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Abstract. We present a registration framework that combines both
tissue Doppler and B-mode echocardiographic sequences. The estimated
spatiotemporal transform is di↵eomorphic, and calculated by modeling
its corresponding velocity field using continuous B-splines. A new cost
function using both B-mode image voxel intensities and Doppler veloc-
ities is also proposed. Registration accuracy was evaluated on synthetic
data with known ground truth. Results showed that our method allows
quantifying wall motion with higher accuracy than when using a single
modality. On patient data, both displacement and velocity curves were
compared with the ones obtained from widely used commercial software
using either B-mode images or TDI. Our method demonstrated to be
more robust to image noise while being independent from the beam an-
gle.

1 Introduction

Ultrasound imaging (US) is one of the preferred modalities to assess myocardial
motion and deformation in clinical routine, due to its non-invasiveness, cost-
e↵ectiveness, and high temporal resolution (around 30 fps for 3D and up to
more than 100 fps for 2D). The presence of local speckles facilitates the use of
tracking algorithms to estimate motion and deformation locally, but may su↵er
from image quality. Complementarily, Tissue Doppler Imaging (TDI) allows the
quantification of myocardial velocities with a higher temporal resolution and
better signal-to-noise ratio, although with lower spatial resolution and angle
dependency. However, the integration of such results remains di�cult, but highly
desired to overcome the disadvantages of using each technique separately.
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The objective of this paper is to use both B-mode and TDI sequences to
estimate a single displacement field, taking advantage of the spatial resolution
of B-mode images and the temporal resolution of TDI. In particular, we propose
a new cost function including a term that measures the agreement between
the estimated velocity projected on the beam direction and the velocity values
obtained from TDI.

Integration of multiple US cardiac images in one single image to be used
for a quantitative analysis was proposed in [1] and [2]. In addition, methods to
perform an integrated analysis of di↵erent US images were also proposed in [3]
and [4]. All of these methods integrate di↵erent images from the same modality.
In [5], TDI was used for motion tracking along the beam direction and B-mode
images were used for tracking in the transversal direction. In [6] a combined
analysis of B-mode sequences and TDI was proposed, using an optical flow-based
registration method with a spatial a�ne velocity model and a coarse-to-fine
multi-scale approach. With this method, registration was performed pairwise, so
the temporal coherence was not guaranteed. Moreover, B-mode and TDI frames
needed to be evaluated at exactly the same time instant.

In our approach the velocity field was modeled continuously using B-spline
kernels. All frames were registered simultaneously by estimating one single spa-
tiotemporal transform to preserve both spatial and temporal consistency. To
estimate this transform, the agreement between the velocity field estimated pro-
jected on the beam direction and the velocities obtained from TDI is measured,
in addition to a more classical voxel intensity-based similarity metric between the
registered images and a reference. In our implementation, the estimated trans-
form is di↵eomorphic, thus being smooth, invertible and with smooth inverse at
every spatiotemporal location.

2 Methodology

The proposed algorithm is based on the Temporal Di↵eomorphic Free Form
Deformation (TDFFD) registration method presented in [7] and improves it
by taking into account tissue velocities obtained from TDI. A summary of the
proposed registration framework is illustrated in Fig. 1.

2.1 Velocity field and transform

The TDFFD algorithm models a continuous velocity field as a sum of spatiotem-
poral B-spline kernels, where the B-spline coe�cents (velocities at each control
point) are concatenated in a parameters vector p:
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Fig. 1. Registration scheme. The optimizer finds the optimal parameters of the TDFFD
transform by combining a voxel intensity based cost function and a metric that mea-
sures the similarity between the estimated velocities projected on the beam direction
and the ones obtained from TDI.

the grid of control points and � = {�i,�j ,�k} is the spacing between control
points. To map a point at coordinate x = {x, y} from time t = 0 to time t = T ,
the velocity field has to be integrated:

'0(x, T ;p) = x+

Z T

0
v
�
'0(x, t;p), t;p)

�
dt. (2)

Equation 2 can be discretized using a forward Euler integration scheme,
converting the continuous t in a sequence of discrete tk. Thus, the transform at
t = tn can be re-written as:

'0(x, tn;p) = x+
n�1X

k=0

v
�
'0(x, tk;p), tk;p

�
�tk (3)

where �tk = tk+1 � tk.
Note that the temporal sampling has to be small enough to get an accurate

approximation of the trajectory with Eq. 3. In this work, we are using images
from two modalities with di↵erent temporal resolution. To exploit the higher
temporal resolution of TDI, the initial temporal sampling of the transform was
set to the average temporal spacing between TDI frames. As proposed in [7],
to ensure invertibility, the Jacobian of the transform with respect the spatial
coordinates is evaluated at every sampled point. If a point with non-positive
determinant of the Jacobian is detected, the time step is reduced by a factor
of 2 until a positive determinant is found (which is a neccessary condition for
invertibility).

2.2 Cost function

Unlike the case of B-mode US image registration, not only image voxel intensities
will be considered but also tissue velocities. Therefore, the cost function proposed
will take into account two di↵erent terms, one for each information channel
considered:

This a pre-print version.
The final document is available at http://www.springerlink.com



C(p) = J(p) + �D(p) (4)

where J represents a similarity metric applied on the B-mode image sequence, D
is the similarity metric applied on the TDI data and � is a weight balancing the
two terms. For the first term, a squared di↵erence of pixel intensities between
the reference frame and the remaining frames is used as proposed in [7]. For the
second term, a comparison between the projection of the velocity field estimated
on the beam direction and the Doppler velocities is proposed. Unlike in [7], no
incompressibility term was used. Thus:
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where In represents a B-mode US frame at t = tn, b is a unitary vector in
the beam direction, v represents the velocity estimated, V is the velocity value
provided by TDI, N+1 and M+1 are the number of B-mode and tissue Doppler
frames, and ⌦I and ⌦V correspond to the spatial domain of the B-mode and
tissue Doppler images respectively.

2.3 Optimizer and metric derivation

Since the number of transform parameters is high, a L-BFGS-B optimizer [8] was
preferred for registration. This algorithm uses the derivative of the cost function
with respect to the parameters to find the optimal value of p. Optimizer bounds
were set to ±20cm/s. The total derivative of the cost function is:
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where rI represents the gradient of the image. For simplicity, '0(x, tn;p) was

written as xn
0 . The steps for the computation of dxn

0
dp can be found in [7]. Note

that the calculation of dv
dp corresponds to the derivative of the B-spline used to

model the velocity field.

3 Experiments and results

To validate the proposed algorithm, synthetic B-mode images and TDI data were
used. The method was also applied to one healthy volunteer and the results were
compared with the ones obtained from widely used commercial software.
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For all the experiments, the B-spline grid used to model the velocity field
had a size of 8⇥ 8⇥N control points, where N is the number of frames in the
B-mode image sequence.

3.1 Validation with synthetic data

The US synthetic dataset described in [9], extending the one proposed at STA-
COM 2012 1, was used to evaluate the accuracy of the proposed method. This
dataset was generated using heart segmentations from magnetic resonance im-
ages as input for the Bestel-Clement-Sorine electro-mechanical model [10][11].
The model was then used to simulate acute ischemia and dyssynchrony. For each
simulated case, ground truth for displacement at every point was available. A US
model (COLE, [12]) was used to generate synthetic 3D US images from the out-
put of the electro-mechanical model. The simulated images consisted of 107⇥80
lines in azimuth and elevation direction over an angle of 80⇥80 degrees, resulting
in a frame rate of 30 Hz due to the use of parallel beam forming. After mapping
to a Cartesian coordinate system, the final data consisted of 500 ⇥ 400 ⇥ 500
isotropic voxels with a size of 0.46 mm. The dataset comprised eight di↵erent
cases: two normal cases, four ischemic and two cases with dyssynchrony.

A 2D longitudinal plane was extracted from every 3D US image, simulating
B-mode US images in a 4-chambers view. In addition, velocities were calculated
from the ground truth meshes and projected on the beam direction to simulate
TDI data. White noise was also added to the velocities [13], so that the signal-
to-noise ratio was 12 dB. Image regions without velocity information were set as
random values below 1.6 cm/s (which was used as Nyquist velocity).

The value of � (Eq. 4) was determined by heuristic testing on one of the
normal cases. The average displacement error value during the whole cardiac
cycle was calculated in the left ventricle for di↵erent values of �. Results are
reported in Fig. 2. Based on these results, a value of � = 30 was taken for all
the experiments.

Fig. 3 shows the mean and standard deviation of the displacement error
(considering both longitudinal and transversal components) along one cardiac
cycle for each case when using only B-mode images and when using both B-mode
images and TDI. As it can be observed, the error was reduced in all cases by
using B-mode images together with tissue Doppler velocities.

3.2 Application to clinical case

Experiments with one healthy volunteer (age 40, male) were also performed and
results were compared with commercial software that is widely used in the clini-
cal environment (EchoPAC, GE Healthcare, Milwaukee, WI, USA). Longitudinal
velocities and displacements were calculated separately from B-mode images and
from TDI with this software at 4 points of the myocardium and compared with
the ones estimated using our approach (see Fig. 5). These points were located

1 http://www.physense.org/stacom2012/
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Fig. 2. Mean displacement
error estimated during one
cardiac cycle for di↵erent
values of � in a normal case
(Normal1).
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Fig. 3. Mean error (circles) and standard deviation
(lines) calculated from registration results using only
B-mode images (blue) and using both B-mode and
TDI data (red) for every simulated case.

at basal- and mid-levels of the left ventricle, for both septal and lateral walls, as
illustrated in Fig. 4. Only points at basal- and mid-levels were analysed because
the beam is roughly aligned with the longitudinal direction at these locations.
The algorithm that EchoPAC uses for motion tracking from B-mode images is
based on speckle tracking, while motion from TDI is computed by temporally
integrating the recorded velocities. No drift correction was performed because it
may hide the propagation of errors.

Displacement curves obtained with the di↵erent methods had similar and
realistic shapes, although the maximum displacements presented variations de-
pending on the method considered. The maximum displacement estimated by
the commercial software from B-mode images was higher in general. However,
this increment in the magnitude could be due to the drift. In addition, if one
region of the image has poor quality, tracking based only in B-mode sequences
may fail, as it is the case of Point 1.

3

4
1

2
3

Fig. 4. Location of the points at which the comparison of Fig. 5 was performed.
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Fig. 5. Longitudinal displacements and velocities estimated during one cardiac cycle
with: our approach (red), EchoPac using Doppler velocities (blue) and EchoPac using
B-mode images (green).

Displacements estimated with the commercial software from TDI and with
our approach were very similar and presented a low drift compared to the results
from B-mode images. However, since the displacement estimated from TDI data
is calculated by temporally integrating the recorded velocities, the white noise
that is present in the velocity signals may lead to errors in the estimation of
the displacement. In addition, the limitation of using only TDI is that it only
measures velocity on the beam direction. Our approach is more robust to errors
by taking information from two sources.

The velocity curves estimated were very similar in shape and magnitude
among the di↵erent approaches (with the exception of Point 1 for the estimation
from B-mode images), while the velocity estimated with our approach is tem-
porally smoother, this being due to its intrinsic definition through the TDFFD
method.

4 Conclusions

We presented a registration framework with improved accuracy with respect
to classical motion estimation from grayscale images, by combining B-mode
echocardiographic sequences with the velocity information from tissue Doppler
sequences. This approach allows increasing the temporal resolution of the esti-
mated displacement field, while being independent from the beam angle. This
could be very helpful to detect subtle di↵erences in mechanics that are not
visible when processing B-mode images or TDI separately. In addition, it is pos-
sible to control the influence of each information source by changing the value
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of the weighting parameter �. Experiments on synthetic datasets demonstrated
the higher accuracy reached by this approach. Moreover, experiments with one
clinical case showed that the proposed method gave realistic results.
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