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STABILITY OF THE MAXWELL-STEFAN SYSTEM
IN THE DIFFUSION ASYMPTOTICS OF THE

BOLTZMANN MULTI-SPECIES EQUATION

ANDREA BONDESAN AND MARC BRIANT

Abstract. We investigate the diffusion asymptotics of the Boltzmann equation
for gaseous mixtures, in the perturbative regime around a local Maxwellian vec-
tor whose fluid quantities solve a flux-incompressible Maxwell-Stefan system. Our
framework is the torus and we consider hard-potential collision kernels with an-
gular cutoff. As opposed to existing results about hydrodynamic limits in the
mono-species case, the local Maxwellian we study here is not a local equilibrium
of the mixture due to cross-interactions. By means of a hypocoercive formal-
ism and introducing a suitable modified Sobolev norm, we build a Cauchy theory
which is uniform with respect to the Knudsen number ε. In this way, we shall
prove that the Maxwell-Stefan system is stable for the Boltzmann multi-species
equation, ensuring a rigorous derivation in the vanishing limit ε→ 0.

Keywords: Kinetic theory of gases, Boltzmann multi-species equation, Maxwell-
Stefan system, hydrodynamic limit, perturbative setting, hypocoercivity.

Contents

1. Introduction 1
2. Main result 8
3. Perturbative Cauchy theory for the Boltzmann multi-species equation 16
4. Technical proofs of the hypocoercivity properties 40
Appendix A. Explicit Carleman representation of the operator Kε 59
Appendix B. Proofs of the a priori energy estimates for the Boltzmann

equation 65
References 78

1. Introduction

The multi-species Boltzmann system is an extension of the standard Boltzmann
mono-species equation [22, 23, 49], adapted to the case where the particles con-
stituting the rarefied gas are of different kinds. More precisely, a gaseous mixture
composed of N > 2 different species of chemically non-reacting monoatomic par-
ticles, having atomic masses (mi)16i6N and evolving on the 3-dimensional torus
T3, can be modelled by means of a distribution function F = (F1, . . . , FN), where
Fi = Fi(t, x, v) describes the evolution of the i-th species of the mixture and satisfies,
for any 1 6 i 6 N , the equation of Boltzmann type

(1.1) ∂tFi + v · ∇xFi = Qi(F,F) on R+ × T3 × R3,

1
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with a given initial data

Fi(0, x, v) = F in
i (x, v), x ∈ T3, v ∈ R3.

We mention in particular that one can derive this type of equations from Newtonian
mechanics, at least formally, in the case of a single species gas [22, 23]. The rigorous
derivation of the mono-species Boltzmann equation from Newtonian laws has by
now only been proved locally in time (see [40, 38, 37] and, more recently, [29, 45]).

Throughout the article, N -vectors (or vector-valued functions) will be denoted by
bold letters, while the corresponding indexed letters will indicate their components.
For example, W represents the vector or vector-valued function (W1, . . . ,WN).

The Boltzmann operator Q = (Q1, . . . , QN) is given for any 1 6 i 6 N by

Qi(F,F) =
N∑
j=1

Qij(Fi, Fj),

where Qij models the interactions between particles of either the same (i = j) or
of different (i 6= j) species and is local in time and space. We focus on binary
and elastic collisions, meaning that if two particles of different species of respective
atomic masses mi and mj collide with velocities v′ and v′∗, then the shape of their
post-collisional velocities v and v∗ is prescribed by the conservation of momentum
and kinetic energy

(1.2) miv +mjv∗ = miv
′ +mjv

′
∗,

1

2
mi|v|2 +

1

2
mj|v∗|2 =

1

2
mi|v′|2 +

1

2
mj|v′∗|2.

We point out that, unlike the mono-species case where N = 1 and so mi = mj = m,
we can see here an asymmetry in the role played by v and v∗, due to the different
masses of the species. This issue will be of primary interest in our work. The
bi-species collision operators then read, for any 1 6 i, j 6 N ,

Qij(Fi, Fj)(v) =

∫
R3×S2

Bij (|v − v∗|, cosϑ)
[
F ′iF

′∗
j − FiF ∗j

]
dv∗dσ,

where the shorthand notations F ′i = Fi(v
′), Fi = Fi(v), F ′∗j = Fj(v

′
∗) and F ∗j =

Fj(v∗) are used with the definitions
v′ =

miv +mjv∗
mi +mj

+
mj

mi +mj

|v − v∗|σ,

v′∗ =
miv +mjv∗
mi +mj

− mi

mi +mj

|v − v∗|σ,
cosϑ =

(v − v∗) · σ
|v − v∗|

.

In particular, the cross-sectionsBij model the physics of the binary collisions between
particles. Here we shall focus on cutoff Maxwellian, hard-potential and hard-sphere
collision kernels. Namely, let us make the following assumptions on each Bij, i and j
being fixed.

(H1) It satisfies a symmetry property with respect to the interchange of both
species indices i and j

Bij(|v − v∗|, cosϑ) = Bji(|v − v∗|, cosϑ), ∀v, v∗ ∈ R3, ∀ϑ ∈ R.
(H2) It decomposes into the product of a kinetic part Φij > 0 and an angular part

bij > 0, namely

Bij(|v − v∗|, cosϑ) = Φij(|v − v∗|)bij(cosϑ), ∀v, v∗ ∈ R3, ∀ ϑ ∈ R.
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(H3) The kinetic part has the form of hard or Maxwellian (γ = 0) potential, i.e.

Φij(|v − v∗|) = CΦ
ij |v − v∗|γ, CΦ

ij > 0, γ ∈ [0, 1], ∀v, v∗ ∈ R3.

(H4) For the angular part, we consider a strong form of Grad’s angular cutoff [33].
We assume that there exists a constant C > 0 such that

0 < bij(cosϑ) 6 C| sinϑ|| cosϑ|, b′ij(cosϑ) 6 C, ϑ ∈ [0, π].

Furthermore, we assume that

inf
σ1,σ2∈S2

∫
S2

min{bii(σ1 · σ3), bii(σ2 · σ3)}dσ3 > 0.

Note that the above hypotheses on the collision kernels are standard in both the
multi-species setting [25, 17] and the mono-species one [2, 43], and are assumed to
hold in order to derive suitable spectral properties on the linear operator. Assump-
tion (H1) translates the idea that the collisions are micro-reversible. Assumption
(H2) is only made for the sake of clarity (even though it is commonly used in a
lot of physical models) and could probably be relaxed at the price of technicalities.
Assumption (H3) is proper to collision kernels that come from interaction potentials
behaving like power-laws. Finally, the positivity assumption on the integrals appear-
ing in (H4) is satisfied by most physical models and is required to obtain an explicit
spectral gap estimate in the mono-species case [2, 43], thus becoming a prerequi-
site to establish explicit computations of the spectral gap also in the multi-species
setting [17].

The first a priori laws one can extract [27, 14, 25] from (1.1) are the conservation,
over time t > 0, of the quantities

ci,∞ =

∫
T3×R3

Fi(t, x, v)dxdv,

ρ∞u∞ =
N∑
i=1

∫
T3×R3

mivFi(t, x, v)dxdv,

3

2
ρ∞θ∞ =

N∑
i=1

∫
T3×R3

mi

2
|v − u∞|2 Fi(t, x, v)dxdv,

(1.3)

where ci,∞ stands for the number of particles of species i, and we have denoted the

total mass of the mixture ρ∞ =
∑N

i=1mici,∞, its total momentum ρ∞u∞ and its
total energy 3

2
ρ∞θ∞. The lack of symmetry mentioned before clearly appears here,

since only the total momentum and energy of the gas are preserved, as opposed to
a preservation of the momentum and energy of each single species.

The second important feature is that the operator Q = (Q1, . . . , QN) also satisfies
a multi-species version of the classical H-theorem [27], from which one deduces
that the only distribution functions satisfying Q(F,F) = 0 are given by the local
Maxwellian vectors

(
M(ci,u,θ)

)
16i6N

, having the specific form

(1.4)

M(ci,u,θ)(t, x, v) = ci(t, x)

(
mi

2πθ(t, x)

)3/2

e−mi
|v−u(t,x)|2

2θ(t,x) , t > 0, x ∈ T3, v ∈ R3,
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for some functions c = (ci)16i6N , u and θ. These are the fluid quantities associated
to M and satisfy, for any (t, x) ∈ R+ × T3, the relations

ci(t, x) =

∫
R3

M(ci,u,θ)(t, x, v)dv, 1 6 i 6 N,

N∑
i=1

mici(t, x)u(t, x) =
N∑
i=1

∫
R3

mivM(ci,u,θ)(t, x, v)dv

3

2

N∑
i=1

mici(t, x)θ(t, x) =
N∑
i=1

∫
R3

mi

2
|v − u(t, x)|2M(ci,u,θ)(t, x, v)dv.

In particular we stress again the fact that, in contrast with the case where only one
gas is considered, in the multi-species framework not all local Maxwellian vectors are
local equilibrium states for the mixture, since the relation Q(F,F) = 0 is satisfied
if and only if the local bulk velocity u(t, x) and temperature θ(t, x) are the same for
each species.

Going further, since we work in T3, one can also prove that the only global equi-
librium of the mixture, i.e. the unique stationary solution F to (1.1), is given by
the global Maxwellian vector

(
M(ci,∞,u∞,θ∞)

)
16i6N

whose fluid quantities satisfy the

relations (1.3). It is defined, for any 1 6 i 6 N , by

M(ci,∞,u∞,θ∞)(v) = ci,∞

(
mi

2πθ∞

)3/2

e−mi
|v−u∞|2

2θ∞ , ∀v ∈ R3.

In particular, without loss of generality, in what follows we shall consider as unique
global equilibrium of the mixture the N -vector µµµ = (µ1, . . . , µN), defined compo-
nentwise as

(1.5) µi(v) = ci,∞

(mi

2π

)3/2

e−mi
|v|2
2 , ∀v ∈ R3,

and obtained by a translation and a dilation of the coordinate system, which allow
to choose u∞ = 0 and θ∞ = 1.

The Cauchy theory and the trend to equilibrium for solutions of equation (1.1)
studied in a perturbative setting around the global Maxwellian state (1.5) have been
shown in L∞x

(
T3;L1

v(R3)
)

with polynomial weights [17] and in L∞x,v
(
T3 × R3

)
with

exponential and polynomial weights [16]. In the present work we are interested
in studying the diffusion limit of equation (1.1). More precisely, we consider the
following scaled version of (1.1), given for any 1 6 i 6 N by

(1.6) ∂tF
ε
i +

1

ε
v · ∇xF

ε
i =

1

ε2
Qi(F

ε,Fε) on R+ × T3 × R3,

and we investigate the behaviour of the fluid quantities cεi (t, x), uεi (t, x) and θεi (t, x)
associated to each distribution F ε

i , when the scaling parameter ε > 0 vanishes. A
first formal derivation [14] showed that, in the case where Fε =

(
M(cεi ,u

ε
i ,T )

)
16i6N

is a

local Maxwellian vector with constant temperature θ > 0 and (cεi , u
ε
i )16i6N converge

towards (ci, ui)16i6N , the limit macroscopic quantities are solutions, on R+ ×T3, to
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the flux-incompressible Maxwell-Stefan system

∂tci +∇x · (ciui) = 0,(1.7)

−∇xci =
N∑
j=1

cicj
ui − uj

∆ij

,(1.8)

∂t

(
N∑
i=1

ci

)
= 0, ∇x ·

(
N∑
i=1

ciui

)
= 0,(1.9)

where ∆ij are symmetric (with respect to the species indices) positive constants only

depending on θ, the masses (mi)16i6N and the collision kernels (Bij)16i,j6N . Note
that the incompressibility is to be understood in the whole and not for each species.
At first sight, the structure of the limit equations looks rather different from the
Navier-Stokes limit of the Boltzmann mono-species equation (N = 1). However, as
showed in [14], the momentum balance equation appears partly at order ε2 under
the explicit form

ε2mi

θ
[∂t (cεiu

ε
i ) +∇x · (cεiuεi ⊗ uεi )] +∇xc

ε
i =

N∑
j=1

cεi c
ε
j

uεi − uεj
∆ij

,

and we actually see the Navier-Stokes structure showing up, without viscous terms
because the solution is supposed to be a local Maxwellian and therefore the inter-
actions between the microscopic part and the fluid quantities are not taken into
account.

In particular, the Maxwell-Stefan system (1.7)–(1.8)–(1.9) is of core importance
in physics and biology, since it is used to model the evolution of diffusive phenomena
in mixtures [42, 47, 48, 24, 11]. As such, its derivation from the kinetic equations is
of great interest from both a mathematical and a physical point of view.

As already underlined, the problem at hand is reminiscent of the hydrodynamic
limit of the mono-species Boltzmann equation, towards the incompressible Navier-
Stokes system. Therefore, let us first give a brief description of the strategies which
have been developed in this context. We emphasize that the list is not exhaustive,
does not concern any other type of hydrodynamic limit (such as Euler equations or
acoustics) and we refer to [46, 30] for more references and discussions.

The formal derivation of the Navier-Stokes limit from the mono-species Boltz-
mann equation came from a series of articles called the Bardos-Golse-Levermore
(BGL) program [3, 4]. It has been made rigorous in various ways, always with
the help of a Taylor expansion of the solution with respect to the parameter ε
[34]. One could look at perturbative solutions around a global Maxwellian µ(v) =

c∞/(2πθ∞)3/2 exp
{
− |v|

2

2θ∞

}
, that is to say solutions of the form F ε = µ + εf ε, and

study their limit when ε tends to 0. This has been done by describing the spectrum of
the linear operator L(f ε) = ε−2

(
Q(µ, f ε) +Q(f ε, µ)

)
[28, 5], by directly tackling the

Cauchy problem for f ε in Sobolev spaces to get convergence results on the fluid quan-
tities of f ε in the setting of renormalised solutions [31, 32, 41] or by using hypoco-
ercivity techniques [35, 15]. Another strategy is to investigate the stability of the
Boltzmann equation not around a global equilibrium, but around a local Maxwellian
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whose fluid quantities solve the limit macroscopic system. In this spirit, De Masi, Es-
posito and Lebowitz [26] studied solutions of the form F ε = M(c∞,εu,θ∞) + εf ε where
u = u(t, x) is a smooth solution of the perturbed incompressible Navier-Stokes equa-
tion, around the constant macroscopic equilibrium (c∞, 0, θ∞). The interest of this
method, initiated by Caflisch [21] for the Euler limit of the Boltzmann equation, is
that the main order term already encodes the limit system and one can thus study
the fluid perturbations explicitly.

For the time being, only formal derivations of the Maxwell-Stefan system from the
Boltzmann multi-species equation have been obtained [14, 36, 12] and, unlike the
BGL program [4] for the mono-species case, they do not provide any convergence
of the fluid quantities given an a priori convergence in distribution. Note moreover
that in the context of mixtures other formal hydrodynamic limits have been also
recently derived in a non-dissipative regime [6, 8, 7, 1] and in a stationary regime
for two species in a slab [19, 20] but, up to our knowledge, no rigorous convergences
have been provided yet. This work aims at filling this gap.

The strategy of studying close-to-global equilibrium solutions offers bounds (and
thus compactness) in Sobolev spaces, but has to be transferred into a convergence of
the nonlinear moments. We therefore chose to investigate the hydrodynamic limit
of the multi-species Boltzmann equation in the spirit of [21, 26]. More precisely,
we construct solutions in Sobolev spaces to the perturbed system (1.6) of the form
Fε = Mε + εf ε, where the local Maxwellian state Mε = (M ε

1 , . . . ,M
ε
N) is given for

any 1 6 i 6 N by
(1.10)

M ε
i (t, x, v) = ci(t, x)

(
mi

2πθ

)3/2

exp

{
−mi

|v − εui(t, x)|2

2θ

}
, t > 0, x ∈ T3, v ∈ R3,

and its fluid quantities (ci, ui)16i6N are perturbative solutions of the incompressible
Maxwell-Stefan system (1.7)–(1.8)–(1.9), whose global existence and exponential
relaxation to equilibrium have been recently obtained by the authors in [9].

We however differ from [26] in several ways. First of all, the local Maxwellian
(1.10) is not an equilibrium state for the mixture, meaning in particular that the
relation Q(Mε,Mε) = 0 does not hold true in our setting. Secondly, even though we
only deal with the case of a fixed temperature θ, we do not ask ci(t, x) to be constant,
but we shall consider perturbations of a constant state [9]. At last, we shall not use
higher order fluid expansions, but we are able to develop a hypocoercive strategy
in the spirit of [44, 15], by separating the leading order of the limit Maxwell-Stefan
components from the full microscopic and fluid part perturbations. The idea is
indeed natural, remembering that the Maxwell-Stefan system is obtained when one
only looks at the interactions at the first order in ε.

We plug the perturbation Fε = Mε+εf ε into the rescaled Boltzmann system (1.6)
and we obtain the perturbed equation

(1.11) ∂tf
ε +

1

ε
v · ∇xf

ε =
1

ε2
Lε(f ε) +

1

ε
Q(f ε, f ε) + Sε,

where the linear operator Lε = (Lε1, . . . , L
ε
N) is given for any 1 6 i 6 N by

(1.12) Lεi (f
ε) =

N∑
j=1

(
Qij(M

ε
i , f

ε
j ) +Qij(f

ε
i ,M

ε
j )
)
,
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and the source term Sε encodes the distance between the Maxwell-Stefan system
and the fluid part of the perturbed Boltzmann equation, and is defined through the
relation

(1.13) Sε =
1

ε3
Q(Mε,Mε)− 1

ε
∂tM

ε − 1

ε2
v · ∇xM

ε.

The pertubative setting (1.11)–(1.12)–(1.13) is classical in the case of the Boltzmann
mono-species equation. Usually, the strategy consists in proving that the linear
operator Lε is self-adjoint in some space, with non-trivial null space, and features a
spectral gap. In fact, the spectral gap allows to get strong negative feedback from
the microscopic part (orthogonal to kerLε) of the solution and therefore one is only
left with finding a way to control the kernel part of the solution, in order to close the
energy estimates. This can be achieved either by investigating the fluid equations
[35, 17] or by using hypocoercive norms [44, 50, 15] which generate a complete
negative return in higher Sobolev norms, via the commutator [v · ∇x,∇v] = −∇x.

Unfortunately, the central spectral gap property essentially comes from the fact
that, in the mono-species case, any local Maxwellian is a local equilibrium. As
soon as N > 1 we have seen that a local Maxwellian vector is an equilibrium of
the system of equations (1.6) only if each component shares the same velocity and
temperature (1.4). This is not the case for the local Maxwellian state (1.10) we
consider, where each species evolves at its own speed εui. Not only one looses the
self-adjointness of the linear operator Lε in the usual L2 space weighted by the
local Maxwellian Mε, but also the spectral gap property. However, it has been
recently showed in [10] that if one does not have a spectral gap, it is still possible
to recover a negative return on the fluid part by adding an error term of order ε,
as long as the velocities (εui)16i6N remain small, of order ε. Our contribution aims
at extending this perturbative result to the case of more general densities ci(t, x),
in particular to the case of perturbative solutions of the Maxwell-Stefan system,
where the loss of the spectral gap remains at a lower order of magnitude. We then
construct a new modified Sobolev norm which allows to recover a coercivity property
and to close the energy estimates on the nonlinear terms. This is an extension
and an adaptation of the hypocoercivity methods developed in [44, 15], where fine
controls over the ε-dependencies of the coefficients act to counter-balance the out-of-
equilibrium property of our system, as well as the interactions with the non constant
fluid quantities appearing in the weight. We emphasize again that this is achieved
by looking at the perturbative solutions of the Maxwell-Stefan system constructed in
[9]. Such a setting also appears in standard studies in the mono-species case, where
one only recovers perturbative Leray solutions of the incompressible Navier-Stokes
equation. Besides, the perturbative setting for the Maxwell-Stefan system proves
itself to be exactly the one needed to control the problematic source term Sε. In
particular, we underline once more that the perturbative setting we look at extends,
to a non constant density and a non-zero momentum macroscopic equilibria (even
though the perturbations we consider are small), the previous results of Caflisch [21]
and De Masi, Esposito and Lebowitz [26] in the mono-species case, and provides a
hypocoercive approach to their framework.

The rest of the paper is structured as follows. In Section 2 we introduce the no-
tations, we state our main theorem and we also provide a thorough description of
the methods and strategies built up to prove it. Using the expansion Fε = Mε + εf ε

around the local Maxwellian vector Mε given by (1.10) we establish in Section 3
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global existence and uniqueness of the fluctuations f ε, which are solutions to the
perturbed Boltzmann equation (1.11). The uniform in ε a priori estimates eventu-
ally allow us to prove a stability result which tells that the distribution function Fε

remains close to the local Maxwellian Mε up to an order ε, thus ensuring a rigor-
ous derivation of the Maxwell-Stefan system (1.7)–(1.8)–(1.9) from the Boltzmann
multi-species equation (1.11). In particular, our strategy exploits the hypocoercive
structure of (1.11), following the works [44, 15]. This consists in proving a series of
a priori estimates satisfied by the operators Lε and Q, and by the source term Sε.
While in Section 3 we only introduce these fundamental results, all their technical
proofs are finally collected in Section 4.

2. Main result

2.1. Notations and Conventions. Let us begin by detailing all the notations that
we use throughout the article. Recalling that we denote W = (W1, . . . ,WN) any
vector or vector-valued operator belonging to RN , we shall use the symbol 1 to name
the specific vector (1, . . . , 1). Henceforth, the multiplication of N -vectors has to be
understood in a component by component way, so that for any w,W ∈ RN and any
q ∈ Q we have

wW = (wiWi)16i6N , Wq = (W q
i )16i6N .

Moreover, we introduce the Euclidean scalar product in RN , weighted by a vector
W, which is defined as

〈f ,g〉W =
N∑
i=1

figiWi,

and induces the norm ‖f‖2
W = 〈f , f〉W. In particular, when W = 1, the index 1 will

be dropped in both the notations for the scalar product and the norm. At last, note
that we shall also make use of the following shorthand notation

〈v〉 =

√
1 + |v|2,

not to be confused with the scalar product defined above.

The convention we choose for the functional spaces is to index the space by the
name of the concerned variable. For p ∈ [1,+∞] we have

Lpt = Lp(0,+∞), Lpx = Lp
(
T3
)
, Lpv = Lp

(
R3
)
.

Consider now some positive measurable vector-valued functions w : T3 → (R∗+)N

in the variable x and W : R3 −→ (R∗+)N in the variable v. For any 1 6 i 6 N ,
we define the weighted Hilbert spaces L2(T3, wi) and L2(R3,Wi) by introducing the
respective scalar products and norms

〈ci, di〉L2
x(wi) =

∫
T3

cidiw
2
i dx, ‖ci‖2

L2
x(wi)

= 〈ci, ci〉L2
x(wi), ∀ci, di ∈ L2(T3, wi),

〈fi, gi〉L2
v(Wi) =

∫
R3

figiW
2
i dv, ‖fi‖2

L2
v(Wi)

= 〈fi, fi〉L2
v(Wi), ∀fi, gi ∈ L2(R3,Wi).

With these definitions, we say that c : T3 → RN belongs to L2(T3,w) and that
f : R3 → RN belongs to L2(R3,W) if and only if ci : T3 → R ∈ L2(T3, wi) and
fi : R3 → R ∈ L2(R3,Wi) for any 1 6 i 6 N . The weighted Hilbert spaces
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L2(T3,w) and L2(R3,W) are therefore endowed with the induced scalar products
and norms

〈c,d〉L2
x(w) =

N∑
i=1

〈ci, di〉L2
x(wi), ‖c‖L2

x(w) =

(
N∑
i=1

‖ci‖2
L2
x(wi)

)1/2

,

〈f ,g〉L2
v(W) =

N∑
i=1

〈fi, gi〉L2
v(Wi), ‖f‖L2

v(W) =

(
N∑
i=1

‖fi‖2
L2
v(Wi)

)1/2

,

Note that in the specific case of positive measurable functions W : R3 → (R∗+)N

in the sole variable v, without risk of confusion we shall also consider the weighted
Hilbert space L2(T3 × R3,W), defined similarly by the natural scalar product and
norm

〈f ,g〉L2
x,v(W) =

N∑
i=1

∫
T3×R3

fi(x, v)gi(x, v)W 2
i (v)dxdv,

‖f‖2
L2
x,v(W) =

N∑
i=1

∫
T3×R3

f 2
i (x, v)W 2

i (v)dxdv,

for any f ,g ∈ L2
x,v(T3 × R3,W).

Finally, in the same way we can introduce the corresponding weighted Sobolev
spaces. Consider two multi-indices α, β ∈ N3, of lengths |α| =

∑3
k=1 αk and |β| =∑3

k=1 βk respectively . We shall use the convention that α always refers to x-
derivatives while β refers to v-derivatives. Note in particular that we shall use the
standard notation of the canonical basis in R3 to name the specific multi-indices hav-
ing one component equal to 1 and the others equal to 0, so for example e1 = (1, 0, 0).

For any s ∈ N and any vector-valued functions c ∈ Hs(T3,w) and f ∈ Hs(S,W),
where either S = R3 or S = T3 × R3, we define the norms

‖c‖Hs
x(w) =

 N∑
i=1

∑
|α|6s

‖∂αx ci‖
2
L2
x(wi)

1/2

,

‖f‖Hs
v(W) =

 N∑
i=1

∑
|β|6s

∥∥∂βv fi∥∥2

L2
v(Wi)

1/2

,

‖f‖Hs
x,v(W) =

 N∑
i=1

∑
|α|+|β|6s

∥∥∂βv ∂αx fi∥∥2

L2
x,v(Wi)

1/2

.

2.2. Statement of the result and strategy. Thanks to the Cauchy theory built
up by the authors [9], we can construct the local Maxwellian Mε whose fluid quan-
tities are perturbative solutions of the Maxwell-Stefan system (1.7)–(1.8)–(1.9). For
the reader convenience, let us first recall the result obtained in [9].
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Theorem 2.1. Let s > 3 be an integer, u : R+ × T3 −→ R3 be in L∞
(
R+;Hs(T3)

)
with ∇x · u = 0, and consider c > 0. There exist δMS, CMS, C ′MS, λMS > 0 such that
for all ε ∈ (0, 1] and for any initial datum (c̃ in, ũ in) ∈ Hs(T3)×Hs−1(T3) satisfying,
for almost any x ∈ T3 and for any 1 6 i 6 N ,

(i) Mass compatibility:
N∑
i=1

c̃ in
i (x) = 0 and

∫
T3

c̃ in
i (x)dx = 0,

(ii) Mass positivity: ci + εc̃ in
i (x) > 0,

(iii) Moment compatibility: ∇xc̃
in
i =

∑
j 6=i

c in
i c

in
j

∆ij

(
ũ in
j − ũ in

i

)
,

(iv) Smallness assumptions:
∥∥c̃ in

∥∥
Hs
x
6 δMS and ‖u‖L∞t Hs

x
6 δMS,

there exists a unique weak solution

(c,u) =
(
c + εc̃,u + εũ

)
in L∞

(
R+;Hs(T3)

)
×L∞

(
R+;Hs−1(T3)

)
to the incompressible Maxwell-Stefan sys-

tem (1.7)–(1.8)–(1.9), such that initially (c̃, ũ) t=0 =
(
c̃ in, ũ in

)
a.e. on T3. In par-

ticular, if s > 4 and u ∈ C0
(
R+;Hs(T3)

)
, then the couple (c,u) also belongs to

C0
(
R+;Hs−1(T3)

)
× C0

(
R+;Hs−2(T3)

)
.

Moreover, c is positive and the following relations hold a.e. on R+ × T3:

(2.1) 〈c, ũ〉 =
N∑
i=1

ci(t, x)ũi(t, x) = 0 and

∫
T3

c̃i(t, x)dx = 0.

Finally, for almost any time t > 0

‖c̃‖
Hs
x

(
c−

1
2

) 6 e−tλMS
∥∥c̃ in

∥∥
Hs
x

(
c−

1
2

) ,
‖ũ‖Hs−1

x
6 CMSe

−tλMS
∥∥c̃ in

∥∥
Hs
x

(
c−

1
2

) ,
∫ t

0

e2(t−τ)λMS ‖ũ(τ)‖2
Hs
x

dτ 6 C ′MS

∥∥c̃ in
∥∥2

Hs
x

(
c−

1
2

) .
The constants δMS, λMS, CMS and C ′MS are constructive and only depend on s, the
number of species N , the diffusion coefficients (∆ij)16i,j6N and the constant vector c.
In particular, they are independent of the parameter ε.

Now, recall that we can select as unique global equilibrium of the mixture the
global Maxwellian state µµµ defined by (1.5), where u∞ = 0 and θ∞ = 1. Thanks
to the above result, we can choose the macroscopic equilibrium state (ci, u)16i6N

to be compatible with the global (kinetic) equilibrium of the mixture µµµ, by taking
ci = ci,∞ for any 1 6 i 6 N . Therefore, supposing the uniform (in space) and

constant (in time) temperature θ to be equal to 1 for simplicity, we introduce the
local Maxwellian vector Mε = M(c,εu,1) = (M ε

1 , . . . ,M
ε
N), given for any 1 6 i 6 N

by
(2.2)

M ε
i (t, x, v) = ci(t, x)

(mi

2π

)3/2

exp

{
−mi

|v − εui(t, x)|2

2

}
, t > 0, x ∈ T3, v ∈ R3,
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where (c,u) is the unique weak solution of the Maxwell-Stefan system (1.7)–(1.8)–
(1.9), perturbed around the macroscopic equilibrium state (c∞,u). More precisely,
the fluid quantities of Mε take the form

(2.3)

 ci(t, x) = ci,∞ + εc̃i(t, x),

ui(t, x) = u(t, x) + εũi(t, x), ∇x · u(t, x) = 0,
t > 0, x ∈ T3,

for any 1 6 i 6 N . In particular, we notice that under the assumptions of Theorem
2.1 the following fundamental properties are verified by the couple (c∞+εc̃,u+εũ):

(i) inf
R+×T3

min
16i6N

(
ci,∞ + εc̃i(t, x)

)
> 0,

(ii) 〈c∞ + εc̃(t, x),1〉 = C0 > 0 a.e. on R+ × T3,

(iii) ‖c̃‖
L∞t H

s
x

(
c
− 1

2∞

) 6 δMS,

(iv) ‖u‖L∞t Hs
x
6 δMS and ‖ũ‖L∞t Hs

x
6 δMSCMS.

Starting from this choice of the local Maxwellian, we consider solutions to the
Boltzmann multi-species equation (1.6) of the form Fε = Mε + εf , where the fluc-
tuations f satisfy the perturbed system (1.11).

Our strategy for developing a uniform Cauchy theory for equation (1.11) is in-
spired by the works [44, 15] and aims at building a suitable Sobolev-equivalent norm
which satisfies a Grönwall-type inequality among solutions of (1.11). The idea of
the method originates from the hypocoercive behaviour shown by some classical
kinetic equations in the mono-species framework, where the interaction of a degen-
erate coercive operator with a conservative operator may induce global dissipation
in all variables, and consequently relaxation towards equilibrium. A typical exam-
ple is precisely the inhomogeneous Boltzmann mono-species equation. In fact, the
mono-species Boltzmann operator L linearized around a global equilibrium of the
gaz exhibits a spectral gap which translates into a negative return in some Hilbert
space depending on the sole velocity variable v. In particular, L is degenerate in the
sense that its kernel is much larger than the set of global equilibria. Here, precisely
comes into play the effect of the conservative transport operator v · ∇x, that intro-
duces a dependence on the space variable x which at first sight cannot be handled
using the dissipation of L in v. Nevertheless, it is possible to prove [50, 44] that the
association of these operators can actually produce a global negative return in both
x and v, if one considers a well-designed Lyapunov functional that is able to transfer
the dissipation of L into a (hypo) dissipation of T = L−v ·∇x. One possibility is for
example to introduce [44] a modified Sobolev norm where we add to the usual Hs

x,v

norm, new suitable terms based on commutators of higher derivatives, such as the
well-known [v · ∇x,∇v] = −∇x. In this way, the linear part is dealt with, and the
full nonlinear Boltzmann equation (close to equilibrium) can be tackled [44] and its
solution can be proved to relax towards a global equilibrium, with an exponential
decay rate of convergence.

As already mentioned in the introduction, a similar strategy has been developed in
[15] for the study of the hydrodynamic limit of the Boltzmann mono-species equation
set under a standard diffusive scaling, leading to the same conclusions as [44]. In
particular, a global dissipation can be obtained if one introduces a new Sobolev
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norm which is adapted from the one used in [44], by adding a dependence on ε in
its terms. In such a way, the operator T ε = ε−2L− ε−1v · ∇x exhibits the required
hypocoercive behaviour, which provides a control on the nonlinear stiff term ε−1Q
and allows to ensure a global negative return in both x and v, and the expected
convergence to equilibrium for the solution.

In the multi-species setting we consider here, even if the linearization around
the non-equilibrium Maxwellian Mε gives rise to a linearized Boltzmann equation
(1.11) involving the new operators Lε and Sε, we wish to prove that the underlying
hypocoercive structure of our model is in fact almost formally identical to the one
featured by the mono-species equation studied in [15]. The approach that will guide
our presentation from now on will consist in adapting the tools and computations
developed in [15], in order to study equation (1.11). However, we stress the fact
that this is not a straightforward extension. Indeed, a full spectral gap property for
Lε is missing [10] when we settle our analysis in an Hilbert space weighted by the
global equilibrium µµµ, which is incompatible with the operator Lε, linearized around
the local Maxwellian Mε. In particular, we recall that we see the appearance of an
extra positive term of order ε, which contains the projected part πL(f) and precisely
takes into account this incompatibility. It is therefore fundamental to ensure that
this loss in the spectral gap does not affect too much the computations derived in
[15] and that Lε can still provide a complete negative return in combination with
the transport operator v · ∇x. This feature is indeed characteristic of our model
and will appear any time the linearized operator Lε (and more specifically its higher
derivatives in x) is involved. It is at this point that the specific form of the fluid
quantities (2.3) prominently comes into play in order to gain a lower order factor
in ε or in δMS. In particular, we underline the importance of having δMS as a free
parameter of the problem, since its choice shall be crucial in order to obtain a careful
control on some of the extra terms produced by Lε, where the presence of the factor
ε will not be enough to close the estimates as in [15]. Finally, we remind the reader
the additional difficulties caused by the source term Sε, which displays an intricate
dependence on the local Maxwellian Mε, and is at first glance of order O(ε−3).
Again, the particular form of the solution (c,u) is at the core of our derivation of
the correct estimates to control Sε, and the perturbative setting we consider for the
Maxwell-Stefan system will prove itself sufficient in order to handle the negative
powers of ε.

Choice of the functional spaces. It has been pointed out in [10] that even if Lε

exhibits no clear self-adjointness in the usual space of linearization L2
(
(Mε)−

1
2 ,R3

)
it is still possible to recover a partial spectral gap property for Lε by linking it to the
Boltzmann operator L, linearized around the global equilibrium µµµ. This connection
is obtained by choosing L2

(
R3,µµµ−

1
2

)
as the space of interest. Therefore, in order

to exploit the result of [10], from now on we set our study in the corresponding

weighted Sobolev spaces Hs
(
T3 × R3,µµµ−

1
2

)
, defined for any s ∈ N.

Choice of a referent hypocoercive operator. Next, we must identify the dis-
sipative and the conservative operators that play a central role in the theory of
hypocoercivity. Since it is crucial to determine the explicit expression of the equi-
libria of the mixture, Lε is not a valuable choice as we possess no information
about the shape of its kernel. Therefore, as in the mono-species case [44, 15], we
select the hypocoercive operator of interest to be defined for any ε ∈ (0, 1] by
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Tε = ε−2L − ε−1v · ∇x, acting on Hs
(
T3 × R3,µµµ−

1
2

)
. In particular, recall that the

dissipative operator L = (L1, . . . , LN) is defined for any 1 6 i 6 N by

Li(f) =
N∑
j=1

(
Qij(µi, fj) +Qij(fi, µj)

)
,

and is a closed self-adjoint operator in the space L2
(
R3,µµµ−

1
2

)
. Moreover, its kernel

is described by an orthonormal basis
(
φφφ(k)

)
16k6N+4

in L2
(
R3,µµµ−

1
2

)
, that is

kerL = Span
(
φφφ(1), . . . ,φφφ(N+4)

)
,

where 

φφφ(i) =
1
√
ci,∞

µi
(
δij
)

16j6N
=

1
√
ci,∞

µie
(i), 1 6 i 6 N,

φφφ(N+`) =
v`(∑N

j=1mjcj,∞

)1/2

(
miµi

)
16i6N

, 1 6 ` 6 3,

φφφ(N+4) =
1(∑N

j=1 cj,∞

)1/2

(
mi|v|2 − 3√

6
µi

)
16i6N

.

In this way, we can write the orthogonal projection onto kerL in L2
(
R3,µµµ−

1
2

)
as

(2.4) πL(f)(v) =
N+4∑
k=1

〈
f ,φφφ(k)

〉
L2
v

(
µµµ−

1
2

) φφφ(k)(v), ∀f ∈ L2
(
R3,µµµ−

1
2

)
.

In particular, its explicit expression is given by

πL(f) =
N∑
i=1

[
1

ci,∞

∫
R3

fidv

]
µie

(i)

+
3∑

k=1

vk∑N
i=1mici,∞

[
N∑
i=1

∫
R3

mivkfidv

] (
miµi

)
16i6N

+
1∑N

i=1 ci,∞

[
N∑
i=1

∫
R3

mi|v|2 − 3√
6

fidv

](
mi|v|2 − 3√

6
µi

)
16i6N

.

(2.5)

Choice of the norm. With the aim of deriving similar a priori estimates to [15],
we choose the same Sobolev-equivalent norm. For any s ∈ N∗ and any ε ∈ (0, 1], we
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introduce the following functional, defined on the space Hs
(
T3 × R3,µµµ−

1
2

)
by

(2.6) ‖·‖Hsε =

∑
|α|6s

a(s)
α ‖∂αx ·‖

2

L2
x,v

(
µµµ−

1
2

) + ε
∑
|α|6s

k, αk>0

b
(s)
α,k

〈
∂αx ·, ∂ek

v ∂
α−ek
x ·

〉
L2
x,v

(
µµµ−

1
2

)

+ ε2
∑

|α|+|β|6s
|β|>1

d
(s)
α,β

∥∥∂βv ∂αx ·∥∥2

L2
x,v

(
µµµ−

1
2

)


1/2

,

for some positive constants
(
a

(s)
α

)s
α
,
(
b

(s)
α,k

)s
α,k

and
(
d

(s)
α,β

)s
α,β

to be appropriately fixed

later.

Thanks to these choices, we can now establish our main result.

Theorem 2.2. Let the collision kernels Bij satisfy assumptions (H1)–(H2)–(H3)–
(H4), and consider the local Maxwellian Mε defined by (2.2)–(2.3). There exist
s0 ∈ N∗, δMS > 0 and ε0 ∈ (0, 1] such that the following statements hold for any
integer s > s0.

(i) There exist three sets of positive constants
(
a

(s)
α

)s
α
,
(
b

(s)
α,k

)s
α,k

and
(
d

(s)
α,β

)s
α,β

such that, for all ε ∈ (0, ε0], both following norms are equivalent

‖·‖Hsε ∼

‖·‖2

L2
x,v

(
µµµ−

1
2

) +
∑
|α|6s

‖∂αx ·‖
2

L2
x,v

(
µµµ−

1
2

) + ε2
∑

|α|+|β|6s
|β|>1

∥∥∂βv ∂αx ·∥∥2

L2
x,v

(
µµµ−

1
2

)


1/2

.

(ii) There exists δB > 0 such that, for all ε ∈ (0, ε0], for all δMS ∈ [0, δMS] and

for any initial datum f in in Hs
(
T3 × R3,µµµ−

1
2

)
with∥∥f in

∥∥
Hsε
6 δB,

∥∥πTε(f in)
∥∥
L2
x,v

(
µµµ−

1
2

) 6 CδMS,

for some positive constant C > 0 independent of the parameters ε and δMS,

there exists a unique f ∈ C0
(
R+;Hs

(
T3 × R3,µµµ−

1
2

))
such that Fε = Mε+εf

is the unique weak solution of the Boltzmann multi-species equation (1.11).
Moreover, if Fε, in = Mε, in + εf in > 0, then Fε(t, x, v) > 0 almost everywhere
on R+ × T3 × R3. Finally, for any time t > 0, Fε satisfies the stability
property

‖Fε −Mε‖Hsε 6 εδB, ∀ε ∈ (0, ε0].

The constant δB is explicit and only depend on the number of species N , on the
atomic masses (mi)16i6N , and on the cross sections (Bij)16i,j6N . In particular, it is
independent of the parameters ε and δMS.

Remark 2.3. Let us make a few comments that help in clarifying some important
features of the above result.

(i) First of all, the uniqueness has to be understood in a perturbative regime,
that is among solutions of the form Mε + εf with small f . Moreover, due
to the presence of the source term Sε we do not obtain an exponential decay
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to equilibrium for the perturbation f , but we expect to recover it in the case
where u = 0 (see Remark 3.13).

(ii) We also emphasize that the Maxwell-Stefan model we consider is not properly
the hydrodynamic limit of the Boltzmann multi-species equation, since the
fluid quantities of the perturbation f have the same order of magnitude as the
ones of the local Maxwellian Mε. However, we here prove that the system
(1.7)–(1.8)–(1.9) is stable in the limit ε→ 0 of the perturbed equation (1.11).
In other words, our result shows that the arising Maxwell-Stefan system is
actually a stable perturbation of Fick’s multi-species model, whose derivation
from equation (1.6) has been recently proved in [18].

(iii) At last, it is important to note that since the proof of Theorem 2.2 is based
on the hypocoercive formalism, its procedure can be actually applied to a
wider class of limit macroscopic models which satisfy some minimal abstract
hypotheses. In particular, our theorem could be easily generalized to cover a
lot of previous results regarding the diffusive limit of the Boltzmann mono-
species equation (and their counterparts in the multi-species setting), like
the rigorous derivation of the Navier-Stokes equations obtained via Hilbert
expansion [26] or by means of hypocoercivity techniques [15]. We shall not
give any details of its proof since it could be recovered with a slight adjustment
to our next computations, which is out of the principal scope of this work.

Theorem 2.4 (More general result). Let the collision kernels Bij satisfy assump-
tions (H1)–(H2)–(H3)–(H4), and consider some general fluid system of equations
P(c,u) = 0. Let the system possess a unique perturbative solution (c,u) = (c +
εc̃,u + εũ) around any macroscopic equilibrium (c,u) of P, with c ∈ (R∗+)N and
u = (u, . . . , u). Construct the local Maxwellian Mε defined by (2.2), using the fluid
quantities (c,u) and suppose that there exists a constant δfluid > 0 verifying

(i) c̃ ∈ L∞
(
R+;Hs(T3)

)
and ‖c̃‖L∞t Hs

x
6 δfluid,

(ii) u, ũ ∈ L∞
(
R+;Hs−1(T3)

)
and ‖u‖L∞t Hs−1

x
, ‖ũ‖L∞t Hs−1

x
6 δfluid,

(iii) The microscopic and the fluid parts of the source term Sε are controlled in
the Hs

ε norm as∥∥π⊥L (Sε)
∥∥
Hsε

= O
(
δfluid

ε

)
and ‖πL (Sε)‖Hsε = O (δfluid) .

Then, there exist s0 ∈ N∗, δfluid > 0 and ε0 ∈ (0, 1] such that, for any integer s > s0,
there exists an explicit δB > 0 such that, for all ε ∈ (0, ε0], for all δfluid ∈ [0, δfluid]

and for any initial datum f in in Hs
(
T3 × R3,µµµ−

1
2

)
with∥∥f in

∥∥
Hsε
6 δB,

∥∥πTε(f in)
∥∥
L2
x,v

(
µµµ−

1
2

) = O(δfluid),

there exists a unique f ∈ C0
(
R+;Hs

(
T3 × R3,µµµ−

1
2

))
such that Fε = Mε + εf is

the unique weak solution of the Boltzmann multi-species equation (1.11). Moreover,
if Fε, in = Mε, in + εf in > 0, then Fε(t, x, v) > 0 almost everywhere on R+×T3×R3.
Finally, for any time t > 0, Fε satisfies the stability property

‖Fε −Mε‖Hsε 6 εδB, ∀ε ∈ (0, ε0].
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3. Perturbative Cauchy theory for the Boltzmann multi-species
equation

In this section we establish a Cauchy theory for the Boltzmann multi-species equa-
tion (1.11), perturbed around the local Maxwellian state (2.2)–(2.3). In the first
part we present the hypocoercive properties satisfied by the Boltzmann operators
Lε and Q, which allow to connect our analysis to the formalism used in [44, 15].
The proofs of these lemmata are postponed to Section 4 for clarity purposes. In the
second part we prove Theorem 2.2: we derive suitable uniform (in ε) bounds for the
problematic source term Sε; then list the a priori energy estimates that we are able
to recover for any solution f of (1.11); we at last notice that our estimates actually
coincide (up to lower orders in ε or in δMS) to the ones obtained in [15].

3.1. Hypocoercive formalism. The initial step consists in verifying some struc-
tural properties on Lε and Q, necessary to recover the basic a priori energy estimates
that will be presented in the following part. We shall see that the extension of the
methods in [15] is absolutely nontrivial and many new issues come up in the analysis.
For this reason, we choose to keep the same order of presentation of the technical
assumptions adopted in [15]. This will allow us to enlighten the similarities and
especially the main differences between our strategies.

Before stating our lemmata, we here provide a brief description of the main fea-
tures of the linearized Boltzmann operator Lε. We recall that Lε can be written
under the form

Lε = Kε − νννε,
where Kε = (Kε

1 , . . . , K
ε
N) is defined, for any 1 6 i 6 N , by

(3.1) Kε
i (f)(v) =

N∑
j=1

∫
R3×S2

Bij(|v − v∗|, cosϑ)
(
M ε

i
′f ′∗j +M ε

j
′∗f ′i −M ε

i f
∗
j

)
dv∗dσ,

and νννε = (νε1, . . . , ν
ε
N) acts like a multiplicative operator, namely, for any 1 6 i 6 N ,

νεi (f)(v) =
N∑
j=1

νεij(v)fi(v),

(3.2) νεij(v) =

∫
R3×S2

Bij

(
|v − v∗|, cosϑ

)
M ε

j (v∗)dv∗dσ, ∀v ∈ R3.

Remark 3.1. Note that throughout this initial presentation we shall suppose that the
solution (c,u) of the Maxwell-Stefan system we consider is always smooth enough
to perform all the estimates, as stated in Theorem 2.1. The required regularity will
be fixed afterwards and will allow to apply all the results obtained in this section. As
such, the quantities mini ci > 0, C0 = 〈c,1〉, ‖c‖

L∞t H
s
x

(
c
− 1

2∞

) and ‖u‖L∞t Hs
x

are consid-

ered as constants and we only keep their track when the explicit order of magnitude
O(δMS) is needed in order to close the energy estimates at the kinetic level. Also,
each time a constant is written, it is independent of ε. This is only done for a sake
of simplicity and clarity, but nevertheless each of these constants will be computed
explicitly inside the proofs.

We begin with a lemma which establishes some general controls on νννε and Lε

(stating in particular the coercivity of νννε).
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Lemma 3.2 (Estimates on νννε and Lε). For any ε ∈ (0, 1], the linearized operator Lε

and its multiplicative part νννε satisfy the following explicit bounds. There exist some
explicit positive constants Cννν

1 , Cννν
2 and CL

1 such that, for any f ,g ∈ L2
(
R3,µµµ−

1
2

)
, we

have

Cννν
1 ‖f‖

2

L2
v

(
µµµ−

1
2

) 6 Cννν
1 ‖f‖

2

L2
v

(
〈v〉γ/2µµµ−1/2

) 6 〈νννε(f), f〉
L2
v

(
µµµ−

1
2

) 6 Cννν
2 ‖f‖

2

L2
v

(
〈v〉γ/2µµµ−1/2

) ,(3.3)

∣∣∣∣〈Lε(f),g〉
L2
v

(
µµµ−

1
2

)∣∣∣∣ 6 CL
1 ‖f‖L2

v

(
〈v〉γ/2µµµ−1/2

) ‖g‖
L2
v

(
〈v〉γ/2µµµ−1/2

) .(3.4)

The constant Cννν
1 in (3.3) translates into a coercivity property for νννε. Our next

result shows that νννε also exhibits a defect of coercivity along its v-derivatives.

Lemma 3.3 (Defect of coercivity for ∂βv ∂
α
xννν

ε). For any s ∈ N∗, and for all multi-
indices α, β such that |α| + |β| = s and |β| > 1, there exist some positive constants

Cννν
k , with k ∈ {3, . . . , 7}, such that, for any f ∈ Hs

(
T3 × R3,µµµ−

1
2

)
,

(3.5)
〈
∂βv ∂

α
xννν

ε(f), ∂βv ∂
α
x f
〉
L2
x,v

(
µµµ−

1
2

) >
(
Cννν

3 − ε1{|α|>1}C
ννν
4

) ∥∥∂βv ∂αx f
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
−
(
Cννν

5 + ε1{|α|>1}C
ννν
6

)
‖f‖2

Hs−1
x,v

(
µµµ−

1
2

)
− ε1{|α|>1}C

ννν
7

∑
0<|α′|+|β′|6s−1

∥∥∥∂β′v ∂α′x f
∥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) .
We here notice for the first time the main difference with the mono-species case

treated in [15], where the Boltzmann equation is perturbed around a global equi-
librium. Since the Maxwellian Mε we consider depends on the space variable, we
see the appearance of several new terms in the estimates, coming precisely from the
x-derivatives of Mε. Nevertheless, each of these correction terms is at a lower order
in ε and they are thus likely to be controlled by the main terms, which correspond
to the ones derived in [15].

Let us now turn to the analysis of Kε. Following again the strategy of Mouhot and
Neumann [44], we want to prove that this operator exhibits a regularizing behaviour
whenever we consider some v-derivatives. More precisely, we shall see that ∂βv ∂

α
xKε is

controlled by a main term only depending on lower derivatives of f plus a correction
term (which can be made arbitrary small) involving the same order of derivatives
∂βv ∂

α
x f . We can think of this property as the counterpart of the defect of coercivity

shown previously on ∂βv ∂
α
xννν

ε, in the sense that the correction term appearing in
the bound of ∂βv ∂

α
xKε will be controlled by the negative contribution coming from

∂βv ∂
α
xννν

ε.
Compared to mono-species case, we shall dive deeper into the structure of the

operator, encountering two major issues. The first issue is that we need to recover a
full explicit expression of Kε in a kernel form, which is not just a simple extension of
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the mono-species case. This is done in Appendix A by deriving a precise Carleman
representation of Kε, following the work of [17]. The second issue arises because
the kernel operator strongly depends on |v − v∗| and we need to properly treat the
v-derivatives in the small region where the relative velocity is close to zero. This
last step will in particular involve dealing with the different decay rates of the global
equilibria µi, a strategy developed in [10].

Lemma 3.4 (Mixing properties in velocity for ∂βv ∂
α
xKε). Let s ∈ N∗ and consider

two multi-indices α, β such that |α|+ |β| = s and |β| > 1. Then, for any ξ ∈ (0, 1),

there exist two constants CK
1 (ξ), CK

2 > 0 such that, for all f ∈ Hs
x,v

(
µµµ−

1
2

)
,

(3.6)〈
∂βv ∂

α
xKε(f), ∂βv ∂

α
x f
〉
L2
x,v

(
µµµ−

1
2

) 6 CK
1 (ξ) ‖f‖2

Hs−1
x,v

(
µµµ−

1
2

) + ξCK
2

∥∥∂βv ∂αx f
∥∥2

L2
x,v

(
µµµ−

1
2

) .
The constants CK

1 (ξ) and CK
2 are explicit, and in particular CK

2 does not depend on
the parameter ξ.

The next crucial step in establishing a solid hypocoercivity framework is to deter-
mine whether Lε possesses a spectral gap in the space of interest L2

(
R3,µµµ−

1
2

)
. The

main issue is linked to the fact that Lε is not self-adjoint in our setting and thus
all the tools from classical spectral theory, as well as methods from [25, 17], cannot
be applied directly. Nevertheless, a partial answer to this problem has been already
provided in [10], where we were able to recover a quantitative upper bound for the

Dirichlet form of the linearized operator Lε in the space L2
(
R3,µµµ−

1
2

)
. We recall

that the idea is to look for a penalization of type Lε = L + (Lε − L), where L is
the Boltzmann operator linearized around the global equilibrium µµµ. In this way, the
Dirichlet form of Lε can be upper bounded by the usual spectral gap plus two correc-
tion terms of order ε. The first term gives the distance between the non-equilibrium
Maxwellian Mε (of the linearization) and the global equilibrium µµµ, while the second
one translates the fact that the spectral projection is taken with respect to the space
of equilibria of L, which does not correspond to the space of equilibria of Lε. We
present an extended and slightly different version of the estimate obtained in [10],
since our study requires more control on the term accounting for the projection onto
kerL (say a control of order ε2). The reason is that we need to handle the factor
1/ε2 in front of Lε. At last, we stress the fact that it is also crucial at this point
to keep track of the quantity δMS that uniformly bounds the L∞x norms of c̃ and u.
Indeed, in what follows we shall eventually need the freedom in the choice of δMS, in
order to take it small enough to close the a priori estimates and recover the correct
negative return in the Sobolev norm ‖·‖Hsε .
Lemma 3.5 (Local coercivity of Lε). Let the collision kernels Bij satisfy assump-

tions (H1)–(H2)–(H3)–(H4), and let λL > 0 be the spectral gap in L2
(
R3,µµµ−

1
2

)
of the operator L. There exists an explicit constant CL

2 > 0 such that, for all
ε ∈ (0, 1] and for any η1 > 0, the operator Lε satisfies the following estimate. For

any f ∈ L2
(
R3,µµµ−

1
2

)
(3.7) 〈Lε(f), f〉

L2
v

(
µµµ−

1
2

) 6 −(λL − (ε+ η1)CL
2

)
‖f − πL(f)‖2

L2
v

(
〈v〉γ/2µµµ−1/2

)
+ ε2δMS

CL
2

η1

‖πL(f)‖2

L2
v

(
〈v〉γ/2µµµ−1/2

) ,
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where πL is the orthogonal projection onto kerL in L2
(
R3,µµµ−

1
2

)
, and we recall that

δMS > 0 can be chosen as small as desired from Theorem 2.1.

We now turn to the study of the full nonlinear Boltzmann operator Q.

Lemma 3.6 (Orthogonality to kerL and general controls on Q). The linear operator
Lε and the bilinear operator Q are othogonal to the kernel of L, namely

(3.8) πL
(
Lε(f)

)
= πL

(
Q(g,h)

)
= 0, ∀f ,g,h ∈ L2

(
R3,µµµ−

1
2

)
.

Moreover, Q satisfies the following estimate. For any s ∈ N and for all multi-
indices α, β such that |α| + |β| = s, there exist two nonnegative functionals Gsx and
Gsx,v satisfying Gs+1

x 6 Gsx, Gs+1
x,v 6 Gsx,v, and such that

(3.9)

∣∣∣∣〈∂βv ∂αxQ(g,h), f
〉
L2
x,v

(
µµµ−

1
2

)∣∣∣∣ 6

Gsx(g,h) ‖f‖

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) if |β| = 0,

Gsx,v(g,h) ‖f‖
L2
x,v

(
〈v〉γ/2µµµ−

1
2

) if |β| > 1.

In particular, there exists s0 ∈ N∗ such that, for any integer s > s0, there exists an
explicit constant CQ

s > 0 verifying

Gsx(g,h) 6 CQ
s

(
‖g‖

Hs
xL

2
v

(
µµµ−

1
2

) ‖h‖
Hs
xL

2
v

(
〈v〉

γ
2 µ−

1
2

) + ‖h‖
Hs
xL

2
v

(
µµµ−

1
2

) ‖g‖
Hs
xL

2
v

(
〈v〉

γ
2 µ−

1
2

)) ,
Gsx,v(g,h) 6 CQ

s

(
‖g‖

Hs
x,v

(
µµµ−

1
2

) ‖h‖
Hs
x,v

(
〈v〉

γ
2 µ−

1
2

) + ‖h‖
Hs
x,v

(
µµµ−

1
2

) ‖g‖
Hs
x,v

(
〈v〉

γ
2 µ−

1
2

)) .

(3.10)

This last lemma completes the investigation of the hypocoercivity properties sat-
isfied by our kinetic model. We can finally step forward to the actual proof of
Theorem 2.2.

3.2. Proof of Theorem 2.2. For the sake of clarity, we divide our presentation
into several steps. We begin by studying the source term Sε, which constitutes the
main novelty of this work. Its correct estimate can in fact be seen as the last feature
in providing a satisfactory hypocoercive framework. We then present some basic
properties of the macroscopic projector πL which is used in the next step in order to
derive the a priori energy estimates satisfied by the perturbations f . In the last step,
we adapt the computations carried out in [15] to recover the conclusions of Theorem
2.2.

Step 1 – Estimates on the source term Sε. We here provide the study of the
source term

Sε =
1

ε3
Q(Mε,Mε)− 1

ε
∂tM

ε − 1

ε2
v · ∇xM

ε.

This term gives the distance between the Maxwell-Stefan system and the fluid part
of the Boltzmann equation, and it represents one of the main differences from the
model considered in [15], and also one of the main drawbacks. In fact, since Sε

strongly depends on inverse powers of ε and on Mε and its derivatives, it is crucial
to determine its leading order of magnitude with respect to ε and to understand the
role played by the macroscopic quantities c and u.
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The idea at the basis of our analysis is simple. The Lyapunov functional (2.6) we

chose is essentially made up of three terms: the L2
x,v

(
µµµ−

1
2

)
norm which accounts for

pure spatial derivatives and for mixed derivatives, and the L2
x,v

(
µµµ−

1
2

)
scalar product

which corresponds to a higher order commutator. In particular, as soon as one
derivative in velocity is considered, the weights ε and ε2 are used in order to balance
out the energy estimates by cancelling the stiffest terms.

With this idea in mind, we consider three cases, each referring to one of the
three sums appearing in the Sobolev norm (2.6). Their investigation is similar and
essentially based on the separated study of the linear part and of the nonlinear term
Q(Mε,Mε). On the one side, the linear part accounts for an order ε−1 since we can
check that ∇xM

ε = O(ε). On the other hand, we handle the nonlinear term by
exploiting the particular form of u = u + εũ. More precisely, we show that Mε is
close to a local equilibrium of the mixture (with common macroscopic velocity εu)
up to an order ε2, allowing to prove that ∂βv ∂

α
xQ(Mε,Mε) = O(ε2) for any multi-

indices α, β > 0. In such a way, we are able to deduce that the general leading
order of the source term (and of its derivatives) is actually O(ε−1), which can be
easily handled in the Hs

ε norm by the factors ε and ε2, as soon as one derivative in
v is considered. Unfortunately, since x-derivatives are instead controlled by a mere
factor of order 1, the L2

x,v

(
µµµ−

1
2

)
norm of ∂αxSε could blow up at a rate of O(ε−1).

That is why we derive a more precise estimate for the source term, in the case
where only x-derivatives are taken into account. In particular, the strategy consists
in decomposing ∂αxSε into a fluid and a microscopic part as ∂αxSε = πL(∂αxSε)+∂αxSε⊥,
in order to show that the stiff problematic terms are actually concentrated in the
sole orthogonal component ∂αxSε⊥. This, together with the fact that c and u satisfy
the Maxwell-Stefan system (1.7)–(1.8)–(1.9), will be sufficient to prove that actually
πL(∂αxSε) = O(1). Thanks to the previous considerations, we shall eventually recover
the leading order ∂αxSε⊥ = O(ε−1), but in this case it will no more constitute an
issue since the spectral gap of ∂αxLε will provide the needed negative return.

Lemma 3.7 (Estimates on Sε). Let s ∈ N and f ∈ Hs
(
T3×R3,µµµ−

1
2

)
, and consider

two multi-indices α, β such that |α| + |β| = s. If |β| > 1, there exist a positive
constant Cα,β, such that, for any ε ∈ (0, 1] and any η2 > 0,

(3.11)

∣∣∣∣〈∂βv ∂αxSε, ∂βv ∂
α
x f
〉
L2
x,v

(
µµµ−

1
2

)∣∣∣∣ 6 δ2
MSCα,β
η2

+
η2

ε2

∥∥∂βv ∂αx f
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) .
In particular, if αk > 0 for some k ∈ {1, 2, 3} and β = ek, there exist Cα,k > 0 such
that, for any ε ∈ (0, 1] and any η3 > 0,

(3.12)

∣∣∣∣〈∂αxSε, ∂ekv ∂
α−ek
x f

〉
L2
x,v

(
µµµ−

1
2

)∣∣∣∣ 6 δ2
MSCα,k
εη3

+
η3

ε

∥∥∂ekv ∂α−ekx f
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) .
Finally, if |β| = 0, we ask for a stronger control on the projection πL(Sε). There
exist a positive constant Cα such that, for any ε ∈ (0, 1] and any η4, η5 > 0,
(3.13)∣∣∣∣〈∂αxSε, ∂αx f〉

L2
x,v

(
µµµ−

1
2

)∣∣∣∣ 6 δ2
MSCα
η4η5

+η4 ‖πL(∂αx f)‖2

L2
x,v

(
µµµ−

1
2

)+
η5

ε2

∥∥∂αx f⊥
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) .
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The constants Cα,β, Cα,k and Cα are explicit and only depend on the physical pa-
rameters of the problem, and on polynomials in the variables ‖c‖

L∞t H
|α|+4
x

(
c
− 1

2∞

) and

‖u‖
L∞t H

|α|+4
x

. In particular, they are independent of ε.

Again, the proof is left to Section 4.

Step 2 – Properties of the fluid projection πL. The derivation of the a priori
energy estimates finally requires a deeper understanding of the properties of the
projectors πTε and πL. We present in this step three lemmata which are prelimi-
nary to our following study, the main one being a result establishing a fundamental
Poincaré-type inequality satisfied by πL.

Lemma 3.8. For any ε > 0, the operator Tε = 1
ε2

L− 1
ε
v · ∇x, acting on H1

(
T3 ×

R3,µµµ−
1
2

)
, satisfies kerTε = kerL ∩ ker (v · ∇x). Moreover, the associated projection

πTε explicitly writes

(3.14) πTε(f) =

∫
T3

πL(f)dx,

for any f ∈ H1
(
T3 × R3,µµµ−

1
2

)
.

The proof of this lemma is very simple and is therefore omitted. It can be found
for example as an initial remark in [17, Section 4].

Next, we present a very useful property of the projection πL, which is intensively
used in what follows: the equivalence of the L2

v

(
µµµ−

1
2

)
and L2

v

(
〈v〉γ/2µµµ−1/2

)
norms on

the space kerL.

Lemma 3.9. There exists a positive explicit constant Cπ such that

(3.15) ‖πL(f)‖2

L2
v

(
〈v〉γ/2µµµ−1/2

) 6 Cπ ‖πL(f)‖2

L2
v

(
µµµ−

1
2

) ,
for any f ∈ L2

(
R3,µµµ−

1
2

)
.

Proof of Lemma 3.9. Recalling the explicit expression of πL(f) from (2.4) by means

of the orthonormal basis
(
φφφ(k)

)
16k6N+4

in L2
(
R3,µµµ−

1
2

)
, we can successively write

‖πL(f)‖2

L2
v

(
〈v〉γ/2µµµ−1/2

)
=

N∑
i=1

∫
R3

∣∣∣∣∣
N+4∑
k=1

〈
f ,φφφ(k)

〉
L2
v

(
µµµ−

1
2

)φ(k)
i (v)

∣∣∣∣∣
2

〈v〉γµ−1
i dv

=
N+4∑
k,`=1

〈
f ,φφφ(k)

〉
L2
v

(
µµµ−

1
2

)〈f ,φφφ(`)
〉
L2
v

(
µµµ−

1
2

) N∑
i=1

∫
R3

φ
(k)
i φ

(`)
i 〈v〉γµ−1

i dv

=
N+4∑
k,`=1

〈
f ,φφφ(k)

〉
L2
v

(
µµµ−

1
2

)〈f ,φφφ(`)
〉
L2
v

(
µµµ−

1
2

)〈φφφ(k),φφφ(`)
〉
L2
v

(
〈v〉γ/2µµµ−1/2

)
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6
1

2
max

16k,`6N+4

∣∣∣∣〈φφφ(k),φφφ(`)
〉
L2
v

(
〈v〉γ/2µµµ−1/2

)∣∣∣∣
×

N+4∑
k,`=1

(〈
f ,φφφ(k)

〉2

L2
v

(
µµµ−

1
2

) +
〈
f ,φφφ(`)

〉2

L2
v

(
µµµ−

1
2

))

= (N + 4) max
16k,`6N+4

∣∣∣∣〈φφφ(k),φφφ(`)
〉
L2
v

(
〈v〉γ/2µµµ−1/2

)∣∣∣∣N+4∑
k=1

〈
f ,φφφ(k)

〉2

L2
v

(
µµµ−

1
2

)
= (N + 4) max

16k,`6N+4

∣∣∣∣〈φφφ(k),φφφ(`)
〉
L2
v

(
〈v〉γ/2µµµ−1/2

)∣∣∣∣ ‖πL(f)‖2

L2
v

(
µµµ−

1
2

) ,
thanks to Parseval’s identity.

In particular, the specific form of the elements of the orthonormal basis allows to
easily show that φφφ(k) ∈ L2

v

(
R3, 〈v〉γ/2µµµ−1/2

)
for any 1 6 k 6 N + 4. Therefore, the

maximum of the scalar products is a bounded quantity, and we can finally choose

Cπ = (N + 4) max
16k,`6N+4

∣∣∣∣〈φφφ(k),φφφ(`)
〉
L2
v

(
〈v〉γ/2µµµ−1/2

)∣∣∣∣
to infer the validity of (3.15). �

To conclude this preliminary step, we establish a Poincaré-type inequality for πL
which represents a tool of crucial importance in order to apply the hypocoercive
strategy of [44, 15]. Note however that, as opposed to the works in the mono-species
setting, where the solution of the Boltzmann equation is perturbed around a global
equilibrium, the linearization around Mε we perform here does not give access to
a perfect Poincaré inequality. Indeed, the projection part πL(f) does not have zero
mean on the torus because of the presence of the source term Sε in (1.11). We evade
this obstacle by showing that a Poincaré inequality can still be recovered at a lower
order, allowing the appearance of a small correction of order O(δ2

MS).

Lemma 3.10. Let us denote with CT3 the Poincaré constant on the torus, and let
δMS > 0. Consider a solution f ∈ H1

(
T3 × R3,µµµ−

1
2

)
of the perturbed Boltzmann

equation (1.11), satisfying initially∥∥πTε(f in)
∥∥
L2
x,v

(
µµµ−

1
2

) 6 CδMS,

for some constant C > 0 independent of the parameters ε and δMS. There exists a
positive constant CT such that

(3.16) ‖πL(f)‖2

L2
x,v

(
µµµ−

1
2

) 6 2CT3 ‖∇xf‖2

L2
x,v

(
µµµ−

1
2

) + δ2
MSC

T.

In particular, CT is explicit and does not depend on the parameter ε.

Proof of Lemma 3.10. Pick a solution f ∈ H1
(
T3 × R3,µµµ−

1
2

)
of (1.11). Recalling

the relation (3.14) between the projectors, we observe that we can express πL(f) in
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terms of πTε(f). Applying Poincaré inequality, we first obtain

‖πL(f)‖2

L2
x,v

(
µµµ−

1
2

) 6 2

∥∥∥∥πL(f)− 1

|T3|
πTε(f)

∥∥∥∥2

L2
x,v

(
µµµ−

1
2

) +
2

|T3|2
‖πTε(f)‖2

L2
x,v

(
µµµ−

1
2

)
6 2CT3 ‖∇xπL(f)‖2

L2
x,v

(
µµµ−

1
2

) +
2

|T3|2
‖πTε(f)‖2

L2
x,v

(
µµµ−

1
2

) .

(3.17)

Note that for the models in [44, 15], the authors are able to prove that πTε(f) = 0,
starting from an initial datum satisfying πTε(f

in) = 0. This is a peculiarity of the
Boltzmann equation, which naturally preserves the action of the projection πTε on
it. Clearly, in our case we do not have the same property, and in fact our aim is to
show that actually the second term accounts for an order O(δ2

MS). To do this, we
need to recover an equation for πTε(f) from (1.11).

Using Lemma 3.8, thanks to the linearity of πTε and to the orthogonality of
Lε and Q to kerL given by (3.8), one can see that the transport terms and the
Boltzmann operators cancel out, so that we are left with the identity, holding a.e.
on R+ × T3 × R3,

∂tπTε(f) = −1

ε
∂tπTε(M

ε),

where we have also used the fact that the projection operator commutes with the
time derivative. In particular, integrating over [0, t] the above identity, we obtain
the desired equation for πTε(f), which reads

(3.18) πTε(f) = πTε(f
in)− 1

ε
πTε(M

ε −Mε, in).

Consequently, since Mε and Mε, in only depend on the macroscopic quantities
(c,u) and (c in,u in), using the relation (3.14) together with the formula (2.5) of the
projection πL, it is possible to explicitly compute the value of πTε(M

ε −Mε, in). It
is first easy to check that, for any 1 6 i 6 N ,

∫
R3

M ε
i (t, x, v)

 1
v
|v|2

 dv =


ci(t, x)

εci(t, x)ui(t, x)

3
mi
ci(t, x) + ε2ci(t, x)|ui(t, x)|2

 ,
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and the equivalent holds for Mε, in. It thus follows that

πTε(M
ε−Mε, in) =

∫
T3

πL(Mε −Mε, in)dx

=
N∑
i=1

[
ε

ci,∞

∫
T3

(
c̃i(t, x)− c̃ in(x)

)
dx

]
µie

(i)

+
εv∑N

i=1mici,∞
·

[
N∑
i=1

∫
T3

mi

(
ciui − c in

i u
in
i

)
dx

] (
miµi

)
16i6N

+
ε2

√
6
∑N

i=1 ci,∞

[
N∑
i=1

∫
T3

mi

(
ci|ui|2 − c in

i |u in
i |2
)
dx

](
mi|v|2 − 3√

6
µi

)
16i6N

.

In particular, the couple (c,u) is solution of the Maxwell-Stefan system (1.7)–(1.8)–
(1.9), so that, from (2.1), one gets that the zeroth-order terms disappear, because
both c̃i and c̃ in

i have zero mean on the torus. Therefore, replacing the above identity
in (3.18), we finally recover the expression of πTε(f), which writes explicitly

πTε(f) = πTε(f
in)− v∑N

i=1mici,∞
·

[
N∑
i=1

∫
T3

mi

(
ciui − c in

i u
in
i

)
dx

] (
miµi

)
16i6N

− ε√
6
∑N

i=1 ci,∞

[
N∑
i=1

∫
T3

mi

(
ci|ui|2 − c in

i |u in
i |2
)
dx

](
mi|v|2 − 3√

6
µi

)
16i6N

.

Recalling the uniform controls on c and u given by Theorem 2.1 and applying the

continuous Sobolev embedding of H
s/2
x in L∞x for s > 3, one easily infers the existence

of a positive constant CT such that∣∣∣∣∣ v∑N
i=1mici,∞

·
N∑
i=1

∫
T3

mi

(
ciui − c in

i u
in
i

)
dx

∣∣∣∣∣
6 |v|N |T

3|
C0

(
max

16i6N
mici,∞

)
×
(
‖c‖

Hs
x

(
c
− 1

2∞

) ‖u‖Hs−1
x

+
∥∥c in

∥∥
Hs
x

(
c
− 1

2∞

) ∥∥u in
∥∥
Hs−1
x

)

6 CT|v|
(

2 ‖c∞‖
L2
x

(
c
− 1

2∞

) + ε ‖c̃‖
Hs
x

(
c
− 1

2∞

) + ε
∥∥c̃ in

∥∥
Hs
x

(
c
− 1

2∞

))
×
(

2 ‖u‖Hs−1
x

+ ε ‖ũ‖Hs−1
x

+ ε
∥∥ũ in

∥∥
Hs−1
x

)
6 CTδMS|v|

(√
N |T3|+ εδMS

)
(1 + εCMS),
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and a similar result can be recovered for the second order terms. As ε 6 1, we can
thus successively increase the value of CT > 0 to derive the final control

‖πTε(f)‖2

L2
x,v

(
µµµ−

1
2

) 6 2
∥∥πTε(f in)

∥∥2

L2
x,v

(
µµµ−

1
2

) + CTδ2
MS

∥∥(1 + |v|+ |v|2)µµµ
∥∥2

L2
v

(
µµµ−

1
2

)
6 CTδ2

MS,

since the norm on the right-hand side is clearly finite, and we have also used the
hypothesis on the initial datum f in.

Moreover, since πL commutes with x-derivatives, we can use the unique orthogonal
writing ∇xf = πL(∇xf) +∇xf

⊥ to get

‖∇xπL(f)‖2

L2
x,v

(
µµµ−

1
2

) 6 ‖∇xf‖2

L2
x,v

(
µµµ−

1
2

) .
Plugging both last inequalities into (3.17) and redefining accordingly CT allow to
end the proof.

�

Step 3 – A priori energy estimates. It is crucial at this point to show the strict
similarities between the a priori estimates that we obtain here, with the one derived
in [15, Section 3]. Indeed, it is enough to prove this analogy in order to deduce
that the exact same computations of [15] apply in our case, leading to the expected
results of existence and uniqueness. To do this, we write down all the estimates for
the terms appearing in the modified Sobolev norm (2.6), whose structure has been
fixed at the beginning of this section. We list all the estimates, separating inside
square brackets the extra terms that appear in our study. In particular, the extra
terms involving the norms of f and its derivatives are estimated either by a factor of
order ε or by a factor of order δMS, both of which can be taken as small as desired
in order to close the estimates as in [15]. Note however that we cannot recover the
exponential decay in time obtained in [44, 15], as the presence of the source term
strongly influences the shape of the energy estimates. Despite this inconvenience,
we mention that our analysis is not the sharpest possible, and we guess that an
exponential decay rate could probably be recovered in the particular case when
u = 0. We shall give a brief discussion on the topic later on.

For the sake of simplicity, we shall use the notations C(k) and C̃k for the technical
constants appearing in the following a priori estimates. Their explicit values can be
found in Appendix B, together with the detailed derivation of all the inequalities.
In addition to this, in order to enlighten the computations, we suppose from now on
that δMS 6 1, even if this requirement may not be optimal.

Let s ∈ N∗ and consider a function f in Hs
(
T3 × R3,µµµ−

1
2

)
which solves the

perturbed Boltzmann equation (1.11) and satisfies initially
∥∥πTε(f in)

∥∥
L2
x,v

(
µµµ−

1
2

) =

O(δMS), as in the statement of Theorem 2.2. Moreover, let us introduce the standard
notation f⊥ = f − πL(f) for the part of f that is projected onto (kerL)⊥.
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The estimate for the L2
x,v

(
µµµ−

1
2

)
norm of f reads

(3.19)
d

dt
‖f‖2

L2
x,v

(
µµµ−

1
2

) 6 −λL
ε2

∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
8(CL

2 + 1)

λL
G0
x(f , f)2

+

[
δMSC

(1) ‖∇xf‖2

L2
x,v

(
µµµ−

1
2

) + C̃δMS

]
.

The time evolution of the L2
x,v

(
µµµ−

1
2

)
norm of ∇xf is estimated as

(3.20)

d

dt
‖∇xf‖2

L2
x,v

(
µµµ−

1
2

) 6 −λL
ε2

∥∥∇xf
⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
8(2 + 2CL

2 + CL
1 Kx)

λL
G1
x(f , f)2

+

[
δMSC

(2) ‖∇xf‖2

L2
x,v

(
µµµ−

1
2

) +
εδMSC

(3)

ε2

∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) + C̃xδMS

]
.

The estimate for the L2
x,v

(
µµµ−

1
2

)
norm of ∇vf reads

(3.21)
d

dt
‖∇vf‖2

L2
x,v

(
µµµ−

1
2

) 6 K1

ε2

∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
Kdx

ε2
‖∇xf‖2

L2
x,v

(
µµµ−

1
2

)

− Cννν
3

ε2
‖∇vf‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
4(3 + CK

2 )

Cννν
3

G1
x,v(f , f)2 +

[
C̃vδMS

ε2

]
.

The estimate for the commutator reads, fro any e > 0,

(3.22)
d

dt
〈∇xf ,∇vf〉

L2
x,v

(
µµµ−

1
2

)
6

2CL
1 e

ε3

∥∥∇xf
⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) − 1

ε
‖∇xf‖2

L2
x,v

(
µµµ−

1
2

) +
C(4)

eε
‖∇vf‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)

+
2e

ε
G1
x(f , f)2 +

[
δMSeC

(5) ‖∇xf‖2

L2
x,v

(
µµµ−

1
2

)
+
ε2eC(6)

ε3

∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
δ2

MSeC̃x,v
ε

]
.
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We then consider two multi-indices α, β ∈ N3 such that |α|+ |β| = s. If |β| = 0, the
estimate for higher x-derivatives reads

(3.23)
d

dt
‖∂αx f‖2

L2
x,v

(
µµµ−

1
2

) 6 −λL
ε2

∥∥∂αx f⊥
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) + C(7)Gsx(f , f)2

+

[
εδMSKα

ε2

∑
|α′|6s−1

∥∥∥∂α′x f⊥
∥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+ δMSC

(8) ‖∂αx f‖2

L2
x,v

(
µµµ−

1
2

) + C̃αδMS

]
.

In the case when we have at least one derivative in v, that is when |β| > 1, we obtain
the estimate on mixed derivatives

(3.24)
d

dt

∥∥∂βv ∂αx f
∥∥2

L2
x,v

(
µµµ−

1
2

)
6 −C

ννν
3

ε2

∥∥∂βv ∂αx f
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
Ks−1

ε2
‖f‖2

Hs−1
x,v

(
µµµ−

1
2

)

+ C(9)
∑

k, βk>0

∥∥∂β−ek
v ∂α+ek

x f
∥∥2

L2
x,v

(
µµµ−

1
2

) +
4(5 + CK

2 + Cννν
4 )

Cννν
3

Gsx,v(f , f)2

+

[
εCννν

7

ε2
‖f‖2

Hs−1
x,v

(
〈v〉

γ
2 µµµ−

1
2

) + C̃α,βδMS

]
.

In the following, we also need to consider the particular case when we replace α with
α− ek and β with ek in the previous estimate. Inequality (3.24) becomes

(3.25)
d

dt

∥∥∂ek
v ∂

α−ek
x f

∥∥2

L2
x,v

(
µµµ−

1
2

)
6 −C

ννν
3

ε2

∥∥∂ek
v ∂

α−ek
x f

∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
Ks−1

ε2
‖f‖2

Hs−1
x,v

(
µµµ−

1
2

)
+ C(9) ‖∂αx f‖2

L2
x,v

(
µµµ−

1
2

) +
4(5 + CK

2 + Cννν
4 )

Cννν
3

Gsx,v(f , f)2

+

[
εCννν

7

ε2
‖f‖2

Hs−1
x,v

(
〈v〉

γ
2 µµµ−

1
2

) + C̃α,βδMS

]
.
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Finally, we need to upper bound the commutator for higher derivatives

(3.26)
d

dt

〈
∂αx f , ∂ek

v ∂
α−ek
x f

〉
L2
x,v

(
µµµ−

1
2

)
6

2CL
1 e

ε3

∥∥∂αx f⊥
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) − 1

ε
‖∂αx f‖2

L2
x,v

(
µµµ−

1
2

)
+
C(10)

εe

∥∥∂ek
v ∂

α−ek
x f

∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
2e

εCL
1

Gsx(f , f)2

+

[
δMSeKα,k

ε
‖f‖2

Hs−1
x,v

(
〈v〉

γ
2 µµµ−

1
2

) + δMSeC
(11) ‖∂αx f‖2

L2
x,v

(
µµµ−

1
2

)
+
δ2

MSeC̃α,k
ε

− 1

ε

〈
∂α−ek
x (v · ∇xf), vk∂

α
x f
〉
L2
x,v

(
µµµ−

1
2

) ],
where the estimate holds for any e > 0, and we remember that the last term satisfies
the fundamental property
(3.27)

−
∑
|α|=s
k, αk>0

〈
∂α−ek
x (v · ∇xf), vk∂

α
x f
〉
L2
x,v

(
µµµ−

1
2

) = −
∑
|α′|=s−1

∥∥∥v · ∇x∂
α′

x f
∥∥∥2

L2
x,v

(
µµµ−

1
2

) 6 0.

Starting from these inequalities, we are now able to establish the link with [15].
For the sake of clarity, we divide the derivation of the a priori energy estimates into
two successive results. In the first one, we recover a preliminary upper bound which
provides a partial negative return.

Proposition 3.11. There exist δMS > 0 and ε0 ∈ (0, 1] such that the following
statements hold for any s ∈ N∗.

(i) There exist three sets of positive constants
(
a

(s)
α

)s
α
,
(
b

(s)
α,k

)s
α,k

and
(
d

(s)
α,β

)s
α,β

such that, for all ε ∈ (0, ε0],
(3.28)

‖·‖Hsε ∼

‖·‖2

L2
x,v

(
µµµ−

1
2

) +
∑
|α|6s

‖∂αx ·‖
2

L2
x,v

(
µµµ−

1
2

) + ε2
∑

|α|+|β|6s
|β|>1

∥∥∂βv ∂αx ·∥∥2

L2
x,v

(
µµµ−

1
2

)


1/2

.

(ii) There exist four positive constants K
(s)
0 , K

(s)
1 , K

(s)
2 and C(s) such that, for

any values of ε ∈ (0, ε0] and δMS ∈ [0, δMS], if f ∈ Hs
(
T3 × R3,µµµ−

1
2

)
solves

the perturbed Boltzmann equation (1.11) with initial datum f in belonging to

Hs
(
T3 × R3,µµµ−

1
2

)
and satisfying

∥∥πTε(f in)
∥∥
L2
x,v

(
µµµ−

1
2

) = O(δMS), then, for
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every time t > 0,

(3.29)
d

dt
‖f‖2

Hsε
6 −K(s)

0

‖f‖2

Hs
x,v

(
〈v〉

γ
2 µµµ−

1
2

) +
1

ε2

∑
|α|6s

∥∥∂αx f⊥
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+K

(s)
1 Gsx(f , f)2 + ε2K

(s)
2 Gsx,v(f , f)2 + C(s)δMS.

Proof of Proposition 3.11. Let f ∈ Hs
(
T3 ×R3,µµµ−

1
2

)
be any solution of (1.11) with

initial condition satisfying the hypothesis of our statement, and consider a solution
(c,u) ∈ Hs+5

x × Hs+4
x of the Maxwell-Stefan system (1.7)–(1.8)–(1.9). Moreover,

suppose that δMS 6 1 for simplicity. Under these hypotheses, estimates from (3.19)
up to (3.26) hold and can be applied.

Following [15, Section 5], we proceed by induction on s ∈ N∗. For s = 1, the

modified Sobolev norm H1
ε reads, for any f ∈ H1

(
T3 × R3,µµµ−

1
2

)
,

‖f‖2
H1
ε

= A ‖f‖2

L2
x,v

(
µµµ−

1
2

) + a ‖∇xf‖2

L2
x,v

(
µµµ−

1
2

)
+ bε 〈∇xf ,∇vf〉

L2
x,v

(
µµµ−

1
2

) + dε2 ‖∇vf‖2

L2
x,v

(
µµµ−

1
2

) .
Therefore, we consider the linear combination A(3.19)+a(3.20)+dε2(3.21)+bε(3.22).
Recalling from Lemma 3.6 that we have the monotone behaviour G0

x 6 G1
x, we can

easily find some positive constants K
(1)
1 , K

(1)
2 and C(1) such that, at first,

d

dt
‖f‖2

H1
ε
6

1

ε2

[
ε
(
aδMSC

(3) + εK1d+ bεC(6)
)
− AλL

2

]
‖f⊥‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+

1

ε2

[
2CL

1 eb−
aλL

2

]
‖∇xf

⊥‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+
[
δMS

(
AC(1) + aC(2)

)
+Kdxd− b

(
1− δMSeC

(5)
)]
‖∇xf‖2

L2
x,v

(
µµµ−

1
2

)
+

[
C(4)b

e
− dCννν

3

]
‖∇vf‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
− AλL

2ε2
‖f⊥‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) − aλL
2ε2
‖∇xf

⊥‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+K

(1)
1 G1

x(f , f)2 + ε2K
(1)
2 G1

x,v(f , f)2 + C(1)δMS.

If we now choose

δMS 6 min

{
1,

Kdxd

AC(1) + aC(2)
,

1

2eC(5)

}
, ε0 6 min

{
1,

K1d

aC(3) +K1d+ bC(6)

}
,

we can repeat the same computations in [15] in order to fix the values of A, a, b, d
and e. In particular, the equivalence between the modified normH1

ε and the standard

Sobolev norm H1
xL

2
v

(
µµµ−

1
2

)
immediately follows, and we also recover, because ε ∈
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(0, 1], the estimate

(3.30)
d

dt
‖f‖2

H1
ε
6 −

(
‖f⊥‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) + ‖∇xf
⊥‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+ ‖∇vf‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) + ‖∇xf‖2

L2
x,v

(
µµµ−

1
2

))

− AλL
2ε2

∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) − aλL
2ε2
‖∇xf

⊥‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+K

(1)
1 G1

x(f , f)2 + ε2K
(1)
2 G1

x,v(f , f)2 + C(1)δMS.

Note that we have kept the constants A and a in the extra negative contributions
coming from f⊥, for the sake of clarity. In particular, we stress the fact that A and
a have been fixed independently of δMS and ε.

To conclude, we observe that thanks to the Poincaré inequality (3.16) and the

equivalence between the L2
x,v

(
〈v〉γ/2µµµ− 1

2

)
and L2

x,v

(
µµµ−

1
2

)
norms on kerL, the following

upper bounds hold

‖f‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) 6 C ′
(∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
1

2
‖∇xf‖2

L2
x,v

(
µµµ−

1
2

) + δ2
MS

)
,

‖∇xf‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) 6 C̃ ′
(∥∥∇xf

⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
1

2
‖∇xf‖2

L2
x,v

(
µµµ−

1
2

)) ,
for some positive constants C ′ and C̃ ′ computed from (3.15) and (3.16), which are
independent of the parameters δMS and ε. By plugging the above inequalities into
(3.30) and by adding the small extra term δ2

MS to the same one multiplying C(1),

we deduce the existence of a positive constant K
(1)
0 (independent of δMS and ε) such

that

d

dt
‖f‖2

H1
ε
6 −K(1)

0 ‖f‖
2

H1
x,v

(
〈v〉

γ
2 µµµ−

1
2

)
− λL min {A, a}

2ε2

(∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) + ‖∇xf
⊥‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

))

+K
(1)
1 Gsx(f , f)2 + ε2K

(1)
2 Gsx,v(f , f)2 + C(1)δMS,

Therefore, redefining K
(1)
0 small enough to ensure that also K

(1)
0 6 λL min {A, a} /2,

we finally recover estimate (3.29) in the case s = 1.

For the general case, we suppose that the result is true up to the integer s − 1,
and we prove that it also holds for s. The first statement, about the equivalence
between the Hs

ε and Hs
xL

2
v

(
µµµ−

1
2

)
norms, is straightforward. For the second property,

regarding the a priori estimate, in a similar way to what we have done for s = 1,
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we define this time

Fs(t) = ε2B
∑

|α|+|β|=s
|α|>2

∥∥∂βv ∂αx f
∥∥2

L2
x,v

(
µµµ−

1
2

) +B′
∑
|α|=s
k, αk>0

Qα,k(t),(3.31)

Qα,k(t) = a ‖∂αx f‖2

L2
x,v

(
µµµ−

1
2

) + bε
〈
∂ek
v ∂

α−ekf , ∂αx f
〉
L2
x,v

(
µµµ−

1
2

)(3.32)

+dε2
∥∥∂ek

v ∂
α−ek
x f

∥∥2

L2
x,v

(
µµµ−

1
2

) ,

and the positive constants have to be fixed as previously.
By taking the linear combination a(3.23) + bε(3.26) + dε2(3.25), we compute

d

dt
Qα,k(t) 6

1

ε2

[
2CL

1 eb−
aλL

2

] ∥∥∂αx f⊥
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+

[
C(10)b

e
− Cννν

3d

] ∥∥∂ek
v ∂

α−ek
x f

∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+
[
δMSC

(8)a+ ε2C(9)d− b
(

1− δMSeC
(11)
)]
‖∂αx f‖2

L2
x,v

(
µµµ−

1
2

)
− aλL

2ε2

∥∥∂αx f⊥
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
aεδMSKα

ε2

∑
|α′|6s−1

∥∥∥∂α′x f⊥
∥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+Ks−1d ‖f‖2

Hs−1
x,v

(
µµµ−

1
2

) +
(
δMSeKα,kb+ εCννν

7d
)
‖f‖2

Hs−1
x,v

(
〈v〉

γ
2 µµµ−

1
2

)
+ K̃

(s)
1 Gsx(f , f)2 + ε2K̃

(2)
2 Gsx,v(f , f)2 + C̃(s)δMS

− b
〈
∂α−ek
x (v · ∇xf), vk∂

α
x f
〉
L2
x,v

(
µµµ−

1
2

) .

In particular, similarly to the case s = 1, we can redefine δMS to satisfy also

δMS 6 min

{
C(9)d

C(8)a
,

1

2eC(11)

}
,
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so that the first three contributions are the same as in [15, Section 5]. Therefore,
we can set the values of a, b, d and e in such a way that

d

dt
Qα,k(t) 6 −K(s)

0

(
‖∂αx f‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
∥∥∂ek

v ∂
α−ek
x f

∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

))

− aλL
2ε2

∥∥∂αx f⊥
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
aεδMSKα

ε2

∑
|α′|6s−1

∥∥∥∂α′x f⊥
∥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+ K̃s−1 ‖f‖2

Hs−1
x,v

(
〈v〉

γ
2 µµµ−

1
2

) + K̃
(s)
1 Gsx(f , f)2 + ε2K̃

(2)
2 Gsx,v(f , f)2 + C̃(s)δMS

− b
〈
∂α−ek
x (v · ∇xf), vk∂

α
x f
〉
L2
x,v

(
µµµ−

1
2

) ,

(3.33)

where we have used the equivalence between the L2
x,v

(
〈v〉γ/2µµµ− 1

2

)
and the L2

x,v

(
µµµ−

1
2

)
norms on kerL, and we have also accordingly redefined all the main constants of
interest to enlighten the computations. In particular, we stress again the fact that
all these constants remain independent of the parameters δMS and ε.

Now, note that if we sum (3.33) over |α| = s and k = 1, 2, 3, such that αk > 0, the
terms accounting for the scalar products disappear, thanks to the property (3.27).
Therefore, going back to the definition (3.31) of Fs(t), combining B′(3.33) with
ε2B(3.24) we obtain

d

dt
Fs(t) 6 −Cννν

3B
∑

|α|+|β|=s
|β|>2

∥∥∂βv ∂αx f
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)

+
∑

|α|+|β|=s
|β|>2

C(9)Bε2
∑

k, βk>0

∥∥∂ek
v ∂

α−ek
x f

∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)

−B′K̃(s)
0

∑
|α|=s
k, αk>0

(
‖∂αx f‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
∥∥∂ek

v ∂
α−ek
x f

∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

))

−B′
∑
|α|=s
k, αk>0

aλL
2ε2

∥∥∂αx f⊥
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) − aεδMSKα

ε2

∑
|α′|6s−1

∥∥∥∂α′x f⊥
∥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)


+
(
B′K̃s−1 +B

(
Ks−1 + εCννν

7

))
‖f‖2

Hs−1
x,v

(
〈v〉

γ
2 µµµ−

1
2

)
+K

(s)
1 Gsx(f , f)2 + ε2K

(2)
2 Gsx,v(f , f)2 + C(s)δ2

MS.
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Redefining the constants if necessary, we can then copy the arguments used in [15,
Section 5] to finally obtain the existence of ε0 ∈ (0, 1] such that, for all ε ∈ (0, ε0],

d

dt
Fs(t) 6 K̃s−1 ‖f‖2

Hs−1
x,v

(
〈v〉

γ
2 µµµ−

1
2

) −
 ∑
|α|+|β|=s

∥∥∂βv ∂αx f
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)

−B′aλL
2ε2

∑
|α|=s

∥∥∂αx f⊥
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) + B̃′
aεδMSKα

ε2

∑
|α′|6s−1

∥∥∥∂α′x f⊥
∥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+K

(s)
1 Gsx(f , f)2 + ε2K

(2)
2 Gsx,v(f , f)2 + C(s)δMS.

To conclude, for some positive constants (Kp)p6s, we only have to consider a linear
combination

∑s
p=1 KpFp(t) and use the induction hypothesis, together with ε 6 1

and the last requirement

δMS 6
minpKp

2B̃′aKα

.

Recalling that the functionals Gpx and Gpx,v are monotonically increasing in p, we can

finally recover the following estimate, valid for any ε ∈ (0, ε0] and any δMS ∈ [0, δMS],

d

dt

(
s∑

p=1

KpFp(t)

)

6 −K(s)
0

 ∑
|α|+|β|6s

∥∥∂βv ∂αx f
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
1

ε2

∑
|α|6s

∥∥∂αx f⊥
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)

+K
(s)
1 Gsx(f , f)2 + ε2K

(2)
2 Gsx,v(f , f)2 + C(s)δMS.

which is the expected result.
�

Starting from this general preliminary estimate, we can finally prove the result
that establishes the uniform a priori control on f , which in turn ensures the stability
of the expansion around Mε.

Corollary 3.12. There exist s0 ∈ N∗, δMS > 0 and ε0 ∈ (0, 1] such that, for
any integer s > s0, there exists δB > 0 such that, for any ε ∈ (0, ε0] and any

δMS ∈ [0, δMS], if f ∈ Hs
(
T3 × R3,µµµ−

1
2

)
solves the perturbed Boltzmann equation

(1.11), and satisfies initially∥∥f in
∥∥
Hsε
6 δB,

∥∥πTε(f in)
∥∥
L2
x,v

(
µµµ−

1
2

) = O(δMS),

then ‖f‖Hsε 6
∥∥f in

∥∥
Hsε

, for all t > 0.

Proof of Corollary 3.12. Since we are under the same hypotheses of Proposition 3.11,
we have seen how to fix the values of δMS > 0 and ε0 ∈ (0, 1], so that, for any s ∈ N∗,
the a priori estimate (3.29) holds for any time t > 0. Note in particular that we can
get rid of the negative terms involving the pure x-derivatives of f , as their presence
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was needed in the previous result only to ensure the control of the small positive
extra terms of O(ε), in order to close the induction procedure. Therefore, for any
s ∈ N∗ and any t > 0, the time evolution of the Hs

ε norm of f is uniformly controlled
in ε ∈ (0, ε0] and δMS ∈ [0, δMS] as

(3.34)
d

dt
‖f‖2

Hsε
6 −K(s)

0 ‖f‖
2

Hs
x,v

(
〈v〉

γ
2 µµµ−

1
2

) + K
(s)
1 Gsx(f , f)2 + ε2K

(s)
2 Gsx,v(f , f)2 + C(s)δMS.

The idea is then to properly bound the functionals Gsx and Gsx,v. For this, recall from
Lemma 3.6 that we can find an integer s0 ∈ N∗ for which estimates (3.10) hold for
any integer s > s0. Moreover, thanks to the equivalence between the Hs

ε norm and
the standard Sobolev norm given by (3.28), we can infer the existence of two positive
constants Ceq and CEQ such that

(3.35) Ceq

‖·‖2

L2
x,v

(
µµµ−

1
2

) +
∑
|α|6s

‖∂αx ·‖
2

L2
x,v

(
µµµ−

1
2

) + ε2
∑

|α|+|β|6s
|β|>1

∥∥∂βv ∂αx ·∥∥2

L2
x,v

(
µµµ−

1
2

)


6 ‖·‖2
Hsε
6 CEQ ‖·‖2

Hs
x,v

(
µµµ−

1
2

) .
Therefore, Gsx can be successively estimated as

Gsx(f , f)2 6 2(CQ
s )2 ‖f‖2

Hs
xL

2
v

(
µµµ−

1
2

) ‖f‖2

Hs
xL

2
v

(
〈v〉

γ
2 µ−

1
2

)
6

2(CQ
s )2

Ceq

‖f‖2
Hsε
‖f‖2

Hs
x,v

(
〈v〉

γ
2 µ−

1
2

) ,
and similarly, for Gsx,v, we get

Gsx(f , f)2 6
2(CQ

s )2

ε2Ceq

‖f‖2
Hsε
‖f‖2

Hs
x,v

(
〈v〉

γ
2 µ−

1
2

) .
Plugging the above inequalities into (3.34), we thus obtain

d

dt
‖f‖2

Hsε
6

(
2(CQ

s )2

Ceq

(
K

(s)
1 +K

(s)
2

)
‖f‖2

Hsε
−K(s)

0

)
‖f‖2

Hs
x,v

(
〈v〉

γ
2 µµµ−

1
2

) + C(s)δMS.

If we now choose δB > 0 satisfying

2(CQ
s )2

Ceq

(
K

(s)
1 +K

(s)
2

)
δ2

B 6
K

(s)
0

2
,

thanks to (3.35), we can also infer

d

dt
‖f‖2

Hsε
6 − K

(s)
0

2
‖f‖2

Hs
x,v

(
〈v〉

γ
2 µµµ−

1
2

) + C(s)δMS

6 − K
(s)
0

2CEQ

‖f‖2
Hsε

+ C(s)δMS,



MULTI-SPECIES BOLTZMANN TO MAXWELL-STEFAN 35

as long as ‖f‖Hsε 6 δB. But now setting λB = K
(s)
0 /2CEQ, from Grönwall’s lemma,

we deduce that, for any s > s0, for any ε ∈ (0, ε0] and for all δMS ∈ [0, δMS],

(3.36) ‖f‖2
Hsε
6
∥∥f in

∥∥2

Hsε
e−λBt +

C(s)δMS

λB

(
1− e−λBt

)
,

or, more explicitly,

‖f‖Hsε 6 max

{
δB,

(
δMSC

(s)

λB

)1/2
}
.

Therefore, recalling that δB has been chosen independently of the parameter δMS > 0,
if we impose

δMS 6
δ2

B

4

λB

C(s)
,

we finally ensure the validity of the estimate ‖f‖Hsε 6 δB for any time t > 0, hence
concluding the proof.

�

Remark 3.13. We emphasize that the above result only provides a stability con-
dition for the expansion around Mε, in the sense that the Hs

ε norm of f can be
bounded uniformly in time by the constant δB > 0. Unfortunately, we cannot obtain
a full exponential decay in time because of the presence of the extra term C(s)δ2

MS

which accounts for the macroscopic quantities that define Mε. It is particularly im-
portant to emphasize that the constant C(s) contains factors depending on ‖c∞‖L2

x

and ‖u‖L∞t Hs+4
x

, which are uniformly controlled by some positive constants, but can-

not exhibit an exponential decay. To be more specific about this issue, we actually
guess that the only problematic quantity is the incompressible velocity u, because it
appears as a multiplicative factor in some of the terms composing C(s). In particu-
lar, if we get rid of u by looking at the stationary macroscopic state (c∞,0), we can
probably recover a global exponential decay in time for f , by means of the exponential
decays obtained for c̃ and ũ. Besides, this feature can be explained with the pertur-
bative theory of convergence towards equilibrium which, in our case, prescribes the
exponential-in-time relaxation towards the sole global equilibrium µµµ, having macro-
scopic velocity u∞ = 0. Therefore, the only physically meaningful incompressible
velocity u should precisely be 0.

Step 3 – Existence and uniqueness of the perturbation f. We are finally
able to prove that the solution f to the perturbed Boltzmann equation (1.11) exists
uniquely in time, on R+. Even if the proofs are very standard, we sketch the ideas
behind and the computations, for the sake of completeness.

Proposition 3.14. Let the collision kernels Bij satisfy assumptions (H1)–(H2)–
(H3)–(H4), and consider the local Maxwellian Mε defined by (2.2)–(2.3). Let s > s0,
given by Lemma 3.6. There exist ε0 ∈ (0, 1] and δMS, δB > 0 such that, for all

ε ∈ (0, ε0], all δMS ∈ [0, δMS], and for any initial datum f in in Hs
(
T3 × R3,µµµ−

1
2

)
satisfying ∥∥f in

∥∥
Hsε
6 δB,

∥∥πTε(f in)
∥∥
L2
x,v

(
µµµ−

1
2

) = O(δMS),
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there exists f ∈ C0
(
R+;Hs

(
T3 × R3,µµµ−

1
2

))
such that Fε = Mε + εf is a weak solu-

tion of the Boltzmann multi-species equation (1.11). Moreover, if Fε, in = Mε, in + εf in > 0,
then also Fε(t, x, v) > 0 a.e. on R+ × T3 × R3.

Proof of Proposition 3.14. The proof of the existence is based on a standard iterative
method, where we construct a solution on a finite time interval [0, T0], and we then
show that T0 can be extended up to +∞. Let s > s0, given by Lemma 3.6 and
consider a solution (c,u) of the Maxwell-Stefan system (1.7)–(1.8)–(1.9) which is at
least L∞

(
R+;Hs+5(T3)

)
× L∞

(
R+;Hs+4(T3)

)
. In particular, recall that (c,u) also

belongs to C0
(
R+;Hs+4(T3)

)
×C0

(
R+;Hs+3(T3)

)
, so that the local Maxwellian Mε

is continuous with respect to t > 0.

With these choices, set initially

(3.37) f (0) = f in, T0 =

δB min

{
1,

K
(s)
0

2

}
4C(s)δMS

,

and suppose that on [0, T0] a sequence of functions
(
f (n)

)
0<n6n

is given up to an

integer n ∈ N∗, satisfying, for any 0 < n 6 n and for any t ∈ [0, T0],

f (n) ∈ Hs
(
T3 × R3,µµµ−

1
2

)
,

∥∥πTε(f (n)
)∥∥

L2
x,v

(
µµµ−

1
2

) = O(δMS).

By induction on n > 0, we define the function f (n+1) such that

(3.38)


∂tf

(n+1) + 1
ε
v · ∇xf

(n+1) = 1
ε2

Lε(f (n+1)) + 1
ε
Q(f (n), f (n+1)) + Sε,

f (n+1)
t=0 = f in.

It is now a classical result the existence of a solution f (n+1) ∈ Hs
(
T3 ×R3,µµµ−

1
2

)
for

the above evolution equation. Indeed, recalling the definition of Tε = 1
ε2

L− 1
ε
v ·∇x,

we can rewrite

(3.39) ∂tf
(n+1) = Tε(f (n+1)) +

1

ε2

(
Lε − L

)
(f (n+1)) +

1

ε
Q(f (n), f (n+1)) + Sε.

Since L is self-adjoint in L2
(
T3 × R3,µµµ−

1
2

)
and possesses a spectral gap λL, and

v · ∇x is anti-symmetric, it is easy to prove that Tε generates a strongly continuous
semigroup in Hs

(
T3×R3,µµµ−

1
2

)
(see [39] for the general theory, and [17, Section 4.2]

for the specific case of the Boltzmann multi-species equation). In particular, as done

in [15, Section 6], introducing the following functional defined on Hs
(
T3×R3,µµµ−

1
2

)
E[0,T0](f) = sup

t∈[0,T0]

(
‖f(t)‖2

Hsε
+

∫ t

0

‖f(τ)‖2

Hs
x,v

(
〈v〉

γ
2 µµµ−

1
2

) dτ

)
,

from estimates (3.9)–(3.10) of Lemma 3.6, it immediately follows that

Q(f (n), ·) :
(
Hs
(
T3 × R3,µµµ−

1
2

)
, E[0,T0](·)

)
→
(
Hs
(
T3 × R3,µµµ−

1
2

)
, ‖·‖

Hs
x,v

(
µµµ−

1
2

))
is a bounded linear operator, and the same holds for the penalization Lε − L. To
ease the computations, from now on let us drop the subscript [0, T0] in E[0,T0]. By
means of the functional E, one can then apply Duhamel’s formula in combination
with a suitable fixed point argument to show that, as long as

∥∥f in
∥∥
Hsε

is chosen small
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enough, there exists a solution f (n+1) to (3.39), which is in Hs
(
T3×R3,µµµ−

1
2

)
for any

time t ∈ [0, T0]. Moreover, applying πTε to (3.39) and performing an identical study
to the one carried out in the proof of Lemma 3.10 to derive the Poincaré inequality
(3.16), we also ensure that∥∥πTε(f (n+1)

)∥∥
L2
x,v

(
µµµ−

1
2

) 6 CTδMS, ∀t ∈ [0, T0],

so that, by induction, the sequence
(
f (n)
)
n∈N remains well-defined.

Starting from these considerations, one then aims at proving that the constructed
sequence

(
f (n)
)
n∈N can be uniformly bounded in the E norm. For this, since obvi-

ously E
(
f (0)
)

=
∥∥f in

∥∥
Hsε
6 δB from our initial choice (3.37), we proceed by induction

on n ∈ N, supposing that we can uniformly bound E
(
f (n)
)
6 δB up to some integer

n > 0, and proving that also E
(
f (n+1)

)
6 δB.

Now, each f (n) satisfies all the hypotheses needed in order to copy the computa-
tions used to derive the a priori estimates in the previous step. More precisely, from
Proposition 3.11, we know that there exist δMS > 0 and ε0 ∈ (0, 1] such that, for
any s > s0, for any δMS ∈ [0, δMS] and ε ∈ (0, ε0], one recovers the estimate

d

dt

∥∥f (n+1)
∥∥2

Hsε
6 −K(s)

0

∥∥f (n+1)
∥∥2

Hs
x,v

(
〈v〉

γ
2 µµµ−

1
2

)
+K

(s)
1 Gsx

(
f (n), f (n+1)

)2
+ ε2K

(s)
2 Gsx,v

(
f (n), f (n+1)

)2
+ C(s)δMS.

Moreover, thanks to (3.35) and proceeding like in the proof of Corollary 3.12, we
also establish the bounds

Gsx
(
f (n), f (n+1)

)2

6
4(CQ

s )2

Ceq

(∥∥f (n)
∥∥2

Hsε

∥∥f (n+1)
∥∥2

Hs
x,v

(
〈v〉

γ
2 µ−

1
2

) +
∥∥f (n+1)

∥∥2

Hsε

∥∥f (n)
∥∥2

Hs
x,v

(
〈v〉

γ
2 µ−

1
2

)) ,
Gsx
(
f (n), f (n+1)

)2

6
4(CQ

s )2

ε2Ceq

(∥∥f (n)
∥∥2

Hsε

∥∥f (n+1)
∥∥2

Hs
x,v

(
〈v〉

γ
2 µ−

1
2

) +
∥∥f (n+1)

∥∥2

Hsε

∥∥f (n)
∥∥2

Hs
x,v

(
〈v〉

γ
2 µ−

1
2

)) .
Consequently, naming K(s) = 4(C

Q
s )2

Ceq

(
K

(s)
1 +K

(s)
2

)
, we deduce the following estimate

d

dt

∥∥f (n+1)
∥∥2

Hsε
6 −K(s)

0

∥∥f (n+1)
∥∥2

Hs
x,v

(
〈v〉

γ
2 µµµ−

1
2

) +K(s)
∥∥f (n)

∥∥2

Hsε

∥∥f (n+1)
∥∥2

Hs
x,v

(
〈v〉

γ
2 µ−

1
2

)
+K(s)

∥∥f (n+1)
∥∥2

Hsε

∥∥f (n)
∥∥2

Hs
x,v

(
〈v〉

γ
2 µ−

1
2

) + C(s)δMS

6
(
K(s)E

(
f (n)
)
−K(s)

0

)∥∥f (n+1)
∥∥2

Hs
x,v

(
〈v〉

γ
2 µµµ−

1
2

)
+K(s)E

(
f (n+1)

) ∥∥f (n)
∥∥2

Hs
x,v

(
〈v〉

γ
2 µµµ−

1
2

) + C(s)δMS,

holding for any t ∈ [0, T0].
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Choosing δB > 0 such that E
(
f (n)
)
6 K

(s)
0 /2K(s), we can thus integrate the

previous inequality on [0, t], with t 6 T0, to obtain

∥∥f (n+1)
∥∥2

Hsε
+
K

(s)
0

2

∫ t

0

∥∥f (n+1)(τ)
∥∥2

Hs
x,v

(
〈v〉

γ
2 µµµ−

1
2

) dτ

6
∥∥f in

∥∥2

Hsε
+K(s)E

(
f (n+1)

)
E
(
f (n)
)

+ tC(s)δMS.

Therefore, if we also suppose that

δB 6 min

{
1,
K

(s)
0

2

}
/2K(s) and δB 6 min

{
1,
K

(s)
0

2

}
/4,

thanks to the induction hypothesis on E
(
f (n)
)
, we deduce that

E
(
f (n+1)

)
6

2

min

{
1,

K
(s)
0

2

} ∥∥f in
∥∥2

Hsε
+

2C(s)δMS

min

{
1,

K
(s)
0

2

}T0 6 δB,

thanks to our choice of T0. Hence, the sequence
(
f (n)
)
n∈N is uniformly bounded by δB

in theE norm, and thus also in L∞
(

0, T0;Hs
x,v

(
µµµ−

1
2

))
∩ L1

(
0, T0;Hs

x,v

(
〈v〉 γ2µµµ− 1

2

))
.

Therefore, thanks to the Rellich-Kondrachov theorem on compact embeddings into
less regular Sobolev spaces, we can take the limit n→ +∞ in (3.38), since Tε, Lε−L
and Q are continuous. In particular, we can extract a subsequence that converges

towards a function f (∞) which belongs to C0
(

[0, T0];Hs
(
T3 × R3,µµµ−

1
2

))
and solves

the initial value problem
∂tf

(∞) + 1
ε
v · ∇xf

(∞) = 1
ε2

Lε(f (∞)) + 1
ε
Q(f (∞), f (∞)) + Sε,

f (∞)
t=0 = f in.

This proves our result on the interval [0, T0]. Moreover, f (∞) satisfies∥∥πTε(f (∞)
)∥∥

L2
x,v

(
µµµ−

1
2

) 6 CTδMS, ∀t ∈ [0, T0],

and the estimate
∥∥f (∞)

∥∥
Hsε
6 δB, thanks to Corollary 3.12. By simply restarting this

procedure on a new time interval [T0, 2T0] using f (∞)(T0) as initial datum and con-
sidering the corresponding functional E[T0,2T0], one can repeat the previous computa-

tions, so that we recover the existence of a solution f ∈ C0
(
R+;Hs

(
T3 × R3,µµµ−

1
2

))
,

as desired. In particular, thanks to the a priori estimates that we previously estab-
lished, this solution satisfies the uniform control

‖f‖2
Hsε
6 δB, ∀t > 0,

holding for any ε ∈ (0, ε0].

The positivity of the solution Fε = Mε + εf is finally showed using a standard
method, which can be found for example in [17, Section 6.3]. This ends the proof.

�

Finally, the constructed solution is unique, providing the full Cauchy theory of
our problem.
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Proposition 3.15. Let s > s0 and consider a function f in satisfying the assumptions
of Proposition 3.14. There exist δMS > 0 and ε0 ∈ (0, 1] such that, if f and g are
two solutions of (1.11) having the same initial datum f in, then f = g.

Proof of Proposition 3.15. As in the proof of the previous result, fix initially a time

T0 =

δB min

{
1,

K
(s)
0

2

}
4C(s)δMS

.

Next, define h = f − g. Subtracting the equations satisfied by f and g, we see that
h is solution on [0, T0]× T3 × R3 of ∂th + 1

ε
v · ∇xh = 1

ε2
Lε(h) + 1

ε

(
Q(h, f) + Q(g,h)

)
,

h t=0 = 0.

The idea is to derive similar estimates to the ones obtained in the proof of the
previous result. For this, note the linear part obeys the same upper bounds, and for
the nonlinear terms we shall again use estimates (3.10) of Lemma 3.6.

More precisely, using the a priori estimate of Proposition 3.11, we get

d

dt
‖h‖2

Hsε
6 −K(s)

0 ‖h‖
2

Hs
x,v

(
〈v〉

γ
2 µµµ−

1
2

) +K
(s)
1

(
Gsx
(
h, f
)2

+ Gsx
(
g,h

)2
)

+ ε2K
(s)
2

(
Gsx,v

(
h, f
)2

+ Gsx,v
(
g,h

)2
)
.

The terms inside the parentheses are then bounded is the same way as before, using
(3.10) and the norm equivalences provided by (3.35). Skipping the computations

and denoting E = E[0,T0], we recover the existence of a positive constant K̃ such
that

d

dt
‖h‖2

Hsε
6

(
K̃
(
‖f‖2

Hsε
+ ‖g‖2

Hsε

)
−K(s)

0

)
‖h‖2

Hs
x,v

(
〈v〉

γ
2 µµµ−

1
2

)
+ K̃

(
‖f‖2

Hs
x,v

(
〈v〉

γ
2 µµµ−

1
2

) + ‖g‖2

Hs
x,v

(
〈v〉

γ
2 µµµ−

1
2

)) ‖h‖2
Hsε

6

(
K̃
(
E(f) + E(g)

)
−K(s)

0

)
‖h‖2

Hs
x,v

(
〈v〉

γ
2 µµµ−

1
2

)
+ K̃

(
‖f‖2

Hs
x,v

(
〈v〉

γ
2 µµµ−

1
2

) + ‖g‖2

Hs
x,v

(
〈v〉

γ
2 µµµ−

1
2

))E(h).

In particular, since f is a solution of the Boltzmann multi-species equation (1.11),
we have seen previously that it satisfies the estimate E(f) 6 δB on [0, T0], and the

same holds for g. Therefore, choosing initially δB 6 K
(s)
0 /4K̃ and integrating on

[0, t], with t 6 T0, since h in = 0 we obtain this time

‖h‖2
Hsε

+
K

(s)
0

2

∫ t

0

‖h(τ)‖2

Hs
x,v

(
〈v〉

γ
2 µµµ−

1
2

) dτ 6 K̃E(h)
(
E(f) + E(g)

)
,
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from which immediately follows that

E(h) 6
2K̃δB

min

{
1,

K
(s)
0

2

}E(h).

Taking δB > 0 sufficiently small allows to conclude that E(h) = 0, and thus f = g
for any time t ∈ [0, T0]. We can then repeat the computations on the time interval
[T0, 2T0] wtih E = E[T0,2T0], recovering the same conclusions. An iteration of this
procedure finally allows to deduce that f = g for all t > 0. This ends the proof.

�

Step 4 – Conclusion. Theorem 2.2 is a direct gathering of Propositions 3.11, 3.14,
3.15 and Corollary 3.12.Moreover, thanks to Theorems 2.1 and 2.2, both the local
Maxwellian Mε and the perturbation f are well-defined, are unique and exist globally
in time. Therefore, we can now reconstruct Fε = Mε+εf , which is the unique global
weak solution of the Boltzmann multi-species equation (1.11), perturbed around
the non-equilibrium state Mε. To conclude, since the perturbation f is uniformly
bounded in the Hs

ε norm by the constant δB (independent of ε and computed in the
Corollary 3.12), we also deduce the stability property

‖Fε −Mε‖Hsε = ε ‖f‖Hsε 6 εδB, ∀ε ∈ (0, ε0].

4. Technical proofs of the hypocoercivity properties

In this last section we collect all the proofs of the lemmata which lead to the hypoco-
ercive structure of our model.

Since, in what follows, we often estimate the Euclidean distance between Mε

and µµµ, in order to enlighten our computations we here introduce the local and
global Maxwellians Mε = M(1,εu,1) and M = M(1,0,1) which will allow us to write
µµµ = c∞M and, in this way, separate Mε into a close-to-equilibrium part and a lower
order term as Mε = c∞Mε + εc̃Mε.

4.1. Proof of Lemma 3.2. Fix δ ∈ (0, 1). In order to prove (3.3), we initially
observe that, since M ε

i = ciMε
i , we can apply to Mε

i similar estimates to the ones
derived in [10, Lemma 4.1] to obtain for any 1 6 i 6 N the upper bound
(4.1)

M ε
i (t, x, v) 6 Cup

δ

(
1 + exp

{
4mi

1− δ
ε2|ui(t, x)|2

})
ciMδ

i (v), t > 0, x ∈ T3, v ∈ R3,

where

Cup
δ = max

16i6N

(mi

2π

) 3(1−δ)
2

(
sup
|v|∈R+

e−(1−δ)mi
4
|v|2 + 1

)
> 0.

Similarly we can recover a lower bound for M ε
i as follows. For any 1 6 i 6 N , we

can write

Mε
i (t, x, v) =M1/δ

i (v)Mε
i (t, x, v)M−1/δ

i (v), t > 0, x ∈ T3, v ∈ R3.

Then, the product MεM−1/δ
i can be lower estimated as

Mε
i (v)M−1/δ

i (v) >
(mi

2π

) 3(δ−1)
2δ

exp

{
mi(1− δ)

2δ
|v|2 −miε|v||ui| − ε2mi

2
|ui|2

}
,
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where we have dropped the dependence on both variables (t, x) for the sake of
simplicity. We then distinguish two cases.

(1) For |v| > 4δε|ui|
1− δ

, we have

Mε
i (v)M−1/δ

i (v) >
(mi

2π

) 3(δ−1)
2δ

exp
{
−mi

2
ε2|ui|2

}
.

(2) For |v| 6 4δε|ui|
1− δ

, we get

Mε
i (v)M−1/δ

i (v) >
(mi

2π

) 3(δ−1)
2δ

exp

{
−4mi

δ

1− δ
ε2|ui|2 −

mi

2
ε2|ui|2

}
.

These estimates allow to deduce that

(4.2) M ε
i (v) > C low

δ exp

{
−mi

7δ + 1

2(1− δ)
ε2|ui|2

}
ciM1/δ

i , ∀v ∈ R3,

where we simply set

C low
δ = min

16i6N

(mi

2π

) 3(δ−1)
2δ

> 0.

Gathering now (4.1) and (4.2), it is easy to deduce that, for any 1 6 i, j 6 N ,

there exist two positive constants ν
(δ)
ij , ν̃

(δ)
ij such that, for all v ∈ R3,

0 < ν
(δ)
ij e
−mj 7δ+1

2(1−δ) ε
2|uj |2cj〈v〉γ 6 νεij(v) 6 ν̃

(δ)
ij

(
1 + e

4mj
1−δ ε

2|uj |2
)
cj〈v〉γ.

This in turns implies that, for any 1 6 i 6 N , there also exist ν
(δ)
i , ν̃

(δ)
i > 0 such

that, for all v ∈ R3,

0 < ν
(δ)
i exp

{
− max

16i6N
mi

7δ + 1

2(1− δ)
ε2 ‖u‖2

L∞t L
∞
x

}(
min

16i6N
ci

)
〈v〉γ

6 νεi (v) 6 ν̃
(δ)
i

(
1 + exp

{
max

16i6N
mi

4ε2

1− δ
‖u‖2

L∞t L
∞
x

})
‖c‖L∞t L∞x 〈v〉

γ,

(4.3)

recalling that mini ci > 0 a.e. on R+ × T3.
Since νννε is a multiplicative operator, from these bounds it is finally easy to com-

pute explicitly the values of Cννν
1 and Cννν

2 such that

Cννν
1 ‖f‖

2

L2
v

(
〈v〉γ/2µµµ−1/2

) 6 〈νννε(f), f〉
L2
v

(
µµµ−

1
2

) 6 Cννν
2 ‖f‖

2

L2
v

(
〈v〉γ/2µµµ−1/2

)
is satisfied. Moreover, since 〈v〉γ > 1, it is then straightforward that the L2

v

(
〈v〉γ/2µµµ−1/2

)
norm upper bounds the L2

v

(
µµµ−

1
2

)
norm. Thus (3.3) is proved for any δ ∈ (0, 1).

At last, estimate (3.4) can be proved in a very similar way using the fact that Kε

can be written under a kernel form and applying (4.1) to obtain the same bounds
as in [10]. From this and from (3.3), using the Cauchy-Schwarz inequality, we infer
(3.4) by choosing

CL
1 = C(δ) ‖c‖L∞t L∞x

(
1 + exp

{
max

16i6N
mi

4ε2

1− δ
‖u‖L∞t L∞x

})
max

16i,j6N

√
cj
ci
> 0.
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Here C(δ) is a constant only depending on the masses (mi)16i6N , the number of
species N and an arbitrary parameter δ ∈ (δ, 1), where δ is fixed independently of
ε. This concludes the proof.

4.2. Proof of Lemma 3.3. We prove the result in the simple case where |α| =
|β| = 1 (the case |α| = 0 being included). The general case can then be obtained in
a similar way, by iterating our computations.

We first notice that, thanks to our assumptions on the collision kernels Bij, it is
easy to check that ∇vν

ε
i ∈ L∞v (R3) for any 1 6 i 6 N . In fact, choosing δ ∈ (0, 1)

independently of ε and using the upper bound (4.1) on M ε
j , we obtain, for any

v ∈ R3,

|∇vν
ε
i (v)| =

∣∣∣∣∣
N∑
j=1

∫
R3×S2

bij(cosϑ)γ|v − v∗|γ−1 v − v∗
|v − v∗|

M ε
j (v∗)dv∗dσ

∣∣∣∣∣
6 C(δ)

N∑
j=1

cj

∫
R3

γ|v − v∗|γ−1e−δmj
|v∗|2

2 dv∗ 6 C(δ) 〈c,1〉 < +∞,

since γ ∈ [0, 1] and thus the above integral is clearly finite.

Next, considering the (xk, v`) derivatives, we can write

〈∂v`∂xkνννε(f), ∂v`∂xkf〉L2
x,v

(
µµµ−

1
2

) =
N∑
i=1

∫
T3×R3

∂v`(ν
ε
i ∂xkfi)∂v`∂xkfiµ

−1
i dxdv

+
N∑
i=1

∫
T3×R3

∂v`(∂xkν
ε
i fi)∂v`∂xkfiµ

−1
i dxdv.

Denote by I1 and I2, respectively, the first and second term on the right-hand side.
Using Young’s inequality, the first term can be estimated as

I1 =
N∑
i=1

(∫
T3×R3

∂v`ν
ε
i ∂xkfi∂v`∂xkfiµ

−1
i dxdv +

∫
T3×R3

νεi |∂v`∂xkfi|2µ−1
i dxdv

)

>
N∑
i=1

(
−1

2

∫
T3×R3

(∂v`ν
ε
i )

2

νεi
(∂xkfi)

2µ−1
i dxdv +

1

2

∫
T3×R3

νεi |∂v`∂xkfi|2µ−1
i dxdv

)

> Cννν
3 ‖∂v`∂xkf‖

2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) − Cννν
5 ‖f‖

2

H1
x,v

(
µµµ−

1
2

) ,
where Cννν

3 is obtained from (4.3) as

Cννν
3 =

1

2

(
min

16i6N
ν

(δ)
i ci

)
exp

{
− max

16i6N
mi

7δ + 1

2(1− δ)
ε2 ‖u‖L∞t L∞x

}
> 0,

and

Cννν
5 = max

16i6N
sup
v∈R3

(∂v`ν
ε
i )

2

2νεi
is positive and finite thanks again to the lower bound (4.3) and the fact that ∇vν

ε
i ∈

L∞v (R3) for any 1 6 i 6 N .



MULTI-SPECIES BOLTZMANN TO MAXWELL-STEFAN 43

To estimate the second term, we first notice that from Mε = c∞Mε + εc̃Mε we
get, for any (t, x, v) ∈ R+ × T3 × R3,

∂xkν
ε
i (t, x, v)

=
N∑
j=1

∫
R3×S2

bij(cosϑ)|v − v∗|γ∂xkM ε
j (v∗)dv∗dσ

= ε
N∑
j=1

∫
R3×S2

bij(cosϑ)|v − v∗|γ
(
∂xk c̃j +mjcj(v∗ − εuj) · ∂xkuj

)
Mε

j(v∗)dv∗dσ

= εν̃εi (t, x, v),

hence ν̃εi and νεi have the same structure. In particular, as done for νεi , it is easy to
show that ∇vν̃

ε
i ∈ L∞v (R3) and that the following upper bound, similar to (4.3), is

satisfied for all v ∈ R3:

(4.4) ν̃εi (v) 6 Ci(δ) exp

{
max

16i6N
mi

7 + δ

2(1− δ)
ε2 ‖u‖2

L∞t L
∞
x

}
×
(
‖∂xk c̃‖L∞t L∞x + ‖c‖L∞t vL∞x

(
1 + ‖u‖L∞t L∞x

)
‖∂xku‖L∞t L∞x

)
〈v〉γ .

Note that, in this case, we are no more able to prove a lower bound for ν̃εi , as it was
done in (4.3) for νεi . From this lack of positivity comes the last term in the estimate.
In fact, using again Young’s inequality, we easily see that I2 can be estimated as

I2 = ε
N∑
i=1

(∫
T3×R3

∂v` ν̃
ε
i fi∂v`∂xkfiµ

−1
i dxdv +

∫
T3×R3

ν̃εi ∂v`fi∂v`∂xkfiµ
−1
i dxdv

)

> ε
N∑
i=1

(
−1

2

∫
T3×R3

(∂v` ν̃
ε
i )

2

νεi
f 2
i µ
−1
i dxdv − 1

2

∫
T3×R3

ν̃εi (∂v`fi)
2µ−1

i dxdv

−1

2

∫
T3×R3

(νεi + ν̃εi )|∂v`∂xkfi|2µ−1
i dxdv

)

> −εCννν
4 ‖∂v`∂xkf‖

2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) − εCννν
6 ‖f‖

2

H1
x,v

(
µµµ−

1
2

) − εCννν
7 ‖∂v`f‖L2

x,v

(
〈v〉γ/2µµµ−

1
2

) ,
where Cννν

4 , Cννν
7 are easily recovered from (4.3) and (4.4), and

Cννν
6 = max

16i6N
sup
v∈R3

(∂vl ν̃
ε
i )

2

2νεi
> 0.

Gathering the estimates for I1 and I2 concludes the proof.

4.3. Proof of Lemma 3.4. We prove the result in the simplest case where |α| = 0
and |β| = 1. The extension to the general case is again straightforward. We empha-
size that compared to the usual case when the Maxwellian only depends on v, x-
derivatives of Mε generate new terms involving products of the form ε∂α

′
x u∂αx c̃,

displaying a lower order in ε.



44 ANDREA BONDESAN AND MARC BRIANT

We want to estimate the term

〈∇vK
ε(f),∇vf〉

L2
x,v

(
µµµ−

1
2

) =
N∑
i=1

∫
T3×R3

∇vK
ε
i (f)∇vfiµ

−1
i dxdv,

where, for any 1 6 i 6 N , Kε
i is written under its kernel form (explicitly recovered

in Appendix A) as

Kε
i (f)(v) =

N∑
j=1

{∫
R3

κ
(1)
ij (v, v∗)f

∗
j dv∗ +

∫
R3

κ
(2)
ij (v, v∗)f

∗
i dv∗ −

∫
R3

κ
(3)
ij (v, v∗)f

∗
j dv∗

}
.

For any fixed i, j, we shall treat separately the three kernels.

Step 1 - Estimates for κ
(1)
ij . Starting from κ

(1)
ij , we recall that its full explicit

expression is given in Appendix A by (A.1). We compute its v-derivatives and
immediately note that the singularity of the operator coming from |v − v∗| imposes
to introduce a proper splitting (depending on a small parameter) in order to deal
with a smooth part that we can derive infinitely many times and a remainder part
(taking into account the region where v − v∗ is close to 0) which goes to zero with
the small parameter. Let us relabel the relative velocity η = v − v∗ and choose v

and η as new variables of κ
(1)
ij , rewriting v∗ = v − η. Thus, denoting R = R(v, η)

and O = O(v, η) the quantities

R =
mj

|mi −mj|
|η|,

O =
mi

mi −mj

v − mj

mi −mj

(v − η),

defined for i 6= j, the operator κ
(1)
ij reads

κ
(1)
ij (v, η) = Cijci|η|γ

∫
S2

bij

(
ω · η|η|

)
∣∣∣ m2

i+m
2
j

(mi−mj)2 +
2mimj

(mi−mj)|mi−mj |

(
ω · η|η|

)∣∣∣1−γ
× e−

mi
2 |Rω+O|2+εmi

(
Rω+O

)
·ui−ε2

mi
2
|ui|2 dω.

In particular,

bij

(
ω · η
|η|

)
= bij

 2mimj
(mi−mj)2 +

m2
i+m

2
j

(mi−mj)|mi−mj |

(
ω · η|η|

)
m2
i+m

2
j

(mi−mj)2 +
2mimj

(mi−mj)|mi−mj |

(
ω · η|η|

)
 ,

and∣∣Rω +O
∣∣2 =

2m2
j

(mi −mj)2
|η|2 +

2mj|η|
|mi −mj|

(v · ω) +
2m2

j |η|
(mi −mj)|mi −mj|

(η · ω)

+ |v|2 +
2mj

mi −mj

(v · η),

(
Rω +O

)
· ui =

mj

|mi −mj|
|η|(ω · ui) + v · ui +

mj

mi −mj

(η · ui).
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The operator κ
(1)
ij (v, η) is clearly regular with respect to the variable v, thus we only

need to ensure that we can take derivatives also with respect to η. For some small
parameter ξ > 0, let us introduce a mollified indicator function 1{|·|>ξ} and define
the splitting

κ
(1)
ij = κ

(1),S
ij + κ

(1),R
ij ,

where we have called the smooth part

κ
(1),S
ij (v, η) = 1{|η|>ξ}κ

(1)
ij (v, η),

and κ
(1),R
ij is the remainder. It is straightforward to check that κ

(1),S
ij (v, η) is smooth

in both variables v and η, and that κ
(1),R
ij is integrable with respect to η near 0.

More precisely, one can prove that there exists δ ∈ (0, 1), depending on ‖u‖ and ‖c‖
but not on ε, such that κ

(1),R
ij is uniformly bounded with respect to v, namely

κ
(1),R
ij (v, η)

√
µj(v − η)

µi(v)
6 Cij(δ)|η|γe−C(δ)|η|2 , ∀v ∈ R3,

where Cij(δ), C(δ) > 0 are two explicitly computable constants depending on an

arbitrary parameter δ ∈ (δ, 1). This last fact allows to easily deduce that

(4.5)

∥∥∥∥∥κ(1),R
ij (v, η)

√
µj(v − η)

µi(v)

∥∥∥∥∥
L1
η

6 C
(1)
ij (δ)ξγ+3, ∀v ∈ R3.

Now, setting

W
(1)
ij

(
ω · η
|η|

)
=

∣∣∣∣ m2
i +m2

j

(mi −mj)2
+

2mimj

(mi −mj)|mi −mj|

(
ω · η
|η|

)∣∣∣∣γ−1

to ease the computations, we can take the η-derivative of κ
(1),S
ij to obtain

∇ηκ
(1),S
ij (v, η) = Cij∇η1{|η|>ξ}|η|γ

∫
S2
bijW

(1)
ij M

ε
i (Rω +O)dω

+ Cij1{|η|>ξ}∇η|η|γ
∫
S2
bijW

(1)
ij M

ε
i (Rω +O)dω

+ Cij1{|η|>ξ}|η|γ
∫
S2
∇ηbijW

(1)
ij M

ε
i (Rω +O)dω

+ Cij1{|η|>ξ}|η|γ
∫
S2
bij∇ηW

(1)
ij M

ε
i (Rω +O)dω

+ Cij1{|η|>ξ}|η|γ
∫
S2
bijW

(1)
ij ∇ηM

ε
i (Rω +O)dω

:= IS1,1 + IS1,2 + IS1,3 + IS1,4 + IS1,5.

Direct computations yield the four derivatives

(i) ∇η|η|γ = γ|η|γ−1 η

|η|
,
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(ii) ∇ηbij

(
ω · η
|η|

)
= b′ij

(
ω · η
|η|

) (mi+mj)
2

(mi−mj)|mi−mj |

(
ω
|η| −

η·ω
|η|2

η
|η|

)
(

m2
i+m

2
j

(mi−mj)2 +
2mimj

(mi−mj)|mi−mj |

(
ω · η|η|

))2 ,

(iii) ∇ηW
(1)
ij

(
ω · η
|η|

)
=

2(γ−1)mimj
(mi−mj)|mi−mj |

(
ω
|η| −

η·ω
|η|2

η
|η|

)
∣∣∣ m2

i+m
2
j

(mi−mj)2 +
2mimj

(mi−mj)|mi−mj |

(
ω · η|η|

)∣∣∣2−γ ,
(iv)

∇ηM
ε
i (Rω +O) = −mi

2
M ε

i (Rω +O)
(
∇η

∣∣Rω +O
∣∣2 − 2ε∇η

(
(Rω +O) · ui

))
,

where

∇η

∣∣Rω +O
∣∣2 =

4m2
j

(mi −mj)2
η +

2mj

|mi −mj|
η

|η|
(v · ω) +

2mj

mi −mj

v

+
2m2

j

(mi −mj)|mi −mj|

(
η

|η|
(η · ω) + |η|ω

)
,

and

∇η

(
(Rω +O) · ui

)
=

mj

|mi −mj|
η

|η|
(ω · ui) +

mj

mi −mj

ui.

Our aim is now to bound each term IS1,k uniformly with respect to v ∈ R3. The

estimate for IS1,1 is straightforward, since |bij| 6 C from Grad’s cutoff assumption
we have made on the collision kernels, and∣∣∣∣ m2

i +m2
j

(mi −mj)2
+

2mimj

(mi −mj)|mi −mj|

(
ω · η
|η|

)∣∣∣∣γ−1

6

∣∣∣∣m2
i +m2

j − 2mimj

(mi −mj)2

∣∣∣∣γ−1

= 1,

thanks to the hypothesis that γ ∈ [0, 1]. Thus,
∣∣W (1)

ij

∣∣ 6 1 and we can apply the
upper bound (4.1) for the local Maxwellian M ε

i to initially infer that∣∣IS1,1∣∣ 6 C(δ1)ci|η|γ
∫
S2
Mδ1

i (Rω +O)dω,

for any δ1 ∈ (0, 1). Then, using the same estimates as in [17, Lemma 5.1], we recover
the bound∣∣IS1,1∣∣ 6 C(δ1)ci|η|γe

−δ1λ(mi,mj)|η|2−δ1λ(mi,mj)
||η|2−2(v·η)|2

|η|2

√
Mδ1

i (v)

Mδ1
j (v − η)

.

For IS1,2, IS1,3 and IS1,4, we obtain a similar result, since

∇η|η|γ 6 γ|η|γ−1, ∇ηbij 6 Cij|η|−1 and also ∇ηW
(1)
ij 6 Cij|η|−1,

thanks to the assumption that
∣∣b′ij(cosϑ)

∣∣ 6 C. Thus, for k ∈ {2, 3, 4}, we deduce
that

∣∣IS1,k∣∣ 6 C(δk)ci|η|γ−1e
−δkλ(mi,mj)

|η|2− ||η|2−2(v·η)|2
|η|2

√ Mδk
i (v)

Mδk
j (v − η)

,
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for any δk ∈ (0, 1), k = 2, 3, 4. A bit different is the last term IS1,5. We observe that

∇η

∣∣Rω +O
∣∣2 6 Cij

(
|η|+ |v|

)
and ∇η

(
(Rω +O) · ui

)
6 Cij|ui|,

thus

∇ηM
ε
i (Rω +O) 6 Cij(δ5)ci

(
|η|+ |v|+ ε|ui|

)
Mδ5

i (Rω +O),

for any δ5 ∈ (0, 1). Therefore, since ε 6 1, we can upper bound the last term as

∣∣IS1,5∣∣ 6 C(δ5)ci|η|γ
(
|η|+ |v|+ |ui|

)
e
−δ5λ(mi,mj)

|η|2+
||η|2−2(v·η)|2

|η|2

√ Mδ5
i (v)

Mδ5
j (v − η)

.

Gathering the estimates on IS1,k, k ∈ {1, . . . , 5}, and, in particular, carefully choosing
the parameter δ5 ∈ (0, 1) in order to control the term in |v|, the computations carried
out in [10] directly apply and provide the uniform bound

(4.6)
∣∣∣∇ηκ

(1),S
ij (v, η)

∣∣∣√µj(v − η)

µi(v)

6 Cij(δ)

√
cj
ci
‖c‖L∞t L∞x

(
1 + ‖u‖L∞t L∞x

) (
1 + |η|γ−1 + |η|γ+1 + |η|γ

)
e−C(δ)|η|2 ,

holding for any v ∈ R3 and any δ ∈ (δ, 1), where δ ∈ (0, 1) is fixed independently of
ε.

In a similar way, we can estimate the v-derivatives of κ
(1),S
ij and κ

(1),R
ij . It is

even simpler in this case, since the only dependence on v inside these operators

appears in the Maxwellian M ε
i (Rω+O). Looking at ∇vκ

(1),S
ij (for ∇vκ

(1),R
ij the same

computations will apply), we easily get

∇vκ
(1),S
ij (v, η) = Cij1{|η|>ξ}|η|γ

∫
S2
bijW

(1)
ij ∇vM

ε
i (Rω +O)dω,

where this time

∇vM
ε
i (Rω +O) = −mi

2
M ε

i (Rω +O)

(
2mj

|mi −mj|
|η|ω + 2v +

2mj

mi −mj

η − 2εui

)
.

Therefore, repeating the previous considerations and thanks to the straightforward
upper bound

∇vM
ε
i (Rω +O) 6 Cij(δ)ci

(
|η|+ |v|+ |ui|

)
Mδ

i (Rω +O),

valid for any δ ∈ (0, 1), we recover the uniform estimate

(4.7)
∣∣∣∇vκ

(1),S
ij (v, η)

∣∣∣√µj(v − η)

µi(v)

6 Cij(δ)

√
cj
ci
‖c‖L∞t L∞x

(
1 + ‖u‖L∞t L∞x

) (
1 + |η|γ + |η|γ+1

)
e−C(δ)|η|2 ,

holding for all v ∈ R3 and for any δ ∈ (δ, 1), where δ ∈ (0, 1) is fixed independently of
ε, and can in particular be chosen in order to satisfy both (4.7) and (4.6). Using the
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same arguments in order to derive an upper bound for∇vκ
(1),R
ij , estimates (4.6)–(4.7)

finally imply that for all v ∈ R3 we have∥∥∥∥∥∇ηκ
(1),S
ij (v, η)

√
µj(v − η)

µi(v)

∥∥∥∥∥
L1
η

6 C
(1)
ij (δ, ξ),

∥∥∥∥∥∇vκ
(1),S
ij (v, η)

√
µj(v − η)

µi(v)

∥∥∥∥∥
L1
η

6 C
(1)
ij (δ, ξ),

∥∥∥∥∥∇vκ
(1),R
ij (v, η)

√
µj(v − η)

µi(v)

∥∥∥∥∥
L1
η

6 C
(1)
ij (δ, ξ).

(4.8)

Step 2 - Estimates for κ
(2)
ij . We proceed in the same way as for κ

(1)
ij . We rename

the relative velocity η = v − v∗, so that v∗ = v − η, and the explicit form of κ
(2)
ij

given by (A.2) reads in the new configuration

κ
(2)
ij (v, η) = Pij(v, η)

∫
R2

bij


(
mi+mj

2mj

)2

|η|2 − |X|2(
mi+mj

2mj

)2

|η|2 + |X|2

((mi +mj

2mj

)2

|η|2 + |X|2
) γ−1

2

×M ε
j

(
R

(
η

|η|
,

(
0, X +

1

2
X

)))
dX,

with

Pij(v, η) =
Cji
|η|

e
− m2

i
8mj
|η|2−

mj
8

||η|2−2(v·η)|2
|η|2

+ε
mi
2

(η·uj)−ε
mj
2

(
|η|2−2(v·η)

|η|
η
|η|

)
·uj

√
µi(v)

µi(v − η)
.

Next, for some small parameter ξ > 0, introduce a mollified indicator function 1{|·|>ξ}
and define the splitting

κ
(2)
ij = κ

(2),S
ij + κ

(2),R
ij ,

where again we have called the smooth part

κ
(2),S
ij (v, η) = 1{|η|>ξ}κ

(2)
ij (v, η),

and κ
(2),R
ij is the remainder. Following again [17, Lemma 5.1] and the computations

in [10], a similar analysis to the one carried out for κ
(1)
ij gives in this case

κ
(2),R
ij (v, η)

√
µi(v − η)

µi(v)
6 Cji(δ)|η|γ−2e−C(δ)|η|2 , ∀v ∈ R3,

for some positive explicit constants Cji(δ), C(δ) depending on a parameter δ ∈ (δ, 1),

where δ ∈ (0, 1). This in turns means that we recover the needed control in L1
η, which

reads

(4.9)

∥∥∥∥∥κ(2),R
ij (v, η)

√
µi(v − η)

µi(v)

∥∥∥∥∥
L1
η

6 C
(2)
ij (δ)ξγ+1, ∀v ∈ R3.
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Next, we consider some η-derivatives of κ
(2),S
ij . Naming this time

W
(2)
ij (|η|2, |X|2) =

((
mi +mj

2mj

)2

|η|2 + |X|2
) γ−1

2

,

direct computations show that

(i) ∇ηPij(v, η) 6 Cji

(
1 + ‖u‖L∞t,x

)(
|v|+ |v|2 + |v|4 +

1∑
k=−2

|η|k
)
Pij(v, η),

(ii) ∇ηbij(|η|2, |X|2) 6 Cji
|η|2 + |X|4

|η|4
,

(iii) W
(2)
ij (|η|2, |X|2) 6 Cji|η|γ−1,

(iv) ∇ηW
(2)
ij (|η|2, |X|2) 6 Cji|η|γ−2,

and at last that

∇η

∣∣∣∣R( η

|η|
,

(
0, X +

1

2
X

))
− εuj

∣∣∣∣2 6 Cji
1 + ‖u‖2

L∞t,x
+ |X|2

|η|
.

By gathering these estimates together, we derive the following upper bound for

∇ηκ
(2),S
ij :∣∣∣∇ηκ
(2),S
ij (v, η)

∣∣∣√µi(v − η)

µi(v)
6 Cji(δ) ‖c‖L∞t,x

(
1 + ‖u‖L∞t,x

)(
1 +

4∑
k=0

|η|γ−k
)
e−C(δ)|η|2 ,

holding for all v ∈ R3 and for any δ ∈ (δ, 1), where δ ∈ (0, 1) is fixed independently

of ε. Then, we can obtain a similar control for ∇vκ
(2),S
ij , which reads∣∣∣∇vκ

(2),S
ij (v, η)

∣∣∣√µi(v − η)

µi(v)
6 Cji(δ) ‖c‖L∞t,x

(
1 + ε ‖u‖L∞t,x

) (
1 + |η|γ + |η|γ−1

)
e−C(δ)|η|2 ,

and the same holds for the remainder term ∇vκ
(2),R
ij . The collection of these inequal-

ities finally ensure the expected bounds in L1
η∥∥∥∥∥∇ηκ

(2),S
ij (v, η)

√
µi(v − η)

µi(v)

∥∥∥∥∥
L1
η

6 C
(2)
ij (δ, ξ),

∥∥∥∥∥∇vκ
(2),S
ij (v, η)

√
µi(v − η)

µi(v)

∥∥∥∥∥
L1
η

6 C
(2)
ij (δ, ξ),

∥∥∥∥∥∇vκ
(2),R
ij (v, η)

√
µi(v − η)

µi(v)

∥∥∥∥∥
L1
η

6 C
(2)
ij (δ, ξ).

(4.10)

Step 3 - Estimates for κ
(3)
ij . The case of κ

(3)
ij is straightforward and we do not

need any additional effort. Introducing as before the splitting κ
(3)
ij = κ

(3),S
ij + κ

(3),R
ij
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and renaming η = v− v∗, v∗ = v− η, very easy computations provide the bound for

the remainder κ
(3),R
ij

(4.11)

∥∥∥∥∥κ(3),R
ij (v, η)

√
µj(v − η)

µi(v)

∥∥∥∥∥
L1
η

6 C
(3)
ij (δ)ξγ+3,

and the estimates for the derivatives∥∥∥∥∥∇ηκ
(3),S
ij (v, η)

√
µj(v − η)

µi(v)

∥∥∥∥∥
L1
η

6 C
(3)
ij (δ, ξ),

∥∥∥∥∥∇vκ
(3),S
ij (v, η)

√
µj(v − η)

µi(v)

∥∥∥∥∥
L1
η

6 C
(3)
ij (δ, ξ),

∥∥∥∥∥∇vκ
(3),R
ij (v, η)

√
µj(v − η)

µi(v)

∥∥∥∥∥
L1
η

6 C
(3)
ij (δ, ξ),

(4.12)

for all v ∈ R3.

Step 4 - Conclusion. Now, we can successively write

〈∇vK
ε(f),∇vf〉

L2
x,v

(
µµµ−

1
2

)
=

N∑
i,j=1

∫
T3×R3

(
∇v

∫
R3

κ
(1)
ij (v, v∗)f

∗
j + κ

(2)
ij (v, v∗)f

∗
i − κ

(3)
ij (v, v∗)f

∗
j dv∗

)
∇vfiµ

−1
i dxdv

=
N∑

i,j=1

∫
T3×R3

(
∇v

∫
R3

(
κ

(1),S
ij (v, η) + κ

(1),R
ij (v, η)

)
fj(v − η)dη

)
∇vfiµ

−1
i dxdv

+
N∑

i,j=1

∫
T3×R3

(
∇v

∫
R3

(
κ

(2),S
ij (v, η) + κ

(2),R
ij (v, η)

)
fi(v − η)dη

)
∇vfiµ

−1
i dxdv

+
N∑

i,j=1

∫
T3×R3

(
∇v

∫
R3

(
κ

(3),S
ij (v, η) + κ

(3),R
ij (v, η)

)
fj(v − η)dη

)
∇vfiµ

−1
i dxdv

:= I1 + I2 + I3.

The behaviour of the three terms is the same. We shall thus focus on the first one
and the others will be estimated in an equivalent way. Since

∇vfj(v − η) = −∇ηfj(v − η),
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we initially apply integration by parts to deduce that

∇v

∫
R3

(
κ

(1),S
ij (v, η) + κ

(1),R
ij (v, η)

)
fj(v − η)dη

=

∫
R3

(
∇vκ

(1),S
ij (v, η)−∇ηκ

(1),S
ij (v, η) +∇vκ

(1),R
ij (v, η)

)
fj(v − η)dη

+

∫
R3

κ
(1),R
ij (v, η)∇vfj(v − η)dη.

Thus, if we multiply and divide inside the integral by the factor
√
µj(v − η)/µi(v),

we can apply Cauchy-Schwarz inequality and an L1/L2 convolution inequality, to-
gether with estimates (4.5) and (4.8), to finally deduce that

I1 6 C
(1)
1 (δ, ξ) ‖f‖2

L2
x,v

(
µµµ−

1
2

) + ξC
(1)
2 (δ) ‖∇vf‖2

L2
x,v

(
µµµ−

1
2

) ,
for any ξ ∈ (0, 1).

As already mentioned, the same argument applies to I2 and I3 using estimates

(4.9)–(4.10)–(4.11)–(4.12) and for some positive constants C
(2)
k , C

(3)
k , k = 1, 2. Gath-

ering the bounds for the three terms concludes the proof.

4.4. Proof of Lemma 3.5. The proof follows exactly the computations presented
in [10], except for the final estimate where Young’s inequality allows to refine the
control on πL(f). Let us sketch the idea.

We initially rewrite Lε componentwise as

Lεi (f) =

N∑
j=1

∫
R3×S2

Bij(v, v∗, ϑ)
(
ci,∞Mε

i
′f ′∗j + cj,∞Mε

j
′∗f ′i − ci,∞Mε

if
∗
j − cj,∞Mε

j
∗fi

)
dv∗dσ

+ ε
N∑
j=1

∫
R3×S2

Bij(v, v∗, ϑ)
(
c̃iMε

i
′f ′∗j + c̃jMε

j
′∗f ′i − c̃iMε

if
∗
j − c̃jMε

j
∗fi

)
dv∗dσ

:= Lεi,∞(f) + εL̃εi (f).

Now, we can study the Dirichlet form of Lε by introducing the penalization with
respect to L. Recall the shorthand notation f⊥ = f − πL(f). Using the fact that Lε

shares the conservation properties of the Boltzmann operator Q, we can successively
write

〈Lε(f), f〉
L2
v

(
µµµ−

1
2

) =
〈
Lε(f), f⊥

〉
L2
v

(
µµµ−

1
2

)
=
〈
L(f), f⊥

〉
L2
v

(
µµµ−

1
2

) +
〈
Lε
∞(f)− L(f), f⊥

〉
L2
v

(
µµµ−

1
2

)
+ ε
〈
L̃ε(f), f⊥

〉
L2
v

(
µµµ−

1
2

).
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We estimate each term separately. Thanks to [17, Theorem 3.3], the first term
provides the spectral gap for L〈

L(f), f⊥
〉
L2
v

(
µµµ−

1
2

) 6 −λL∥∥f⊥∥∥2

L2
v

(
〈v〉γ/2µµµ−1/2

).
Recalling that Lε

∞ − L = O(ε), the second term can be estimated following the
strategy of [10]. We split f = f⊥+πL(f) and we then apply Young’s inequality with
a positive constant η1/ε to recover〈(

Lε
∞ − L

)
(f), f⊥

〉
L2
v

(
µµµ−

1
2

) =
〈(

Lε
∞ − L

)
(f⊥), f⊥

〉
L2
v

(
µµµ−

1
2

)
+
〈(

Lε
∞ − L

)(
πL(f)

)
, f⊥
〉
L2
v

(
µµµ−

1
2

)
6
(
ε+ η1

)
CL

2

∥∥f⊥∥∥2

L2
v

(
〈v〉γ/2µµµ−1/2

) + ε2 ‖u‖L∞t,x
CL

2

η1

‖πL(f)‖2

L2
v

(
〈v〉γ/2µµµ−1/2

) .
In a very similar way, using again Young’s inequality with the same constant η1/ε
and increasing the constant CL

2 if necessary, the third term provides〈
L̃ε(f), f⊥

〉
L2
v

(
µµµ−

1
2

) =
〈
L̃ε(f⊥), f⊥

〉
L2
v

(
µµµ−

1
2

) +
〈
L̃ε(πL(f)), f⊥

〉
L2
v

(
µµµ−

1
2

)
6
η1C

L
2

ε

∥∥f⊥∥∥2

L2
v

(
〈v〉γ/2µµµ−1/2

) + ε ‖c̃‖L∞t,x
CL

2

η1

‖πL(f)‖2

L2
v

(
〈v〉γ/2µµµ−1/2

) .
Gathering the three estimates, and using the Sobolev embedding of H

s/2
x in L∞x to

upper bound ‖u‖L∞t,x and ‖c̃‖L∞t,x by δMS, we obtain the expected result. This ends

the proof.

4.5. Proof of Lemma 3.6. The first part comes from the conservation properties
of the Boltzmann operator. In fact, we have seen that

N∑
i=1

∫
R3

Qi(g,h)(v)ψi(v)dv = 0, ∀g,h ∈ L2
(
R3,µµµ−

1
2

)
,

whenever ψψψ ∈ Span
(
e(1), . . . , e(N), v1m, v2m, v3m, |v|2m

)
is a collision invariant of

the mixture. In particular the above equality rewrites〈
Q(g,h), πL(f)

〉
L2
v

(
µµµ−

1
2

) = 0, ∀f ,g,h ∈ L2
(
R3,µµµ−

1
2

)
,

which is exactly (3.8) for Q. Then the property follows also for Lε, since by defini-
tion Lε(f) = Q(Mε, f) + Q(f ,Mε) and both terms are orthogonal to kerL.

The second part is an extension of the same property satisfied by the Boltzmann
operator in the mono-species case. Let s ∈ N and α, β be fixed such that |α|+|β| = s.
We initially note that〈

∂βv ∂
α
xQ(g,h), f

〉
L2
x,v

(
µ
− 1

2
i

) =
N∑

i,j=1

〈
∂βv ∂

α
xQij(gi, hj), fi

〉
L2
x,v

(
µ
− 1

2
i

).
Since each Qij acts like a mono-species Boltzmann operator, we can easily adapt
the computations made in [15, Appendix A] to prove that, for any 1 6 i, j 6 N ,
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there exist two nonnegative functionals Gx,v,sij and Gx,sij satisfying Gx,v,s+1
ij 6 Gx,v,sij ,

Gx,s+1
ij 6 Gx,sij and such that

〈
∂βv ∂

α
xQij(gi, hj), fi

〉
L2
x,v

(
µ
− 1

2
i

) 6

Gx,sij (gi, hj) ‖fi‖

L2
x,v

(
〈v〉

γ
2 µ
− 1

2
i

) if |β| = 0,

Gx,v,sij (gi, hj) ‖fi‖
L2
x,v

(
〈v〉

γ
2 µ
− 1

2
i

) if |β| > 1.

Moreover, there exists an integer s0 > 0 such that, for all s > s0, there exists an
explicit constant CQ

ij > 0 verifying

Gx,sij (gi, hj)

6 CQ
ij

(
‖gi‖

Hs
xL

2
v

(
µ
− 1

2
i

) ‖hj‖
Hs
xL

2
v

(
〈v〉

γ
2 µ
− 1

2
j

) + ‖hj‖
Hs
xL

2
v

(
µ
− 1

2
j

) ‖gi‖
Hs
xL

2
v

(
〈v〉

γ
2 µ
− 1

2
i

)) ,
and

Gx,v,sij (gi, hj)

6 CQ
ij

(
‖gi‖

Hs
x,v

(
µ
− 1

2
i

) ‖hj‖
Hs
x,v

(
〈v〉

γ
2 µ
− 1

2
j

) + ‖hj‖
Hs
x,v

(
µ
− 1

2
j

) ‖gi‖
Hs
x,v

(
〈v〉

γ
2 µ
− 1

2
i

)) .
From this, we immediately deduce that

〈
∂βv ∂

α
xQ(g,h), f

〉
L2
x,v

(
µµµ−

1
2

) 6


(∑N
i,j=1 G

x,s
ij (gi, hj)

)
‖f‖

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) if |β| = 0,

(∑N
i,j=1 G

x,v,s
ij (gi, hj)

)
‖f‖

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) if |β| > 1,

and defining CQ
s = N2 max

16i,j6N
CQ
ij finishes the proof of (3.9)–(3.10).

4.6. Proof of Lemma 3.7. We divide the proof into two separated parts for the
sake of clarity. The first one deals with inequalities (3.11)–(3.12), where at least one
v-derivative is considered, since the proofs of the two estimates are almost the same.
The second part treats pure spatial derivatives, which require a slightly different
approach. Note that, throughout the proof, we shall carefully keep track of the
parameter δ2

MS which uniformly bounds the quantities ‖c̃‖2

L∞t H
s
x

(
c
− 1

2∞

) and ‖u‖2
L∞t H

s
x
.

For simplicity, all the other factors multiplying the term of interest δ2
MS will always

be hidden inside a suitable constant, even if a lower order (in δMS or in ε) appears.
This choice will also help in enlightening the computations.

Step 1 - Estimates with velocity derivatives. The idea to recover the first
estimate (3.11) is to show that ∂βv ∂

α
xSε = O(ε−1). For this, let us initially extract a

power ε−1 from the source term and write

〈
∂βv ∂

α
xSε, ∂βv ∂

α
x f
〉
L2
x,v

(
µµµ−

1
2

) =
1

ε

(
−
〈
∂βv ∂

α
x

(
∂tM

ε +
1

ε
v · ∇xM

ε
)
, ∂βv ∂

α
x f

〉
L2
x,v

(
µµµ−

1
2

)
+

1

ε2

〈
∂βv ∂

α
xQ(Mε,Mε), ∂βv ∂

α
x f
〉
L2
x,v

(
µµµ−

1
2

) ).
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We shall treat the linear part and the nonlinear term separately.
Computing the time and space derivatives in the linear contribution, we note that,

for any 1 6 i 6 N ,

(4.13) ∂tM
ε
i +

1

ε
v · ∇xM

ε
i =

(
∂tci + εmici(v − εui) · ∂tui

+
3∑

k=1

vk

(
ε∂xk c̃i +mici(v − εui) · ∂xkui

))
Mε

i ,

and that the leading order seems to be O(1). Let us show that it is actually O(δMS).
For this, recall that (c,u) is the unique perturbative solution of the Maxwell-Stefan
system (1.7)–(1.8)–(1.9). From the mass equation:

∂tc = −∇x · (cu) = −ε∇xc̃ · u− c∇x · u

we easily deduce a bound for ∂tc. Rewriting the momentum equation (1.8) in vec-
torial form:

∇xc = A(c)u,

we can derive an estimate for ∂tu by taking the time derivative on both sides to
obtain

A(c)∂tu = −∂tA(c)u + ∂t(∇xc).

It is then straightforward to check that the right-hand side of the above equality
satisfies

−∂tA(c)u + ∂t(∇xc) ∈ (kerA)⊥,

so that the relation can be inverted by applying A(c)−1, and the equation governing
∂tu explicitly reads

∂tu = −A(c)−1
(
∂tA(c)u−∇x

(
− ε∇xc̃ · u− c∇x · u

))
.

Noticing that one of the macroscopic quantities c̃ and u (or their derivatives) always
appears as a factor in each term of (4.13), by means of the continuous Sobolev

embedding of H
s/2
x in L∞x , s > 3, we can infer the existence of a polynomial P , such

that, for any 1 6 i 6 N and for almost any (t, x, v) ∈ R+ × T3 × R3,∣∣∣∣∂tM ε
i (t, x, v) +

1

ε
v · ∇xM

ε
i (t, x, v)

∣∣∣∣2 6 δ2
MSC(δ)P (v)M2δ

i (v),

for a positive constant C(δ) only depending on an arbitrary parameter δ ∈ (0, 1),
which is chosen independently of ε. Note in particular the factor 2 (simply coming
from the square power) in the exponent of M2δ

i , which is crucial in order to com-

pensate the weight µ−1
i of the L2

x,v

(
µµµ−

1
2

)
norm. Moreover, we again emphasize that

the other terms containing ‖c‖
L∞t H

s
x

(
c
− 1

2∞

) or ‖u‖L∞t Hs
x

(for s 6 4) have been simply

collected inside the constant C(δ).
Now, taking α and β derivatives of the linear term only increases the number of

factors depending on polynomials of v, and (at most) |α| + 4 derivatives of c and
u. In particular it does not modify the leading order O(ε−1), nor the presence of
the multiplicative constant δ2

MS. Therefore, the exact same arguments apply, and we
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deduce that there also exist a polynomial PL and a constant CL(δ) > 0 such that,
for any 1 6 i 6 N and for almost any (t, x, v) ∈ R+ × T3 × R3,

(4.14)

∣∣∣∣∂βv ∂αx (∂tM ε
i (t, x, v) +

1

ε
v · ∇xM

ε
i (t, x, v)

)∣∣∣∣2 6 δ2
MSCL(δ)PL(v)M2δ

i (v),

where again δ ∈ (0, 1) is arbitrarily chosen, and the other dependencies on ‖c‖
L∞t H

|α|+4
x

and ‖u‖
L∞t H

|α|+4
x

have been hidden inside CL(δ).

If we now fix δ ∈ (1/2, 1) in (4.14), applying Young’s inequality with a positive
constant η2/ε and recalling the that we use the notation µi = ci,∞Mi for any 1 6
i 6 N , we can finally estimate the linear part as

1

ε

∣∣∣∣∣
〈
∂βv ∂

α
x

(
∂tM

ε +
1

ε
v · ∇xM

ε
)
, ∂βv ∂

α
x f

〉
L2
x,v

(
µµµ−

1
2

)
∣∣∣∣∣

6
1

η2

∥∥∥∥∂βv ∂αx (∂tMε +
1

ε
v · ∇xM

ε
)∥∥∥∥2

L2
x,v

(
µµµ−

1
2

) +
η2

ε2

∥∥∂βv ∂αx f
∥∥2

L2
x,v

(
µµµ−

1
2

)
6
δ2

MSCL(δ)

η2

N∑
i=1

∫
T3×R3

c−1
i,∞PL(v)M2δ−1

i (v)dxdv +
η2

ε2

∥∥∂βv ∂αx f
∥∥2

L2
x,v

(
µµµ−

1
2

)

6
δ2

MSCL(δ)

η2 min
16i6N

ci,∞
+
η2

ε2

∥∥∂βv ∂αx f
∥∥2

L2
x,v

(
µµµ−

1
2

) ,

(4.15)

by simply increasing the constant CL(δ) in order to include the value of the sum of
the integrals, which are clearly finite since 2δ − 1 > 0 thanks to our choice of the
parameter δ.

Let us continue with the analysis of the nonlinear term Q(Mε,Mε). For this,
recall that the macroscopic velocity u is defined componentwise as ui = u+ εũi, and
introduce the local Maxwellian distribution Mu = (Mu,1, . . . ,Mu,N), given for any
1 6 i 6 N by

Mu,i(t, x, v) =
(mi

2π

)3/2

exp
{
−mi

2
|v − εu(t, x)|2

}
, t > 0, x ∈ T3, v ∈ R3.

Since the bulk velocity u is common to all the different species, Mu is a local
equilibrium state of the mixture. This means in particular that Q(Mu,Mu) = 0.
We exploit this property by following the same used to study the linearized operator
Lε. Namely, we split Mε = cMu+(Mε−cMu) into a local equilibrium part which
cancels the nonlinear term, plus a penalty which is close to this local equilibrium
up to an order ε2 ‖ũ‖L∞t,x . More precisely, since also Q(cMu, cMu) = 0, we can

rewrite

Q(Mε,Mε) = Q(cMu,M
ε − cMu) + Q(Mε − cMu, cMu)

+ Q(Mε − cMu,M
ε − cMu).

Similarly to the case of the linear part, one can infer (see [10, Lemma 4.1] for more
details) the existence of some polynomials P1 and P2 in one variable, such that, for
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any 1 6 i 6 N and for almost any (t, x, v) ∈ R+ × T3 × R3,

∂βv ∂
α
x

(
ci(t, x)

(
Mε

i (t, x, v)−Mu,i(t, x, v)
))
6 ε2δMSC1(δ)P1(v)Mδ

i (v),

∂βv ∂
α
x

(
ci(t, x)Mu,i(t, x, v)

)
6 C2(δ)P2(v)Mδ

i (v),

(4.16)

for some positive constants C1(δ), C2(δ) depending on a parameter δ ∈ (0, 1), which
can be chosen independently of ε. It is important to note that, for |α| = 0, we can
still recover the correct factor δMS in the first inequality, but this is not the case for
the second one. Indeed, when |α| = 0, the computations carried out in Section 4.1,
proof of Lemma 3.2, show that

∂βv
(
ci(Mε

i −Mu,i)
)
6 ε2 ‖ũ‖L∞t,x C̃1(δ)P̃1(v)Mδ

i (v),

for some other polynomial P̃1 and a constant C̃1(δ) > 0. In particular, we immedi-
ately see that this does not represent an issue, since we always consider products of
type ∂βv ∂

α
x

(
ci(Mε

i −Mu,i)
)
× ∂βv ∂αx

(
ciMu,i

)
, which preserve the expected O(δ2

MS).
Indeed, using estimate (3.10) from Lemma 3.6 applied to the decomposition of

Q(Mε,Mε), we deduce that

1

ε3

∣∣∣∣〈∂βv ∂αxQ(Mε,Mε), ∂βv ∂
α
x f
〉
L2
x,v

(
µµµ−

1
2

)∣∣∣∣
6

2CQ
s

ε

(
‖cMu‖

Hs
x,v

(
µµµ−

1
2

) ∥∥∥∥Mε − cMu

ε2

∥∥∥∥
Hs
x,v

(
〈v〉

γ
2 µ−

1
2

)
+

∥∥∥∥Mε − cMu

ε2

∥∥∥∥
Hs
x,v

(
µµµ−

1
2

) ‖cMu‖
Hs
x,v

(
〈v〉

γ
2 µ−

1
2

) )∥∥∂βv ∂αx f
∥∥
L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+
CQ
s

ε

(
‖Mε − cMu‖

Hs
x,v

(
µµµ−

1
2

) ∥∥∥∥Mε − cMu

ε2

∥∥∥∥
Hs
x,v

(
〈v〉

γ
2 µ−

1
2

)
+

∥∥∥∥Mε − cMu

ε2

∥∥∥∥
Hs
x,v

(
µµµ−

1
2

) ‖Mε − cMu‖
Hs
x,v

(
〈v〉

γ
2 µ−

1
2

) )∥∥∂βv ∂αx f
∥∥
L2
x,v

(
〈v〉γ/2µµµ−

1
2

) .
Now, each term inside the parentheses is dealt with by simply taking the square
power in the inequalities (4.16). In particular, we recognize the same structure of
(B.2), which allows to infer the boundedness of all the terms involving cMu and
Mε−cMu, by some constant only depending on ‖c‖

L∞t H
|α|+4
x

(
c
− 1

2∞

) and ‖u‖
L∞t H

|α|+4
x

.

In this way we recover the correct leading order O(ε−1), and we can finally apply
Young’s inequality with the same constant η2/ε used for the linear part, to get
(4.17)

1

ε3

〈
∂βv ∂

α
xQ(Mε,Mε), ∂βv ∂

α
x f
〉
L2
x,v

(
µµµ−

1
2

) 6 δ2
MSCQ(δ)

η2

+
η2

ε2

∥∥∂βv ∂αx f
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) .
To conclude, since 〈v〉γ > 1, it is straightforward that∥∥∂βv ∂αx f

∥∥
L2
x,v

(
µµµ−

1
2

) 6 ∥∥∂βv ∂αx f
∥∥
L2
x,v

(
〈v〉γ/2µµµ−

1
2

) , ∀f ∈ Hs
(
T3 × R3,µµµ−

1
2

)
.
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Thanks to this inequality, we can further bound the linear part (4.15) to finally
ensure the validity of the first estimate (3.11), by gathering (4.15) and (4.17) with

the choices Cα,β = max
{

CL(δ)
mini ci,∞

, CQ(δ)
}

.

The same arguments can be used to derive estimate (3.12). The only difference is
that, in the Hs

ε norm, we only have a factor ε multiplying the commutator. There-
fore, in this case, we are constrained to preserve the order ε−1 in front of each
term. This is easily achieved by choosing a general positive constant η3 (in place of
η2/ε) each time Young’s inequality is applied. In this way, estimate (3.12) for the
commutator directly follows.

Step 2 - Estimates for the spatial derivatives. In order to prove estimate (3.13)
for the x-derivatives, we first expand the scalar product by means of the orthogonal
projection πL. We split
(4.18)
〈∂αxSε, ∂αx f〉

L2
x,v

(
µµµ−

1
2

) = 〈πL(∂αxSε), πL(∂αx f)〉
L2
x,v

(
µµµ−

1
2

) +
〈
∂αxSε⊥, ∂αx f⊥

〉
L2
x,v

(
µµµ−

1
2

),
and we study both contributions separately. Regarding the first term, let us begin
by making some considerations about πL(Sε). Using the linearity of the orthogonal
projection, together with the fact that Q(f , f) ∈ (kerL)⊥, from Lemma 3.6, we
obtain

πL(Sε) = πL

(
−1

ε
∂tM

ε − 1

ε2
v · ∇xM

ε

)
+

1

ε3
πL
(
Q(Mε,Mε)

)
= − 1

ε2
πL
(
ε∂tM

ε + v · ∇xM
ε
)
.

The idea is again to prove that this term is actually O(δMS). In fact, πL
(
ε∂tM

ε +

v · ∇xM
ε
)

is nothing but the projection onto the macroscopic equations governed
by the Maxwell-Stefan system (1.7)–(1.8)–(1.9). Thus, following the computations
in [14], it is easy to see that, for any 1 6 i 6 N ,

∫
R3

M ε
i (t, x, v)

 1
v
|v|2

 dv =


ci(t, x)

εci(t, x)ui(t, x)

3
mi
ci(t, x) + ε2ci(t, x)|ui(t, x)|2

 .

We can then deduce, for any 1 6 i 6 N , that∫
R3

(
ε∂tM

ε
i + v · ∇xM

ε
i

)
dv = ε

(
∂tci +∇x · (ciui)

)
,

∫
R3

miv
(
ε∂tM

ε
i + v · ∇xM

ε
i

)
dv = ε2mi

(
∂t(ciui) +∇x · (ciui ⊗ ui)

)
+∇xci,

∫
R3

mi|v|2 − 3√
6

(
ε∂tM

ε
i + v · ∇xM

ε
i

)
dv =

2ε√
6
∇x · (ciui) +

ε3

√
6

(
mi∂t(ci|ui|2) + 3∇x · (ci|ui|2ui)

)
,
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since ∫
R3

|v|2v · ∇xM
ε
i dv = ε

5

mi

∇x · (ciui) + ε3 3

mi

∇x · (ci|ui|2ui).

The fact that (c,u) is a solution of the system (1.7)–(1.8)–(1.9) ensures that, for
any 1 6 i 6 N ,

∂tci +∇x · (ciui) = 0,

with
N∑
i=1

∇xci = 0, ∂t

(
N∑
i=1

ci

)
= 0, ∇x ·

(
N∑
i=1

ciui

)
= 0.

This allows to conclude from (2.5) that the orthogonal projection of Sε onto kerL
explicitly writes

πL(Sε) =

− v∑N
i=1 mici,∞

·

[
N∑
i=1

mi

(
∂t(ciui) +∇x · (ciui ⊗ ui)

)] (
miµi

)
16i6N

− ε√
6
∑N

i=1 ci,∞

[
N∑
i=1

(
mi∂t(ci|ui|2) + 3∇x · (ci|ui|2ui)

)](mi|v|2 − 3√
6

µi

)
16i6N

.

Supposing that we have all the required regularity on the solution (c,u), as done in
the previous step, we now note that either c̃i or ui always appear in each term of the
sums in the left-hand side. Therefore, we can infer the existence of two constants
C1, C2 > 0 such that∥∥∥∥∥

N∑
i=1

(
∂t(ciui) +∇x · (ciui ⊗ ui)

)∥∥∥∥∥
2

L2
x

6 C1δ
2
MS,

∥∥∥∥∥
N∑
i=1

(
mi∂t(ci|ui|2) + 3∇x · (ci|ui|2ui)

)∥∥∥∥∥
2

L2
x

6 C2δ
2
MS,

which in turn ensures that it is possible to control πL(Sε) in the L2
x,v

(
µµµ−

1
2

)
norm as

‖πL(Sε)‖2

L2
x,v

(
µµµ−

1
2

) 6 CπLδ
2
MS

∥∥(1 + |v|+ |v|2)µµµ
∥∥2

L2
x,v

(
µµµ−

1
2

)
6 CπLδ

2
MS,

since the integral is clearly finite (we have also used that ε ∈ (0, 1]).
Moreover, because the orthogonal projection only acts on the velocity variable, it

commutes with the x-derivatives. Note that this property was not at hand in the
previous step, when dealing with v-derivatives. Therefore, in the case |β| = 0 we
are looking at here, the arguments used for πL(Sε) apply in the exact same way to
πL(∂αxSε), allowing to deduce that

‖πL(∂αxSε)‖2

L2
x,v

(
µµµ−

1
2

) = ‖∂αxπL(Sε)‖2

L2
x,v

(
µµµ−

1
2

) 6 C(1)
α δ2

MS.
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We conclude that the first contribution can easily be estimated applying Young’s
inequality with a constant η4 > 0, to get

〈πL(∂αxSε), πL(∂αx f)〉
L2
x,v

(
µµµ−

1
2

) 6 1

η4

‖πL(∂αxSε)‖2

L2
x,v

(
µµµ−

1
2

) + η4 ‖πL(∂αx f)‖2

L2
x,v

(
µµµ−

1
2

)
6
δ2

MSC
(1)
α

η4

+ η4 ‖πL(∂αx f)‖2

L2
x,v

(
µµµ−

1
2

) .

(4.19)

The second contribution in (4.18) is handled in a very similar way, by explicitly
writing the definition of the orthogonal part. It gives〈
∂αxSε⊥, ∂αx f⊥

〉
L2
x,v

(
µµµ−

1
2

) =
〈
∂αxSε − πL(∂αxSε), ∂αx f⊥

〉
L2
x,v

(
µµµ−

1
2

)
=

〈
∂αxSε, ∂αx f⊥

〉
L2
x,v

(
µµµ−

1
2

) − 〈πL(∂αxSε), ∂αx f⊥
〉
L2
x,v

(
µµµ−

1
2

).
Looking at these two terms, we regognize the same structure of the scalar products
that led to estimates (4.15), (4.17) and (4.19). In fact, all the computations carried
out until now only depend on the particular form of the source term, and not on the
scalar product in itself (the final upper bounds have been always obtained thanks
to an application of Young’s inequality). Using Young’s inequality with two positive
constants η5/ε and η5, we can thus repeat the previous considerations to recover
(increasing the values of the constants if necessary)〈

∂αxSε, ∂αx f⊥
〉
L2
x,v

(
µµµ−

1
2

) 6 δ2
MS

(
CL(δ) + CQ(δ)

)
η5

+
η5

ε2

∥∥∂αx f⊥
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) ,
from (4.15)–(4.17), and〈

πL(∂αxSε), ∂αx f⊥
〉
L2
x,v

(
µµµ−

1
2

) 6 δ2
MSC

(1)
α

η5

+ η5

∥∥∂αx f⊥
∥∥2

L2
x,v

(
µµµ−

1
2

) ,
from (4.19). Therefore, since the L2

x,v

(
〈v〉γ/2µµµ− 1

2

)
norm controls the L2

x,v

(
µµµ−

1
2

)
norm,

we obtain 〈
∂αxSε⊥, ∂αx f⊥

〉
L2
x,v

(
µµµ−

1
2

) 6 δ2
MSC

(2)
α

η5

+
η5

ε2

∥∥∂αx f⊥
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) .(4.20)

We finally infer the validity of the last estimate (3.13), by gathering (4.19)–(4.20)

with the choice Cα = max
{
η5C

(1)
α , η4C

(2)
α

}
. This concludes the proof of Lemma 3.7.

Appendix A. Explicit Carleman representation of the operator Kε

We here provide the basic tools that are used in Lemma 3.4 to prove the regularizing
effect of ∂βv ∂

α
xKε. Looking at the work of Mouhot and Neumann [44] in the mono-

species context, the authors recover this property by transferring to the kernel of
the compact operator K all the derivatives, which are then computed and estimated
explicitly. This analysis is possible mainly because the kernel of K has itself an
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explicit expression. Ideally, one may want to apply a similar strategy in our multi-
species framework, but this would require knowing the structure of the kernel of
Kε.

In this first appendix we derive an explicit expression of the kernel of Kε, following
the methods of [17] where a Carleman representation of the Boltzmann multi-species
operator was obtained. In particular, we shall rework the pointwise estimates estab-
lished by the authors, replacing them by a series of pointwise equalities where all
the technical computations are made fully explicit.

Let us begin by recalling that Kε = (Kε
1 , . . . , K

ε
N) can be written componentwise,

for any f ∈ L2
(
R3,µµµ−

1
2

)
, under the kernel form [17, Lemma 5.1]

Kε
i (f)(v) =

N∑
j=1

Cij

∫
R3

 1

|v − v∗|

∫
Ẽijvv∗

Bij

(
v − V (w, v∗),

v∗−w
|w−v∗|

)
|w − v∗|

M ε
i (w) dẼ(w)

 f ∗j dv∗

+
N∑
j=1

Cji

∫
R3

 1

|v − v∗|

∫
Eijvv∗

Bij

(
v − V (v∗, w), w−v∗|w−v∗|

)
|w − v∗|

M ε
j (w) dE(w)

 f ∗i dv∗

−
N∑
j=1

∫
R3

(∫
S2
Bij(|v − v∗| , cos θ)M ε

i dσ

)
f ∗j dv∗,

where we have defined V (w, v∗) = v∗ + mim
−1
j w −mim

−1
j v and called Cij, Cji > 0

some explicit constants which only depend on the masses mi,mj. Moreover, we have
denoted by dE the Lebesgue measure on the hyperplane Eij

vv∗ , orthogonal to v − v∗
and passing through

VE(v, v∗) =
mi +mj

2mj

v − mi −mj

2mj

v∗,

and by dẼ the Lebesgue measure on the space Ẽij
vv∗ which corresponds to the hy-

perplane Eij
vv∗ whenever mi = mj, and to the sphere of radius R = R(v, v∗)

R =
mj

|mi −mj|
|v − v∗|

and centred at O = O(v, v∗)

O =
mi

mi −mj

v − mj

mi −mj

v∗,

whenever mi 6= mj.
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We can thus define, for any 1 6 i, j 6 N , the kernels

κ
(1)
ij (v, v∗) =

Cij
|v − v∗|

∫
Ẽijvv∗

Bij

(
v − V (w, v∗),

v∗−w
|w−v∗|

)
|w − v∗|

M ε
i (w) dẼ(w),

κ
(2)
ij (v, v∗) =

Cji
|v − v∗|

∫
Eijvv∗

Bij

(
v − V (v∗, w), w−v∗|w−v∗|

)
|w − v∗|

M ε
j (w) dE(w),

κ
(3)
ij (v, v∗) =

∫
S2
Bij(|v − v∗| , cos θ)M ε

i dσ,

where we have dropped the parameter ε in order to enlighten our notations. In this
way, each Kε

i can be rewritten as

Kε
i (f)(v) =

N∑
j=1

{∫
R3

κ
(1)
ij (v, v∗)f

∗
j dv∗ +

∫
R3

κ
(2)
ij (v, v∗)f

∗
i dv∗ −

∫
R3

κ
(3)
ij (v, v∗)f

∗
j dv∗

}
.

Let us now fix two indices i, j ∈ {1, . . . , N} and study each of the three kernels
separately.

A.1. Explicit form of κ
(1)
ij . The first kernel is easy to make explicit, since the

domain of integration Ẽij
vv∗ is a sphere. We thus perform an initial change of variables

consisting on a translation of its centre and a dilation of its radius, in order to end

up on S2. In this new coordinate system, κ
(1)
ij reads

κ
(1)
ij (v, v∗) =

Cijm
2
j

(mi −mj)2
|v − v∗|

∫
S2

bij(v, v∗, ω)

|Rω +O − v∗|1−γ
M ε

i (Rω +O) dω

where the angular part bij explicitly writes

bij(v, v∗, ω) = bij

((
v − V (Rω +O, v∗)

)
·
(
v∗ − (Rω +O)

)
|v − V (Rω +O, v∗)| |Rω +O − v∗|

)
,

recalling that we have defined V (w, v∗) = v∗+mim
−1
j w−mim

−1
j v. Simple algebraic

manipulations show that

v − V (Rω +O, v∗) = v − v∗ −
mi

mj

(Rω +O) +
mi

mj

v

− mi

|mi −mj|
|v − v∗|ω −

mj

mi −mj

(v − v∗),

and similarly

v∗ − (Rω +O) = − mj

|mi −mj|
|v − v∗|ω −

mi

mi −mj

(v − v∗).
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It is then easy to check that(
v − V (Rω +O, v∗)

)
·
(
v∗ − (Rω +O)

)
=

2mimj

(mi −mj)2
|v − v∗|2 +

m2
i +m2

j

(mi −mj)|mi −mj|
|v − v∗|(v − v∗) · ω

= |v − v∗|2
(

2mimj

(mi −mj)2
+

m2
i +m2

j

(mi −mj)|mi −mj|
(v − v∗) · ω
|v − v∗|

)
and

|v − V (Rω +O, v∗)|2 = |Rω +O − v∗|2

=
m2
i +m2

j

(mi −mj)2
|v − v∗|2 +

2mimj

(mi −mj)|mi −mj|
|v − v∗|(v − v∗) · ω

= |v − v∗|2
(

m2
i +m2

j

(mi −mj)2
+

2mimj

(mi −mj)|mi −mj|
(v − v∗) · ω
|v − v∗|

)
.

Thus, the angular part depends on v only through the cosine of the deviation angle
between v−v∗

|v−v∗| and ω ∈ S2, and finally reads

bij

(
ω · v − v∗
|v − v∗|

)
= bij

 2mimj
(mi−mj)2 +

m2
i+m

2
j

(mi−mj)|mi−mj |
(v−v∗)·ω
|v−v∗|

m2
i+m

2
j

(mi−mj)2 +
2mimj

(mi−mj)|mi−mj |
(v−v∗)·ω
|v−v∗|

 .

We can then rewrite our integral term κ
(1)
ij as

(A.1) κ
(1)
ij (v, v∗) = Cijci|v − v∗|γ

∫
S2

bij

(
ω · v−v∗|v−v∗|

)
ci∣∣∣ m2

i+m
2
j

(mi−mj)2 +
2mimj

(mi−mj)|mi−mj |
(v−v∗)·ω
|v−v∗|

∣∣∣1−γ
× e−

mi
2
|Rω+O|2+εmi(Rω+O)·ui−ε2

mi
2
|ui|2 dω,

where we have renamed for simplicity

Cij =
Cijm

2
j

(mi −mj)2

(mi

2π

)3/2

and the exponent explicitly reads

|Rω +O|2 =
m2
j

(mi −mj)2
|v − v∗|2 +

2mj|v − v∗|
(mi −mj)|mi −mj|

(miv −mjv∗) · ω

+
1

(mi −mj)2
|miv −mjv∗|2,

(Rω +O) · ui =
mj

|mi −mj|
|v − v∗|ω · ui +

(miv −mjv∗) · ui
mi −mj

.

This concludes the study for κ
(1)
ij .
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A.2. Explicit form of κ
(2)
ij . Recovering the explicit expression of κ

(2)
ij is more subtle.

We recall that the domain of integration Eij
vv∗ is the hyperplane orthogonal to v− v∗

and passing through

VE(v, v∗) =
mi +mj

2mj

v − mi −mj

2mj

v∗.

Let us consider ω ∈
(
Span(v − v∗)

)⊥
and let us make the initial change of variables

w = VE(v, v∗) + ω which translates Eij
vv∗ to the parallel hyperplane passing through

the origin of R3. Thus κ
(2)
ij transforms into

κ
(2)
ij (v, v∗) =

Cji
|v − v∗|

∫
Eijvv∗

Bij

(
v − V (v∗, w), w−v∗|w−v∗|

)
|w − v∗|

M ε
j (w) dE(w)

=
Cji
|v − v∗|

∫
(v−v∗)⊥

bij(v, v∗, ω)

|v − V (v∗, VE(v, v∗) + ω)|1−γ
M ε

j (VE(v, v∗) + ω) dω,

where the angulat part writes

bij(v, v∗, ω) = bij

((
v − V (v∗, VE(v, v∗) + ω) ·

(
VE(v, v∗) + ω − v∗

))
|v − V (v∗, VE(v, v∗) + ω)| |VE(v, v∗) + ω − v∗|

)
.

Easy calculations show that

VE(v, v∗) + ω − v∗ =
mi +mj

2mj

(v − v∗) + ω,

v − V (v∗, VE(v, v∗) + ω) =
mi +mj

2mj

(v − v∗)− ω,

and(
v − V (v∗, VE(v, v∗) + ω)

)
·
(
VE(v, v∗) + ω − v∗

)
=

(
mi +mj

2mj

)2

|v − v∗|2 − |ω|2,

|v − V (v∗, VE(v, v∗) + ω)|2 = |VE(v, v∗) + ω − v∗|2 =

(
mi +mj

2mj

)2

|v − v∗|2 + |ω|2.

Moreover, the exponent of the Maxwellian can be computed as follows. We initially
develop the square to get

|VE(v, v∗) + ω − εuj|2 = |VE(v, v∗) + ω|2 − 2ε
(
VE(v, v∗) + ω

)
· uj + ε2|uj|2.

The first term can be rewritten as

|VE(v, v∗) + ω|2 =

∣∣∣∣ω +
1

2
(v + v∗) +

mi

2mj

(v − v∗)
∣∣∣∣2

=

∣∣∣∣ω +
1

2
(v + v∗)

∣∣∣∣2 +
m2
i

4m2
j

|v − v∗|2 +
mi

2mj

(
|v|2 − |v∗|2

)
=

∣∣∣∣ω +
1

2
V ⊥
∣∣∣∣2 +

1

4

∣∣V ‖∣∣2 +
m2
i

4m2
j

|v − v∗|2 +
mi

2mj

(
|v|2 − |v∗|2

)
,
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where we have decomposed v + v∗ = V ‖ + V ⊥, with V ‖ being the projection onto
Span(v − v∗) and V ⊥ being the orthogonal part. In the same way, the second term
reads

(
VE(v, v∗) + ω

)
· uj =

(
1

2
V ‖ +

mi

2mj

(v − v∗)
)
· uj +

(
1

2
V ⊥ + ω

)
· uj.

Since by the definition of V ‖

∣∣V ‖∣∣2 =

(
(v + v∗) · (v − v∗)

)2

|v − v∗|2
=
||v|2 − |v∗|2|2

|v − v∗|2
,

the kernel κ
(2)
ij becomes

κ
(2)
ij (v, v∗) = Pij(v, v∗)

∫
(v−v∗)⊥

bij(v, v∗, ω)Wij(v, v∗, ω)M ε
j

(
ω +

1

2
V ⊥
)

dE(ω),

where

Pij(v, v∗) =
Cji
|v − v∗|

e
− m2

i
8mj
|v−v∗|2−

mj
8

||v|2−|v∗|2|2
|v−v∗|2

+ε
mi
2

(v−v∗)·uj+ε
mj
2
|v|2−|v∗|2
|v−v∗|

(v−v∗)·uj
|v−v∗|

√
µi
µ∗i
,

bij(v, v∗, ω) = bij


(
mi+mj

2mj

)2

|v − v∗|2 − |ω|2(
mi+mj

2mj

)2

|v − v∗|2 + |ω|2

 ,

Wij(v, v∗, ω) =

((
mi +mj

2mj

)2

|v − v∗|2 + |ω|2
) γ−1

2

.

Finally, it remains to take care of the domain of integration which still depends
on (v, v∗). The idea is to transform the hyperplane defined by (v−v∗)⊥ to end up on
R2. Proceeding as in [43, Proposition 2.4], we first observe that the integral is even
with respect to v − v∗, since it only depends on its modulus. Thus, we focus on the
set of relative velocities v− v∗ such that the first coordinate is nonnegative. Call e1

the first unit vector of the corresponding orthonormal basis and, for any fixed v−v∗
|v−v∗| ,

introduce the linear transformation

L
(
v − v∗
|v − v∗|

,X
)

= 2

(
e1 + v−v∗

|v−v∗|

)
· X∣∣∣e1 + v−v∗

|v−v∗|

∣∣∣2
(
e1 +

v − v∗
|v − v∗|

)
−X , ∀X ∈ R3,

which corresponds to the specular reflection through the axis defined by e1 + v−v∗
|v−v∗| .

Now, L is a diffeomorphism from {X = (0, X) , X ∈ R2} onto (v−v∗)⊥, with unitary
Jacobian matrix. Thus, we can use this linear transformation to pass from (v−v∗)⊥
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to R2 into the integral of κ
(2)
ij , which can be finally explicitly written as

(A.2) κ
(2)
ij (v, v∗) =

Pij(v, v∗)
∫
R2

bij


(
mi+mj

2mj

)2

|v − v∗|2 − |X|2(
mi+mj

2mj

)2

|v − v∗|2 + |X|2

((mi +mj

2mj

)2

|v − v∗|2 + |X|2
) γ−1

2

×M ε
j

(
L
(
v − v∗
|v − v∗|

,

(
0, X +

1

2
X

)))
dX,

where we have called X ∈ R2 the preimage of V ⊥ ∈ (v − v∗)⊥ through the transfor-
mation L, and we have used the straightforward identity∣∣∣∣L( v − v∗

|v − v∗|
, (0, X)

)∣∣∣∣ = |X|, ∀X ∈ R2, ∀v, v∗ ∈ R3.

This concludes the study for κ
(2)
ij .

A.3. Explicit form of κ
(3)
ij . The analysis of κ

(3)
ij is the easiest one, since it is already

fully explicit. It simply reads

κ
(3)
ij (v, v∗) =

∫
S2
Bij(|v − v∗| , cos θ)M ε

i dσ

=

∫
S2
bij

(
σ · v − v∗
|v − v∗|

)
|v − v∗|γM ε

i (v)dσ.

This concludes its study.

Appendix B. Proofs of the a priori energy estimates for the
Boltzmann equation

We shall follow the computations in [15, Appendix B], in order to show that we

recover very similar a priori estimates for the quantities in Hs
x,v

(
µµµ−

1
2

)
.

Let us thus consider an integer s ∈ N∗ and a function f ∈ Hs
(
T3×R3,µµµ−

1
2

)
which

solves the perturbed Boltzmann equation

(B.1) ∂tf +
1

ε
v · ∇xf =

1

ε2
Lε(f) +

1

ε
Q(f , f) + Sε,

and satisfies initially
∥∥πTε(f in)

∥∥
L2
x,v

(
µµµ−

1
2

) = O(δMS). In particular, we suppose from

now on that δMS 6 1. Indeed, even if not optimal, this choice helps in enlightening
the presentation.

To simplify the computations, we recall that we denote f⊥ = f − πL(f) the pro-
jection onto (kerL)⊥.
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B.1. Time evolution of ‖f‖2

L2
x,v

(
µµµ−

1
2

). We initially take the scalar product of (B.1)

against fµµµ−1 and we integrate in x and v to get

d

dt
‖f‖2

L2
x,v

(
µµµ−

1
2

) =
2

ε2
〈Lε(f), f〉

L2
x,v

(
µµµ−

1
2

) − 2

ε
〈v · ∇xf , f〉

L2
x,v

(
µµµ−

1
2

)
+

2

ε
〈Q(f , f), f〉

L2
x,v

(
µµµ−

1
2

) + 2 〈Sε, f〉
L2
x,v

(
µµµ−

1
2

) .
Thanks to the anti-symmetry of v · ∇x, the term containing the transport operator
vanishes. In order to bound the linear term, we exploit the spectral gap estimate
(3.7) satisfied by Lε. We successively obtain

(B.2)
2

ε2
〈Lε(f), f〉

L2
x,v

(
µµµ−

1
2

) 6 − 2

ε2

(
λL − (ε+ η1)CL

2

)∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+

2δMSC
L
2

η1

‖πL(f)‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
6 − 2

ε2

(
λL − (ε+ η1)CL

2

)∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) + δMS
4CL

2 CπCT3

η1

‖∇xf‖2

L2
x,v

(
µµµ−

1
2

)
+ δ3

MS

2CL
2 CπC

T

η1

,

where we have also used the equivalence between the L2
x,v

(
〈v〉γ/2µµµ− 1

2

)
and L2

x,v

(
µµµ−

1
2

)
norms on kerL from Lemma 3.9, and the Poincaré inequality (3.16).

The bilinear term is handled thanks to properties (3.8)–(3.9). Applying Young’s
inequality with a positive constant η/ε, we recover

(B.3)
2

ε
〈Q(f , f), f〉

L2
x,v

(
µµµ−

1
2

) 6 2

η
G0
x(f , f)2 +

2η

ε2

∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

).
Finally, the source term is dealt with using estimate (3.13) for the x-derivatives,
which also holds when |α| = 0, with some positive constant C. Applying again the
Poincaré inequality (3.16), we compute

2〈Sε, f〉
L2
x,v

(
µµµ−

1
2

) 6 2δ2
MSC

η4η5

+ 2η4 ‖πL(f)‖2

L2
x,v

(
µµµ−

1
2

) +
2η5

ε2

∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
6

2δ2
MSC

η4η5

+
2η5

ε2

∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) + 4η4CT3 ‖∇xf‖2

L2
x,v

(
µµµ−

1
2

)
+ 2η4δ

2
MSC

T.

(B.4)



MULTI-SPECIES BOLTZMANN TO MAXWELL-STEFAN 67

Gathering inequalities (B.2)–(B.4), with the choices η = η1 = η5 = λL
4(CL

2 +1)
and

also η4 = δMS and ε 6 η, we obtain

d

dt
‖f‖2

L2
x,v

(
µµµ−

1
2

) 6 − λL
ε2

∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
8(CL

2 + 1)

λL
G0
x(f , f)2

+ δMS

(
8CT3 +

32CL
2 CπCT3(CL

2 + 1)

λL

)
‖∇xf‖2

L2
x,v

(
µµµ−

1
2

)
+ δMS

(
2CT +

8CL
2 CπC

T(CL
2 + 1)

λL
+

8C(CL
2 + 1)

λL

)
,

(B.5)

holding for any δMS ∈ [0, 1]. By choosing

C(1) = 8CT3 +
32CL

2 CπCT3(CL
2 + 1)

λL
,

C̃ = 2CT +
8CL

2 CπC
T(CL

2 + 1)

λL
+

8C(CL
2 + 1)

λL
,

we thus recover the first estimate (3.19).

B.2. Time evolution of ‖∇xf‖2

L2
x,v

(
µµµ−

1
2

). The time evolution of the L2
x,v

(
µµµ−

1
2

)
norm of ∇xf is given by

d

dt
‖∇xf‖2

L2
x,v

(
µµµ−

1
2

) =
2

ε2
〈∇xL

ε(f),∇xf〉
L2
x,v

(
µµµ−

1
2

) − 2

ε
〈∇x (v · ∇xf) ,∇xf〉

L2
x,v

(
µµµ−

1
2

)
+

2

ε
〈∇xQ(f , f),∇xf〉

L2
x,v

(
µµµ−

1
2

) + 2 〈∇xS
ε,∇xf〉

L2
x,v

(
µµµ−

1
2

) .
First of all, since the transport operator commutes with x-derivatives, the anti-
symmetry property allows again to get rid of it. We then study the linearized
operator Lε. Applying the Leibniz derivation rule and using the orthogonality of Q
to kerL given by (3.8), we initially observe that

〈∇xL
ε(f),∇xf〉

L2
x,v

(
µµµ−

1
2

) =
〈
Q(∇xM

ε, f) + Q(f ,∇xM
ε),∇xf

⊥〉
L2
x,v

(
µµµ−

1
2

)
+ 〈Lε(∇xf),∇xf〉

L2
x,v

(
µµµ−

1
2

) .(B.6)

The addends involving the derivative of Mε are controlled by a factor of order
O(εδMS). Using estimate (3.4) we thus get〈

Q(∇xM
ε, f) + Q(f ,∇xM

ε),∇xf
⊥〉

L2
x,v

(
µµµ−

1
2

)
6 εδMSC

L
1 Kx ‖f‖

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) ∥∥∇xf
⊥∥∥

L2
x,v

(
〈v〉γ/2µµµ−

1
2

).
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Using the fact that f = πL(f) + f⊥ and the equivalence of the L2
x,v

(
µµµ−

1
2

)
and

L2
x,v

(
〈v〉γ/2µµµ− 1

2

)
norms for πL(f), we can then apply Young’s inequality with a pos-

itive constant η/ε (and increment Kx if necessary) to recover the upper bound〈
Q(∇xM

ε, f) + Q(f ,∇xM
ε),∇xf

⊥〉
L2
x,v

(
µµµ−

1
2

)
6 ηδMSC

L
1 Kx

∥∥∇xf
⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
2εδMSC

L
1 Kx

η

∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+

2ε2δMSCπC
L
1 Kx

η
‖πL(f)‖2

L2
x,v

(
µµµ−

1
2

) ,
where we have also used that ε 6 1. Moreover, the second term of (B.6) is handled
thanks to estimate (3.7) on the spectral gap of Lε, and can be bounded as

〈Lε(∇xf),∇xf〉
L2
x,v

(
µµµ−

1
2

) 6 −(λL − (ε+ η1)CL
2

)∥∥∇xf
⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+ ε2δMS

CL
2

η1

‖πL(f)‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) .
Choosing η = η1, we can finally apply the Poincaré inequality (3.16) to obtain

(B.7)
2

ε2
〈∇xL

ε(f),∇xf〉
L2
x,v

(
µµµ−

1
2

)
6 − 2

ε2

(
λL − εCL

2 − η1(CL
2 + δMSC

L
1 Kx)

)∥∥∇xf
⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+

4δMSC
L
1 Kx

εη1

∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)+8δMSCπCT3(CL
2 + 2CL

1 Kx)

η1

‖∇xf‖2

L2
x,v

(
µµµ−

1
2

)
+

4δ3
MSCπC

T(CL
2 + 2CL

1 Kx)

η1

.

The non-linear term is easily handled thanks to properties (3.8)–(3.9). Applying
Young’s inequality with a positive constant η1/ε we successively get

2

ε
〈∇xQ(f , f),∇xf〉

L2
x,v

(
µµµ−

1
2

) =
2

ε

〈
∇xQ(f , f),∇xf

⊥〉
L2
x,v

(
µµµ−

1
2

)
6

2

η1

G1
x(f , f)2 +

2η1

ε2

∥∥∇xf
⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

).(B.8)

Finally, the source term is dealt with using estimate (3.13) on x-derivatives as before,
to get
(B.9)

2 〈∇xS
ε,∇xf〉

L2
x,v

(
µµµ−

1
2

) 6 2δ2
MSCx
η4η5

+ 2η4 ‖∇xf‖2

L2
x,v

(
µµµ−

1
2

)+
2η5

ε2

∥∥∇xf
⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

),
where we have also used that ‖πL(∇xf)‖2

L2
x,v

(
µµµ−

1
2

) 6 ‖∇xf‖2

L2
x,v

(
µµµ−

1
2

).



MULTI-SPECIES BOLTZMANN TO MAXWELL-STEFAN 69

To conclude, summing equations (B.7)–(B.9) and recalling that δMS 6 1, we
recover the estimate

d

dt
‖∇xf‖2

L2
x,v

(
µµµ−

1
2

) 6 − 2

ε2

(
λL−εCL

2 −η1(1+CL
2 +CL

1 Kx)−η5

)∥∥∇xf
⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+

4δMSC
L
1 Kx

εη1

∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
2

η1

G1
x(f , f)2

+

(
2η4 +

8δMSCπCT3(CL
2 + 2CL

1 Kx)

η1

)
‖∇xf‖2

L2
x,v

(
µµµ−

1
2

)
+

2δ2
MSCx
η4η5

+
4δMSCπC

T(CL
2 + 2CL

1 Kx)

η1

.

By choosing

η1 = η5 =
λL

2(2 + 2CL
2 + CL

1 Kx)
, η4 = δMS, ε 6 η1,

we finally obtain

d

dt
‖∇xf‖2

L2
x,v

(
µµµ−

1
2

) 6 −λL
ε2

∥∥∇xf
⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+
δMS

ε

8Kx(2 + 2CL
2 + CL

1 Kx)

λL

∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
8(2 + 2CL

2 + CL
1 Kx)

λL
G1
x(f , f)2

+ δMS

(
2 +

16CπCT3(CL
2 + 2Kx)(2 + 2CL

2 + CL
1 Kx)

λL

)
‖∇xf‖2

L2
x,v

(
µµµ−

1
2

)
+ δMS

(
4Cx + 8CπC

T(CL
2 + 2CL

1 Kx)
)2 + 2CL

2 + CL
1 Kx

λL
,

which is exactly (3.20), with

C(2) = 2 +
16CπCT3(CL

2 + 2CL
1 Kx)(2 + 2CL

2 + CL
1 Kx)

λL
,

C(3) =
8Kx(2 + 2CL

2 +Kx)

λL
,

C̃x =
(
4Cx + 8CπC

T(CL
2 + 2CL

1 Kx)
)2 + 2CL

2 + CL
1 Kx

λL
.
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B.3. Time evolution of ‖∇vf‖2

L2
x,v

(
µµµ−

1
2

). The evolution equation for the L2
x,v

(
µµµ−

1
2

)
norm of ∇vf writes

d

dt
‖∇vf‖2

L2
x,v

(
µµµ−

1
2

) =
2

ε2
〈∇vL

ε(f),∇vf〉
L2
x,v

(
µµµ−

1
2

) − 2

ε
〈∇v (v · ∇xf) ,∇vf〉

L2
x,v

(
µµµ−

1
2

)
+

2

ε
〈∇vQ(f , f),∇vf〉

L2
x,v

(
µµµ−

1
2

) + 2 〈∇vS
ε,∇vf〉

L2
x,v

(
µµµ−

1
2

) .
The first term can be rewritten using the operators Kε and νννε and is then dealt with
thanks to estimates (3.5)–(3.6). We have, for any ξ > 0,

2

ε2
〈∇vL

ε(f),∇vf〉
L2
x,v

(
µµµ−

1
2

) =
2

ε2
〈∇vK

ε(f),∇vf〉
L2
x,v

(
µµµ−

1
2

) − 2

ε2
〈∇vννν

ε(f),∇vf〉
L2
x,v

(
µµµ−

1
2

)
6

2(CK
1 (ξ) + Cννν

5 )

ε2
‖f‖2

L2
x,v

(
µµµ−

1
2

) − 2Cννν
3

ε2
‖∇vf‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+

2ξCK
2

ε2
‖∇vf‖2

L2
x,v

(
µµµ−

1
2

) .
Now, we use the identity

‖f‖2

L2
x,v

(
µµµ−

1
2

) =
∥∥f⊥∥∥2

L2
x,v

(
µµµ−

1
2

) + ‖πL(f)‖2

L2
x,v

(
µµµ−

1
2

) ,
and the fact that the L2

x,v

(
〈v〉γ/2µµµ− 1

2

)
norm controls the L2

x,v

(
µµµ−

1
2

)
norm to deduce

the first upper bound

(B.10)
2

ε2
〈∇vL

ε(f),∇vf〉
L2
x,v

(
µµµ−

1
2

)
6

2
(
CK

1 (ξ) + Cννν
5

)
ε2

∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) − 2

ε2

(
Cν

3 − ξCK
2

)
‖∇vf‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+

4CT3

(
CK

1 (ξ) + Cννν
5

)
ε2

‖∇xf‖2

L2
x,v

(
µµµ−

1
2

) +
2δ2

MSC
T
(
CK

1 (ξ) + Cννν
5

)
ε2

,

where we also applied the Poincaré inequality (3.16). Next, the transport term is
easily estimated thanks to Young’s inequality as

−2

ε
〈∇v (v · ∇xf) ,∇vf〉

L2
x,v

(
µµµ−

1
2

) =− 2

ε
〈∇xf ,∇vf〉

L2
x,v

(
µµµ−

1
2

)
6

2

η
‖∇xf‖2

L2
x,v

(
µµµ−

1
2

) +
2η

ε2
‖∇vf‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) ,

(B.11)

holding for any η > 0. The non-linear term is handled in a similar way, using
Young’s inequality with the same constant η/ε to recover

(B.12)
2

ε
〈∇vQ(f , f),∇vf〉

L2
x,v

(
µµµ−

1
2

) 6 2

η
G1
x,v(f , f)2 +

2η

ε2
‖∇vf‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) .
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Finally, the source term is dealt with using estimate (3.11), which gives

(B.13) 2 〈∇vS
ε,∇vf〉

L2
x,v

(
µµµ−

1
2

) 6 2δ2
MSCv
η2

+
2η2

ε2
‖∇vf‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) .
Therefore, summing (B.10)–(B.13) with the choices ξ = η = η2 =

Cννν
3

6 + 2CK
2

, we

can finally recover

(B.14)

d

dt
‖∇vf‖2

L2
x,v

(
µµµ−

1
2

) 6 2
(
CK

1 (ξ) + Cννν
5

)
ε2

∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)− Cννν
3

ε2
‖∇vf‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+

1

ε2

(
4CT3(CK

1 (ξ) + Cννν
5 ) +

ε2(12 + 4CK
2 )

Cννν
3

)
‖∇xf‖2

L2
x,v

(
µµµ−

1
2

)+12 + 4CK
2

Cννν
3

G1
x,v(f , f)2

+
δMS

ε2

(
2δMSC

T(CK
1 (ξ) + Cννν

5 ) +
δMSε

2(12 + 4CK
2 )

Cννν
3

)
which is estimate (3.21) with the choices

K1 = 2(CK
1 (ξ) + Cννν

5 ),

Kdx = 4CT3(CK
1 (ξ) + Cννν

5 ) +
4(3 + CK

2 )

Cννν
3

,

C̃v = 2CT(CK
1 (ξ) + Cννν

5 ) +
4(3 + CK

2 )

Cννν
3

,

where we have also used that both ε 6 1 and δMS 6 1.

B.4. Time evolution of 〈∇xf ,∇vf〉
L2
x,v

(
µµµ−

1
2

). The equation describing the time

evolution of the L2
x,v

(
µµµ−

1
2

)
norm of the commutator is given by

d

dt
〈∇xf ,∇vf〉

L2
x,v

(
µµµ−

1
2

) =
2

ε2
〈∇xL

ε(f),∇vf〉
L2
x,v

(
µµµ−

1
2

) − 2

ε
〈∇x(v · ∇xf),∇vf〉

L2
x,v

(
µµµ−

1
2

)
+

2

ε
〈∇xQ(f , f),∇vf〉

L2
x,v

(
µµµ−

1
2

) + 〈∇xS
ε,∇vf〉

L2
x,v

(
µµµ−

1
2

) .
For the linear term we shall successively apply the Leibniz derivation rule and the
decomposition ∇xf = ∇xf

⊥ + πL(∇xf) to obtain

2

ε2
〈∇xL

ε(f),∇vf〉
L2
x,v

(
µµµ−

1
2

) =
2

ε2

〈
Lε(∇xf

⊥),∇vf
〉
L2
x,v

(
µµµ−

1
2

)
+

2

ε2
〈(Lε − L)(πL(∇xf)),∇vf〉

L2
x,v

(
µµµ−

1
2

)
+

2

ε2
〈Q(∇xM

ε, f) + Q(f ,∇xM
ε),∇vf〉

L2
x,v

(
µµµ−

1
2

) ,
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where we have used that L(πL(∇xf)) = 0. Now, the first term is handled thanks to
estimate (3.4) as

2

ε2

〈
Lε(∇xf

⊥),∇vf
〉
L2
x,v

(
µµµ−

1
2

) 6 2CL
1

ε2

∥∥∇xf
⊥∥∥

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) ‖∇vf‖
L2
x,v

(
〈v〉γ/2µµµ−

1
2

) ,
and can be bounded using Young’s inequality with a positive constant e/ε, which
gives

2

ε2

〈
Lε(∇xf

⊥),∇vf
〉
L2
x,v

(
µµµ−

1
2

) 6 2CL
1 e

ε3

∥∥∇xf
⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
2CL

1

εe
‖∇vf‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) .
The second term is of order O(εδMS) and can be handled more easily. We again use
estimate (3.4) and Young’s inequality with a positive constant η, together with the

equivalence of the L2
x,v

(
µµµ−

1
2

)
and L2

x,v

(
〈v〉γ/2µµµ− 1

2

)
norms on kerL, to get

2

ε2
〈(Lε − L)(πL(∇xf)),∇vf〉

L2
x,v

(
µµµ−

1
2

)
6

2ηδMSC
L
1 Cπ

ε
‖πL(∇xf)‖2

L2
x,v
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µµµ−

1
2

) +
2CL

1

ηε
‖∇vf‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
6

2ηδMSC
L
1 Cπ

ε
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L2
x,v

(
µµµ−

1
2

) +
2CL

1

ηε
‖∇vf‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) .
At last, we have already seen how to treat the third term. Skipping the details, we
obtain

2

ε2
〈Q(∇xM

ε, f) + Q(f ,∇xM
ε),∇vf〉

L2
x,v

(
µµµ−

1
2

)
6

2δMSC
L
1 Kx

ηε
‖∇vf‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
4ηδMSC

L
1 Kx

ε

∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+

8ηδMSC
L
1 KxCπCT3

ε
‖∇xf‖2

L2
x,v

(
µµµ−

1
2

) +
4ηδ3

MSC
L
1 KxCπC

T

ε
.

using again Young’s inequality with η > 0, and the Poincaré inequality (3.16).
Collecting these upper bounds, we finally derive the estimate for the linear term

(B.15)
2

ε2
〈∇xL

ε(f),∇vf〉
L2
x,v

(
µµµ−

1
2

)
6

2CL
1 e

ε3

∥∥∇xf
⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +

(
2 + 2δMSC

L
1 Kx

ηε
+

2CL
1

εe

)
‖∇vf‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+

4ηδMSC
L
1 Kx

ε

∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)+2ηδMS(1 + 4CL
1 KxCπCT3)

ε
‖∇xf‖2

L2
x,v

(
µµµ−

1
2

)
+

4ηδ3
MSC

L
1 KxCπC

T

ε
.
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For the transport term we successively integrate by parts, first in x and then in v.
Direct calculations allows to recover

−2

ε
〈∇x(v · ∇xf),∇vf〉

L2
x,v

(
µµµ−

1
2

) =− 1

ε
‖∇xf‖2

L2
x,v

(
µµµ−

1
2

) − 1

ε
‖v · ∇xf‖2

L2
x,v

(
µµµ−

1
2

)
6− 1

ε
‖∇xf‖2

L2
x,v

(
µµµ−

1
2

) .

(B.16)

The non-linear term is treated thanks to Young’s inequality with the usual positive
constant η, and we get

2

ε
〈∇xQ(f , f),∇vf〉

L2
x,v

(
µµµ−

1
2

) 6 2η

ε
G1
x,v(f , f)2 +

2

ηε
‖∇vf‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) .(B.17)

The source term is then treated using estimate (3.12), which gives

(B.18) 2 〈∇xS
ε,∇vf〉

L2
x,v

(
µµµ−

1
2

) 6 2δ2
MSCx,v
εη3

+
2η3

ε
‖∇vf‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) .
Gathering inequalities (B.15)–(B.18) with the choices η = e and η3 = 1/e, we

then recover the following estimate

(B.19)
d

dt
〈∇xf ,∇vf〉

L2
x,v

(
µµµ−

1
2

)
6 −1

ε

(
1− 2eδMS(1 + 4CL

1 KxCπCT3)
)
‖∇xf‖2

L2
x,v

(
µµµ−

1
2

) +
2e

ε
G1
x,v(f , f)2

+
4eCL

1 Kx

ε

∥∥f⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
5 + 2CL

1 (1 +Kx)

εe
‖∇vf‖2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+

2CL
1 e

ε3

∥∥∇xf
⊥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
2eδ2

MS(2CL
1 KxCπC

T + Cx,v)

ε
,

where we have also used that δMS 6 1. The choices

C(4) = 5 + 2CL
1 (1 +Kx), C(5) = 2(1 + 4CL

1 KxCπCT3),

C(6) = 4CL
1 Kx, C̃x,v = 2(2CL

1 KxCπC
T + Cx,v)

finally lead to estimate (3.22).

B.5. Time evolution of ‖∂αx f‖2

L2
x,v

(
µµµ−

1
2

). Consider now α ∈ N3 such that |α| 6 s.

Using the Leibniz derivation rule for multi-indices, a direct iteration of the compu-
tations that we have made for ‖∇xf‖2

L2
x,v

(
µµµ−

1
2

) immediately gives estimate (3.23), for

some constants C(7), Kα, C(8) and C̃α which only depend on λL, CL
2 , Cπ, CT3 , CT

and Cα.
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B.6. Time evolution of ∂βv ∂
α
x f . Let α, β ∈ N3 be two multi-indices such that

|α| + |β| 6 s. The estimate for the L2
x,v

(
µµµ−

1
2

)
norm of ∂βv ∂

α
x f is obtained in a very

similar way to the the one derived for the L2
x,v

(
µµµ−

1
2

)
norm of ∇vf , therefore we shall

skip some passages. Initially, the evolution equation reads

d

dt

∥∥∥∂βv ∂αx f
∥∥∥2

L2
x,v

(
µµµ−

1
2

)
=

2

ε2

〈
∂βv ∂

α
xLε(f), ∂βv ∂

α
x f
〉
L2
x,v

(
µµµ−

1
2

) − 2

ε

〈
∂βv ∂

α
x (v · ∇xf) , ∂βv ∂

α
x f
〉
L2
x,v

(
µµµ−

1
2

)
+

2

ε

〈
∂βv ∂

α
xQ(f , f), ∂βv ∂

α
x f
〉
L2
x,v

(
µµµ−

1
2

) + 2
〈
∂βv ∂

α
xSε, ∂βv ∂

α
x f
〉
L2
x,v

(
µµµ−

1
2

) .
Thanks to estimates (3.5)-(3.6) on Kε and νννε, the linear term can be bounded as
already seen in the case of ∇vf . We get

(B.20)
2

ε2

〈
∂βv ∂

α
xLε(f), ∂βv ∂

α
x f
〉
L2
x,v

(
µµµ−

1
2

)
6 − 2

ε2

(
Cννν

3 − ε1{|α|>1}C
ννν
4 − ξCK

2

)∥∥∂βv ∂αx f
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)
+

2

ε2

(
Cννν

5 + ε1{|α|>1}C
ννν
6 + CK

1 (ξ)
)
‖f‖2

Hs−1
x,v

(
µµµ−

1
2

)
+ 1{|α|>1}

Cννν
7

ε

∑
0<|α′|+|β′|6s−1

∥∥∥∂β′v ∂α′x f
∥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) .
Next, direct calculations and the anti-symmetry of the transport term show that〈

∂βv ∂
α
x (v · ∇xf) , ∂βv ∂

α
x f
〉
L2
x,v

(
µµµ−

1
2

) =
∑

k, βk>0

βk
〈
∂β−ek
v ∂α+ek

x f , ∂βv ∂
α
x f
〉
L2
x,v

(
µµµ−

1
2

) .
Since k 6 3 and βk 6 s, using Young’s inequality with a positive constant η/ε > 0
we can recover the estimate

(B.21) − 2

ε

〈
∂βv ∂

α
x (v · ∇xf) , ∂βv ∂

α
x f
〉
L2
x,v

(
µµµ−

1
2

)
6

6η

ε2

∥∥∂βv ∂αx f
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) +
2s

η

∑
k,βk>0

∥∥∂β−ek
v ∂α+ek

x f
∥∥2

L2
x,v

(
µµµ−

1
2

) .
We again apply Young’s inequality with the same constant η/ε to control the non-
linear term

(B.22)
2

ε

〈
∂βv ∂

α
xQ(f , f), ∂βv ∂

α
x f
〉
L2
x,v

(
µµµ−

1
2

) 6 2η

ε2

∥∥∂βv ∂αx f
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

)+
2

η
Gsx,v(f , f)2,

while the source term is dealt with thanks to estimate (3.11)

(B.23) 2
〈
∂βv ∂

α
xSε, ∂βv ∂

α
x f
〉
L2
x,v

(
µµµ−

1
2

) 6 2δ2
MSCα,β
η2

+
2η2

ε2

∥∥∂βv ∂αx f
∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2

) .
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We now collect estimates (B.20)–(B.23) with the choice η2 = η, to recover

d

dt

∥∥∂βv ∂αx f
∥∥2

L2
x,v

(
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1
2

)
6 − 2

ε2

(
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(
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+

2
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(
Cννν
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1 (ξ)
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1
2
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7

ε

∑
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∥∥∥∂β′v ∂α′x f
∥∥∥2

L2
x,v

(
〈v〉γ/2µµµ−

1
2
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+

2s

η

∑
k, βk>0
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x f
∥∥2

L2
x,v

(
µµµ−

1
2

) +
2

η
Gsx,v(f , f)2 +

2δ2
MSCα,β
η

.

Recalling that both ε 6 1 and δMS 6 1, and using the upper bound

1{|α|>1}
∑

0<|α′|+|β′|6s−1

∥∥∥∂β′v ∂α′x f
∥∥∥2

L2
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(
〈v〉γ/2µµµ−

1
2

) 6 ‖f‖2
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x,v

(
〈v〉

γ
2 µµµ−

1
2

) ,
together with 1{|α|>1} 6 1, so that we finally obtain estimate (3.24) by choosing

ξ = η =
Cννν

3

2(5 + CK
2 + Cννν

4 )
, ε 6 η,

Ks−1 = 2
(
Cννν

5 + Cννν
6 + CK

1 (ξ)
)
,

C(9) =
4s(5 + CK

2 + Cννν
4 )
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3

,

C̃α,β =
4Cα,β(5 + CK

2 + Cννν
4 )

Cννν
3

.

B.7. Time evolution of 〈∂αx f , ∂ek
v ∂

α−ek
x f〉

L2
x,v

(
µµµ−

1
2

). At last, consider a multi-index

α ∈ N3, with |α| 6 s and αk > 0. The equation satisfied by the L2
x,v

(
µµµ−

1
2

)
norm of

the commutator for higher derivatives is

d
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(
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)
=
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) .
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Thanks to Leibniz derivation rule, the linear operator can be split as

∂αxLε(f) = ∂αxQ(Mε, f) + ∂αxQ(f ,Mε)

= Lε(∂αx f) +
∑
γ6α
|γ|<|α|

(
α

γ

)(
Q(∂γxM
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x Mε)

)
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+
∑
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|γ|<|α|

(
α

γ

)(
Q(∂γxM

ε, ∂α−γx f) + Q(∂γxf , ∂
γ−α
x Mε)

)

where the second and third terms are of order O(εδMS). Using estimate (3.4) we can
thus initially bound the linear term as
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(
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1
2

) ,
for some positive (explicitly computable) constants K ′dx and K̃dx. We then apply
Young’s inequality to the first term with a positive constant e/ε and to the second
and third ones with the constant e > 0, to recover

(B.24)
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The transport term is more tricky in this case. Indeed, integrating by parts in xk
and then in vk, we get the identity

−2

ε
〈∂αx (v · ∇xf),∂ek

v ∂
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x f〉

L2
x,v

(
µµµ−
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α
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〉
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x,v

(
µµµ−

1
2

) ,(B.25)

where the second term comes from the integration by parts when one derives the
maxwellian weight µµµ−1 with respect to the variable vk. Note that this term does
not have an explicit sign and could therefore create a problem when trying to close
the estimates. However, it is important to recall that we are not interested in the
estimate of each single |α| = s with αk > 0, but we only care about controlling the
sum of all these terms. In particular, one can prove that when summing over |α| 6 s
and αk > 0 with k = 1, 2, 3, we get

−
∑
|α|=s
k, αk>0

〈
∂α−ek
x (v · ∇xf), vk∂

α
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L2
x,v

(
µµµ−

1
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) 6 0,

so that the problematic term actually exhibits an explicit sign and we can get rid of
it.

Finally, thanks to Young’s inequality applied with the positive constant e/CL
1 , we

can control the non-linear term as
(B.26)
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) ,
while the source term is handled thanks to estimate (3.12), and writes
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Gathering estimates (B.24)–(B.27), together with the use of the upper bound
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choosing η3 = CL
1 /e and recalling that δMS 6 1, we finally obtain

(B.28)
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which is estimate (3.26) with the choices

C(10) = 3 +K ′dxCπ + 2K̃dx(1 + Cπ), C(11) = 2CL
1 K

′
dxCπ,

Kα,k = 2CL
1 K̃dx, C̃α,k =

2Cα,k
CL

1

.
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[25] E. S. Daus, A. Jüngel, C. Mouhot and N. Zamponi, Hypocoercivity for a linearized multispecies

Boltzmann system, SIAM J. Math. Anal., 48 (2016), 538–568.
[26] A. De Masi, R. Esposito and J. L. Lebowitz, Incompressible Navier-Stokes and Euler limits

of the Boltzmann equation, Comm. Pure Appl. Math., 42 (1989), 1189–1214.
[27] L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law

of polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids, 24 (2005),
219–236.

[28] R. S. Ellis and M. A. Pinsky, The first and second fluid approximations to the linearized
Boltzmann equation, J. Math. Pures Appl. (9), 54 (1975), 125–156.

[29] I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: hard spheres and
short-range potentials, Zurich Lectures in Advanced Mathematics, European Mathematical
Society (EMS), Zürich, 2013.
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