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Abstract Two semi-analytical one-degree-of-freedom secular models are presented for the
motion of small bodies beyond Neptune. A special attention is given to trajectories entirely
exterior to the planetary orbits. The first one is the well-known non-resonant model of Kozai
(Astron J 67:591, 1962) adapted to the transneptunian region. Contrary to previous papers, the
dynamics is fully characterized with respect to the fixed parameters. A maximum perihelion
excursion possible of 16.4 AU is determined. The second model handles the occurrence of
a mean-motion resonance with one of the planets. In that case, the one-degree-of-freedom
integrable approximation is obtained by postulating the adiabatic invariance, and is much
more general and accurate than previous secular models found in the literature. It brings out
in a plain way the possibility of perihelion oscillations with a very high amplitude. Such a
model could thus be used in future studies to deeper explore that kind of motion. For complex
resonant orbits (especially of type 1:k), a segmented secular description is necessary since the
trajectories are only “integrable by parts”. The two models are applied to the Solar System
but the notations are kept general so that it could be used for any quasi-circular and coplanar
planetary system.
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370 M. Saillenfest et al.

1 Introduction

The dynamical structure of the transneptunian region is still far from being fully understood,
especially concerning high-perihelion objects and the link toward the Oort Cloud. For these
objects, the orbital perturbations are very weak, both from inside (the planets) and from out-
side (passing stars and galactic tides). However, some of them are observed on very eccentric
orbits (the most distant ones being Sedna and 2012VP113 with eccentricities 0.85 and 0.69)
which indicates that they have not formed in their present orbital state. Before thinking of
exotic theories, an exhaustive survey has to be conducted on the different mechanisms that
could produce such trajectories involving only what we take for granted about the Solar Sys-
tem dynamics, that is the orbital perturbations by the known planets and/or by galactic tides.
The idea has been introduced in Gallardo et al. (2012) and we will often refer to that article.
For instance, it is known from a long time by numerical ways that the secular dynamics in a
mean-motion resonance can produce high-amplitude oscillations of the perihelion distance
(see for example Gomes et al. 2005). Even if it is usually considered unlikely to produce
objects of type Sedna (Morbidelli and Levison 2004), our goal is to characterize and quantify
that kind of mechanism by other means than statistics on the output of numerical simulations.

As a first step, we will focus in the present paper on planetary perturbations alone. The
galactic tides, effective for very high semi-major axis (see for instance Fouchard et al. 2006),
are kept for future studies. We will further restrict the study on perihelion distances greater
than the orbit of Neptune, that is on trajectories completely out of the planetary region. Such
orbits can be divided into two broad classes:

– The first one, referred here as the Scattered Disc, contains the objects undergoing a
diffusion of semi-major axis. It denotes a chaotic short time-scale dynamics, so these
orbits are unstable by essence. It has been shown that a diffusive process is unable to
produce a substantial variation in perihelion distance (see Gallardo et al. 2012, for a
thorough review). That kind of orbits will be dismissed in the present paper.

– The second class regroups the objects with integrable (or quasi-integrable) short time-
scale dynamics. As such, their orbits can be described by secular models, which are
nothing else than a first stage toward Arnold’s action-angle variables (for a completely
integrable motion). Suchmodels can exhibit stable equilibrium points and libration zones
for the secular argument of perihelion ω and perihelion distance q . If a particle follows
such kind of orbit, we say that it experiences “Lidov–Kozai mechanism”, in reference to
the pioneer papers of Kozai (1962, 1985) and to the independent study of Lidov (1962)
for the motion of artificial satellites. That class can be further divided into two kind
of objects: the non-resonant ones (fixed semi-major axis) and those trapped in a mean-
motion resonance with a planet (oscillating semi-major axis). To prevent any scattering,
the non-resonant objects need a sufficiently high perihelion distance, the limit being
estimated by Gallardo et al. (2012) as roughly qmin = a/27.3+33.3 AU (where a stands
for the semi-major axis expressed in AU). The resonant orbits are much more permissive
because the forced link with one of the planets can act as a protective mechanism against
diffusion. However, the resonance overlapping and, of course, the close encounters with
Neptune, are still well-known sources of chaos for perihelion distances very close to the
planetary region.

Note that these two broad classes are somehow permeable: a diffusion of semi-major axis can
indeed stop abruptly with a resonance capture, or on the contrary, a quasi-integrable secular
motion can get the perihelion distance to decrease toward the diffusion region. We will come
back to that point later.
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Long-term dynamics beyond Neptune: secular models 371

The present work is devoted to the use of secular models to describe the trajectories
of objects of the second class. That kind of models is widely used in Celestial Mechanics
because it allows to study graphically in a glance a large variety of trajectories (see for instance
Morbidelli 2002).We give here a succinct context of its application in the region of interest: in
1962, Y. Kozai developed an analytical secular model for asteroids with arbitrary inclination
and eccentricity. His model is designed for an external perturbing planet (namely Jupiter)
and the article presents the dynamics given by the first terms of the analytical expansion.
Then, Kozai (1985) added the possibility of a mean-motion resonance between the particle
and its perturber and turned to semi-analytical methods. As it assumes a fixed value of the
resonant angle, that second model can only be used as a rough insight of the true resonant
dynamics. Thanks to the increasing power of computers, Thomas and Morbidelli (1996)
used a semi-analytical approach to generalize the non-resonant model of Kozai for several
planets. They presented a collection of secular level curves for semi-major axis greater than
30 AU with a special attention given to perihelion distances inside the planetary region (the
collision curves appear as pinch lines on the graphs). At last, Gallardo et al. (2012) made a
thorough review of the variety of trajectories beyond Neptune (see their introduction for a
more detailed historical background). With a different approach, they obtained a Kozai-type
analytical expansion for a set of internal perturbing planets (but only the very first terms
are shown) and used it, as well as semi-analytical methods, to describe qualitatively the
non-resonant dynamics for a perihelion outside the planetary region. They also modified
the semi-analytical resonant model of Kozai (1985) to deal with a more realistic sinusoidal
evolution of the resonant angle, as already used in Gomes et al. (2005). That method is
however still unsatisfactory for a general study, since the evolution of mean-motion resonant
angles in that region can actually undergo strong variations during the dynamics (centre,
amplitude, frequency). These variations are besides unknown a priori. Some improvements
have thus to be realised to take into account the precise variation of the resonant angle, in order
to get an accurate representation of the dynamics rather than a rough approximation of it.

To sum up, the background for secular dynamics beyond Neptune is now well established
but the analyses found in the literature remain qualitative and incomplete. Since the quasi-
integrablemotion beyondNeptune is a promisingmechanism to greatlymodify the perihelion
distance of small bodies, a special effort has to be deployed to construct secular models
designed to explore in a straightforward and accurate way all the possible regular orbits.
In this line of thinking, the aim of this work is twofold: provide a thorough analysis of the
non-resonant case and develop an accurate resonant secular model.1 The application to real
objects and the possible implications concerning the distribution of the transneptunian orbits
will be studied in future works.

In Sect. 2, we present the planetary model used and the resulting osculating Hamiltonian
function, starting point for any secular representation. In Sect. 3 we revisit Kozai’s non-
resonant secular model in the transneptunian region. Its general form is given for an arbitrary
number of terms. An analysis of the lowest order terms, similar to the one of Gallardo et al.
(2012), is performed to get a time-scale information (typical duration of the Lidov–Kozai
cycles). The semi-analytical method of Thomas andMorbidelli (1996) is then used to explore
systematically the space of parameters for a perihelion beyond Neptune: all the behaviours
allowed by a non-resonant secular dynamics are thus described and quantified in an exhaustive
way. Then, Sect. 4 presents the construction of the resonant secular model. It is explained

1 To prevent any confusion in the following, note that the present paper will never deal with the so-called
“secular resonances”. What we call here a “resonant secular model” is a secular model that takes into account
a mean-motion resonance between the particle and one of the planets.
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372 M. Saillenfest et al.

why previousmodels, which assume a particular evolution of the resonant angle (Kozai 1985;
Gallardo et al. 2012; Brasil et al. 2014), can be inaccurate or cumbersome. In the present
paper, the adiabatic invariant theory is used to get a one-degree-of-freedom secular system.
That strategy turns out to be effective to study the resonant dynamics beyond Neptune and
as aesthetic as non-resonant models: all the possible orbits are described by the level curves
of a secular Hamiltonian with two free parameters. Finally, Sect. 5 shows some illustrations
of the resonant model, along with detailed explanations about its use for the various types of
dynamics we can be confronted with. As the variety of trajectories is found to be much more
complex and richer than in the non-resonant case, an exhaustive exploration of the parameter
space is left for future works.

2 Planetary model and Hamiltonian function

In a heliocentric reference frame, the Hamiltonian function for a test-particle undergoing the
gravitational attraction of the Sun and N planets writes:

H(L ,G, H, l, g, h, t) = − μ2

2L2 −
N∑

i=1

μi

(
1

|r − ri | − r · ri
|ri |3

)
(1)

where r and ri are the heliocentric positions of the particle and of the i th planet, and μ and
μi are the gravitational constant times the masses of the Sun and the i th planet, respectively.
Written in that form, H is time-dependent through the planetary positions, supposed known
functions of the time: ri ≡ ri (t). The Hamiltonian function (1) is written in Delaunay
canonical coordinates:

⎧
⎪⎨

⎪⎩

l = M

g = ω

h = Ω

and

⎧
⎪⎪⎨

⎪⎪⎩

L = √
μa

G =
√

μa (1 − e2)

H =
√

μa (1 − e2) cos I

(2)

where {a, e, I, ω,Ω, M} are the usual heliocentric Keplerian elements, related to r via:

r = r

⎛

⎝
cos(ω + ν) cosΩ − sin(ω + ν) sinΩ cos I
cos(ω + ν) sinΩ + sin(ω + ν) cosΩ cos I

sin(ω + ν) sin I

⎞

⎠ (3)

with:

|r| = r ≡ a (1 − e2)

1 + e cos ν
and ν ≡ ν(e, M) fromKepler equation. (4)

As usual, we split H into its Keplerian part H0 and the planetary perturbations εH1, where
the size ε of the perturbation is related to max {mi } = mJ:

H(L ,G, H, l, g, h, t) = H0(L) + εH1(L ,G, H, l, g, h, t) (5)

In order to study the specific role of each planet, we must now choose a planetary model,
that is an explicit formulation of the {ri (t)} functions. This can be done either by a synthetic
representation or by analytical expansions as in Lemaître and Morbidelli (1994) or Moons
et al. (1998). We will opt here for the very simple planetary model used by Kozai (1962)
and many others thereafter, where the N planets evolve on circular and coplanar orbits.
As recalled by Thomas and Morbidelli (1996), such a model can be seen as the dominant
term of an expansion in powers of the planetary eccentricities and inclinations. Anyway, that
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approximation seems quite viable, given that the only relevant planetary perturbations in the
region under study come from the four giant planets (eccentricities <0.1 and inclinations
<3◦), on relatively stable orbits from the end of the planetary migration (see for instance
Laskar 1988, 1990; Tsiganis et al. 2005).

With that planetary model, it is straightforward to disentangle the effect of each planet,
since:

ri (t) = ai

⎛

⎝
cos λi (t)
sin λi (t)

0

⎞

⎠ with λi (t) = ni t + λi0 (6)

where the semi-major axis ai is constant and n2i a
3
i = μ + μi . We then get rid of the explicit

time dependence by defining the angles {λi } as new canonical coordinates, along with their
conjugated momenta {Λi } artificially added to the non perturbed part H0:

H0 = − μ2

2L2 +
N∑

i=1

ni Λi (7)

The general form of the Hamiltonian function writes finally:

H
(
{Λi }, L ,G, H, {λi }, l, g, h

)
= H0

(
{Λi }, L

)
+ εH1

(
L ,G, H, {λi }, l, g, h

)
(8)

It is the starting point for all the models presented below (non-resonant and resonant ones).

3 Non-resonant case

In order to switch to secular coordinates and compute the secular Hamiltonian function, a
choice has now to bemade: withH as described above, it is indeed impossible to get rid of the
short periodic terms analytically without the use of infinite series. Section 3 is thus organised
as follows: in Sect. 3.1, the analytical model of Kozai (1962) is adapted to the outer Solar
System (several interior planets). The dominant terms are then studied in Sect. 3.2. Naturally,
this will give only a rough picture of the secular dynamics, but some general results will be
obtained and guide the construction of an “exact” semi-analytical model in Sect. 3.3. That
last model is not new and it has already been applied to transneptunian objects (see for
instance Thomas and Morbidelli 1996; Gallardo et al. 2012). Some aspects are still worth to
be detailed, however, to depict a general picture of the non-resonant dynamics for a perihelion
outside the orbit of Neptune and compare it later to the resonant case.

3.1 Analytical model

Let us recall here the method of Kozai (1962). The possible large eccentricities and inclina-
tions of the transneptunian objects make impossible the use of a classical expansion around a
circular orbit in the planetary plane (we are indeed outside or very close to its radius of con-
vergence). A development centred on some specific values (see for instance Roig et al. 1998)
is also inappropriate because of the possible large variations of orbital elements, and because
it would imply a loss of generality. However, considering that all the semi-major axis con-
cerned are greater than Neptune’s, we can think of a development in Legendre polynomials,
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374 M. Saillenfest et al.

that is in powers of the {ri/r} ratios2:
1

|r − ri | = 1

r

+∞∑

n=0

(ri
r

)n
Pn(cosψi ) (9)

where Pn(x) is the nth Legendre polynomial, and the angle ψi is defined by:

cosψi = ̂(r, ri ) = r · ri
r ri

(10)

Naturally, that kind of development restricts us to trajectories that never come inside the
planetary region, that is, for perihelion distances q = a(1−e) always greater thanmax {ai } =
aN. This is not of great concern as we are precisely looking for orbits entirely exterior to the
planets, but we must keep in mind that the convergence will be very poor for a perihelion
near the orbit of Neptune.

Let us now switch to secular coordinates. To do so, we will use the classical Lie-series
formalism for the perturbed Hamiltonian system (8): since we assume in that section that
there is no mean-motion resonance in the system, the fast angles l and {λi } can be removed
by a close-to-identity transformation. In the secular coordinates, the Hamiltonian function
writes then:

F = F0 + εF1 + O(ε2) (11)

where F0 is functionally equal to H0 and εF1 is functionally equal to the average of εH1

with respect to the independent angles l and λ1, λ2 . . . λN . In the region considered here,
we judge enough to carry on the transformation up to the first order of ε. Note that we will
actually never compute the change of coordinates, but simply suppose its existence.

The indirect part of the perturbation vanishes under the average over λi , and the double
integration of the direct part can be computed analytically thanks to the simple planetary
model (6) and the development (9):

εF1 = −
N∑

i=1

1

4π2

∫ 2π

0

∫ 2π

0

μi

|r − ri | dλi dl = −1

a

+∞∑

n=0

(
N∑

i=1

μi

(ai
a

)2n
)
Bn(e, I, ω)

(12)
where B0 = 1, and for n > 0 the Bn functions are of the form:

Bn(e, I, ω) = αn

(1 − e2)
4n−1
2

n−1∑

k=0

Pk
n (e) × Qk

n(cos I ) × e2k sin2k I cos(2kω) (13)

In that expression, αn is a rational coefficient and Pk
n and Qk

n are even polynomials of order
2(n−k−1) and 2(n−k) respectively. The explicit expressions of the first terms are given in
the appendix, as well as some computation details. Note that the variables (a, e, I, ω) should
then be replaced by their expressions in Delaunay elements (2) to get the Hamiltonian in
canonical coordinates. Its general expression is thus (at first order of the planetary masses):

F
(
{Λi }, L ,G, H, g

)
= F0

(
{Λi }, L

)
+ εF1

(
L ,G, H, g

)
(14)

where F0 is given by (7) and εF1 by (12). Please note that even if we write the coordinates
with the same symbols as before, we now manipulate the secular coordinates, related to the
osculating ones by a complex canonical transformation.

2 The expansion of Kozai (1962) makes use of the inverse ratio: he was indeed interested of trajectories
entirely interior to the orbit of Jupiter.
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Long-term dynamics beyond Neptune: secular models 375

First of all, one can see that the angle h = Ω has disappeared during the transformation.
This happened because of the symmetry of rotation implied by the circular and coplanar
planetary orbits. Furthermore, the secular Hamiltonian depends only on the magnitude of
H/G = cos I (not its sign), and it is π -periodic and symmetric with respect to π/2 in
g = ω.

The analysis of the non-resonant secular dynamics is rather simple becausewe are left with
only one degree of freedom: the secularmomenta L andΛ1,Λ2 . . . ΛN are conserved, aswell
as H thanks to the extra disappearance of h. So, all the possible orbits can be described by
plotting the level curves ofF in the (G, g) plane with L and H as free parameters (theF0 part
is constant and can be omitted). For a more direct interpretation, the secular Hamiltonian F
will actually be drawn in the (q, ω) plane, equivalent to the (G, g) plane. The two parameters
will also be rewritten as:

{
a = L2/μ

CK = (H/L)2 = (1 − e2) cos2 I
(15)

where we call CK the “Kozai constant”. Note that we chose to square the H/L ratio to
stress the independence of F over its sign. That constant links the secular eccentricity and
inclination of the particle, bound to comply with its level curves. The variations allowed by
the value of CK are then:

e ∈
[
0 ,

√
1 − CK

]
and cos2 I ∈

[
CK , 1

]
(16)

In order to explore the phase space with respect to the two parameters, let us remark at first
that for a circular orbit, the secular Hamiltonian becomes also independent of g = ω. The
elements (a, e, I ) are thus constant, and the anglesΩ andω (ill-defined in that case) circulate.

3.2 Analysis of the lowest order terms

For more interesting orbits (e �= 0), we will now look for possible equilibrium points.
A rough insight of the non-resonant secular dynamics can be obtained by a truncation of
the development (12). Such a simplified model was used for instance by Kinoshita and
Nakai (2007) to work out an analytical solution of Kozai’s original problem (a single exterior
perturber). In their case, the first terms are somehow simpler because a Legendre development
for the inverse ratio does not imply the eccentricity in denominator as in (13). Their small
parameter contains besides a single planet. Naturally, some coefficients are similar, though,
as they come directly from the Legendre polynomials.

In our case, the general form of Eqs. (12, 13) makes obvious that the truncated model will
be accurate only for high semi-major axis and small eccentricities (that is, for trajectories
always far from Neptune). Dropping the constant parts and carrying the expansion up to the
very first term containing the angle g, we get (see appendix):

F(G, g) = δ2
1

8

(
L

G

)3
(
1 − 3

(
H

G

)2
)

+ δ4
9

1024

(
L

G

)7
[(

− 3 + 30

(
H

G

)2

− 35

(
H

G

)4 )(
5 − 3

(
G

L

)2 )

+ 10
(
1 − 7

(
H

G

)2 )(
1 −

(
H

G

)2 )(
1 −

(
G

L

)2 )
cos(2g)

]

+ O(δ6) (17)
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where we wrote symbolically:

δ2n ≡ 1

a

N∑

i=1

μi

(ai
a

)2n
(18)

One can notice that the angle g appears an order higher than in Kozai’s original problem.
From the Hamiltonian (17), the condition of stationarity writes:

{
ġ = 0 + O(δ4)

Ġ = 0 + O(δ6)
⇐⇒

{
cos2 I = 1/5

sin(2ω) = 0
(19)

The equilibrium points correspond thus to two very specific values of the inclination (about
63.4◦ or 116.6◦) and of the argument of perihelion (0 or π/2 mod π). These inclinations
can be reached only for a parameter CK � 1/5 (whereas the analogous limit in Kozai’s
original problem is 3/5). The stability of the equilibrium points is given by the eigenvalues
of the Jacobian matrix: we show easily that g = 0 is a saddle point and g = π/2 is a central
point. Finally, the imaginary parts of the eigenvalues give the frequency for small oscillations
around the stable equilibrium:

ν± = ± 3

1000

√
3

5

L4

H6

√
δ2 δ4 (L2 − 5H2) + O(δ4) (20)

with (L2 − 5H2) � 0 because of (19).
Figure 1 gives an example of level curves obtained from the truncated secular Hamil-

tonian (17). The equilibrium is not located exactly at I = 63.4◦ because we neglected the
term of order δ4 for ġ in Eq. (19): taking that term into account (or considering the infinite
series as in Sect. 3.3), the inclination at equilibrium is actually a function of a and CK . As
for the following, the model is here applied to Jupiter, Saturn, Uranus and Neptune (N = 4),
the mass of the inner planets being added to the Sun. Figure 2 shows the period of oscillation
around the stable equilibrium as a function of the two parameters. On the red line, the perihe-
lion at equilibrium is equal to Neptune’s semi-major axis. Then, it goes up with CK , until it
reaches a forCK = 1/5.We remark that the secular time-scale in that region is almost always
greater than a billion years, which prevents probably any occurrence of a secular resonance
with the planets. This is a new argument in support of a very simple planetary model (with
fixed orbital elements) and is consistent with the results of Knezevic et al. (1991).

3.3 Generalisation: semi-analytical model

In the previous part, we saw that it is possible to construct an analytical development of
the non-resonant secular Hamiltonian function in powers of the {ri/r} ratios. The analysis
of the first terms, then, led to rough general results about the geometry of the phase space.
Naturally, these results are asymptotic (accurate only for high semi-major axis and small
eccentricities), and cannot be used for trajectories near or inside the planetary region. In
particular, it is known since Gallardo et al. (2012) that the oscillation island at ω = π/2
disappears below some value of the semi-major axis, and that the equilibrium at ω = 0 can
become stable.

In order to get quantitative and accurate results, one can turn to numerical methods to
compute the double average of εH1: we thus get its exact value, that is the value obtained
for an infinite number of terms in the Legendre development. In that section and the rest of
the paper, we will use the integration package of Piessens et al. (1983), already successfully
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Long-term dynamics beyond Neptune: secular models 377

Fig. 1 Level curves of the truncated version ofF with terms up to δ4 (parameters: a = 400AU, CK = 0.19).
The inclinations on the right are deduced from q by a andCK and are equivalent to (116.9◦, 116.8◦ . . . 116.4◦),
from bottom to top

Fig. 2 Oscillation period for small oscillations around the stable equilibrium. The red line defines the limit
of convergence of the Legendre development (that is q = aN)

applied to such problems by Thomas and Morbidelli (1996) and Gronchi and Milani (1999).
Each evaluation ofF on a point (ω, q)will now require the numerical evaluation of the double
integral (12). Please note, however, that the general features of the secular Hamiltonian still
hold (Eq. 14 and comments thereafter), and will help us to apprehend the geometry of the
phase space.
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378 M. Saillenfest et al.

Fig. 3 General geometry of the phase space with respect to the two parameters. The grey region denotes the
absence of any equilibrium point for a perihelion greater than Neptune’s semi-major axis. The blue region
stands for the presence of a stable equilibrium point at ω = 0, the red one for a stable equilibrium point at
ω = π/2, and the green region for the simultaneous existence of both. For higher semi-major axis, the red
region fills progressively the graph (see Fig. 4 for a wider scale)

At this point, it seems vain to overcharge the article with new plots of the non-resonant
secular regime beyond Neptune, since it is relatively well known from the work of Gallardo
et al. (2012). In that part, we will thus present only general results about the non-resonant
dynamics by a systematic exploration of the parameter space.3 Figure 3 shows that the first
terms analysis remains qualitatively relevant for a semi-major axis greater than about 80 AU:
the equilibrium point at ω = π/2 is indeed the only one to remain stable. In other words, the
phase space is filled with circulation zones of ω, where the perihelion oscillates with a very
small amplitude. The only substantial variations of q are located near that stable equilibrium,
where ω can oscillate (see Sect. 3.2).

In order to define “howsubstantial” it is,we used the semi-analytical approach to determine
the exact width of the island with respect to the two parameters. The result is shown on
Fig. 4: for each value of the parameters (a,CK ), we searched numerically for the position of
the saddle point, and then followed the two separatrices until they reached their maximum
deployment. In the grey areas, there is no equilibrium point possible for a perihelion beyond
Neptune’s orbit: in particular,wenotice that the upper limit ofCK = 1/5obtained analytically
is rather well respected (and almost exact for a > 300 AU). Moreover, the inclination at
equilibrium was never found to be distant by more than 3◦ from the rough analytical value
of Sect. 3.2. Then, the important point of Fig. 4 is the existence of an asymptotic maximum
width of the oscillation island of about 16.4 AU. Since this result is only numerical, there is
actually no way at this point to determine if it is a true asymptote or if the rate of increase

3 Even if the semi-analytical model is also valid for a perihelion inside the planetary region, we still limit the
study to q > aN as this is the region of interest in the scope of this paper. For details about the non-resonant
secular dynamics with a perihelion inside the planetary region, see Thomas and Morbidelli (1996) or Gallardo
et al. (2012).
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Fig. 4 Width of the oscillation island around the stable equilibrium point at ω = π/2. On the top graph, only
the maximum value for all CK is retained. The grey region denotes the absence of such equilibrium point for
a perihelion greater than Neptune’s semi-major axis (or regions where the equilibrium point is so close to it
that the lower separatrix ends below). The black lines are iso-width curves, plotted for every integer value (the
upper one corresponds to 16 AU). There is an asymptotic value of q ≈ 16.4 AU, filling progressively all the
graph when a increases (the colour shade stops on red). The bump around a = 70 AUmarks the disappearance
of the ω = 0 equilibrium point (see Fig. 3)

tends just to a very small value.4 However, this is not of great concern because a semi-major
axis greater than some tens of thousands AU looses obviously its physical meaning (notice
the log-scale on Fig. 4). Thus, if a particle begins with an initial perihelion near Neptune (say
35 AU), the very maximum value it could reach in the future with that mechanism would be
of about 50 AU. The excursion is consequent but still well below the perihelion distances of
Sedna and 2012VP113. Furthermore, we saw in Sect. 3.2 that the oscillation island is very
narrow in terms of inclination (near 63.4◦ or 116.6◦) which restricts severely the probability
for an object to undergo that kind of process.

4 Resonant case

If the particle presents amean-motion resonancewith oneof the planets, the coordinate change
used in Sect. 3 to get the secular coordinates is not defined any more (some terms explode
in the neglected part of the Lie series). A particular treatment for the resonant terms is thus
required. Let us consider a single resonance of type kp:k with a resonant angle of the form:

4 Note that an analytical search for the two separatrices at ω = π/2 using an expansion of (17) at order 2 of
G around the equilibrium does show an asymptotic flat width at about 16.4065975 AU.
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σ = k λ − kp λp − (k − kp), k, kp ∈ N, k > kp (21)

In this expression, the angles λ and λp refer to the mean longitudes of the particle and of
the planet p involved, and  = ω + Ω . Because the planets are supposed on circular and
coplanar orbits, no other planetary angle can appear. Concerning the other possible angles
associated with the kp:k resonance (those involving a further term in Ω), they can be studied
just as we will show for the angle σ : the method is quite general and can be applied to a large
variety of dynamical systems. The only feature we need in order to define a suitable secular
Hamiltonian is a clear hierarchy between the time-scales. In our case, we have now three of
them:

• the short periods (M and λ1, λ2 . . . λN )
• the semi-secular periods (oscillation of the resonant angle σ )
• the secular periods (precession of ω and Ω), that is the Lidov–Kozai mechanism

Contrary to the non-resonant case, the development of a secular model requires thus a two-
step procedure. In Sects. 4.1 and 4.2, we describe the new canonical coordinates used and the
geometrical properties of the Hamiltonian function. Then, Sect. 4.3 shows the transformation
to an intermediary set of coordinates, referred here as “semi-secular”, in which the Hamil-
tonian is left with two degrees of freedom. The second change of coordinates (equivalent to
a second averaging step) is described in Sect. 4.4: we finally obtain a one-degree-of-freedom
secular system very similar to the non-resonant one. As previously, the phase portraits are
preferentially drawn in some kind of secular elliptical elements (defined in Sect. 4.5), which
are more directly interpretable than their canonical counterparts.

4.1 Coordinate change

In order to study the dynamics inside and around the kp:k resonance, we must at first isolate
the resonant angle from the short periodic terms, as shown for instance in Milani and Baccili
(1998). Basically, this consists in defining the angle σ as a new canonical coordinate. From
the Delaunay coordinates used so far (Eq. 2), this is done by a simple linear transformation
applied to the angles:

⎛

⎜⎜⎝

σ

γ

u
v

⎞

⎟⎟⎠ = A

⎛

⎜⎜⎝

l
λp

g
h

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

k −kp kp kp
c −cp cp cp
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

l
λp

g
h

⎞

⎟⎟⎠ (22)

where c and cp are integer coefficients, chosen such that:

det A = c kp − cp k = 1 (23)

This condition makes the transformation unimodular, so that any 2π-periodic function with
respect to the previous angles (as the Hamiltonian), is also 2π-periodic with respect to the
new ones. If we assume that σ is a slow angle, it makes γ the fastest circulating angle possible
when λ and λp are related by (21). In others words, γ makes one revolution during a complete
cycle of λ and λp (kp turns of λ and k turns of λp). Finally, note that we kept ω = g = u and
Ω = h = v as independent coordinates, as we are interested in their secular evolutions. The
transformation is then made canonical by applying (AT )−1 on the conjugated momenta:

⎛

⎜⎜⎝

Σ

Γ

U
V

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

−cp −c 0 0
kp k 0 0
0 1 1 0
0 1 0 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

L
Λp

G
H

⎞

⎟⎟⎠ (24)
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and the coordinates {λi �=p} and {Λi �=p} remain unchanged. In these new variables, the Hamil-
tonian function H (Eq. 8) rewrites:

H
(
{Λi �=p},Σ, Γ,U, V, {λi �=p}, σ, γ, u, v

)

= H0

(
{Λi �=p},Σ, Γ

)
+ εH1

(
Σ,Γ,U, V, {λi �=p}, σ, γ, u, v

) (25)

where the unperturbed part is:

H0 = − μ2

2 (k Σ + cΓ )2
− n p (kp Σ + cp Γ ) +

N∑

i=1
i �=p

ni Λi (26)

and the perturbation writes formally as in (1):

εH1 = −
N∑

i=1

μi

(
1

|r − ri | − r · ri
|ri |3

)
(27)

However, the resonant part now behaves differently, because rp ≡ rp(σ, γ, u, v) whereas
for i �= p we have simply ri ≡ ri (λi ). In these coordinates, γ is a fast angle, and σ evolves
with an intermediate (or “semi-secular”) time-scale.

4.2 Analytical development: details about the Hamiltonian function

Before thinking of any new close-to-identity transformation, some general information can
be grabbed about the resonant part of εH1. Indeed, if we write the inverse of the mutual
distances in terms of Legendre polynomials (Eq. 9), the angles u = ω and v = Ω appear in
the perturbations only via the scalar product r · ri . With the planets on circular and coplanar
orbits, it comes then:

r · ri
r ri

= cos(ω + ν) cos(λi − Ω) + sin(ω + ν) sin(λi − Ω) cos I (28)

For the resonant planet p, that quantity writes in the new coordinates:

r · rp
r rp

= cos(u + ν) cos(kγ − c σ + u) + sin(u + ν) sin(kγ − c σ + u) cos I (29)

where cos I should be replaced by:

cos I = kpΣ + cpΓ + V

kpΣ + cpΓ +U
(30)

and where the true anomaly ν is only function of e and M , which write:

e =
√

1 −
(
kpΣ + cpΓ +U

kΣ

)2

and M = kp γ − cp σ (31)

The important point is that in the new coordinates, the resonant part of εH1 is independent
of the angle v = Ω . Once again, this comes from our simple planetary model: in that case,
the system “particle + planet p” is invariant by rotation around the vertical axis.

We can go further with some trigonometric identities:
{
2 cos(u + ν) cos(kγ − c σ + u) = cos(ν + cσ − kγ ) + cos(ν − cσ + kγ + 2u)

2 sin(u + ν) sin(kγ − c σ + u) = cos(ν + cσ − kγ ) − cos(ν − cσ + kγ + 2u)
(32)
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which show that the resonant part of εH1 is also π -periodic and symmetric with respect to
π/2 in u = ω.

4.3 Semi-secular Hamiltonian

Thanks to our new definition of the angles (22), we can now safely switch to the “semi-secular
coordinates”, for which the Hamiltonian is independent of the fast angles. The is done by
the same close-to-identity transformation as we used in the non-resonant case. Thus, the
semi-secular Hamiltonian writes:

K = K0 + εK1 + O(ε2) (33)

where K0 is functionally equal to H0 and εK1 is functionally equal to the average of εH1

with respect to the independent angles γ and {λi �=p}. At this point, it is interesting to note
that, by mixing the old and new coordinates we have:

γ = 1

kp
λ + 1

kp
(cp σ − u − v) = 1

k
λp + 1

k
(c σ − u − v) (34)

Hence, the average with respect to γ is equivalent to an integral over kp turns of λ (resp. k
turns of λp), expressing λp (resp. λ) via the resonant angle (21). Actually, this is the integral
usually given for that kind of resonant problems (see for instance Gallardo 2006a), in which
the coordinate change is just made implicit. Whatever the notation used, the semi-secular
Hamiltonian (at first order of the planetary masses) writes formally:

K
(
{Λi �=p},Σ, Γ,U, V, σ, u

)
= K0

(
{Λi �=p},Σ, Γ

)
+ εK1

(
Σ,Γ,U, V, σ, u

)
(35)

This time, we will not even try to obtain an analytical expression of K, but the indications
obtained from Sect. 4.2 are useful to understand its general form. In particular, the angle
v = Ω has disappeared: indeed, the i �= p parts of εH1 behave as in the non-resonant case
(see Sect. 3) and the i = p part was already independent of v. For the same reasons, K is
also π-periodic and symmetric with respect to π/2 in u = ω.

The semi-secular constants of motion are then V , Γ and the various {Λi �=p}, and these
lasts will now be omitted since they appear only as a constant term in K. Concerning the Γ

momentum, one can notice that:
⎧
⎪⎪⎨

⎪⎪⎩

Σ = 1
k
√

μa − c
kΓ

U = √
μa

(√
1 − e2 − kp

k

)
+ 1

kΓ

V = √
μa

(√
1 − e2 cos I − kp

k

)
+ 1

kΓ

(36)

Considering that Γ is now a constant, it can by seen as a free parameter of the transforma-
tion (36) from the semi-secular (a, e, I ) elements to the semi-secular (Σ,U, V ) momenta.
The choice of Γ being now only a matter of definition,5 we will conveniently choose it equal
to 0. Finally, the semi-secular Hamiltonian function used in the following writes:

K(
Σ,U, V, σ, u

) = K0
(
Σ

) + εK1
(
Σ,U, V, σ, u

)
(37)

where:

K0
(
Σ

) = − μ2

2 (kΣ)2
− n pkpΣ (38)

5 We recall that the {Λi }momentawere added artificially to theHamiltonian to absorb its temporal dependence.
Given that Γ = kpL + kΛp , it is not surprising to get an entire liberty concerning its value.
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and where εK1 is obtained by computing numerically the required integrals, just as we did
in Sect. 3.3. We are left with a two-degree-of-freedom system (the two angles being σ and
u = ω), and several strategies can now be used to study its dynamics. The more general
method is of course to compute Poincaré maps of the complete semi-secular system, but we
did not find any example of it in the literature for transneptunian objects (although it would
allow to detect a potential chaotic interaction between the two degrees of freedom). In our
particular case, we will see that the intrinsic properties of the system allow to construct a
more direct, secular representation.

4.4 Secular Hamiltonian

The method usually used in the literature for resonant secular models beyond Neptune is
based on the crude model of Kozai (1985). Indeed, in order to get immediate estimates of the
resonant secular dynamics, Kozai chose to get rid of the extra degree of freedom by simply
fixing Σ and σ at a supposed libration centre. Some authors, for better estimates, opted later
for an assumed sinusoidal evolution of σ with constant centre, frequency and amplitude (see
for instance Gomes et al. 2005; Gallardo et al. 2012). Unfortunately, that kind of models is
not adapted for the two following reasons: on the one hand, the choice of parameters (centre,
frequency, amplitude) is problematic because we need an a priori knowledge of the dynamics.
In particular we cannot choose an arbitrary libration centre: it must be an equilibrium point of
the semi-secular Hamiltonian, otherwise the model is simply wrong. . . Since it is essential,
then, to use a previous numerical integration, the secular model looses its utility as a tool
to explore the variety of possible motions. On the other hand, these models just cannot
be considered as secular at all, because the oscillation parameters of σ can actually vary
a lot during the secular evolution. Therefore, the level curves obtained with such constant
parameters are a very poor representation of the real trajectories, since they are valid only in a
restricted neighbourhood of each point. That problemwas recently mentioned by Brasil et al.
(2014): they picked up the oscillation parameters of σ at different times from a numerical
integration and plotted a collection of secular level curves, each graph being valid only at
a time t and in the very neighbourhood of the considered point. This is quite misleading,
because different classes of dynamics seem to appear (as their so-called “hibernatingmode”),
whereas they are actually just snapshots of a single global secular motion.

Fortunately, we can also take advantage of thewide separation between the two time-scales
associated with the two degrees of freedom in order to reduce the system to an integrable
approximation.This technique is often called the “adiabatic invariant approximation”. Indeed,
the experience shows that the oscillation period of σ in that region ranges from a few tens of
thousands to some million years (semi-secular time-scale), whereas the Lidov–Kozai cycles
of ω, as seen in the non-resonant case, are usually completed in more than a billion years
(secular time-scale).6 The method itself is not new: it was traditionally used to compute ana-
lytical proper elements for resonant or inclined asteroids, as in Morbidelli (1993), Lemaître
and Morbidelli (1994) or Beaugé and Roig (2001). We can find it also in a series of papers
devoted to the dynamics of asteroids in mean-motion resonance with Jupiter: see for instance
Wisdom (1985), Moons and Morbidelli (1995) and Moons et al. (1998). On the following,
the procedure is recalled and applied to our semi-secular Hamiltonian. Notice that we will
not assume any particular evolution for σ but accurately follow its variations.

Our technique is based on two reference works: Henrard (1993) which is a detailed course
about the adiabatic invariant theory, and Henrard (1990) where the useful transformation

6 That separation prevents probably any occurrence of secondary resonance in our model.
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to action-angle coordinates is further detailed. For now, let us suppose that the dynamical
system described by the semi-secular Hamiltonian (37) is integrable. Let us also forget that
it has two degrees of freedom but consider it as two independent integrable systems, one for
each pair of conjugated coordinates (Σ, σ ) and (U, u). We will call νσ and νu the proper
frequencies associated and assume that the resulting evolution of u runs on a time-scale much
larger than the one of σ , that is:

ξ = νu

νσ

� 1 (39)

If that relation holds, the action-angle coordinates (J, θ) related to the evolution of (Σ, σ )

for a fixed value of (U, u) are a good approximation of the related ones in the complete two-
degree-of-freedom system. More precisely, J and θ are obtained up to order ξ . In particular,
the momentum J is not exactly conserved, but for a sufficiently small value of ξ we can
neglect its variations: in that case we say that J is an “adiabatic invariant” of the system. In
the new coordinates, that we call secular, the Hamiltonian rewrites:

F(
J,U, V, θ, u

) = F0(J,U, V, u) + O(ξ) (40)

where the new splitting is implicit and has nothing to do with the previous one (Eq. 37).
Following Wisdom (1985), we will call F0 a “quasi-integral” of motion. Neglecting the
O(ξ) term, the dynamics can be described by the level curves of F in the (U, u) plane: each
point defines a one-degree-of-freedom subsystemwith HamiltonianK for (U, u) fixed, and J
is the conserved action from the action-angle coordinates of that subsystem. In other words,
the constant J is related to a specific level curve of K in the (Σ, σ ) plane for (U, u) fixed,
called the “guiding trajectory” by Henrard (1993). If we note (Σ0, σ0) an arbitrary point of
that level curve, the secular Hamiltonian neglecting the O(ξ) term is simply defined by:

F(
J,U, V, u

) = K(Σ0,U, V, σ0, u) (41)

Note that no further averaging is required since the value of K is by definition the same all
along the cycle. Wisdom (1985) used a similar representation to study the resonance 3:1 with
Jupiter in the planar problem.7 In addition, the method of “fixing the slow variables by steps”
was employed by Milani and Baccili (1998) to describe the dynamics of Toro-type asteroids,
but they did not used it to construct a secular model.

Once the adiabatic invariance is postulated, the tricky part is to determine the action-angle
coordinates of the one-degree-of-freedom subsystem. This can be done with the famous
semi-analytical method of Henrard (1990), as applied in the following (see also Lemaître
2010, for an introduction). Except from separatrices or equilibrium points, we can show that
all the trajectories (Σ(t), σ (t)) for (U, u) fixed are periodic, with a period Tσ related to the
level curve considered. Consequently, 2π/Tσ is the obvious proper frequency of the system,
hence the choice of the new angle:

θ = νσ t + θ0 with νσ = 2π

Tσ

(42)

Now, let us search for a complete canonical transformation of the form:
⎛

⎜⎜⎝

Σ

V
σ

v

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

F(J, V ′, θ)

V ′
f (J, V ′, θ)

v′ + ρ(J, V ′, θ)

⎞

⎟⎟⎠ (43)

7 In Wisdom (1985), take care that contrary to Henrard (1993) or Milani and Baccili (1998), the “guiding
trajectories” refers to the secular time-scale, that is the level curves of F with respect to (U, u).
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where F , f and ρ are 2π -periodic functions of θ . Note that we do not make any change to
U and u because they are considered here as parameters. In order to make (43) a canonical
change of coordinates, three equations have now to be verified by the unknown functions F ,
f and ρ. The first one writes:

1 = ∂ f

∂θ

∂F

∂ J
− ∂ f

∂ J

∂F

∂θ
(44)

and by two successive integrations by parts and applying the definition (42) of θ , we get
(apart from an arbitrary constant):

4π J =
∫ 2π

0

(
∂ f

∂θ
F − ∂F

∂θ
f

)
dθ =

∫ Tσ

0

(
σ̇Σ − Σ̇σ

)
dt (45)

or equivalently:

2π J = 1

2

∮
(Σ dσ − σ dΣ) =

∮
Σ dσ = −

∮
σ dΣ (46)

Except for the 2π factor, the new action J is thus equal to a signed area, positive or negative
according to the direction of motion along the level curve. In the case of oscillations around
a central equilibrium, 2π J is the surface enclosed by the trajectory. On the contrary, it
represents the area under the curve if σ circulates (see Lemaître 2010, for a simple example).
The two next equations enable to define the function ρ:

∂ρ

∂θ
= ∂ f

∂V ′
∂F

∂θ
− ∂ f

∂θ

∂F

∂V ′ ;
∂ρ

∂ J
= ∂ f

∂V ′
∂F

∂ J
− ∂ f

∂ J

∂F

∂V ′ (47)

and by direct integration and a judicious choice of origin for θ , we get simply:

ρ(J, V ′, θ) =
∫ θ

0

(
∂ f

∂V ′
∂F

∂θ
− ∂ f

∂θ

∂F

∂V ′

)
dθ (48)

Concerning the constant frequency of v′, it is straightforward to get it from the change of
coordinates (43):

νv = dv′

dt
= dv

dt
− dρ

dt
(49)

and by integration between 0 and Tσ we have simply:

νv = v(Tσ ) − v(0)

Tσ

(50)

In practice, since the dynamics of v = Ω is well decoupled from σ (just as for u), the function
ρ will be only a little correction, that is v′ ≈ v. Anyway, its calculation is required only if
we are interested in the temporal evolution of Ω as a function of the new coordinates.

Naturally, the coordinate change (43) is only implicit, since neither F nor f have an
explicit definition. Nevertheless, the correspondence between (Σ, V, σ, v) and (J, V ′, θ, v′)
can be realized numerically by integrating the equations ofmotion defined by the semi-secular
HamiltonianK for (U, u) fixed. Indeed, once we know the period Tσ and the functionsΣ(t),
σ(t) and v(t) for a chosen value of J , the link toward θ(t) and v′(t) is straightforward for
all t : the coordinate change is simply defined by identification. In our case, since we are
only interested in the value of the secular Hamiltonian F(J,U, V, u), the procedure is the
following:

1. Choose a behaviour for σ : oscillation or circulation (because the definition of J differs
from a case to the other).
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2. Choose the parameters J and V .
3. For each point (u,U ) where we want the value of F , do:

(a) On the (Σ, σ ) plane, look for the equilibrium point(s) ofK with (U, u) as constants.
This is done numerically with minimization/maximization routines.

(b) Look also for the position of the separatrix, in order to define the boundaries of the
search.

(c) In the domain of interest (inside or outside the separatrix, see point 1), search for
the level curve corresponding to an area A = 2π J . This is done by integrating
numerically the semi-secular equations of motion for (U, u) fixed, and applying a
Newton algorithm with respect to the initial conditions. Indeed, the surface over time
can be added among the dynamical equations:

Ȧ = 1

2

(
σ̇Σ − Σ̇σ

)
(51)

with another Newton algorithm to stop the integration exactly after a complete cycle.
(d) If there is no trajectory with the required surface in the domain (for instance if the

separatrices are too narrow to contain it), stop with a warning: that combination of
parameters is impossible. Conversely if a correct initial condition (Σ0, σ0) has been
found, pick up the period Tσ associated to verify that it is well below the secular
time-scale. Some additional output can also be printed (position of the equilibrium
point(s), width of the separatrices. . .).

(e) The value of the secular Hamiltonian F(J,U, V, u) is finally given by (41).

Practically, the computation of the semi-secular HamiltonianK and its partial derivatives (for
the iterative numerical integrations) is rather CPU-time consuming because it always implies
the numerical averaging over the short periods (see Sect. 4.3). Following the idea of Lemaître
and Morbidelli (1994), we thus perform a 2D cubic splines interpolation of K in the (Σ, σ )

plane around the equilibrium point(s) (between steps 3b and 3c). The partial derivatives are
then calculated by direct derivation of the splines and the numerical integration is performed
with virtually no cost. Finally, the computation of a complete map is easily parallelized since
each point is independent of the others. Naturally, we can also speed up the computation by
reducing the resolution.

4.5 Reference coordinates

We are now able to draw the level curves of the secular Hamiltonian F in the (U, u) plane
with respect to the two fixed parameters V and J . However, it would be convenient to express
it with coordinates more directly meaningful, as we did in the non-resonant case. First of
all, let us define a reference semi-major axis a0 (its choice, somehow arbitrary, is discussed
later). Since the momentum V is a secular constant of motion, we have:

V = √
μa

(
η − kp/k

) = const. (52)

where we wrote η = √
1 − e2 cos I . The constant V can then be replaced by the parameter:

η0 = V√
μa0

+ kp
k

(53)

Also, the variable U can be replaced by a reference perihelion q̃ = a0(1 − ẽ), where the
reference eccentricity is defined by:
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ẽ 2 = 1 −
(

U√
μa0

+ kp
k

)2

(54)

At this point, one can remark that a0 should be chosen big enough to allow a constant
η0 ∈ [−1, 1] and a positive value for ẽ 2. Finally, we can also define a reference inclination
by setting: √

1 − ẽ 2 cos Ĩ = η0 (55)

The plane (q̃, ω) is thus entirely equivalent to the plane (U, u), and the parameter η0 is entirely
equivalent to the V constant. The point is now to determine if these new quantities have a
physical meaning, and to what extent they represent the real secular orbit of the particle.
Actually, we can verify (see Sect. 5) that the secular variations of the semi-major axis are
always rather small, such that it is never far from a central approximate value. If such a value
is chosen for a0, the function η(t) will always remain close to the constant η0, and we will
also have ẽ(t) ≈ e(t) and q̃(t) ≈ q(t). The parameter η0 acts then as the Kozai constant of
the non-resonant case, linking the inclination and the eccentricity (even if this time, it is only
in an approximative way). Consequently, in all what follows the level curves of the secular
Hamiltonian F will be plotted in the (q̃, ω) plane with η0 as parameter. Naturally, the value
of a0 chosen will be given to let us recover the original canonical coordinates U and V .

Concerning the parameter J , its link with the elliptical elements is so abstract that we will
not try to redefine it. Let us just keep in mind that its value is always negative if σ librates (as
in our case, the equilibriums are maxima), and that its magnitude is related to the enclosed
area in the (a, σ ) plane, that is to the amplitude of oscillation.

5 Application and examples

This last section presents some examples of use of the resonant secular model. A variety of
typical cases are provided to emphasize the main advantages and limitations of the method.
As a quick check, the secular model will also be confronted to numerical integrations of the
osculating and semi-secular systems.8 Section 5.1 presents the ideal case, where the adiabatic
invariant J is well defined all over the surface (ω, q̃) considered. In Sect. 5.2, we show that
a secular description is still possible for higher values of |2π J | even if σ switches from
oscillation to circulation. Finally, Sect. 5.3 illustrates the most complex case in that region,
where the existence of two deforming resonance islands leads necessarily to a discontinuity
in the secular phase portraits.

5.1 Single resonance island and small values of J

Let us begin with the simplest case, that is when the semi-secular plane (Σ, σ ) contains a
single island of resonance. Fortunately, this is almost9 always the case for exterior mean-
motion resonances other than type 1:k (see Gallardo 2006a, for more details). Of course, that
single island will possibly deform and shift a lot during the secular evolution of (U, u), but

8 For integrating numerically the semi-secular system, the required partial derivatives of K are obtained by
inverting the derivative and integration symbols in the expression of εK1. Some nested derivatives can become
a bit cumbersome: do not forget, for instance, that the true anomaly is function of e andM , themselves functions
of Σ , U , γ and σ via (31).
9 For instance, we found that the resonance 2:11 with Neptune has a double island if η0 = −0.65, with
ω ∼ π/2 and q̃ ∼ 34 AU (where we chose a0 = 93.9872 AU). However, the required range of parameters is
very narrow.
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Fig. 5 Level curves of the
secular Hamiltonian F for the
resonance 2:37 with Neptune.
The parameters are η0 = 0.44
and 2π J = −2.6 × 10−4 AU2

rad2/year. To define η0 and
construct the vertical axis, the
reference semi-major axis chosen
is a0 = 210.9944 AU (see Fig. 7
where that value is obvious). See
text for the symbols

the secular dynamics is well defined as long as the surface enclosed by the separatrix remains
greater than 2π J . Figure 5 shows an example of level curves obtained for such a case (black
lines). As this is the first graph, some extra information is provided to recall the different
time-scales and appreciate the efficiency of the method:

1. The little red dots come from a complete numerical integration (osculating elements):
the equations are given by the initial HamiltonianH (Eq. 8) without any approximation.
The fast angles make the plot somewhat messy, mainly because of the shift of the Solar
System barycentre.

2. The dashed green line is the result of a numerical integration of the semi-secular sys-
tem: the equations are given by the two-degree-of-freedom semi-secular Hamiltonian
K (Eq. 37), that is after removing the short periodic terms from H. The curve follows
very well the average pattern of the red dots and the oscillations due to the second
degree of freedom are smaller than the curve width. See Fig. 8 for a detailed output of
that numerical integration (in particular we can see that the cycle is completed in about
1.12 Gyrs).

3. Finally, the colour shades show the value of the one-degree-of-freedom secular Hamil-
tonianF (Eq. 41). Each point is obtained from the action-angle coordinates ofK assuming
the adiabatic invariance.The secular dynamics is thengivenby the level curves ofF (black
contours).

In order to illustrate the passage from the semi-secular to the secular coordinates, Fig. 6
shows the level curves of the semi-secular Hamiltonian K corresponding to ten points of
Fig. 5 (letters). The level curve that encloses the required area defines the value of the secular
Hamiltonian F . For that set of parameters, the surface |2π J | is sufficiently small to fit easily
inside the separatrix but its contours can be rather distorted. In particular, the narrowing of
the Σ-width of the island, when the perihelion increases, forces σ to oscillate with a larger
amplitude. By the way, note that the general properties of K in ω are easily recognizable:
π-periodicity and symmetry with respect to π/2 (see Sect. 4.3).

Figure 7 presents the same level curves as Fig. 5, but with the position of the centre of the
resonance island on background shades, as well as the period of oscillation. The amplitudes
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Fig. 7 The level curves of Fig. 5 are plotted in front of some characteristics of the resonance island in the plane
(Σ, σ) used to get the action-angle coordinates of K. On the left graphic, the semi-major axis is used instead
of Σ for a more direct interpretation. The middle plot shows that in that particular case, the oscillation centre
of σ oscillates itself around π . On the right graphic, the oscillation period refers to the trajectory enclosing
the required area 2π J : even if it varies a lot (note the log-scale), it remains much smaller than the Giga-year
secular periods. The red line represents the result of a numerical integration of the semi-secular system (the
same as the green dashed line of Fig. 5)

Fig. 8 Numerical integration of the two-degree-of-freedom semi-secular system. That trajectory corresponds
to the green dashed line of Fig. 5 and the red line of Fig. 7. The semi-major axis is given instead of Σ and
the perihelion instead of U (see Eq. 36 for the correspondence). On the right, an enlargement underlines the
two-time-scaled dynamics (the small oscillations of q and ω are hidden in the curve width)

are not shown here, but Figure 6 gives an idea of their variations. Following a particular
level curve, we can see the important changes of the oscillation parameters underwent by the
particle (the red line and Fig. 8 give a specific example of it). This invalidates any secular
model for which the resonance angle is supposed fixed or sinusoidal. Nevertheless, the central
value of the semi-major axis is indeed rather stable: it is actually imposed by Neptune’s semi-
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Fig. 9 Level curves of the
secular Hamiltonian F for the
resonance 2:37 with Neptune
(reference semi-major axis
chosen: a0 = 210.9944 AU). The
parameters are η0 = −0.35 and
2π J = −1.7 × 10−5 AU2

rad2/year. Note that these orbits
are retrograde

major axis. This justifies the use of “reference coordinates” as a short-cut from the secular
variable U to the secular orbital elements e and I (see Sect. 4.5).

Finally, Fig. 9 gives another example of secular dynamics with a small value of |2π J |.
The resonance is the same as Fig. 5 but another set of parameters is chosen: one can notice
the extreme richness of possible behaviours, with many different ways to raise the perihelion
distance. However, it is a general result that the Σ-width of the resonance island becomes
much wider when the perihelion tends to the semi-major axis of Neptune. Since this is also
the case for all the neighbouring resonances, we must keep in mind that for grazing orbits
the overlapping of resonances can introduce some chaos and push the particle out of the
resonance considered. This happens indeed for the largest trajectories of Fig. 9 but their
major portions, though, are perfectly regular (as shown by various numerical integrations of
the unaveraged system). To fix ideas, the biggest cycle represented is completed in about 40
Gyrs, where more than 32 Gyrs are spent with q̃ > 70 AU.

5.2 Separatrix crossings

For high values of the perihelion distance, we saw that the Σ-width of the resonance island
becomes very small (see Fig. 6). This has a stabilizing effect because the various resonances
become very isolated from each other (no overlapping), but what if the island becomes so
narrow that the area |2π J | cannot fit inside any more? From a technical point of view, the
values of the parameters are simply incompatible, so what if a secular level curve leads the
particle to such a region? The resulting trajectory can be described as follows: the semi-
secular separatrices in the (Σ, σ ) plane come closer and closer to the trajectory, making
raise the amplitude of oscillation of σ , along with a drastic enlargement of its period. Then,
the particle can spend some time near the unstable equilibrium point, breaking the adiabatic
invariant hypothesis. Fortunately, this “freeze” is usually quite short becauseU and u are still
evolving. Hence, the particle is simply pushed outside of the resonance island and σ begins to
circulate. On can remember that the method applied in Sect. 4.4 is also valid for circulation,10

10 The proximity of the resonance still invalidates a fully non-resonant secular model.
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but the geometrical definition of J has to be changed. Consequently, the only way to handle
the crossing in a secular way is to change model: the secular trajectory is then defined by
parts, each of them being quasi-integrable. For a given trajectory, the problem is now to
link the segments. There is actually no way to deduce the exact value of the new J constant
adopted by the system, because it depends on the precise position of the particle when the
separatrix crossing occurs. On a secular time-scale, this can be seen as a random transition
(see Henrard 1993, and references therein). In particular, since in our case the island is quasi
symmetric on the Σ axis, there is roughly 50% of probability to begin circulating toward
the left (above the island) or the right (under the island). However, if the new secular level
curve is periodic the particle is bound to re-enter the resonance in a configuration similar to
when it left it. After the new separatrix crossing, the value of J will thus be approximatively
restored (apart from some chaotic diffusion).

That mechanismwas described thoroughly byWisdom (1985) in the case of the resonance
3:1 with Jupiter and the associated Kirkwood gap. Near the discontinuities of the secular
Hamiltonian (that is when the crossings occur in the semi-secular system), he named “zone of
uncertainty” the region inwhich the adiabatic invariant hypothesis is invalidated. In hismodel,
any passage through this zone produced a jump at possibly planet-crossing eccentricities.
Moreover, even if the particle re-entered the resonance afterwards, the value of the adiabatic
invariant was not recovered, which produced a large-scale chaotic behaviour. He pointed
out that that kind of chaos is not due to a mean-motion resonance overlap (that is a short
time-scale effect), contrary to many chaotic orbits of asteroids observed in the Solar System.
It could be explained, though, by an overlap of secondary resonances between σ and ω

which happen to have comparable frequencies of oscillation/circulation in these regions.
Subsequently, Neishtadt (1987) developed rather general methods to trace the evolution of
the adiabatic invariant near and during such discontinuities. In particular, their application to
the problem of Wisdom (1985) results in a probabilistic model governing the new value of
the invariant when the particle re-enters the resonance.

Fortunately, the orbits described in the present paper aremuchmore regular and predictable
because the separation between the two time-scales is much larger. This was quite visible
on Fig. 8, where it is impossible to resolve the two time-scales with a single time unit. This
implies that the “zone of uncertainty” is extremely narrow in our problem: on a secular time-
scale, it is crossed quasi-instantaneously. Hence, since there is almost never any interaction
between the two degrees of freedom, the new value of J is very predictable for each possible
transition.

Figures 10 and 11 show two examples of such segmented trajectories. Since the diffusion
of J is extremely small, we considered only two secular models (one for oscillation, one for
circulation) but remember that J is actually not exactly retrieved after each circulation phase.
Note that it would be erroneous to superimpose the left and right graphs, because the transition
from the oscillation value of J to the circulation one is specific to the red trajectory.OnFig. 10,
the circulation phase is rather short and we can easily guess by symmetry the approximative
trajectory followed by the particle between the white and black points. This is much less
obvious on Fig. 11, where the circulation phase plays an important role in the dynamics.
Details of these two semi-secular integrations are given on Figs. 12 and 13. In particular,
note the random occurrence of left and right circulation phases with the corresponding central
values for the semi-major axis. The secular dynamics is however very similar in both cases:
it depends mostly on the amplitude of J and little on its sign. Hence, the right graphs of
Figs. 10 and 11, which are plotted for a right circulation, correspond also roughly to the
ones obtained for a left circulation. Since J is almost exactly recovered after each circulation
phase, these trajectories are pretty periodic on a secular time-scale. The separation of the two
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Fig. 10 Level curves of the secular Hamiltonian F for the resonance 2:11 with Neptune (reference semi-
major axis chosen: a0 = 93.9872 AU). The common parameter is η0 = 0.6 and J is given above the graphs
in AU2 rad2/year. The red trajectory passes from a secular model to the other according to the colour spots
(white–white, then black–black). The saw teeth of the background colour are due to the resolution

Fig. 11 Level curves of the secular Hamiltonian F for the resonance 2:37 with Neptune (reference semi-
major axis chosen: a0 = 210.9944 AU). The common parameter is η0 = 0.2 and J is given above the graphs
in AU2 rad2/year. The red trajectory passes from a secular model to the other according to the colour spots
(white–white, then black–black). The saw teeth of the background colour are due to the resolution
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Fig. 12 Numerical integration of the two-degree-of-freedom semi-secular system.That trajectory corresponds
to the red line of Fig. 10. The semi-major axis is given instead ofΣ and the perihelion instead ofU (see Eq. 36
for the correspondence). The period of σ (oscillation/circulation) is given on the middle graph, where the
separatrix crossings are obvious (the period tends to infinity). The first circulation phase is toward the right
(see a and σ ), whereas the second and the third are toward the left

time-scales can be appreciate on Figs. 12 and 13: the cycles of σ and Σ (middle graph) run
always much faster than the secular evolution of q and ω, even in the neighbourhood of the
separatrix crossings.

5.3 Double islands and 1:k resonances

Let us now finish with the most complex case, that is when there are two resonance islands in
the (Σ, σ ) plane. According to Gallardo (2006a), this always happens for resonances of type
1:k provided that the eccentricity is high enough. Moreover, that specific kind of resonances
can also admit horseshoe-type orbits enclosing the two oscillation islands. At this point, we
can anticipate a bit and look at Fig. 15 for typical examples of such a case. The computation
of a secular Hamiltonian as defined previously requires thus an additional choice: once we
have set up our minds for an oscillating σ , what type of orbit do we choose? Oscillations
around the left centre, around the right one, or around both of them? The method described
in Sect. 4.4 is valid for each type of trajectories, but it can become a bit tricky to determine
numerically the trajectory enclosing the required area.

Naturally, the geometry of the semi-secular level curves will evolve during the secular
evolution of ω and q̃ , and that complicates further the process: the position of the two islands
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Fig. 13 Same as Fig. 12 but for the trajectory of Fig. 11. The first two and the last circulation phases are
toward the right (see a and σ ), whereas the third one is toward the left

can indeed vary a lot, as well as their sizes. To prevent any accidental jump from an island
to another during the numerical computation of the secular levels, we adopted the following
strategy:

1. Choose the parameters η0 and J (as before), and an oscillation type for σ (left, right or
horseshoe).

2. Start the plot from a particular point (ω, q̃), typically the lower left corner of the graph.
We get a first value of F .

3. Compute the value for the adjacent points following the chosen island in the (Σ, σ ) plane.
Indeed, since the deformations are continuous, the islands cannot exchange their places
between two neighbouring points (assuming a sufficiently fine grid).

4. Go on with the same procedure for the new points.

Naturally, that method is relevant as long as the chosen oscillation type is allowed by the
value of ω and q̃. As a matter of fact, the opening of the horseshoe trajectories can happen
quite often during the computation of the secular levels, as well as the disappearance of one
of the islands (Gallardo 2006a defined a critical eccentricity ea for that). If that phenomenon
happens along a secular trajectory, there must be a discontinuity on the plot of F , since the
particle is bound to change its type of trajectory. As in Sect. 5.2, the secular orbits can be
defined only by parts, but a secularmodel is still very informative about the general dynamics.
Figure 14 gives an example of such level curves. As previously, ten points are marked with
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Fig. 14 Level curves of the
secular Hamiltonian F for the
resonance 1:11 with Neptune
(reference semi-major axis
chosen: a0 = 149.1955 AU). The
parameters are η0 = 0.6 and
2π J = −3 × 10−4 AU2

rad2/year. Here, we chose σ to
oscillate inside the “right” island
(defined from the lower left point
of the graph and followed
thereafter). Above the green line,
only one resonance island
remains: for ω ∈ [0, π/2] it is the
remnant of the left island (bold
line, discontinuity), but the
remnant of the right one for
ω ∈ [π/2, π ] (thin dashed line,
no discontinuity)

letters and refer to semi-secular plots (Fig. 15). The semi-secular Hamiltonian K is still
symmetric in ω with respect to π/2, but this time, the presence of two islands introduces an
asymmetry of the secular Hamiltonian F . We are bound indeed to follow one specific island,
as shown on Fig. 15: the graphs B and D are symmetric but the position of the red trajectory
is not. The geometry of the horseshoe-type orbit is even more complicated, since it breaks
for ω slightly greater than π/4, and reforms with another position near ω = π/2 (see the
evolution from graph B to C).

The disappearance of one island for an increase of the perihelion distance deserves some
further comments. For ω = 0 and ω = π/2, it is obvious that the two islands merge
into a single one (compare graphs A-E and C-G). On the contrary, for other values of ω,
the σ -width of the vanishing island decreases until the two saddle points merge into one.
The other island remains thus rather unchanged and passes smoothly from a two-island
configuration to a single one. This explains the structure of the discontinuity line of Fig. 14:
depending on the oscillation island occupied by the particle, there can either be a regular
transition or a brutal jump to another type of trajectory. In the latter case, the secular model
used so far is not relevant any more for that particle, because the definition of J has to be
changed. Notice that Fig. 14 has been drawn for a very small value of the area |2π J |. For
bigger values, the transition will simply happen earlier. After the separatrix crossing (see
Sect. 5.2), the particle can either jump around the other centre, follow a horseshoe-type
orbit or circulate. As before, the probability of each type of trajectory is random and hard to
estimate.

As an example, Fig. 16 presents a numerical integration of the semi-secular system for a
specific broken level curve of Fig. 14. The trajectory begins with the green point, where σ

oscillates inside the right islandwith a small area.On thewhite point, the right island vanishes,
forcing the particle to follow another type of trajectory. For that particular example, it begins
to oscillate in the remaining island with a large area (middle graph). The particle crosses the
discontinuity atω = π/2 on a safe horseshoe-type orbit, but hits the growing left island at the
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Fig. 16 Numerical integration of the two-degree-of-freedom semi-secular system for the resonance 1:11 with
Neptune. The trajectory is plotted by parts in front of the secular level curves: the common parameter is
η0 = 0.6 and J is given in AU2 rad2/year above the pictures. It begins with the green spot (left graph), ends
with the red (right graph), and follow the colour code in between (white–white and black–black). The middle
graph is plotted for oscillations inside the right island, but there is anyway only a single island above the
green line. As before, the grey denotes regions where the chosen island is too small to contain the area |2π J |
required. Since the area is very small for the left and right graphs, the grey band is very thin and hidden under
the thick green line

black point.11 For reasons of symmetry, the adopted area inside the left island is very close to
the previous one in the right island. After the red point, the particle goes on switching type of
trajectory: see Fig. 17 for the evolution on awider time-scale. Actually, that kind of behaviour
can persist for billion years, as long as the particle does not reach a Neptune-crossing secular
trajectory.

Please see Gallardo (2006b) for other examples: his Fig. 12 presents a very similar case
(same resonance and nearby values of the parameters). His Fig. 13, on the contrary, shows a
steadier evolution without separatrix crossing (the particle is locked indefinitely in the “right”
island).

These illustrations show how complicated can be the dynamics inside a 1:k resonance.
A secular model can seem rather cumbersome and ineffective for such “integrable by parts”
trajectories, which are chaotic by essence: in fact, it ismore designed for general studies about
the dynamics than for following a particular realization of it. Note that the chaos invoked here
is due to the complex geometries of the 1:k resonances, contrary to a diffusion of the adiabatic
invariant as in the case of Wisdom (1985) discussed above. As seen on Sect. 5.2, the two
time-scales are so well separated that the breaking of the adiabatic hypothesis at separatrix
crossings can be considered as instantaneous. Hence, the uncertainty concerns almost solely
the new type of trajectory adopted, rather than the new value of J .

11 Note that such a symmetrical trajectory was improbable since at the black point the right island is much
larger than the left one. A careful analysis of that orbit shows that σ is temporarily trapped around the saddle
point and then swallowed by the growing left island. However, other integrations of the osculating and semi-
secular systems show various possible behaviours, including further stay in the right island with a large area,
or temporary maintenance of a grazing horseshoe-type orbit (see for instance Fig. 17 just after 1 Gyr: the
double peaks in the period are separatrix approaches without crossing).
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Fig. 17 Numerical integration of the two-degree-of-freedom semi-secular system. The semi-major axis is
given instead of Σ and the perihelion instead of U (see Eq. 36 for the correspondence). The period of σ

(central or horseshoe oscillation) is given on the middle graph, where the separatrix crossings are obvious
(the period tends to infinity). The first three dynamical regimes (see a and σ from t = 0 to ≈ 0.38 Gyrs)
correspond to the trajectory shown on Fig. 16

6 Discussion and conclusion

We presented new tools and results concerning the dynamics of transneptunian objects.
When the short term behaviour of the particle is integrable (or quasi-integrable), its long
term evolution can be efficiently described by a semi-analytic secular model with one degree
of freedom and two parameters. In particular, it proves to be particularly suitable to detect
large perihelion excursions.

Such a model is easily obtained when there is no mean-motion resonance in the system
(Thomas andMorbidelli 1996): the two parameters are then a andCK = (1−e2) cos2 I . The
specificity of the region under study allows us to derive also an analytical asymptotic model,
similar to Kozai’s one. Contrary to previous papers, we used these secular representations
to get general and quantitative results. For a quasi-integrable non-resonant dynamics, we
showed that the maximum perihelion excursion possible is 16.4 AU, attainable on a Giga-
year time-scale for high semi-major axis and a very specific inclination (near 63◦ or 114◦).
A small body beginning with a perihelion near the orbit of Neptune and in the required range
of inclination can thus reach rather high perihelion distances from the planets, especially if it
has undergone a prior diffusive process. That mechanism, though, cannot explain very large
perihelion distances as the ones revealed by massive numerical integrations (Gomes et al.
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2005), or the ones of Sedna and 2012VP113 (if we assume for them an initial orbit near the
planetary region).

When there is a mean-motion resonance between the body and one of the planets, the
adiabatic invariant theory and the coordinate change of Henrard (1990) permitted to construct
a new accurate secular model, similar to the non-resonant one. The two fixed parameters are
then V (a surrogate of CK ) and the secular area 2π J enclosed by the librating resonant
canonical coordinates. The only obstruction to a fully integrable representation comes then
from a possible extreme narrowing of the resonance island, which can make circulate the
resonant angle (separatrix crossing). In such a case, a secular representation is possible only
by parts, each of them with a different parameter J . Such transitions can happen frequently
for the resonances of type 1:k, even for enclosed areas equal to zero (disappearance of the
resonance island). For a specific trajectory, these repeated changes of behaviour are an evident
source of long term chaos and make somehow questionable the use of a secular model. It
remains though very effective as a general tool, to locate the secular equilibrium points and
distinguish in a glance the regular trajectories from the “segmented” ones.

With our resonant model, it was straightforward to bring out some trajectories with very
large perihelion variations (for instance from 30 to 80 AU). Such extreme values were usu-
ally considered too high to be reached by the means of perturbations from the known planets
(see for example Brown et al. 2004). Moreover, that kind of trajectory is not restricted to
high-inclination regimes as in the non-resonant case. Further applications, using parameters
of known objects and exploring the parameter space, are kept for future papers. It would not
be surprising, for instance, to detect some secular equilibrium points common to numerous
different resonances and corresponding to accumulation values of ω in the observed dis-
tribution of transneptunian objects. That kind of secular theories could also be applied to
extended models of the Solar System including possible distant planets still undiscovered
(see for instance Batygin and Brown 2016). The comparison of the dynamical paths allowed
by the differentmodels could thus precise if such new features are indeed necessary to explain
the observed distribution of the distant transneptunian objects.

Acknowledgments We thank Giovanni F. Gronchi and Andrea Milani for their precious advice: sometimes,
even a few words can be of great help. We thank also two anonymous referees who helped us to improve the
paper.

Appendix: Expansion of the secular non-resonant Hamiltonian

We present here some hints about the construction of the secular analytical non-resonant
Hamiltonian function. With the planetary model chosen (Eq. 6), the angle ψi is simply
defined by:

cosψi = α cos λi + β sin λi (56)

where: ⎧
⎨

⎩
α = cos(ω + ν) cosΩ − sin(ω + ν) sinΩ cos I

β = cos(ω + ν) sinΩ + sin(ω + ν) cosΩ cos I
(57)

Then, the multiple average of εH1 is computed in two steps, beginning with the integration
over λ1, λ2 . . . λN . As the indirect part vanishes, we have, using the Legendre develop-
ment (9):
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1
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· · ·
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εH1 dλ1dλ2 . . . dλN = −1
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+∞∑
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(ai
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)2n
)
P2n(χ)

(58)
where χ is defined as:

{
χ0 = 1
χ2k = 1×3×5×···×(2k−1)

2×4×6×···×2k (α2 + β2)k, k = 1, 2, 3 . . .
(59)

One can see that the odd terms have disappeared. The average over l is less straightforward,
since each polynomial 2n of (58) requires the computation of n + 1 integrals of the form:

1

2π

∫ 2π

0

(α2 + β2)k

r2n+1 dl = 1

a2
√
1 − e2

1

2π

∫ 2π

0

(α2 + β2)k

r2n−1 dν, k = 0, 1, 2 . . . n (60)

where α, β and r are functions of the true anomaly ν. The general form of the result is
presented in Eqs. (12) and (13), and the first terms are the following

n = 1 n = 2 n = 3

α1 = 1/8 α2 = 9/1024 α3 = 25/65536

P0
1 (x) = 1 P0

2 (x) = 2 + 3 x2 P0
3 (x) = 2 (8 + 40 x2 + 15 x4)

Q0
1(x) = −1 + 3 x2 Q0

2(x) = 3 − 30 x2 + 35 x4 Q0
3(x) = −5 + 105 x2 − 315 x4 + 231 x6

P1
2 (x) = 10 P1

3 (x) = 210 (2 + x2)

Q1
2(x) = −1 + 7 x2 Q1

3(x) = 1 − 18 x2 + 33 x4

P2
3 (x) = 63

Q2
3(x) = −1 + 11 x2

n = 4 n = 5

α4 = 245/33554432 α5 = 567/4294967296

P0
4 (x) = 5 (16 + 168 x2 + 210 x4 + 35 x6) P0

5 (x) = 14 (128 + 2304 x2 + 6048 x4 +
3360 x6 + 315 x8)

Q0
4(x) = 35 − 1260 x2 + 6930 x4 − 12012 x6 + 6435 x8 Q0

5(x) = −63 + 3465 x2 − 30030 x4 +
90090 x6 − 109395 x8 + 46189 x10

P1
4 (x) = 630 (48 + 80 x2 + 15 x4) P1

5 (x) = 9240 (32+ 112 x2 + 70 x4 + 7 x6)

Q1
4(x) = −1 + 33 x2 − 143 x4 + 143 x6 Q1

5(x) = 7− 364 x2 + 2730 x4 − 6188 x6 +
4199 x8

P2
4 (x) = 1386 (10 + 3 x2) P2

5 (x) = 240240 (8 + 8 x2 + x4)

Q2
4(x) = 1 − 26 x2 + 65 x4 Q2

5(x) = −1 + 45 x2 − 255 x4 + 323 x6

P3
4 (x) = 858 P3

5 (x) = 8580 (14 + 3 x2)

Q3
4(x) = −1 + 15 x2 Q3

5(x) = 3 − 102 x2 + 323 x4

P4
5 (x) = 12155

Q4
5(x) = −1 + 19 x2
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n = 6

α6 = 7623/549755813888

P0
6 (x) = 14 (256 + 7040 x2 + 31690 x4 + 36960 x6 + 11550 x8 + 693 x10)

Q0
6(x) = 231 − 18018 x2 + 225225 x4 − 1021020 x6 + 2078505 x8 − 1939938 x10 + 676039 x12

P1
6 (x) = 60060 (128 + 768 x2 + 1008 x4 + 336 x2 + 21 x8)

Q1
6(x) = −3 + 225 x2 − 2550 x4 + 9690 x6 − 14535 x8 + 7429 x10

P2
6 (x) = 90090 (80 + 168 x2 + 70 x4 + 5 x6)

Q2
6(x) = 5 − 340 x2 + 3230 x4 − 9044 x6 + 7429 x8

P3
6 (x) = 12155 (224 + 160 x2 + 15 x4)

Q3
6(x) = −5 + 285 x2 − 1995 x4 + 3059 x6

P4
6 (x) = 230945 (6 + x2)

Q4
6(x) = 1 − 42 x2 + 161 x4

P5
6 (x) = 29393

Q5
6(x) = −1 + 23 x2
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