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The response of museum artefacts and statues subjected to deliberate explosions of moderate intensity is investigated and their vulnerability assessed. The study focuses on the most predominant failure mechanisms, namely overturning and fracture due to the tensile stresses developed by the impact of shock waves.

The rocking response is investigated relying on the existing knowledge and theory of inverted pendulum structures subjected to earthquake loadings. An analytical, established approach for determining the overturning domain, developed in a previous study, is used to investigate the critical stand-off distance between the target and the explosive in order to avoid toppling.

The proposed analytical model is adopted by defining appropriate correction parameters to consider the real geometry of the museum objects. We assess the overturning domain of some emblematic statues of high aesthetic and cultural value, and namely: Michelangelo's David, Farnese Hercules, Aphrodite of Milos, Athena Giustiniani, Laocoön and His Sons, and Belvedere Torso.

Finally, direct damage due to the high tensile stresses is investigated and computed for different target geometries. For the dimensions and explosive quantities herein considered, overturning is found to prevail over direct material damage for targets with regular geometry.

Resistance of museum artefacts against blast loading

Research aim

The resistance of un-anchored museum artefacts against fast-dynamic excitations arising from explosions is studied herein. Namely, we investigate the vulnerability of museum artefacts with the aim of providing criteria for their preservation against deliberate blasts of moderate intensity. Two are the main failure mechanisms considered in this study: overturning, produced by the rocking of the artefact, and (direct) material damage caused by the shock waves. We aim at the preservation of un-anchored equipment and museum (slender) artefacts, such as statues. In particular, our study proposes to estimate safety perimeters (passive protections) around such statues for assuring their integrity against explosive's amounts difficult to be identified at the museum's entrance.

That is why we consider here moderate intensity blasts.

Introduction

The rocking and overturning of artefacts is investigated using the well-established model of the inverted pendulum structures [START_REF] Housner | The behavior of inverted pendulum structures during earthquakes[END_REF][START_REF] Zhang | Rocking response of free-standing blocks under cycloidal pulses[END_REF][START_REF] Dimitrakopoulos | Revisiting the rocking block: closed-form solutions and similarity laws[END_REF][START_REF] Li | Dynamic characteristics and seismic responses of painted sculptures of Dunhuang Mogao Grottoes[END_REF][START_REF] Spyrakos | Application of predictive models to assess failure of museum artifacts under seismic loads[END_REF]. An analytical approach to compute the rocking response and the overturning domain of slender, rectangular blocks, formerly developed by the authors [START_REF] Masi | Rocking response of inverted pendulum structures under blast loading[END_REF], is here adopted. In particular, moment balance equations and overturning conditions are used to determine the critical (minimum) standoff distance between the source and the target to prevent toppling.

Besides overturning, direct material damage due to the development of important tensile stresses arising from the impinging blast waves plays a crucial role. Direct material damage is investigated using a detailed Finite Element (FE) simulations.

For the dimensions and explosive quantities considered herein, overturning is found to be predominant for targets with regular geometry. This holds true when considering the strain rate effects (due to the fast-dynamic excitations involved in explosions) and their influence on the material strength (see e.g. [START_REF] Ross | Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression[END_REF][START_REF] Wong | Fracturing and failure behavior of carrara marble in quasistatic and dynamic brazilian disc tests[END_REF]). For targets with complex shapes, failure due to direct damage is found to be the predominant mechanism. Sliding and uplifting failure modes are always negligible over toppling and material damage.

Engineering applications of the present study can be found in several domains. Of interest here is the preservation of un-anchored equipment and museum (slender) artefacts, such as statues. In particular, we consider some of the most emblematic statues of the world cultural heritage and namely: Michelangelo's David (Gallery of the Academy of Florence, Florence), Farnese Hercules (Archaeological National Museum, Naples), Aphrodite of Milos (Louvre Museum, Paris), Athena Giustiniani, Laocoön and His Sons, and Belvedere Torso (Vatican Museums, Vatican City). These objects belong to the world cultural heritage and their protection has raised important issues throughout history. We refer e.g. to the lost and/or destroyed artefacts of Athena Parthenos, Colossus of Rhodes, the statue of Zeus at Olympia, and more recently the Buddhas statue of Bamiyan. The proposed analytical model can further be used in the engineering design framework, for securing historical buildings made of monolithic columns from collapse (e.g. classical Greek and Roman temples [START_REF] Stefanou | Dynamic motion of a conical frustum over a rough horizontal plane[END_REF][START_REF]Rocking and kinematic approaches for rigid block analysis of masonry walls: State of the art and recent developments[END_REF]).

Diagnostic analyses (to detect the presence of cracks and evaluate the material degradation) as well as 3D technologies for digital survey of the real geometry of the artefacts are mandatory to properly asses their vulnerability, see [START_REF] Borri | Diagnostic analysis of the lesions and stability of Michelangelo's David[END_REF][START_REF] Arbace | Innovative uses of 3D digital technologies to assist the restoration of a fragmented terracotta statue[END_REF][START_REF] Bagnéris | A complete methodology for the mechanical diagnosis of statue provided by innovative uses of 3D model. Application to the imperial marble statue of Alba-la-Romaine (France)[END_REF][START_REF] Čížová | Study of the degradation of beeswax taken from a real artefact[END_REF].

Prevention based on active protective devices, e.g. screening, at the entrance of museums may contrast the explosive threat and reduce the risk of damaged artefacts.

Nevertheless, we find a strong vulnerability of some existing museum objects, even for small explosive quantities, whose detection may be demanding. Our study proposes to estimate safety perimeters (passive protections) around such statues for assuring their integrity against explosive's amounts difficult to be identified at the museum's entrance.

That is why we consider here moderate intensity blasts.

The paper is structured as follows. In Section 3.1 we present the approaches followed to represent blast actions relying on either simplified models or more detailed ones. Section 3.2 focuses on the overturning response mechanism of rectangular, slender blocks subjected to an explosion. We present an analytical approach, formerly developed by the authors [START_REF] Masi | Rocking response of inverted pendulum structures under blast loading[END_REF], to be used as a straightforward engineering tool to derive the critical stand-off distance between the target and the explosive source to avoid toppling. In Section 3.3, the analytical model is applied to museum artefacts and some emblematic examples of existing statues are presented. Section 3.4 focuses on the vulnerability to direct material damage due to blast loads for rectangular, slender blocks. Finally, in Section 4 the statue of Aphrodite of Milos is used to compute the critical stand-off distance to avoid direct material damage, which is compared to the one required to avoid overturning.

Material and methods

Blast actions

Explosion produces a blast wave of high-pressure accompanying high-temperature and supersonic expansion of gases. The abrupt increase of the pressure carried by a blast wave can produce severe structural damage. When the primary shock meets a target, it generates on it the so-called reflected overpressure, P r , which is the difference between the pressure determined by the explosion increased by the reflection at target's surface and the ambient one, P o . Figure 1 shows the schematic time variation of P r , which is determined by the arrival time of the shock wave, t A , the overpressure peak, P ro , the positive phase duration, t o , negative phase duration, t o-, and the underpressure peak, P ro-. These parameters are functions of the distance R and the explosive weight (conventionally expressed in TNT, trinitrotoluene, equivalent). Herein we consider only the positive phase of the blast wave (safety approach, see [START_REF] Masi | Rocking response of inverted pendulum structures under blast loading[END_REF]).

The pressure acting on a target due to blast loading is the sum of the incident overpressure P s and the dynamic pressure C D q := 1 2 ρu|u|, with C D the drag coefficient (function of the target shape and Mach and Reynold numbers, among other parameters), ρ the density, and u the velocity of gas particles. Notice that the dynamic pressure contribution to the reflected overpressure P r varies with respect to the stand-off distance: for near-field explosions, the dynamic pressure contribute may be as high as two times the incident pressure (i.e. q/P s ≈ 2), while for far-field blasts we record q/P s ≈ 0.4, see [START_REF] Karlos | Calculation of blast loads for application to structural components[END_REF].

The simulation of a blast can be conducted by using different approaches [START_REF] Remennikov | A review of methods for predicting bomb blast effects on buildings[END_REF][START_REF] Larcher | Explosions in complex geometries -a comparison of several approaches[END_REF],

i.e., empirical or physics-based ones. These models are briefly introduced below.

Overpressure (positive phase) Overpressure (negative phase) due to an explosion acting on a target. The proposed analytical model only considers the positive phase of the overpressure (safe estimate of the rocking response). The negative pressure may have stabilising effects (increase the block resistance to overturning).

Empirical models

Empirical models rely on best-fit interpolations of experimental results and mainly on those of Kingery and Bulmash [START_REF] Kingery | Air blast parameters from tnt spherical air burst and hemispherical burst[END_REF], which allow to determine the blast parameters and pressure loading from the knowledge of the TNT equivalent explosive weight, W , and the Hopkinson-Cranz scaled distance, Z = R/ 3 √ W (see Appendix A). The time evolution of the positive phase of the reflected pressure is modelled with the well established modified

Friedlander equation [START_REF] Friedlander | The diffraction of sound pulses. i. diffraction by a semi-infinite plate[END_REF],

P r (t) = P ro [( 1 - t t o ) ( 1 -H [t -t o ] ) ] exp ( -d t t o ) , (1) 
where H [•] denotes the Heaviside (step) function, d is the exponential decay coefficient, and t A is taken as the origin of the time axis. The impulse i r associated to the positive phase, which represents the area beneath the pressure curve, reads

i r = ∫ to 0 P r dt = [ e -d + d -1 ] P ro t o d 2 , ( 2 
)
The above equation allows to determine the exponential decay coefficient, d, by equating it with the best-fit interpolation of i r from experiments (see Appendix A).

Numerical physics-based models

Physics-based, numerical approaches allow a rather detailed description of the main features of the blast phenomenon with, of course, an increased calculation cost. They rely on the definition of three domains: the target (statue), the explosive charge, and the surrounding air. Through numerical simulations, detonation, propagation of shock waves and their interaction with deformable structures can be efficiently modelled with a Coupled Eulerian-Langrangian (CEL) scheme. The explosive and air domains are both discretized by Finite Elements (Eulerian description). A Fluid-Structure Interaction (FSI) approach based on a penalty contact algorithm [START_REF] Abaqus | Abaqus analysis user's guide[END_REF] allows to transfer the pressure from the propagating media to the target (Lagrangian description). We model air as a viscous fluid; this is not dictated solely by physical, but also by practical reasons, namely to avoid to avoid numerical, spurious oscillations in the rise in pressure over the blast wave. For a more detailed description of the fluid-structure interaction phenomena and their modelling, we refer to [START_REF] Blanc | Simulating the blast wave from detonation of a charge using a balloon of compressed air[END_REF][START_REF] Masi | A study on the effects of an explosion in the Pantheon of Rome[END_REF][START_REF] Masi | Blast actions in aircrafts: An integrated methodology for designing protection devices[END_REF][START_REF] Abaqus | Abaqus analysis user's guide[END_REF]. Further details can also be found in [START_REF] Masi | Rocking response of inverted pendulum structures under blast loading[END_REF].

Overturning of rectangular, slender blocks

Statement of the problem

The problem of a rigid block resting on a horizontal plane is studied based on the following assumptions (Fig. 2):

i. A rectangular slender, rigid block is assumed with a uniformly distributed mass m. The dimensions of the block are 2b × 2h × 2w and the radial distance from the rocking pivot point O to the centre of gravity is r = b sec α, where α is the slenderness angle.

ii. The contact with the horizontal plane is assumed punctual at point O (no contact moment). Contact is considered to be unilateral. The angle of friction, φ, is assumed to be sufficiently large to prevent sliding.

iii. The pressure load due to the explosion is exclusively applied on the front surface S (incident surface, see Fig. 2) and the blast wave is assumed to impinge all points of S at the same time (simultaneously) and with the same magnitude (uniformly).

We consider the resulting load to act always horizontally and at the block's centroid as the loading pulse duration is extremely short (i.e., small inclination angle within the duration of the loading). Drag and diffraction phenomena are neglected. The effects of induced ground shocks [START_REF] Hao | Dynamic response of rigid blocks to simultaneous horizontal and vertical ground shock[END_REF][START_REF] Scherbatiuk | Experimental testing and numerical modeling of soil-filled concertainer walls[END_REF] and the uplifting pressure acting on the target's base [START_REF] Masi | Rocking response of inverted pendulum structures under blast loading[END_REF] are also omitted. Accordingly, contact detonations and near-field explosions are not considered in our model.

These simplifying assumptions are helpful for reducing the complexity of the problem and deriving analytical, closed-form solutions. A corroboration of the adequacy of such model is discussed in Appendix B and an exhaustive discussion and validation can be found in [START_REF] Masi | Rocking response of inverted pendulum structures under blast loading[END_REF]. In particular, it is shown that the minimum distance that has to be assured between the explosive source and the target, such that toppling is avoided, is in good agreement and on the safety side with the one determined by the full and detailed numerical model. 

Equation of motion

The moment balance around the rocking pivot point gives the equation of motion

I o θ + mgr sin(α -θ) = SrP r cos(α -θ), θ(t) > 0, I o θ + mgr sin(-α -θ) = SrP r cos(-α -θ), θ(t) < 0,    (3) 
where

I o = (4/3)mr 2 is the moment of inertia with respect to the pivot point, θ = θ(t)
is the inclination angle, and P r = P r (t) is the loading which is given by the Friedlander equation (1) as mentioned above.

For tall, slender blocks, angles θ and α are small and the equation of motion (3) can be linearised using the first-order approximations sin(•) ∼ = • and cos(•) ∼ = 1. Furthermore, as we are interested in overturning, we restrict the above equation to positive angles θ, considering a unilateral response mechanism. The blast load duration is indeed at least two orders of magnitude smaller than the characteristic time of the response. For further details, we refer to [START_REF] Masi | Rocking response of inverted pendulum structures under blast loading[END_REF].

Considering the normalized rocking angle ϕ = θ/α, Equation (3) reads

φ = ϕ + χ p -1, (4) 
where χ = 1 2ρbg Pro α is the dimensionless rocking moment, i.e., the ratio between the moment due to the blast load and the restoring moment due to gravity; , related to the response of the rigid block. Equation ( 4) admits a closed-form solution, whose expression can be found in [START_REF] Masi | Rocking response of inverted pendulum structures under blast loading[END_REF].

p = [( 1 -τ τo ) (1 -H [τ -τ o ]) ] e -d τ

Overturning and critical stand-off distance

For unilateral excitations, overturning happens when the rocking angle θ ≥ α or, equivalently, when ϕ ≥ 1. The overturning condition can be found by equating the total work done by the blast load to the difference in potential energy between positions θ = α and θ = 0 (see also Housner, [START_REF] Housner | The behavior of inverted pendulum structures during earthquakes[END_REF]):

∫ ∞ 0 rSP r θ cos ( α -θ ) dt ≥ mgr(1 -cos α). ( 5 
)
Noticing that P r (t ≥ t o ) = 0 and rearranging the inequality in terms of the normalized rocking angle and dimensionless time, one obtains

αrSP ro ∫ τo 0 p φ cos [ α(1 -ϕ) ] dτ ≥ mgr(1 -cos α). ( 6 
)
For the special case of slender blocks, the power series expansion at the first order of

(1 -cos α) ∼ = α 2 /2 and cos[α(1 -ϕ)] ∼ = 1, Eq. (6) becomes 2Iχ ≥ 1, (7) 
with I = ∫ τo 0 p φ dτ . The left-hand side term in inequality [START_REF] Ross | Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression[END_REF] represents the nondimensional overturning moment.

From the overturning condition (2Iχ = 1) we can determine the minimum required distance between the explosive source and the target, R * , in order to avoid toppling.

Figure 3 shows the contours of the critical distance R * for different slenderness angles, block heights, densities, and explosive quantities. 

Overturning of museum artefacts

In this section we consider the overturning of museum objects due to blast loading. A simplified model, described hereafter, is adopted.

The artefact is modelled as a rigid block, with front surface S equal to the front surface of the artefact and moment of inertia around the pivot point O equal to the one of the artefact, I ♯ o . With reference to Figure 4, the centre of gravity is located at distance r from the pivot point, at a height h g = r cos α from the ground and horizontal distance b = r sin α. The centroid of the front surface, impinged by the blast wave (simultaneously and uniformly), is at height h c from the ground (see Fig. 4).

Blast loads are modelled as in Section 3.2 (cf. paragraph 3.2.1, (iii)). The drag coefficient C D is supposed to be equal to 2 (C D of a rectangular target, with surface's normal parallel to direction of the shock front) for front surfaces of any shape. We use the empirical predictions of P ro (Appendix A), which are valid for rectangular objects.

This assumption is on the safety side. For instance, a human body-like shaped target has a drag coefficient C D ≈ 0.97 -1.43 [START_REF] Penwarden | Measurements of wind drag on people standing in a wind tunnel[END_REF]. Clearing and lift effects are not considered and they may influence the strength against overturning of museum artefacts of various shapes. Nevertheless, the simplified analytical approach allows for a rapid estimation of the "real" overturning domain. The influence of all the above simplifying assumptions is discussed further in the paper, once the failure due to direct damage has also been presented.

Assuming small slenderness angles α and a unilateral rocking response, the dimensionless equation of motion (4) holds. The dimensionless rocking moment and normalized time are corrected to consider the real geometry of the artefact as follows

χ → χ (1 + δ) , ( 8 
)
τ → τ √ κ , ( 9 
)
τ o → τ o √ κ , ( 10 
)
with κ = I ♯ o Io , δ = hc-hg r ( 11 
)
where κ is the ratio of the moment of inertia of the artefact I ♯ o and of the rectangular block I o and δ is the dimensionless contribution to the rocking moment due to the misalignment of the surface centroid and the centre of gravity. The arrival of the blast wave at surface S is assumed to be same for each point.

Accordingly, the linearised overturning condition (7) remains the same, 2χI ≥ 1.

The above mentioned inequality allows to compute the minimum stand-off distance R * , between a given artefact and a selected explosive quantity, to avoid overturning.

We consider herein some emblematic museum statues belonging to the world cultural heritage as case studies for the assessment of protective barriers, see Figure 5. For each statue, we consider the worst case scenario: a blast wave with a direction such that the statue rocking resistance is the smallest one.

Table 3 shows the overturning domain for each artefact as function of the explosive weight, W . The case of Michelangelo's David is particularly interesting. A large height and a high slenderness angle confer to the statue an excellent resistance to rocking, hence to overturning. This is due to a scale effect; as first noticed by Housner [START_REF] Housner | The behavior of inverted pendulum structures during earthquakes[END_REF], at equal slenderness α, the larger the value of r is, the more stable against overturning the block is. Notice that the protective barrier around the statue of Michelangelo's David at the Gallery of the Academy of Florence is such that it is impossible to approach the statue closer than ≈ 1.50 m, meaning that the artefact is safe with respect to overturning, for explosive weights as high as 30 kg and greater. The same holds for the statues of Farnese Hercules and Aphrodite of Milos. Diversely, the other statues do not fulfil the standards of a safe design to prevent overturning under explosive loads. For instance,

Laocoön and His Sons does not have any protective barrier and this might cause its loss for explosive weights as small as 10 kg.

5.17 m 3.17 The three-dimensional models are recovered from the platform Scan The World [START_REF] Myminifactory | Scan The World[END_REF].

Table 1: Rocking and overturning parameters for the considered artefacts, recovered from the platform Scan The World [START_REF] Myminifactory | Scan The World[END_REF]. 

Museum artefact m I ♯ o h g h c α b S [kg] [kg m 2 ×10 3 ] [m] [m] [°] [m] [m 2 ] Michelangelo'

Damage of rectangular, slender blocks

We consider now the conditions that can lead to a (direct) material failure of a museum object under moderate intensity blasts (see Sect. 2). For this study, FE simulations are used to investigate whether or not the development of tensile stresses during the shock waves impact may damage the target. It is rather well known that the tensile strength of geomaterials under high strain rates can be higher than in quasi-static conditions [START_REF] Ross | Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression[END_REF]. The same holds for marble [START_REF] Wong | Fracturing and failure behavior of carrara marble in quasistatic and dynamic brazilian disc tests[END_REF]. Let us consider the following simplified case. A target, with infinite height (no rocking response mechanism) and square cross-section A = 0.5 × 0.5 m 2 , is subjected to an explosion with R = 1 m and W = 10 kg. To this purpose, a Finite Element model is used assuming the material behaviour as linearly elastic, with Young modulus E = 40 GPa and Poisson's ratio ν = 0.15. The pressure load is computed using the empirical interpolations from [START_REF] Kingery | Air blast parameters from tnt spherical air burst and hemispherical burst[END_REF] and applied using ConWep model [START_REF] Hyde | Conwep: Conventional weapons effects program[END_REF], accounting for the effects due the relative inclination of the impinged surface (locally) with respect to the shock front direction, the non-simultaneity and non-uniformity of the blast pressure for all the impinged surface (and not only on the front face).

Figure 7 presents the normalized stress ς = σ t /P ro , with σ t the maximum principal stress and P ro the overpressure peak. At time t = 0 µs, the shock wave impinges the front surface (bottom boundary of section A). A compression wave propagates through the material, with amplitude approximately equal to the overpressure peak, P ro , (cf. [START_REF] Meyers | Dynamic behavior of materials[END_REF]). Due to refraction phenomena at the free boundaries, tensile waves generate and interact causing high fluctuations of stress and strain [START_REF] Meyers | Dynamic behavior of materials[END_REF][START_REF] Vales | Wave propagation in a thick cylindrical bar due to longitudinal impact[END_REF][START_REF] Gu | Wave dispersion analysis and simulation method for concrete shpb test in peridynamics[END_REF]. The further localisation of stress waves results in tensile stresses higher in value than the initial compression stress (see Fig. 7: for t >170 µs, ς > 1 ). The high loading rate of the blast wave gives rise to volumetric (tensile) strain rates as high as 500 s -1 .

Extensive experimental research showed that the loading rate influences the resistance of brittle materials mainly due to the finite growth rate of micro-cracks [START_REF] Freund | Crack propagation in an elastic solid subjected to general loading-I. Constant rate of extension[END_REF][START_REF] Freund | Crack propagation in an elastic solid subjected to general loading-II. Non-uniform rate of extension[END_REF] and the viscosity of the material [START_REF] Weerheijm | Concrete under impact tensile loading and lateral compression[END_REF]. At increasing strain rates, an increase of the tensile, f t , and compressive strengths, among other parameters, is observed [START_REF] Ross | Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression[END_REF][START_REF] Cho | Strain-rate dependency of the dynamic tensile strength of rock[END_REF][START_REF] Wong | Fracturing and failure behavior of carrara marble in quasistatic and dynamic brazilian disc tests[END_REF]. The dynamic increase factor for tensile strength for geomaterials (such as mortar, tuff, granite, etc.) usually varies between 1 and approximately 7 in function of the involved strain rates, ε (see [START_REF] Wong | Fracturing and failure behavior of carrara marble in quasistatic and dynamic brazilian disc tests[END_REF]). As far it concerns statues, we refer to marble (Carrara marble), whose tensile strength in quasi-static loading conditions is 6.9 MPa and reaches a value of 50 MPa at ε = 18 s -1 , as experimentally observed in [START_REF] Wong | Fracturing and failure behavior of carrara marble in quasistatic and dynamic brazilian disc tests[END_REF]. The tensile release waves interact continuously and cause stress concentrations. The material is assumed to be linear elastic.

In the aforementioned case, strain rates are much higher than 18 s -1 . We hence assume a constant tensile strength f t = 50 MPa. The material constitutive law is modified accordingly: in tension, a linear elastic behaviour is assumed until the maximum principal stress reaches the tensile strength. A subsequent tensile softening is considered in terms of the nonlinear brittle cracking model [START_REF] Abaqus | Abaqus analysis user's guide[END_REF][START_REF] Hillerborg | Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[END_REF][START_REF] Masi | On the origin of the cracks in the dome of the Pantheon in Rome[END_REF]. In compression, the behaviour is assumed to be linearly elastic due to the lower compression stresses involved in the case at hand and the high (strain rate dependent) material strength. This holds true when blast loads of moderate intensity are considered, as in this case. Indeed, at larger blast intensities, material damage may occur due to the large compressive stresses developed at the shock wave impact. The results are displayed in Figure 8.

It worth noticing that, differently from the overturning mechanism, failure due to direct damage is not influenced by the local value of the blast pressure acting on the target's surfaces, but rather by the interaction of tensile and compressive waves propagating within the solid material (e.g. marble). Indeed, clearing, drag, lift effects, as well as other complex FSI phenomena have a characteristic time which is two-three orders of magnitude larger than the material response. In other words, failure due to damage takes place in a shorter time with respect to fluid-dynamics phenomena. Indeed, the propagating speed of elastic waves in a solid material may vary between 150 and 200 km/s, in marble, while a shock wave with a Mach number, for instance, equal to 0.5 ÷ 2.0

propagates at 170 ÷ 680 m/s (in air at atmospheric conditions).

Critical stand-off distance for material failure

The tensile stress, σ t , originating by refraction phenomena and localisation is, without loss of generality, proportional to the overpressure peak P ro , namely σ t = ςP ro . The focalisation of stress waves may give rise to tensile stresses higher than the blast pressure, i.e., ς > 1. In general, the value of ς depends on the material, the geometry of target, the stand-off distance, and the explosive weight.

Damage of a target due to blast loading happens if the tensile stress exceeds the material strength (Galileo-Rankine tension criterion), namely if

Γ ς ≤ 1 with Γ = f t P ro . ( 12 
)
The tensile strength f t and consequently the dimensionless parameter Γ are functions of the strain rate ε.

In the short time period, after the blast wave arrival (see Fig. Table 4 compares for each block the critical stand-off distance to avoid material failure, R * dam , and overturning, R * . For the dimensions and explosive weights here explored, toppling prevails. In other words, overturning is the most critical failure condition. This stands only for the relatively short time period following the arrival of the shock wave, when the loading rates are sufficiently high to assume f t = 50 MPa. If a smaller strain rate is assumed a priori (and considered constant during the numerical simulations), the corresponding tensile strength decreases and the critical stand-off distance associated to material damage increases. Nevertheless, the dimensionless ratio Γ is only slightly dependent on the strain rate. Consider, for instance, a block with A = 0.25×0.25 m 2 subjected to an explosive weight W = 10 kg, we obtain the following values

Γ crit = Γ| ε≥18 s -1 = 2.15, Γ| ε=1 s -1 = 2.02, Γ| ε≤10 -4 s -1 = 2.40.
The corresponding critical stand-off distances to avoid material failure are due to tensile stresses. For the case of simple rectangular blocks, overturning is usually predominant. We stress that, however, it is not possible to derive analytical expressions for the material failure condition, as the response is function of the particular geometry of the target and the highly non-linear material behaviour at varying of the strain rate. Each case requires ad-hoc investigations to assess the vulnerability to damage. We present an explicative example below.

R * dam | ε≥18 s -1 = 1.4 m R * dam | ε=1 s -1 = 2.3 m, R * dam | ε≤10 -4 s -1 = 3.1 m, while R * = 2.

Results and discussion

We focus attention herein on the vulnerability of the statue of Aphrodite of Milos against explosive threats. The material behaviour is modelled as described in the previous paragraph and contact at the interface between the statue and the base is considered as in paragraph 5.1. We present in Figure 10 a detail of the geometry and of the numerical model used, consisting of 4-node linear tetrahedra elements of 0.7 × 0.7 × 0.7 cm 3 size (≈ 5.2 millions of FE). ConWep model is used to apply the blast load on all exposed surfaces of the statue (front, rear, lateral sides, and top). We stress that such blast load model allows to take into account the inclination of the shock front direction of propagation and the normal to the impinged surface (at a local level, i.e., finite elements), the non-simultaneity ad non-uniformity of the blast pressure over the target's surfaces. Clearing, lift, and drag effects, as well as multiple reflections are neglected, but, as discussed above, their influence is minor when failure due to material damage is under investigation.

W = 10 kg W = 20 kg W = 50 kg Cross-section A R * dam R * R * dam R * R * dam R * [m 2 ] [m] [m] [m] [m] [m] [m] 0.125 × 0.125 2 
Figure 11 displays the time evolution of the dimensionless stress ς due to 10 kg of TNT at a stand-off distance R = 2 m. The non-standard geometry of the target gives rise to strong stress localisation. At time t = 300 µs after the shock arrival, damage appears in the lower part of the body and propagates within. As the stress waves travel through the material, a strong localisation at the level of the neck takes place and causes its breakage (t = 950 µs). Figure 12 displays the damage evolution throughout the body of the statue.

The particular geometry of the statue renders it extremely vulnerable to damage. This is due to the focalisation of the refracted stress waves within the upper part of the statue, a phenomenon similar to what observed for blast waves in confined and internal explosions (cf. [START_REF] Masi | A study on the effects of an explosion in the Pantheon of Rome[END_REF]). Table 5 shows the value of Γ crit to avoid damage of the artefact and compares the critical distances for material failure and overturning. Even if the statue is found to be safe against overturning, the existing protective perimeter around Aphrodite of Milos, at Louvre Museum (Paris), is insufficient for the preservation of the artefact against explosions produced by a TNT quantity as great as 10 kg or more.

Moreover, we stress that in the presented analyses we did not consider the eventual material degradation and presence of cracks within the artefact. These features would be responsible to weaken the strength of the statue, e.g. [START_REF] Borri | Diagnostic analysis of the lesions and stability of Michelangelo's David[END_REF]. Hence, for real-case applications, (mechanical) diagnostic analyses and digital surveys are necessary to understand the real strength and the criticality of the failure mechanism. 

Conclusions

We investigated the resistance of museum artefacts under fast-dynamic excitations arising from an explosion. Two main failure mechanisms are considered: failure due to rocking/overturning and failure due to direct material damage.

First, we considered the rocking response mechanism. By virtue of a simplified expression of blast actions based on established empirical models and an analytical approach developed in [START_REF] Masi | Rocking response of inverted pendulum structures under blast loading[END_REF], we presented the overturning condition for rectangular, slender blocks.

Attention was focused on the minimum distance (critical stand-off distance) that has to be assured between the explosive source and the target, such that toppling is avoided.

A corroboration of the assumptions of the proposed analytical model was presented in Appendix B with detailed three-dimensional numerical simulations that consider the fluid-structure interaction phenomena, a combined rocking/sliding behaviour, and the possibility of uplifting (flight mode). An exhaustive validation of the analytical approach can be found in [START_REF] Masi | Rocking response of inverted pendulum structures under blast loading[END_REF]. A good agreement was found overall. Moreover, the estimations of the analytical model provide an intrinsic factor of safety (around 2.5) which is consistent for most design applications.

Through the above discussed model, we investigated the vulnerability of some emblematic statues against explosions (by defining appropriate correction factors to consider the actual geometry and mass distribution of artefacts). We assessed the overturning domain of the following statues: Michelangelo's David, Farnese Hercules, Athena Giustiniani, Laocoön and His Sons, Aphrodite of Milos, and Belvedere Torso. We highlighted the criticality of the preservation against explosive threats of some of the artefacts considered. For instance, the statues of Belvedre Torso, Laocoön and His Sons, and Athena Giustiniani were found to be not satisfactorily protected against explosions to prevent overturning.

Finally, direct material damage due to the development of tensile stresses within the body of the targets impinged by the shock wave was investigated. By means of detailed numerical simulations, we found that failure due to overturning prevails on material damage for targets of relatively regular geometry. In other words, the critical stand-off distance to prevent toppling is usually larger than the one to avoid direct material failure.

We further investigated the vulnerability to material damage of an existing statue, Aphrodite of Milos. In this case, the non-standard geometry of the target gives rise to strong stress concentrations which render the structure more vulnerable to damage rather than overturning.

The purpose of our analysis is to derive reliable decision making tools in the design of protective devices to preserve the historical heritage. We focused attention to the use of the analytical model for the preservation of museum objects, for determining the minimum perimeter around statues of high historical and aesthetic value. A rather strong vulnerability of such artefacts to explosive threats was found, at least for the considered objects, either due to overturning or direct material damage. Our results can be used to have a first estimation of the protective perimeter to be guaranteed in museums for the investigated statues.

(see paragraph 3.2.1), whose validity needs to be corroborated. For the sake of completeness, the validation is here conducted by comparison with detailed numerical simulations.

An exhaustive validation of the analytical model can by found in [START_REF] Masi | Rocking response of inverted pendulum structures under blast loading[END_REF], where also existing experimental tests are considered.

Sliding and uplifting effect

We explore i) the effect of the linearisation of the equations of motion (see also paragraph 3.2.3), and ii) the possibility of the occurence of combined sliding, rocking, and uplift (flight mode). We consider Coulomb friction at the interface of the block with the rigid base, with an angle of friction equal to φ = 35 • , which is common for many geomaterials (concrete, marble, stone etc.). Blast loadings are applied as in Section 3.2, relying on the best-fit interpolations in Appendix A. ABAQUS commercial software is used for the computations. A hard contact formulation is used, i.e., no penetration is allowed at the contact of the rocking block with the base [START_REF] Abaqus | Abaqus analysis user's guide[END_REF]. The rigid base is fixed and the rigid block is free to translate along y-and x-axes, rotate around z, hence, uplift is possible, see Figure 2. The results of this comparison are presented in paragraph 5.1.

We investigate the minimum stand-off distance (R * num ) for several combinations of slenderness angles and explosive weights. Table 1 displays the comparison between the threshold range (R * ), derived in paragraph 3.2.3, and the one obtained from the numerical simulations (R * num ). The numerical analyses show that rocking and sliding happen together. However, for slender structures sliding is limited and rocking prevails. In the worst case studied here (W = 50 kg and α = 20 • ) the analytical approximation overestimates the minimum stand-off distance by approximately 9%.

Fluid-structure interaction effect

We focus on the assumptions concerning the simplifications related to the blast loads and their approximation by empirical models. In particular, we investigate the influence of the interaction between blast waves and the rocking block. The analyses are performed again using ABAQUS software. The same modelling approach is used for the interaction of the block and the base as before. The results of this comparison are presented in We account for three-dimensional Fluid-Structure Interactions (FSI) with a CEL approach (cf. [START_REF] Masi | A study on the effects of an explosion in the Pantheon of Rome[END_REF]): the balloon analogue models the explosive source and air is assumed as an ideal gas. The material parameters for the constitutive laws of the balloon are those detailed in [START_REF] Blanc | Simulating the blast wave from detonation of a charge using a balloon of compressed air[END_REF] (p. 645, model #6). To ensure mesh convergence, the elements size of the Eulerian domain is fixed to 1.0 cm.

The numerical analyses account for the blast negative phase, drag and lift effects, diffraction and rarefaction phenomena, multiple reflections, no-normal incident angle of the blast waves with all the faces (including the base) of the rocking block, and the threedimensionality of the shock front. These effects result generally in an overall reduction of the blast impulse with respect to the analytical model.

The detailed numerical analyses showed limited influence of lift and drag effects even for combinations of stand-off distance and explosive weight close to the critical ones.

Table 2 presents the critical distance, as obtained from the numerical simulations.

The analytical model provides a safe estimate of the critical stand-off distance (upper bound). We notice that an intrinsic factor of safety greater than 2 (ordinary value in any engineering design) is obtained with respect to the detailed numerical simulations.

An additional validation of the proposed model can be found in [START_REF] Masi | Rocking response of inverted pendulum structures under blast loading[END_REF], where the critical stand-off distance and dynamic response predictions are corroborated through existing experimental tests. 
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Figure 1 :

 1 Figure 1: Time evolution of overpressure (i.e. the pressure measured relatively to the atmospheric one)

Figure 2 :

 2 Figure 2: Configuration considered for the rocking problem: a rectangular slender, rigid block resting on a horizontal plane with uniformly distributed mass, subjected to uniform pressure load due to an explosion.

  τo the normalized Friedlander time-history; and τ o the ratio between the characteristic time of the load and the time parameter, T = √ Io mgr

Figure 3 :

 3 Figure 3: Contours of the critical stand-off distance, i.e., the minimum required distance between the explosive source and the rigid target, R * , in order to avoid toppling. For ρ = 2000 kg/m 3 and heights h = 1.5 m (left), h = 1.0 m (centre), and h = 0.5 m (right), R * is plotted as a function of the explosive quantity, W , and slenderness, α.

Figure 4 :

 4 Figure 4: Configuration considered for the rocking problem of museum artefacts: an arbitrarily shaped rigid block with rectangular base, resting on a horizontal plane with uniformly distributed mass (centre of gravity at hg), subjected to a uniform blast pressure applied to surface S (blue), with centroid at hc).

Figure 5 :

 5 Figure 5: Different museum artefacts considered. From left to right: Michelangelo's David (Gallery of the Academy of Florence, Florence), Farnese Hercules (Archaeological National Museum, Naples), Athena Giustiniani (Vatican Museums, Vatican City), Laocoön and His Sons (Vatican Museums, Vatican City), Aphrodite of Milos (Louvre Museum, Paris), and Belvedere Torso (Vatican Museums, Vatican City).

Figure 6 :

 6 Figure 6: Critical stand-off distance R * for the considered museum artefacts, as function of the explosive weight W .

Figure 7 : 5 m 2

 752 Figure 7: Time evolution of the dimensionless stress ς = σt/Pro through the cross-section A = 0.5 × 0.5 m 2 of a target due to an explosion (R = 1 m, W = 20 kg). The time origin is at the shock wave arrival on the free bottom boundary. The initial longitudinal compression wave is refracted at the free boundaries.

Figure 8 : 5 m 2

 852 Figure 8: Time evolution of the dimensionless stress ς = σt/Pro through the cross-section A = 0.5 × 0.5 m 2 of a target due to an explosion (R = 1 m, W = 20 kg). The time origin is at the shock wave arrival on the free bottom boundary. The initial longitudinal compression wave is refracted at the free boundaries. The tensile release waves interact continuously and cause stress concentrations. Stresses exceeding the material strength results in damage (as shown in zoomed views).

  s 7, 8), this dependency is negligible, due to the high strain rates involved, ε > 18 s -1 , i.e. Γ = Γ crit = Γ| ε≥18 s -1 .Accordingly, Figure9displays the values of Γ crit ( ε = 18 s -1 , f t = 50 MPa) for rectangular blocks of several dimensions subjected to different explosive weights. The phenomenon of localisation of tensile stresses gains importance for slender blocks and small cross-sections.

2 A

 2 27 m (overturning). Summarizing, blast loads induce two different types of response of a target (prevailing on other ones): rocking (overturning) and damage W [kg] = 0.125×0.125 m 2 , A = 0.125×0.5 m 2

Figure 9 :

 9 Figure 9: Γ crit = Γ| ε≥18 s -1 , i.e., ft = 50 MPa, as function of the explosive weight for rectangular blocks with height 2h = 2 m, different cross-sections A = l 1 × l 2 and width 2b = l 1 .

Table 2 :

 2 Comparison of the critical stand-off distance to avoid material failure, R * dam , and overturning, R * for blocks of different cross-sections A = l 1 × l 2 , width 2b = l 1 , and height 2h = 2 m. Overturning represents the most critical failure condition.

Figure 10 :Figure 11 :

 1011 Figure 10: Model used for the statue of Aphrodite of Milos.50 μs 150 μs 200 μs 300 μs 350 μs 450 μs 600 μs 700 μs 950 μs 1000 μs

Figure 12 :

 12 Figure 12: Evolution of damage (i.e., damage when the damage variable is equal to the unit) due to 10 kg of TNT at a stand-off distance R = 2 m from the statue of Aphrodite of Milos.

Table B. 1 :

 1 Comparison of the overturning domain between the analytical solution, R * (and corresponding scaled distance Z * ), and the numerical one, R * num . The rocking block has h = 1 m, ρ = 2000 kg/m 3 , and variable slenderness angle α. Different weights of TNT, W , are considered. Good agreement is found, being always on the safety side. α = 20 • α = 15 • α = 10

Table 3 :

 3 Aphrodite of Milos subjected to 10, 20, and 50 kg of TNT. Values of Γ crit to avoid damage of the artefact and comparison between the critical distances for material failure, R * dam , (critical in this case) and overturning, R * .

				W	Γ crit R * dam	R *		
				[kg]			[m]	[m]		
				10	5.87		2.12	0.7		
				20	5.87		2.67	1.0		
				50	4.85		3.37 1.66		
	50 μs	150 μs	200 μs	300 μs	350 μs	450 μs	600 μs	700 μs	950 μs	1000 μs
					damage	1	0			
					variable					

  Table B.2: Comparison of the overturning domain between the analytical solution, R * (and corresponding scaled distance Z * ), and the numerical one, R * FSI . The rocking block has h = 1 m, ρ = 2000 kg/m 3 , and slenderness angle α = 15 • . Different weights of TNT, W , are considered. The analytical model gives a factor of safety ≈ 2.5 with respect to the numerical solution.

				α = 15 •	
	W	[kg]	10	20	50
	R *	[m]	3.40 5.10 8.78
	Z *	[m kg -1/3 ]	1.58 1.88 2.38
	R * FSI	[m]	1.50 2.25 3.35
	R * FSI R *		2.26 2.26 2.62

Appendix A. Analytical interpolations for blast loading

The expressions for the blast parameters that determine the reflected pressure timehistory due to a surface burst (explosion on or very close to the ground surface) are given below. For more details we refer to [START_REF] Vannucci | A study on the simulation of blast actions on a monumental structure[END_REF].

• normal reflected pressure peak P ro :

] ;

(A.1)

• scaled and effective positive reflected impulse i rw , i r :

• scaled and effective arrival time t Aw , t A : 

(A.4)

Appendix B. Validation of the overturning domain

Whilst the analytical approach above presented can be used to determine the minimum stand-off distance to prevent toppling, it relies on some simplifying assumptions