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Motivation

• Time series are:
• mostly unlabeled
• potentially long
• of unequal length in the same dataset

• Previous work does not tackle these issues simultaneously:
• most of the time supervised (Bagnall et al., 2017)
• not scalable (Malhotra et al., 2017)
• tested on too few datasets with no code available (Malhotra et al., 2017; Wu

et al., 2018)
• Objectives of this work:
• learn unsupervised time series representations,
• in a scalable way,
• for time series of potentially unequal lengths,
• suitable to and extensively tested on various tasks
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Figure: Choices of xref, xpos and xneg.

Unsupervised training

• Encoder network f taking as input time series of arbitrary length
• Training with a triplet loss:
• challenge: selecting similar and dissimilar inputs without supervision
• problem: no unsupervised triplet loss has been proposed for time series yet
• proposed solution: time-based triplet loss
• inspired by CBOW and word2vec models

• Procedure and analogies:
• choose xpos in some yi: word
• choose xref in yi containing xpos: context
• choose xneg

k in some yjk: random word
• optimize the loss:
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• Desirable properties:
• simple and efficient:
• does not require a decoder
• the cost of an iteration is a linear in the cost of evaluating and backpropagating through f
• if xpos and xneg are chosen of the same length, their representations can be computed in parallel
• memory can be optimized by performing backpropagatation per term

• acts on time series of arbitrary length
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Figure: Principle of causal CNNs with exponentially dilated convolutions.

Encoder Architecture

• We use a neural network based on exponentially dilated convolutions
rather than a recurrent network:
• more efficient and parallelizable on modern hardware
• exponentially increasing dilation allows to increase the receptive field at constant

depth
• good performance on time series for other tasks (Bai et al., 2018; Ismail Fawaz

et al., 2019)
• experimentally performs better in our experiments

• We make the network causal:
• maps a sequence to a sequence of the same length
• each output element only depends on input values with lower time indices
• can help to save computation time when adding an element to a time series

• The global architecture is sequentially shaped by:
• a causal network formed with exponentially dilated convolutions associated with:
• weight normalization
• leaky ReLU
• residual connections

• a global max pooling layer squeezing the temporal dimension and aggregating
temporal information in a fixed-size vector

• a final linear transformation

Training

• Encoder training and testing performed on a single GPU
• No labels used during encoder training
• No hyperparameter optimization
• Open-source code, pretrained models and hyperparameters available
• Examples of dimensionality reduction plots using t-SNE:
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Classification

• Protocol:
• unsupervised training of the encoder on the train dataset
• training of an SVM with RBF kernel on top of the learned features with the train

labels
• Results on the full UCR archive (Dau et al., 2018):
• we outperform previous unsupervised state-of-the-art methods by a large margin

on the few datasets they were tested on
• we achieve close to state-of-the-art performance when comparing to supervised

methods
• Tests were also performed on multivariate time series

Figure: Mean ranks of compared methods.

Figure: Boxplot of the ratio of the accuracy versus maximum achieved accuracy.
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Figure: Accuracy of ResNet and our method with respect to the ratio of labeled data on
TwoPatterns.

Additional Features

• Our unsupervised method can be applied in a spare labeling setting,
where it outperforms state-of-the-art deep neural networks
• Learning a one-nearest-neighbor classifier allows to outperform DTW
which uses the same classifier on raw data
• The learned representations are transferable across datasets

Figure: Subseries of the IHEPC dataset, with clustering induced by learned representations.

Moving Average Prediction

• IHEPC dataset:
• minute-averaged electricity consumption of a single household for four years
• single unlabeled time series of length ≈ 2 000 000

• Encoder on such a long time series is trained in a few hours
• Linear regressors on raw data versus learned representations for

moving average prediction:
• task: predict next day / quarter average from the previous day / quarter data
• regressors on raw data show slightly better results
• regressors on learned representations are much more efficient

• The learned representations can be leveraged at different time scales
Table: Results obtained on the IHEPC dataset.

Task Metric Representations Raw values

Day Test MSE 8.92 × 10−2 8.92 × 10−2

Wall time 12s 3min 1s

Quarter Test MSE 7.26× 10−2 6.26 × 10−2

Wall time 9s 1h 40min 15s
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