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Abstract

The response of museum artefacts and statues subjected to deliberate explosions of mod-

erate intensity is investigated and their vulnerability assessed. The study focuses on

the most predominant failure mechanisms, namely overturning and fracture due to the

tensile stresses developed by the impact of shock waves.

The rocking response is investigated relying on the existing knowledge and theory of

inverted pendulum structures subjected to earthquake loadings. An analytical, estab-

lished approach for determining the overturning domain, developed in a previous study,

is used to investigate the critical stand-off distance between the target and the explosive

in order to avoid toppling.

The proposed analytical model is adopted by defining appropriate correction param-

eters to consider the real geometry of the museum objects. We assess the overturning

domain of some emblematic statues of high aesthetic and cultural value, and namely:

Michelangelo’s David, Farnese Hercules, Aphrodite of Milos, Athena Giustiniani, Lao-

coön and His Sons, and Belvedere Torso.

Finally, direct damage due to the high tensile stresses is investigated and computed

for different target geometries. For the dimensions and explosive quantities herein con-

sidered, overturning is found to prevail over direct material damage for targets with

regular geometry.

Keywords: Museum artefacts; Rocking; Fracture; Blast load; Heritage; Preservation.

Preprint submitted to Journal of Cultural Heritage October 18, 2019



1. Research aim

The resistance of un-anchored museum artefacts against fast-dynamic excitations

arising from explosions is studied herein. Namely, we investigate the vulnerability of

museum artefacts with the aim of providing criteria for their preservation against delib-

erate blasts of moderate intensity. Two are the main failure mechanisms considered in

this study: overturning, produced by the rocking of the artefact, and (direct) material

damage caused by the shock waves. We aim at the preservation of un-anchored equip-

ment and museum (slender) artefacts, such as statues. In particular, our study proposes

to estimate safety perimeters (passive protections) around such statues for assuring their

integrity against explosive’s amounts difficult to be identified at the museum’s entrance.

That is why we consider here moderate intensity blasts.

2. Introduction

The rocking and overturning of artefacts is investigated using the well-established

model of the inverted pendulum structures [1, 2, 3, 4, 5]. An analytical approach to

compute the rocking response and the overturning domain of slender, rectangular blocks,

formerly developed by the authors [6], is here adopted. In particular, moment balance

equations and overturning conditions are used to determine the critical (minimum) stand-

off distance between the source and the target to prevent toppling.

Besides overturning, direct material damage due to the development of important

tensile stresses arising from the impinging blast waves plays a crucial role. Direct material

damage is investigated using a detailed Finite Element (FE) simulations.

For the dimensions and explosive quantities considered herein, overturning is found

to be predominant for targets with regular geometry. This holds true when considering

the strain rate effects (due to the fast-dynamic excitations involved in explosions) and

their influence on the material strength (see e.g. [7, 8]). For targets with complex shapes,

failure due to direct damage is found to be the predominant mechanism. Sliding and
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uplifting failure modes are always negligible over toppling and material damage.

Engineering applications of the present study can be found in several domains. Of

interest here is the preservation of un-anchored equipment and museum (slender) arte-

facts, such as statues. In particular, we consider some of the most emblematic statues of

the world cultural heritage and namely: Michelangelo’s David (Gallery of the Academy

of Florence, Florence), Farnese Hercules (Archaeological National Museum, Naples),

Aphrodite of Milos (Louvre Museum, Paris), Athena Giustiniani, Laocoön and His Sons,

and Belvedere Torso (Vatican Museums, Vatican City). These objects belong to the world

cultural heritage and their protection has raised important issues throughout history. We

refer e.g. to the lost and/or destroyed artefacts of Athena Parthenos, Colossus of Rhodes,

the statue of Zeus at Olympia, and more recently the Buddhas statue of Bamiyan. The

proposed analytical model can further be used in the engineering design framework, for

securing historical buildings made of monolithic columns from collapse (e.g. classical

Greek and Roman temples [9, 10]).

Diagnostic analyses (to detect the presence of cracks and evaluate the material degra-

dation) as well as 3D technologies for digital survey of the real geometry of the artefacts

are mandatory to properly asses their vulnerability, see [11, 12, 13, 14].

Prevention based on active protective devices, e.g. screening, at the entrance of

museums may contrast the explosive threat and reduce the risk of damaged artefacts.

Nevertheless, we find a strong vulnerability of some existing museum objects, even for

small explosive quantities, whose detection may be demanding. Our study proposes to

estimate safety perimeters (passive protections) around such statues for assuring their

integrity against explosive’s amounts difficult to be identified at the museum’s entrance.

That is why we consider here moderate intensity blasts.

The paper is structured as follows. In Section 3.1 we present the approaches followed

to represent blast actions relying on either simplified models or more detailed ones.

Section 3.2 focuses on the overturning response mechanism of rectangular, slender blocks
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subjected to an explosion. We present an analytical approach, formerly developed by the

authors [6], to be used as a straightforward engineering tool to derive the critical stand-off

distance between the target and the explosive source to avoid toppling. In Section 3.3,

the analytical model is applied to museum artefacts and some emblematic examples of

existing statues are presented. Section 3.4 focuses on the vulnerability to direct material

damage due to blast loads for rectangular, slender blocks. Finally, in Section 4 the statue

of Aphrodite of Milos is used to compute the critical stand-off distance to avoid direct

material damage, which is compared to the one required to avoid overturning.

3. Material and methods

3.1. Blast actions

Explosion produces a blast wave of high-pressure accompanying high-temperature

and supersonic expansion of gases. The abrupt increase of the pressure carried by a

blast wave can produce severe structural damage. When the primary shock meets a

target, it generates on it the so-called reflected overpressure, Pr, which is the difference

between the pressure determined by the explosion increased by the reflection at target’s

surface and the ambient one, Po. Figure 1 shows the schematic time variation of Pr,

which is determined by the arrival time of the shock wave, tA, the overpressure peak,

Pro, the positive phase duration, to, negative phase duration, to−, and the underpressure

peak, Pro−. These parameters are functions of the distance R and the explosive weight

(conventionally expressed in TNT, trinitrotoluene, equivalent). Herein we consider only

the positive phase of the blast wave (safety approach, see [6]).

The pressure acting on a target due to blast loading is the sum of the incident overpressure

Ps and the dynamic pressure CD q := 1
2ρu|u|, with CD the drag coefficient (function of the

target shape and Mach and Reynold numbers, among other parameters), ρ the density,

and u the velocity of gas particles. Notice that the dynamic pressure contribution to

the reflected overpressure Pr varies with respect to the stand-off distance: for near-field

explosions, the dynamic pressure contribute may be as high as two times the incident

pressure (i.e. q/Ps ≈ 2), while for far-field blasts we record q/Ps ≈ 0.4, see [15].

The simulation of a blast can be conducted by using different approaches [16, 17],

i.e., empirical or physics-based ones. These models are briefly introduced below.
4



Overpressure (positive phase)

Overpressure (negative phase)

Figure 1: Time evolution of overpressure (i.e. the pressure measured relatively to the atmospheric one)

due to an explosion acting on a target. The proposed analytical model only considers the positive phase

of the overpressure (safe estimate of the rocking response). The negative pressure may have stabilising

effects (increase the block resistance to overturning).

3.1.1. Empirical models

Empirical models rely on best-fit interpolations of experimental results and mainly on

those of Kingery and Bulmash [18], which allow to determine the blast parameters and

pressure loading from the knowledge of the TNT equivalent explosive weight, W , and the

Hopkinson-Cranz scaled distance, Z = R/ 3
√
W (see Appendix A). The time evolution of

the positive phase of the reflected pressure is modelled with the well established modified

Friedlander equation [19],

Pr(t) = Pro

[(
1− t

to

)(
1− H [t− to]

)]
exp

(
−d

t

to

)
, (1)

where H [·] denotes the Heaviside (step) function, d is the exponential decay coeffi-

cient, and tA is taken as the origin of the time axis. The impulse ir associated to the

positive phase, which represents the area beneath the pressure curve, reads

ir =

∫ to

0

Pr dt =
[
e−d + d− 1

] Pro to
d2

, (2)

The above equation allows to determine the exponential decay coefficient, d, by equating

it with the best-fit interpolation of ir from experiments (see Appendix A).
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3.1.2. Numerical physics-based models

Physics-based, numerical approaches allow a rather detailed description of the main

features of the blast phenomenon with, of course, an increased calculation cost. They

rely on the definition of three domains: the target (statue), the explosive charge, and

the surrounding air. Through numerical simulations, detonation, propagation of shock

waves and their interaction with deformable structures can be efficiently modelled with a

Coupled Eulerian-Langrangian (CEL) scheme. The explosive and air domains are both

discretized by Finite Elements (Eulerian description). A Fluid-Structure Interaction

(FSI) approach based on a penalty contact algorithm [20] allows to transfer the pressure

from the propagating media to the target (Lagrangian description). We model air as a

viscous fluid; this is not dictated solely by physical, but also by practical reasons, namely

to avoid to avoid numerical, spurious oscillations in the rise in pressure over the blast

wave. For a more detailed description of the fluid-structure interaction phenomena and

their modelling, we refer to [21, 22, 23, 20]. Further details can also be found in [6].

3.2. Overturning of rectangular, slender blocks

3.2.1. Statement of the problem

The problem of a rigid block resting on a horizontal plane is studied based on the

following assumptions (Fig. 2):

i. A rectangular slender, rigid block is assumed with a uniformly distributed mass

m. The dimensions of the block are 2b × 2h × 2w and the radial distance from

the rocking pivot point O to the centre of gravity is r = b secα, where α is the

slenderness angle.

ii. The contact with the horizontal plane is assumed punctual at point O (no contact

moment). Contact is considered to be unilateral. The angle of friction, φ, is

assumed to be sufficiently large to prevent sliding.

iii. The pressure load due to the explosion is exclusively applied on the front surface S

(incident surface, see Fig. 2) and the blast wave is assumed to impinge all points

of S at the same time (simultaneously) and with the same magnitude (uniformly).

We consider the resulting load to act always horizontally and at the block’s centroid
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as the loading pulse duration is extremely short (i.e., small inclination angle within

the duration of the loading). Drag and diffraction phenomena are neglected. The

effects of induced ground shocks [24, 25] and the uplifting pressure acting on the

target’s base [6] are also omitted. Accordingly, contact detonations and near-field

explosions are not considered in our model.

These simplifying assumptions are helpful for reducing the complexity of the problem and

deriving analytical, closed-form solutions. A corroboration of the adequacy of such model

is discussed in Appendix B and an exhaustive discussion and validation can be found in

[6]. In particular, it is shown that the minimum distance that has to be assured between

the explosive source and the target, such that toppling is avoided, is in good agreement

and on the safety side with the one determined by the full and detailed numerical model.

Figure 2: Configuration considered for the rocking problem: a rectangular slender, rigid block resting

on a horizontal plane with uniformly distributed mass, subjected to uniform pressure load due to an

explosion.

3.2.2. Equation of motion

The moment balance around the rocking pivot point gives the equation of motion

Ioθ̈ +mgr sin(α− θ) = SrPr cos(α− θ), θ(t) > 0,

Ioθ̈ +mgr sin(−α− θ) = SrPr cos(−α− θ), θ(t) < 0,

 (3)

where Io = (4/3)mr2 is the moment of inertia with respect to the pivot point, θ = θ(t)

is the inclination angle, and Pr = Pr(t) is the loading which is given by the Friedlander
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equation (1) as mentioned above.

For tall, slender blocks, angles θ and α are small and the equation of motion (3) can

be linearised using the first-order approximations sin(·) ∼= · and cos(·) ∼= 1. Furthermore,

as we are interested in overturning, we restrict the above equation to positive angles θ,

considering a unilateral response mechanism. The blast load duration is indeed at least

two orders of magnitude smaller than the characteristic time of the response. For further

details, we refer to [6].

Considering the normalized rocking angle ϕ = θ/α, Equation (3) reads

ϕ̈ = ϕ+ χp− 1, (4)

where χ = 1
2ρbg

Pro

α is the dimensionless rocking moment, i.e., the ratio between the

moment due to the blast load and the restoring moment due to gravity;

p =
[(

1− τ
τo

)
(1− H [τ − τo])

]
e−d τ

τo the normalized Friedlander time-history; and τo

the ratio between the characteristic time of the load and the time parameter, T =
√

Io

mgr

, related to the response of the rigid block. Equation (4) admits a closed-form solution,

whose expression can be found in [6].

3.2.3. Overturning and critical stand-off distance

For unilateral excitations, overturning happens when the rocking angle θ ≥ α or,

equivalently, when ϕ ≥ 1. The overturning condition can be found by equating the total

work done by the blast load to the difference in potential energy between positions θ = α

and θ = 0 (see also Housner, [1]):

∫ ∞

0

rSPr θ̇ cos
(
α− θ

)
dt ≥ mgr(1− cosα). (5)

Noticing that Pr (t ≥ to) = 0 and rearranging the inequality in terms of the normalized

rocking angle and dimensionless time, one obtains

αrSPro

∫ τo

0

pϕ̇ cos
[
α(1− ϕ)

]
dτ ≥ mgr(1− cosα). (6)

For the special case of slender blocks, the power series expansion at the first order of

(1− cosα) ∼= α2/2 and cos[α(1− ϕ)] ∼= 1, Eq. (6) becomes

2Iχ ≥ 1, (7)
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with I =
∫ τo
0

p ϕ̇ dτ . The left-hand side term in inequality (7) represents the non-

dimensional overturning moment.

From the overturning condition (2Iχ = 1) we can determine the minimum required

distance between the explosive source and the target, R ∗, in order to avoid toppling.

Figure 3 shows the contours of the critical distance R ∗ for different slenderness angles,

block heights, densities, and explosive quantities.

Figure 3: Contours of the critical stand-off distance, i.e., the minimum required distance between the

explosive source and the rigid target, R ∗, in order to avoid toppling. For ρ = 2000 kg/m3 and heights

h = 1.5 m (left), h = 1.0 m (centre), and h = 0.5 m (right), R ∗ is plotted as a function of the explosive

quantity, W , and slenderness, α.
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3.3. Overturning of museum artefacts

In this section we consider the overturning of museum objects due to blast loading.

A simplified model, described hereafter, is adopted.

The artefact is modelled as a rigid block, with front surface S equal to the front surface

of the artefact and moment of inertia around the pivot point O equal to the one of the

artefact, I ♯
o . With reference to Figure 4, the centre of gravity is located at distance r

from the pivot point, at a height hg = r cosα from the ground and horizontal distance

b = r sinα. The centroid of the front surface, impinged by the blast wave (simultaneously

and uniformly), is at height hc from the ground (see Fig. 4).

Blast loads are modelled as in Section 3.2 (cf. paragraph 3.2.1, (iii)). The drag

coefficient CD is supposed to be equal to 2 (CD of a rectangular target, with surface’s

normal parallel to direction of the shock front) for front surfaces of any shape. We use

the empirical predictions of Pro (Appendix A), which are valid for rectangular objects.

This assumption is on the safety side. For instance, a human body-like shaped target

has a drag coefficient CD ≈ 0.97− 1.43 [26]. Clearing and lift effects are not considered

and they may influence the strength against overturning of museum artefacts of various

shapes. Nevertheless, the simplified analytical approach allows for a rapid estimation of

the ”real” overturning domain. The influence of all the above simplifying assumptions

is discussed further in the paper, once the failure due to direct damage has also been

presented.

Assuming small slenderness angles α and a unilateral rocking response, the dimen-

sionless equation of motion (4) holds. The dimensionless rocking moment and normalized

time are corrected to consider the real geometry of the artefact as follows

χ → χ (1 + δ) , (8)

τ → τ√
κ
, (9)

τo → τo√
κ
, (10)

with κ =
I ♯

o

Io
, δ =

hc−hg

r (11)

where κ is the ratio of the moment of inertia of the artefact I ♯
o and of the rectangular

block Io and δ is the dimensionless contribution to the rocking moment due to the

misalignment of the surface centroid and the centre of gravity.
10
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Figure 4: Configuration considered for the rocking problem of museum artefacts: an arbitrarily shaped

rigid block with rectangular base, resting on a horizontal plane with uniformly distributed mass (centre

of gravity at hg), subjected to a uniform blast pressure applied to surface S (blue), with centroid at hc).

The arrival of the blast wave at surface S is assumed to be same for each point.

Accordingly, the linearised overturning condition (7) remains the same, 2χI ≥ 1.

The above mentioned inequality allows to compute the minimum stand-off distance R ∗,

between a given artefact and a selected explosive quantity, to avoid overturning.

We consider herein some emblematic museum statues belonging to the world cultural

heritage as case studies for the assessment of protective barriers, see Figure 5. For each

statue, we consider the worst case scenario: a blast wave with a direction such that the

statue rocking resistance is the smallest one.

Table 3 shows the overturning domain for each artefact as function of the explosive

weight, W . The case of Michelangelo’s David is particularly interesting. A large height

and a high slenderness angle confer to the statue an excellent resistance to rocking,

hence to overturning. This is due to a scale effect; as first noticed by Housner [1], at

equal slenderness α, the larger the value of r is, the more stable against overturning the

block is. Notice that the protective barrier around the statue of Michelangelo’s David

at the Gallery of the Academy of Florence is such that it is impossible to approach the

statue closer than ≈ 1.50 m, meaning that the artefact is safe with respect to overturning,

for explosive weights as high as 30 kg and greater. The same holds for the statues of
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Farnese Hercules and Aphrodite of Milos. Diversely, the other statues do not fulfil the

standards of a safe design to prevent overturning under explosive loads. For instance,

Laocoön and His Sons does not have any protective barrier and this might cause its loss

for explosive weights as small as 10 kg.
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Figure 5: Different museum artefacts considered. From left to right: Michelangelo’s David (Gallery of the

Academy of Florence, Florence), Farnese Hercules (Archaeological National Museum, Naples), Athena

Giustiniani (Vatican Museums, Vatican City), Laocoön and His Sons (Vatican Museums, Vatican City),

Aphrodite of Milos (Louvre Museum, Paris), and Belvedere Torso (Vatican Museums, Vatican City).

The three-dimensional models are recovered from the platform Scan The World [27].
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Table 1: Rocking and overturning parameters for the considered artefacts, recovered from the platform

Scan The World [27].

Museum artefact m I ♯
o hg hc α b S

[kg] [kg m2 ×103] [m] [m] [°] [m] [m2]

Michelangelo’s David 5800 1650 2.28 2.35 17.6 0.70 5.02

Farnese Hercules 4380 390 1.26 1.41 19.3 0.44 3.39

Athena Giustiniani 765 26.7 0.91 0.92 13.8 0.22 1.39

Laocoön and His Sons 1328 13.6 0.61 0.79 27.1 0.32 1.83

Aphrodite of Milos 565 16.4 0.86 0.87 18.4 0.28 0.83

Belvedere Torso 760 16.5 0.67 0.8 18.7 0.23 0.84

Figure 6: Critical stand-off distance R ∗ for the considered museum artefacts, as function of the explosive

weight W .
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3.4. Damage of rectangular, slender blocks

We consider now the conditions that can lead to a (direct) material failure of a mu-

seum object under moderate intensity blasts (see Sect. 2). For this study, FE simulations

are used to investigate whether or not the development of tensile stresses during the shock

waves impact may damage the target. It is rather well known that the tensile strength of

geomaterials under high strain rates can be higher than in quasi-static conditions [7]. The

same holds for marble [8]. Let us consider the following simplified case. A target, with

infinite height (no rocking response mechanism) and square cross-section A = 0.5 × 0.5

m2, is subjected to an explosion with R = 1 m and W = 10 kg. To this purpose, a Finite

Element model is used assuming the material behaviour as linearly elastic, with Young

modulus E = 40 GPa and Poisson’s ratio ν = 0.15. The pressure load is computed using

the empirical interpolations from [18] and applied using ConWep model [28], accounting

for the effects due the relative inclination of the impinged surface (locally) with respect to

the shock front direction, the non-simultaneity and non-uniformity of the blast pressure

for all the impinged surface (and not only on the front face).

Figure 7 presents the normalized stress ς = σt/Pro, with σt the maximum principal

stress and Pro the overpressure peak. At time t = 0 µs, the shock wave impinges the

front surface (bottom boundary of section A). A compression wave propagates through

the material, with amplitude approximately equal to the overpressure peak, Pro, (cf.

[29]). Due to refraction phenomena at the free boundaries, tensile waves generate and

interact causing high fluctuations of stress and strain [29, 30, 31]. The further localisa-

tion of stress waves results in tensile stresses higher in value than the initial compression

stress (see Fig. 7: for t >170 µs, ς > 1 ). The high loading rate of the blast wave gives

rise to volumetric (tensile) strain rates as high as 500 s−1.

Extensive experimental research showed that the loading rate influences the resistance

of brittle materials mainly due to the finite growth rate of micro-cracks [32, 33] and the

viscosity of the material [34]. At increasing strain rates, an increase of the tensile, ft,

and compressive strengths, among other parameters, is observed [7, 35, 8]. The dynamic

increase factor for tensile strength for geomaterials (such as mortar, tuff, granite, etc.)

usually varies between 1 and approximately 7 in function of the involved strain rates, ε̇
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(see [8]). As far it concerns statues, we refer to marble (Carrara marble), whose tensile

strength in quasi-static loading conditions is 6.9 MPa and reaches a value of 50 MPa at

ε̇ = 18 s−1, as experimentally observed in [8].

10 μs 50 μs 90 μs 120 μs 130 μs 140 μs

160 μs 170 μs 180 μs 210 μs 240 μs 330 μs

Figure 7: Time evolution of the dimensionless stress ς = σt/Pro through the cross-section A = 0.5× 0.5

m2 of a target due to an explosion (R = 1 m, W = 20 kg). The time origin is at the shock wave arrival on

the free bottom boundary. The initial longitudinal compression wave is refracted at the free boundaries.

The tensile release waves interact continuously and cause stress concentrations. The material is assumed

to be linear elastic.

In the aforementioned case, strain rates are much higher than 18 s−1. We hence as-

sume a constant tensile strength ft = 50 MPa. The material constitutive law is modified

accordingly: in tension, a linear elastic behaviour is assumed until the maximum prin-

cipal stress reaches the tensile strength. A subsequent tensile softening is considered in

terms of the nonlinear brittle cracking model [20, 36, 37]. In compression, the behaviour

is assumed to be linearly elastic due to the lower compression stresses involved in the case

at hand and the high (strain rate dependent) material strength. This holds true when

blast loads of moderate intensity are considered, as in this case. Indeed, at larger blast

intensities, material damage may occur due to the large compressive stresses developed

at the shock wave impact. The results are displayed in Figure 8.

It worth noticing that, differently from the overturning mechanism, failure due to
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Figure 8: Time evolution of the dimensionless stress ς = σt/Pro through the cross-section A = 0.5× 0.5

m2 of a target due to an explosion (R = 1 m, W = 20 kg). The time origin is at the shock wave arrival on

the free bottom boundary. The initial longitudinal compression wave is refracted at the free boundaries.

The tensile release waves interact continuously and cause stress concentrations. Stresses exceeding the

material strength results in damage (as shown in zoomed views).

direct damage is not influenced by the local value of the blast pressure acting on the

target’s surfaces, but rather by the interaction of tensile and compressive waves propa-

gating within the solid material (e.g. marble). Indeed, clearing, drag, lift effects, as well

as other complex FSI phenomena have a characteristic time which is two-three orders

of magnitude larger than the material response. In other words, failure due to damage

takes place in a shorter time with respect to fluid-dynamics phenomena. Indeed, the

propagating speed of elastic waves in a solid material may vary between 150 and 200

km/s, in marble, while a shock wave with a Mach number, for instance, equal to 0.5÷2.0

propagates at 170÷ 680 m/s (in air at atmospheric conditions).

3.4.1. Critical stand-off distance for material failure

The tensile stress, σt, originating by refraction phenomena and localisation is, without

loss of generality, proportional to the overpressure peak Pro, namely σt = ςPro. The

16



focalisation of stress waves may give rise to tensile stresses higher than the blast pressure,

i.e., ς > 1. In general, the value of ς depends on the material, the geometry of target,

the stand-off distance, and the explosive weight.

Damage of a target due to blast loading happens if the tensile stress exceeds the

material strength (Galileo-Rankine tension criterion), namely if

Γ

ς
≤ 1 with Γ =

ft
Pro

. (12)

The tensile strength ft and consequently the dimensionless parameter Γ are functions of

the strain rate ε̇.

In the short time period, after the blast wave arrival (see Fig.s 7, 8), this dependency is

negligible, due to the high strain rates involved, ε̇ > 18 s−1, i.e. Γ = Γcrit = Γ|ε̇≥18 s−1 .

Accordingly, Figure 9 displays the values of Γcrit (ε̇ = 18 s−1, ft = 50 MPa) for rect-

angular blocks of several dimensions subjected to different explosive weights. The phe-

nomenon of localisation of tensile stresses gains importance for slender blocks and small

cross-sections.

Table 4 compares for each block the critical stand-off distance to avoid material failure,

R ∗
dam , and overturning, R ∗. For the dimensions and explosive weights here explored,

toppling prevails. In other words, overturning is the most critical failure condition.

This stands only for the relatively short time period following the arrival of the shock

wave, when the loading rates are sufficiently high to assume ft = 50 MPa. If a smaller

strain rate is assumed a priori (and considered constant during the numerical simula-

tions), the corresponding tensile strength decreases and the critical stand-off distance

associated to material damage increases. Nevertheless, the dimensionless ratio Γ is only

slightly dependent on the strain rate. Consider, for instance, a block with A = 0.25×0.25

m2 subjected to an explosive weight W = 10 kg, we obtain the following values

Γcrit = Γ|ε̇≥18 s−1 = 2.15, Γ|ε̇=1 s−1 = 2.02, Γ|ε̇≤10−4 s−1 = 2.40.

The corresponding critical stand-off distances to avoid material failure are

R ∗
dam|ε̇≥18 s−1 = 1.4 m R ∗

dam|ε̇=1 s−1 = 2.3 m, R ∗
dam|ε̇≤10−4 s−1 = 3.1 m,

while R ∗ = 2.27 m (overturning). Summarizing, blast loads induce two different types

of response of a target (prevailing on other ones): rocking (overturning) and damage
17



W [kg]

cr
it

A= 0.125×0.25 m2 ,

A= 0.5×1.0 m2 ,

A= 0.5×0.5 m2

A= 0.25×0.5 m2

A= 0.25×1.0 m2

A= l1×l2

l1

l2

Pro

A= 0.25×0.25 m2 ,

A= 0.5×1.5 m2

A= 0.125×0.125 m2 ,

A= 0.125×0.5 m2 

Figure 9: Γcrit = Γ|ε̇≥18 s−1 , i.e., ft = 50 MPa, as function of the explosive weight for rectangular

blocks with height 2h = 2 m, different cross-sections A = l1 × l2 and width 2b = l1.

due to tensile stresses. For the case of simple rectangular blocks, overturning is usually

predominant. We stress that, however, it is not possible to derive analytical expressions

for the material failure condition, as the response is function of the particular geome-

try of the target and the highly non-linear material behaviour at varying of the strain

rate. Each case requires ad-hoc investigations to assess the vulnerability to damage. We

present an explicative example below.

4. Results and discussion

We focus attention herein on the vulnerability of the statue of Aphrodite of Milos

against explosive threats. The material behaviour is modelled as described in the previ-

ous paragraph and contact at the interface between the statue and the base is considered

as in paragraph 5.1. We present in Figure 10 a detail of the geometry and of the nu-

merical model used, consisting of 4-node linear tetrahedra elements of 0.7 × 0.7 × 0.7

cm3 size (≈ 5.2 millions of FE). ConWep model is used to apply the blast load on all

exposed surfaces of the statue (front, rear, lateral sides, and top). We stress that such
18



Table 2: Comparison of the critical stand-off distance to avoid material failure, R ∗
dam , and overturning,

R ∗ for blocks of different cross-sections A = l1 × l2, width 2b = l1, and height 2h = 2 m. Overturning

represents the most critical failure condition.

W = 10 kg W = 20 kg W = 50 kg

Cross-section A R ∗
dam R ∗ R ∗

dam R ∗ R ∗
dam R ∗

[m2] [m] [m] [m] [m] [m] [m]

0.125× 0.125

2.15 2.32 2.6 2.92 3.45 3.960.125× 0.25

0.125× 0.5

0.25× 0.25
1.4 2.27 1.75 2.89 2.5 3.95

0.25× 1.0

0.25× 0.5 1.4 2.27 1.8 2.89 2.4 3.95

0.5× 0.5 1.1 1.76 1.5 2.40 2.05 3.53

0.5× 1.0
1.56 1.76 1.99 2.40 2.88 3.53

0.5× 1.5

blast load model allows to take into account the inclination of the shock front direction

of propagation and the normal to the impinged surface (at a local level, i.e., finite ele-

ments), the non-simultaneity ad non-uniformity of the blast pressure over the target’s

surfaces. Clearing, lift, and drag effects, as well as multiple reflections are neglected,

but, as discussed above, their influence is minor when failure due to material damage is

under investigation.

Figure 11 displays the time evolution of the dimensionless stress ς due to 10 kg of TNT

at a stand-off distance R = 2 m. The non-standard geometry of the target gives rise to

strong stress localisation. At time t = 300 µs after the shock arrival, damage appears in

the lower part of the body and propagates within. As the stress waves travel through the

material, a strong localisation at the level of the neck takes place and causes its breakage

(t = 950 µs). Figure 12 displays the damage evolution throughout the body of the statue.

The particular geometry of the statue renders it extremely vulnerable to damage.

This is due to the focalisation of the refracted stress waves within the upper part of the

19



Figure 10: Model used for the statue of Aphrodite of Milos.
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Figure 11: Evolution of the dimensionless stress ς = σt/Pro due to 10 kg of TNT at a stand-off distance

R = 2 m from the statue of Aphrodite of Milos.

statue, a phenomenon similar to what observed for blast waves in confined and internal

explosions (cf. [22]). Table 5 shows the value of Γcrit to avoid damage of the artefact and

compares the critical distances for material failure and overturning. Even if the statue is

found to be safe against overturning, the existing protective perimeter around Aphrodite

of Milos, at Louvre Museum (Paris), is insufficient for the preservation of the artefact

against explosions produced by a TNT quantity as great as 10 kg or more.

Moreover, we stress that in the presented analyses we did not consider the eventual ma-

terial degradation and presence of cracks within the artefact. These features would be

responsible to weaken the strength of the statue, e.g. [11]. Hence, for real-case applica-

tions, (mechanical) diagnostic analyses and digital surveys are necessary to understand

20



the real strength and the criticality of the failure mechanism.

Table 3: Aphrodite of Milos subjected to 10, 20, and 50 kg of TNT. Values of Γcrit to avoid damage

of the artefact and comparison between the critical distances for material failure, R ∗
dam, (critical in this

case) and overturning, R ∗.

W Γcrit R ∗
dam R ∗

[kg] [m] [m]

10 5.87 2.12 0.7

20 5.87 2.67 1.0

50 4.85 3.37 1.66

50 μs 150 μs 200 μs 300 μs 350 μs 450 μs 600 μs 700 μs 950 μs 1000 μs

01
damage

variable

Figure 12: Evolution of damage (i.e., damage when the damage variable is equal to the unit) due to 10

kg of TNT at a stand-off distance R = 2 m from the statue of Aphrodite of Milos.

5. Conclusions

We investigated the resistance of museum artefacts under fast-dynamic excitations

arising from an explosion. Two main failure mechanisms are considered: failure due to

rocking/overturning and failure due to direct material damage.

First, we considered the rocking response mechanism. By virtue of a simplified expres-

sion of blast actions based on established empirical models and an analytical approach

developed in [6], we presented the overturning condition for rectangular, slender blocks.

Attention was focused on the minimum distance (critical stand-off distance) that has to
21



be assured between the explosive source and the target, such that toppling is avoided.

A corroboration of the assumptions of the proposed analytical model was presented in

Appendix B with detailed three-dimensional numerical simulations that consider the

fluid-structure interaction phenomena, a combined rocking/sliding behaviour, and the

possibility of uplifting (flight mode). An exhaustive validation of the analytical approach

can be found in [6]. A good agreement was found overall. Moreover, the estimations of

the analytical model provide an intrinsic factor of safety (around 2.5) which is consistent

for most design applications.

Through the above discussed model, we investigated the vulnerability of some em-

blematic statues against explosions (by defining appropriate correction factors to consider

the actual geometry and mass distribution of artefacts). We assessed the overturning

domain of the following statues: Michelangelo’s David, Farnese Hercules, Athena Gius-

tiniani, Laocoön and His Sons, Aphrodite of Milos, and Belvedere Torso. We highlighted

the criticality of the preservation against explosive threats of some of the artefacts con-

sidered. For instance, the statues of Belvedre Torso, Laocoön and His Sons, and Athena

Giustiniani were found to be not satisfactorily protected against explosions to prevent

overturning.

Finally, direct material damage due to the development of tensile stresses within the

body of the targets impinged by the shock wave was investigated. By means of detailed

numerical simulations, we found that failure due to overturning prevails on material

damage for targets of relatively regular geometry. In other words, the critical stand-off

distance to prevent toppling is usually larger than the one to avoid direct material failure.

We further investigated the vulnerability to material damage of an existing statue,

Aphrodite of Milos. In this case, the non-standard geometry of the target gives rise

to strong stress concentrations which render the structure more vulnerable to damage

rather than overturning.

The purpose of our analysis is to derive reliable decision making tools in the design

of protective devices to preserve the historical heritage. We focused attention to the
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use of the analytical model for the preservation of museum objects, for determining the

minimum perimeter around statues of high historical and aesthetic value. A rather strong

vulnerability of such artefacts to explosive threats was found, at least for the considered

objects, either due to overturning or direct material damage. Our results can be used to

have a first estimation of the protective perimeter to be guaranteed in museums for the

investigated statues.
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Appendix A. Analytical interpolations for blast loading

The expressions for the blast parameters that determine the reflected pressure time-

history due to a surface burst (explosion on or very close to the ground surface) are given

below. For more details we refer to [38].

• normal reflected pressure peak Pro:

Pro(Z) =
(
1 +

1

2e10Z

)
exp

[
2.0304− 1.8036 lnZ

−0.09293 ln2 Z − 0.8779 sin(lnZ)− 0.3603 sin2(lnZ)
]
;

(A.1)

• scaled and effective positive reflected impulse irw, ir:

irw(Z,W ) = exp
[
− 0.110157− 1.40609 lnZ + 0.0847358 ln2 Z

]
,

ir(Z) = W
1
3 irw(Z,W );

(A.2)

• scaled and effective arrival time tAw, tA:

tAw(Z,W ) = exp
[
− 0.6847 + 1.4288 lnZ + 0.0290 ln2 Z + 0.4108 sin(lnZ)

]
,

tA(Z) = W
1
3 tAw(Z,W );

(A.3)

• scaled and effective positive duration time tow, to:

tow(Z,W ) =

exp

[
0.592 + 2.913 lnZ − 1.287 ln2 Z − 1.788 ln3 Z

+1.151 ln4 Z + 0.325 ln5 Z − 0.383 ln6 Z

+0.090 ln7 Z − 0.004 ln8 Z − 0.0004 ln9 Z

+0.537 cos7
[
1.032 (lnZ − 0.859)

]
sinh

[
1.088 (lnZ − 2.023)

]]
,

to(Z) = W
1
3 tow(Z,W ).

(A.4)

Appendix B. Validation of the overturning domain

Whilst the analytical approach above presented can be used to determine the min-

imum stand-off distance to prevent toppling, it relies on some simplifying assumptions
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(see paragraph 3.2.1), whose validity needs to be corroborated. For the sake of complete-

ness, the validation is here conducted by comparison with detailed numerical simulations.

An exhaustive validation of the analytical model can by found in [6], where also existing

experimental tests are considered.

5.1. Sliding and uplifting effect

We explore i) the effect of the linearisation of the equations of motion (see also para-

graph 3.2.3), and ii) the possibility of the occurence of combined sliding, rocking, and

uplift (flight mode). We consider Coulomb friction at the interface of the block with

the rigid base, with an angle of friction equal to φ = 35◦, which is common for many

geomaterials (concrete, marble, stone etc.). Blast loadings are applied as in Section 3.2,

relying on the best-fit interpolations in Appendix A. ABAQUS commercial software is

used for the computations. A hard contact formulation is used, i.e., no penetration is

allowed at the contact of the rocking block with the base [20]. The rigid base is fixed and

the rigid block is free to translate along y− and x−axes, rotate around z, hence, uplift

is possible, see Figure 2. The results of this comparison are presented in paragraph 5.1.

We investigate the minimum stand-off distance (R ∗
num) for several combinations of

slenderness angles and explosive weights. Table 1 displays the comparison between the

threshold range (R ∗), derived in paragraph 3.2.3, and the one obtained from the numer-

ical simulations (R ∗
num).

The numerical analyses show that rocking and sliding happen together. However,

for slender structures sliding is limited and rocking prevails. In the worst case studied

here (W = 50 kg and α = 20◦) the analytical approximation overestimates the minimum

stand-off distance by approximately 9%.

5.2. Fluid-structure interaction effect

We focus on the assumptions concerning the simplifications related to the blast loads

and their approximation by empirical models. In particular, we investigate the influence

of the interaction between blast waves and the rocking block. The analyses are performed

again using ABAQUS software. The same modelling approach is used for the interaction

of the block and the base as before. The results of this comparison are presented in
25



Table B.1: Comparison of the overturning domain between the analytical solution, R ∗ (and correspond-

ing scaled distance Z∗), and the numerical one, R ∗
num. The rocking block has h = 1 m, ρ = 2000 kg/m3,

and variable slenderness angle α. Different weights of TNT, W , are considered. Good agreement is

found, being always on the safety side.

α = 20◦ α = 15◦ α = 10◦

W [kg] 10 20 50 10 20 50 10 20 50

R ∗ [m] 2.18 3.24 5.51 3.40 5.10 8.78 6.53 9.96 17.51

Z ∗ [m kg−1/3] 1.0 1.19 1.50 1.58 1.88 2.38 3.03 3.67 4.75

R ∗
num [m] 2.0 3.0 5.0 3.16 4.75 8.05 6.15 9.3 16.3

R ∗

R ∗
num

1.09 1.08 1.102 1.077 1.073 1.09 1.053 1.071 1.074

paragraph 5.2.

We account for three-dimensional Fluid-Structure Interactions (FSI) with a CEL ap-

proach (cf. [22]): the balloon analogue models the explosive source and air is assumed as

an ideal gas. The material parameters for the constitutive laws of the balloon are those

detailed in [21] (p. 645, model #6). To ensure mesh convergence, the elements size of

the Eulerian domain is fixed to 1.0 cm.

The numerical analyses account for the blast negative phase, drag and lift effects,

diffraction and rarefaction phenomena, multiple reflections, no-normal incident angle of

the blast waves with all the faces (including the base) of the rocking block, and the three-

dimensionality of the shock front. These effects result generally in an overall reduction

of the blast impulse with respect to the analytical model.

The detailed numerical analyses showed limited influence of lift and drag effects even

for combinations of stand-off distance and explosive weight close to the critical ones.

Table 2 presents the critical distance, as obtained from the numerical simulations.

The analytical model provides a safe estimate of the critical stand-off distance (upper

bound). We notice that an intrinsic factor of safety greater than 2 (ordinary value in

any engineering design) is obtained with respect to the detailed numerical simulations.

An additional validation of the proposed model can be found in [6], where the critical

stand-off distance and dynamic response predictions are corroborated through existing
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experimental tests.

Table B.2: Comparison of the overturning domain between the analytical solution, R ∗ (and correspond-

ing scaled distance Z∗), and the numerical one, R ∗
FSI. The rocking block has h = 1 m, ρ = 2000 kg/m3,

and slenderness angle α = 15◦. Different weights of TNT, W , are considered. The analytical model

gives a factor of safety ≈ 2.5 with respect to the numerical solution.

α = 15◦

W [kg] 10 20 50

R ∗ [m] 3.40 5.10 8.78

Z ∗ [m kg−1/3] 1.58 1.88 2.38

R ∗
FSI [m] 1.50 2.25 3.35

R ∗

R ∗
FSI

2.26 2.26 2.62
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