (2013), (15) Howard et al. (2010)
a Unconfirmed due to orbital instability of coplanar solution. Planet could lie on a highly inclined or retrograde
orbit
b Planet is a candidate
c The detection of this planet is contested by Hatzes (2013)
d Parameters of the binary are not well known, constrained by the relation a2(1 + e2) ≈ 28 au
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Table 3 Forced eccentricities eF and secular frequencies gS calculated for the systems presented on Table 2
with the second-order secular models

System eFSO σ(eF ) gSSO (eF ) σ (gS(eF )) gSSO (e1) σ (gS(e1))
(10−2) % (10−4/year) % (10−4/year) %

α Cen Bbc 0.1512 0.0370 0.05356 0.0907 0.05356 0.0907

Gl 86 Ab mind 0.04530 0.265 0.04019 0.412 0.04015 0.518

Gl 86 Ab maxd 0.188 1.84 0.0067 0.554 0.006674 0.660

HD 41004 Bb 0.05367 1.85 0.020 1.67 0.0195 1.62

HD 126614 Ab 7.090 7.30 2.344 11.0 2.23023 6.47

KOI-1257b 2.854 8.26 74.9 13.9 70.46 8.46

γ Ceph Ab 5.645 10.8 9.05 15.3 9.057 15.3

HD 41004 Ab 4.26 11.8 9.27 16.0 7.872 1.08

HD 196885 Ab 6.56 20.4 14.6179 23.7 12.45 10.4

The secular frequencies were calculated for a fictitious planet at the stationary secular solution (e1 = eF )
and for the actual value of the planetary eccentricity given by Table 2. We present as well the difference in
percentage σ of the first-order solution relatively to the second-order one. The ν Oct Aba and ν Oct Triplea

are located in above the MMR curve in Fig. 6 and therefore the secular models are not applicable

– ν Oct Triple—An alternative description of the same system, proposed by Morais and
Correia (2012), composed of a binary sub-system instead of a single secondary star. The
planet predicted in this scenario is located in the magenta region, with strong dynamical
effects from mean-motion resonances;

– KOI-1257—An unconfirmed planetary candidate (Santerne et al. 2014) with a very high
eccentricity (e1 ∼ 0.7) that could lead to instabilities. This system is located in the
borderline between the blue and the green regions, indicating that a second-order secular
model is probably necessary to model its dynamical evolution;

– HD 41004 Ab and Bb—A multi-planetary system. Planet Bb is located very close to
the B star, with the dynamics properly described by the first-order model. Planet Ab,
however, is located in the borderline region between the blue and green regions, which
means that depending on the accuracy desired for the study, a second order approach may
be necessary;

– γ CephAb—Located in the boundary between the blue and green regions, again indicating
that a second-order approachmay be necessary. This system also presents a low osculating
eccentricity (e1 = 0.05), very close to the forced value e1F . Due to the large perturbations
from the binary companion, the origin of this planet has been subject of many studies
(Thébault et al. 2004; Giuppone et al. 2011, among others). A second-order secular theory
has been proved necessary in analytical studies;

– HD 196885 Ab—Located in the green region, this is another system for which a second-
ordermodel is necessary. The planet is located close to theMMR region, and perhaps high-
order resonances could play should be taken into consideration. The dynamical evolution
of the system and constraints to the orbital parameters have been focus of several works
(Giuppone et al. 2012; Satyal et al. 2014);

– α Cen Bb—Even though its existence is still under debate, the planetary candidate is
located in the blue region and a first-order model is adequate to describe its secular
dynamics. However, studies of the planetary formation around the B star, such as Thébault
et al. (2009), suggests a non-linearity of the eccentricity of putative planetesimals located
at larger values of a1, whose dynamics would require a second-order model;
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– Gl 86 Ab—Due to difficulties of determining the orbital parameters of the binary (Farihi
et al. 2013), this system possesses a high indetermination of the semimajor axis and
eccentricity of the binary. Nevertheless, in both cases the system is properly described by
a first-order secular theory;

– HD 126614 Ab—Located in the boundary between the blue and green regions, once again
indicating the necessity of a second-order approach. Also, this system is very closely
located to the MMR region, which would means that high-order resonances could play an
important role in its dynamical evolution.

7 Summary and conclusions

In this work we showed the importance and influence of high-order averaging theories in the
study of S-type planetary orbits around tight binaries. To be assured that any difference that
could arise with respect to simpler models would be only due to the averaging method itself,
the disturbing function was expanded to high orders in semimajor axis ratio and eccentricities
guaranteeing a precise representation for a1/a2 < 0.4 and e1, e2 < 0.5. We then used
this expansion for the construction of a second-order secular model applying a Lie-series
canonical perturbation technique.

The basic properties of the secular dynamics are characterized by two quantities: the forced
eccentricity eF and the secular frequency gS . We defined and applied a geometric method
(Sect. 2.5) to determine these quantities from a general secular Hamiltonian function. We
showed that these can also be accurately obtained from N-body simulations with the aid of
an iterative algorithm based on a quasi-periodic decomposition given by a frequency analysis
method.

To compare the families of stationary solutions obtained from the secular models to those
obtained from the N-body code, we introduced characteristic limits that define the applicabil-
ity domain of each analytical theory. We calculated these limits to a large grid of parameters
and constructed parametric planes that show, for any given system, whether it should be
studied with a first, a second or higher-order model. These parametric planes also yield
information concerning its orbital stability, the influence of MMRs on its dynamics and
the magnitude of short-period oscillations. We then applied these parametric planes to sev-
eral real examples, including confirmed, candidates and contested planets in binary star
systems.

These planes show that there is always a region in the space of parameters that can be
properly described by the first-order model for 0.1 ≤ m2/m0 ≤ 10 and e2 ≤ 0.6. We
also conclude that the second-order model is adequate up to higher values of a1/a2, but
there is still a region that can not be properly described, specially for lower values of e2
and larger values of m2/m0. We believe this region (white area in the parametric planes)
should be properly described with a third or higher-order models. However, in many other
cases, the limit of applicability of the second-order model coincides with the limit of orbital
stability, indicating that higher-ordermodels are unnecessary andwill not improve the existing
results.
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Appendix 1: Numerical coefficients of the disturbing function

In this Appendix we present the values of the coefficients Ti , ni , ci , di , p
(1)
i , p(2)

i and p(3)
i

of the disturbing function (Eq. 13). Two files containing these coefficients are provided as
Electronic Supplementary Material, found with the electronic version of this paper.

The first file, “table-coefficients-ni_ci_di_xi_yi_zi_Ti.dat” contains
the data of the development used throughout this paper. The file lines were ordered with
respect to decreasing values of |Tiαni eci1 e

di
2 | for α = 0.4 and e1 = e2 = 0.5 and then

arranged as described in Sect. 2.2, with N0 = 72, NS = 184 and N = 104. Using this
development, the Second-order term of the Secular Hamiltonian (Eq. 31) has the order of
106 terms. Table 4 shows an excerpt of the file as an example.

The secondfile, “table-coefficients-ni_ci_di_xi_yi_zi_Ti-short.dat”
contains the data of a second development, valid for α < 0.3, e1 < 0.1 and e2 < 0.5. The
file is arranged again as described in Sect. 2.2, with N0 = 72, NS = 184 and N = 1800.
Using this development, the Second-order term of the Secular Hamiltonian (Eq. 31) has the
order of 5 × 103 terms, which decreases substantially the computation time in comparison
with the first file. Although it is a more limited development, it is still capable of reproducing
the results presented in Sect. 6, for orbits close to the secular stationary solution.

Appendix 2: Analytical expressions for the frequencies

The frequencies νi on the left hand side of Eq. (27) are given by

ν1 = ∂H0

∂L∗
1

= −G2
N0∑

l=−1

TlMnlQnl L
al
1 L

bl
2 e

cl
1 e

dl
2

(
al − cl
L∗
1

+ cl
L∗
1e

∗2
1

)
,

ν2 = ∂H0

∂L∗
2

= −G2
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TlMnlQnl L
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1 L

bl
2 e
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1 e

dl
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2e
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2

)
, (50)

ν3 = ∂H0
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1

= −G2
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l=−1
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2 e
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1 e

dl
2
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2

e∗2
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1 L∗
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)
.

The secular frequency for the Second-order Hamiltonian is calculated as Eq. (44) and
gives

gs2A = ν3 + G4

4

{ N∑

i=N0+1

N∑
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, (51)
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Table 4 Example of a section of the file “table-coefficients-ni_ci_di_xi_yi_zi_Ti.dat”

File line (i) ni ci di p(1)
i p(2)

i p(3)
i Ti

1 2 0 0 0 0 0 0.25

2 2 0 2 0 0 0 0.375

3 2 2 0 0 0 0 0.375

4 2 2 2 0 0 0 0.5625

5 4 2 2 0 0 0 3.515625

6 2 0 4 0 0 0 0.46875

7 4 0 2 0 0 0 0.703125

8 4 2 0 0 0 0 0.703125

9 4 2 4 0 0 0 9.2285156

10 4 0 0 0 0 0 0.140625

73 3 1 1 0 0 1 −0.9375

74 3 1 3 0 0 1 −2.34375

75 5 1 3 0 0 1 −8.6132813

76 5 1 1 0 0 1 −1.640625

77 5 1 5 0 0 1 −25.8398438

78 3 1 5 0 0 1 −4.1015625

79 5 3 3 0 0 1 −21.5332031

80 3 3 1 0 0 1 −0.703125

81 5 3 1 0 0 1 −4.1015625

82 5 3 5 0 0 1 −64.5996094

185 6 3 6 5 −10 6 −2.9560257 × 105

186 6 4 6 4 −10 6 5.8235717 × 105

187 6 3 8 5 −10 6 1.1427852 × 106

188 6 4 8 4 −10 6 −2.2513646 × 106

189 6 4 6 6 −10 6 −5.4716639 × 105

190 6 4 8 6 −10 6 2.1153188 × 106

191 6 5 6 5 −10 6 1.0313413 × 106

192 6 5 8 5 −10 6 −3.9871155 × 106

193 5 3 7 4 −10 5 −1.9900952 × 105

194 6 3 6 3 −10 6 2.3447115 × 105

The file has 7 columns (from ni to Ti ), with the first 6 columns composed of integers and the last column
composed of real numbers. The index i is the line of the file. Note that the Keplerian part (i = −1, 0) of the
Hamiltonian is not presented in this file

where
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[
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