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Corrections to Off-Axis Av Measurements from Event

Data Recorders

Bob Scurlock, Ph.D., ACTAR, Andrew Rich, BSME, ACTAR, and Kyle Poe

Introduction

In this article, we derive a mathematical transformation
which corrects Av measurements from event data
recorders at arbitrary positions to the equivalent values
at the center-of-gravity. The method is illustrated using
staged collision data. We also demonstrate the method’s
consistency with simulation.

Use of EDR Data

It has become increasingly common for event data
recorders (EDRs) to play a central role in accident
reconstruction analyses. Both pre-crash speed data as
well as acceleration and change-in-velocity (CG) data
can provide extremely valuable constraints for the
analyst’s calculations and corresponding opinions.
Though it is common for event data recorders to be
located very near a vehicle’s center-of-gravity, this is
not always the case. The analyst must be aware of how
an EDR’s distance from a vehicle’s CG can cause
inaccuracies to be introduced to an analysis if not
properly corrected for [1,2]. Even when near the center-
of-gravity, it is important for the analyst to be aware of
how EDR-based results may be affected by issues such
as large rotational velocities. Below, we develop a
mathematical transformation to correct for EDR
displacement from the CG.

Mathematical Development of Equations Used

We begin with a rigorous derivation of the equations
needed for our inverse transformation from EDR
measured A7 to equivalent Av at the center-of-gravity
based on classical mechanics. For a thorough review of
classical mechanics, we refer the reader to reference [3].

Position of Points in a Moving Reference Frame

The position of an arbitrary point, P, can be specified
with respect to an inertial frame (“Earth frame”), O, as
the vector sum of P’s position with respect to the
moving reference frame, O', and the position of the
moving reference frame’s origin with respect to the
inertial frame. That is,

RP =R +7F (€]

where R?'is the position vector of the moving reference
frame’s origin with respect to the inertial frame, 77 is
the position of point P with respect to the moving
reference frame, and R” is the position of point P with
respect to the inertial frame (Figure 1).

Velocity of Points in a Moving Reference Frame
Taking the time derivative of (1), we can calculate the

velocity of point P in the inertial frame. This is given
by:

RP =570 = RO 477 )

where 7 indicates the velocity of point P evaluated
in the inertial reference frame 0.

Suppose we know the position of point P with respect
to frame O’, given by 7. That is, we can write:

P _ Pory Paoi,  Par
T=ruR 1y 12 ®3)

where X', ', and 2’ are the ortho-normal basis vectors
for the moving frame O’, whose orientations can change
with time with respect to frame 0, and 7, 7,,and 1}
are the time-dependent components along those basis
vectors.

The components of 7 in frame 0’ can be related to the
components in frame O by a 3%3 rotation matrix M:
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Here %, 7, and Z are the ortho-normal basis vectors for
the inertial frame O, whose orientations we take as fixed
(time-independent), and ,/, r/,and r,/ are the time-
dependent components along those basis vectors. The
rotation matrix is given by the direction cosines:
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Taking the derivative of both sides of (3) with respect
to time, and applying the product rule, we have:

P = (F0R + 109 +152")
+H(rpx + 1y + 1)) ()]

where the term in the first set of parentheses represents
the contribution to the time rate of change of vector 7*”
due to time-dependent components evaluated with
respect to frame O', and the second term represents the
contribution due to the frame O’ time-dependent
orientation with respect to frame 0.

For an infinitesimal rotation about an arbitrary axis 66,
a position vector, 7, is transformed to:

=7+ 67 (5)

where,
ST =80 X7 (6)
This implies:
57 80
=T 7
= XT @)

or in the limit, 6t — 0,
F=@XT (8)

With (8), we can now evaluate the time derivatives of
the frame O’ basis vectors:

R =axz
5 =mxy
Y =axz ©)

where @ is the instantaneous angular velocity vector of
the reference frame O’ as measured in frame 0.

Thus,
rh' + r;:f/’ +rhs =
B X (rg® +1,9 +1)2") (10)
We can now rewrite (4) as:
P =70 @ x 7P (11)

Here 77 is the velocity of point P whose components
are evaluated in the moving reference frame, 0':

P,0’
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Finally, combining (2) and (11), we have our final
expression for the velocity vector of point P with
respect to the inertial frame O:

70 =V + 9" B x 7P (13)

Acceleration of Points in a Moving Reference Frame

Taking the time derivative of (13), we can now find an
expression for the acceleration of point P. This is given

by:
ah0 = PO = j0' 4 PO’
d
= s 7P
+E(w x 7F) (14)

The first term is simply the acceleration of the moving
reference frame O’ with respect to the inertial frame O:

o' =g (15)



For the second term, we have:

d
=P0" _ = (P st P 1 P a1
= (F R + 79 +7,2")
_ uP o P 1 P Ar
SteX +1Y +1Z

+IOR Y T2 (16)

where 52" + 79" + 72" is the acceleration of point

P in frame 0’, which we denote @>°’. Using (9), the
second term in (16) becomes

an

We can thus rewrite (16) as:
(18)

ool —pol  — . —pot
v =ah% + @ x vH0

The final term in (14) is:

d . .
E((TJXFP):(TJXFP+6XFP (19)

where & is the angular acceleration of reference 0’
frame as measured in 0.

Using (11), we can rewrite the second term in (19) as:

@ x 7P =& x (770 + & x ")
=@ x "% + @ x (@ x77)

(20)
Putting this together, we can rewrite (14) as®:
aho = go 4+ gho'
+oxi +ox@x7)
+2& x 770’ (21)

Acceleration of Accelerometers in a Moving Reference
Frame

Let us now suppose we have two vehicles undergoing a
collision. We can assign to each vehicle its own moving
reference frame Oy, where k is an index used to label
the vehicle, and the origins are placed at the vehicle
center-of-gravity (CG). Let us also suppose, at a given
point P, vehicle k has an accelerometer. Let’s now
denote the accelerometer’s position with the superscript
A. Suppose that the accelerometer is sufficiently far
away from the volume of crush damage, that we can
regard its position as fixed and stationary with respect
to the vehicle’s reference frame. That is, we have:

a*®' =0
740" =0 (22)
Using (21), we can now write an expression for the
expected acceleration at the accelerometer position as a
function of time, in the inertial frame O, which we will
assume is the Earth frame of reference:

ap(t) = ag®(t) + @, (t) x 7 (23)

LFora thorough derivation of these equations, see
chapter 10 of reference [3].

+@, () X (@, (t) X 7

We can re-express the vectors 72 and @, in cylindrical
coordinates by:

e =77 (24)
and
wi(8) = |, (O] - & (6) (25)

where we define an instantaneous right-handed
cylindrical coordinate system whose axes are centered
at the accelerometer, where the unit vector #2(¢) points
from the CG to accelerometer position, @(t) defines the
axis of rotation, and 87 (t) points in the direction of
rotation.

Next, let’s redefine 7' in terms of its components
parallel and perpendicular to the unit vector @(t)
(Figure 2). That is,

it = L] RO + |74 0@ (26)
This of course implies:
D(t) X F (1) = () x 72, () @7

Let’s now examine the special case where (1) rotation
occurs only about the inertial frame’s 2 axis and (2) 74
lieson the ' — 9 plane, thereby reducing our model to
two dimensions (Figure 3). Note, (1) ensures &, (t) and
@, (t) are both aligned with the 2 axis and (2) ensures
7y = 0.2 With these simplifying assumptions, we
have:

@y (t) = |o(t)] - 2 (28)

and the angular acceleration becomes:
W () = @, (0] 2 (29)
Our cross products are thus given by:

B(t) x FA(1) = 6£ ()
6t () x a(t) = FE®)
() x 8 (1) = (1) (30)
We can now re-express the first cross-product in (23):

(U;k(_t) x 7
=, (O] 17 - (2 x 7 (D)

= | (O] - 17¢]- 62 () @D
We can re-express (@ (t) X 74) by:

@y (t) x 7

=@ (O] 7]+ (2 x 7(0)

= |@ O] 7] - 6 (32)

The second cross-product in (23) is therefore:

2 Note, typically this vector points from the vehicle CG
to accelerometer (or EDR), which in general can have
a non-zero z-component. To use the formalism

@, () X (@ (8) X 7)
= @O 171 (2% 94(0))

= —|@ (O 17| - 7 () (33)
We can now write (23) as:
ag(t) = a1
+Ha (O] 171 8¢ ()
=@ (01 - 17 - 7 (1) (34)

With this, we can now relate the acceleration at the CG
to the measured acceleration at the accelerometer
position.

Av in Continuous Time

Let us now take the dot-product of (34) with an arbitrary
unit-vector, ¢, which is defined in the inertial frame, and
calculate the time integral of both sides from 0 to the
end of the crash pulse At:

At
f dt-ag(t)-¢
0 At
= f dt-agé(t)- ¢
oAt .
+ [ de-16,@1- 17160 @ ¢
oAt
Gl R A
0
Note, the projections of a@g(t), asé(t), 84(t), and
#4(t) along the ¢ axis are all changing as a function of
time, and therefore the dot-products cannot simply be

factored outside of the time-integrals. Let’s now
simplify (35).

We first want to evaluate the integral using integration
by parts:

At

) det - @, (O] - 78] - 620 - ¢ (36)
Let us define the function u(t) by:
u(t) = 7¢] - 6 () - ¢ @37
We can thus express du as:
du=dt-[7]-9{() - ¢ (38)
Using (8), we know:
i) =@ x BA(®)
=@ (8@ x 0{®)  (39)
Using (30), (39) becomes:
bi(®) = @ x B ()
= —|@, ()] - 7 () (40)

presented in the rest of this work, simply ignore the z
component, using only the projection on the vehicle’s
local x-y plane to define this vector.



With this, we can rewrite (38):

du=—dt- || -|@ (O] -7@®) ¢ (41)
Let us now define the function
9(t) = @, (8)] (42)
and its differential:
dg = dt - |w, (0 (43)
Using integration by parts, we have:
At
| uods
At At
= | a9y~ [ gwan

Using the above, we can rewrite (36) as:
At
[ERCXCREARCR:
OAt
S GARCACIRACH)
OAt
R RCROTE ORI

Here we see the last term in (45) is equal and opposite
to the last term in (35). (35) therefore simplifies to:

At
f dt 1, O] 7] - 640 - ¢
0
At
=f d(I7 ] @O 948 - €)
OAt
+f de- [ 1@ (D12 - 74 ¢ (@6)
0

or

0
+ (1@ (801 - 84(a0)

~ 47
(@O () & 17| @n
(47) can also be written in the equivalent form:
At At
dt-agt)-¢=| dt-a@)-¢
0 0
+ (1@ a0)] - 4 (at)
— 1@ (0)] - B(0)) - & - |74 (48)

With (48), we can now write our equations to estimate
ABES components in the inertial frame. These are given
by:

At
Avg§ = | dt-agft)-x
e
=| dt-ag®)-zx
0 (49)

—(@pp X Ty — @ X TE) R
and
At
ATES = f dt-as(e)-9
0

At
- [ a5
0

_(Ek,f X Tip = @y X ‘Fléi) 'y (50)

Note, the dot products in the time integrals foAtdt-
ag(t)- % and fOM dt - ag(t) - 9 must be evaluated time-
step by time-step as the acceleration vector at the
accelerometer position, @z (t), will likely rotate as the
collision unfolds. Also, recall ag(t) is the acceleration
measured at the accelerometer position in the internal
frame. This means, to properly evaluate (49) and (50),
one must first transform the acceleration vector
components, typically given in the moving vehicle
frame of reference, to the Earth-fixed inertial frame.

Av in the Instantaneous Limit
Let us now approximate the collision as occurring

instantly in time, thus in the limit At — 0. With this, our
integrals become:

At
dt-alf(t)- ¢ =AvEc-¢

(51)
0
and
At
dt-af(t)-¢c=Avf-¢ (52)
0
Our cross-products become:
(D X Te — @y X T) - €
We can therefore rewrite (52) as:
At
dt-ag(t)-¢ > Avf-¢
0
= ATC - ¢+ (Ady X 7) - € (54)

Because there is no rotation in the instantaneous limit,
we can now factor out our dot-product, and simplify
(52) by:

AT = ATEC + (Ao X 7)) (55)
Impulse

Let us define the total impulse imparted to vehicle k by:

(56)

0

where F, is the total force versus time acting on vehicle
k during the duration At. Using Newton’s 2™ Law, we
can rewrite (56) as:

Je= fom dt- [% (mkﬁk)]

=my, ' AT, = AP, (57)

Torque

We can write an expression for the total torque on
vehicle k caused by the application of force F,:

L, = L@, =7, X F, (58)

where @, = dw, /dt is the angular acceleration about
the center-of-gravity of object k, and 7; is the lever-arm
extending from the center-of-gravity to the point of
contact, and I, is the moment-of-inertia for rotation
about the T, axis.

Taking the time integral of the total torque over
interaction duration At, we have:

At _ At
f dt-T, = f dt - (I, @)
0 0

—fAtdt 1, 40
A [kdt]

= L,A@, = AL, (59)
Therefore, the torque delivered over time At is
associated with a change in angular momentum AL,
where the angular momentum is given by L, = I, @.

Therefore using (58) and (59), we have:

At

AL, = I, AW, = f dt - (7, X Fy)

0
At _
:r‘kxf dt- F
0

=g X Jio = my - (7 X ATy) (60)

Change in Angular Velocity

Using (60), we can now write an expression for A&, in
terms of Avy:

e XJe ([ X AD)
k:u:"iz" (61)
Ik kk

where we express the yaw moment of inertia in terms of
vehicle k’s radius of gyration I, = m, k2.

Solving for Av at the CG

Let’s write our accelerometer position in Earth-fixed
inertial frame coordinates:
(62)

A _ Ao A o
Th = TixX + Ty

We can thus write our cross-product by:

x bY% 2

A x 7t = 0 0 Aw,
U r,;‘fy 0

=2(-rf, - Dwy) — P(—7y - Awy)

= Awy, - (—r,fy)'c‘ +189) (63)



With this, (55) becomes:

Avi AvES — Aw, - T8
( k,x> =< k,x k k,y> (64)

A cG LA
Avk_y Avk_y + Awy - Ty

Let’s now express the impulse centroid position in the
Earth-fixed inertial frame:
Ty = TixX + 70y Y (65)

With this, we can evaluate the cross-product in (61):

Avis,

x vy Z
T XATEE = Tix  Tiy 0
AvgS AvgS 0
= ZA(Tk'x CAVES — 1y, AVES) (66)
We can now rewrite (61) by:
Tiex  AVES — 1, - AVES
A@k — ( k,x ky i ky k'X)f (67)
kk
Using (67), (64) becomes:
x'A Cf?, y -A Cg{
(Ay":x> _ /Av,ffc _ (Tk, kakirky U, ).r‘éy\ (68)
Avigy \ o (rk,x-Av,fg,frk,y-Avffﬂ)er

F) kax
ke

or
Av,
Avg,,
7 'TA -7 .rA
(moge (1472 T 4 g (x|
: k ' iZ

k

- (69)
6 [Tky” Ty c6 Th ' Tix
Avis - ez +Avgy | 1+ iz
k k

(69) can be re-expressed as an equation that takes vector
AGES and rotates it to obtain Avg:

(1 + Ty " rléy) (_"m 'rlf,y)
Avi, _ k2 k2 AvgS, (70)
Avg, (—r,c,y . r,ﬁx) ( Tiox -r,fx) AvgS,
k

ke

Where our rotation matrix, R, is given by:

14 Ty Tty T Ty
ki ki

R= 71
Ty " Tléx 1+ Thyx " 7”I:?x ( )
ki ki
Rewriting (70), we have:
Av# = R - AGEC (72)

So long as R is not singular, we can find its inverse, R™1,
such that we can obtain A7E¢ by:
AGES = R71-AGf (73)

Next, we define four new variables, a, b, ¢, and d given
by:

LA
a=1+ Ty zrk’y
ki
b= Thx " Tﬁy
ki
(74)
— Ty " Thx
ki
T
d:1+rk,x zk,x
ki
With (74), we can rewrite our rotation matrix:
_(a b
R= (C d) (75)
With this, (72) becomes:
Avf, = a-Mvi§ + b AvES (76)
Avf, = ¢ AvgS + d - AvES (77)
The inverse, R™1, is given by:
1:d -b
-1 _ _—
R = (_c s ) (78)
Where the determinate, |R|, is:
|IR| = ad — bc
Thy Ty | Tkx " Tix (79)
=142 4 '—2
ki ki
With (78), (73) now becomes:
(A'Jl??c) _1 ( d —b) (szf,x>
AvgS [RI\=¢c a Avg,
1 d-Avd, —b-AvE
=—. ox oy (80)
[R| \—c-Av{, +a-Avg,
Using (80), we obtain our final form for AG<¢:
cG 1 A A
AvEs = i (d-Avi, —b-AvE) (81)
1
AvgS = R’ (—c-Avi, +a-Avi) (82)

Note, because 7y, ,,, 7', 73, ., i, are all signed values, it
is possible to obtain some combinations of these values
which makes R singular (JR| = 0). From basic linear
algebra, we know there is a unique solution for Av<¢ if
and only if R is non-singular. We will explore the
implications of this further below.

PDOF

With (57), we know by obtaining an estimate of Av®,
we also obtain an estimate of J, — that is, the principal
direction of force:

my
Jex =iR[" (d-Avi, —b-Avd)

my
] ky

=Rl (—c-Avg, +a-Avi)

(83)

where the direction of the impulse is given by:

j - ]k,xf + ]k,y?

k
/lé,x +iy

(84

The Lever-Arm

The lever-arm, h, is given by the component of the
vector 7, perpendicular to the impulse direction i, and
is given by:

hie = [Fie X Ji = 17 X O] (85)
Using (66), this becomes:
by = [T - AVES — 10y - AVES| (86)

A7
The Closing-Velocity at the Point-of-Contact

From (55), we know the velocity change at point P,
fixed within the vehicle k frame, can be written as:

ADE = ATEC + (Ao X T7F) (87)

Using (61), we can write this as:
1
ADE = AGEC + F((r—f X ADES) x 7F)  (88)
k

Taking the dot-product of % (G x ATES) x 77) with
k

ADES, and using the scalar triple product, and (85), we
have:

(@ = A7) x 77) - ADEE

= (7 x AES) - (7 x ATE)

= |ATEC| - |7 x ADEE|? = |ATEC| - h (89)
Thus, taking the dot-product of (88) with ADES, we
have:

2
hy
ol

ATL - ADEE = |ATEE| + |ATEC| g

h2
= |Aﬁ,§0|-<1 +k—l’2:>

With (90), we now have a way to express the change-
in-velocity component along the impulse direction, at
the point of contact.

(90)

Let’s now look at the difference in value for two
vehicles:

h2
(ATF — ADD) - ADEC = |ADLE| - (1 + k—i
1

2
+|avge|- (1 +—§)
kZ

Note AwY-ADSE is negative since Av, exactly
antiparallel with ADS¢ from Newton’s 3 Law; therefore,
we know:

1)

(ATF — ATE) - ADEC > 0



Let’s define a new parameter:

4 (92)
Y = 2
k,% + hj;
(91) can therefore be rewritten:
A =CG A SCG
(5P — ATE) - ADEC = av?] | lavg] (93)
Y1 Y2
Let’s now write out the difference:
(ADF — ADE) - ADEC =
((ﬁff —o1) ~ (75— ﬁgi)) ADEC =
((oFy - o8 = (9h - 95,)) - a0 (94)
The difference
Theri = Uri — Vg (95)

is simply the initial relative velocity of vehicle 1 with
respect to vehicle 2 at the moment just prior to impact
(the “closing-velocity”).

The difference

Vker = Vip — Vb (96)
is simply the final relative velocity of vehicle 1 with
respect to vehicle 2 at the moment just after impact (the

“separation-velocity”).

With the relative velocities defined, we can rewrite
94):

(A5] — A7) - ADEC = (e — Tpers)  ADFC (97)
Let’s define the coefficient-of-restitution by:
'I7P . AﬁCG
e=— Rel,f 1 (98)

=P AACC
Vgel,i " A07

Thus, the differences in final and initial relative velocity
can be re-expressed by:
(PRt — Ukeri) " ADFC =
ket " ADFC — Dpey ;- ADFC =
—€" Dhey * ADFC — Ty ADFC =

—(1+ &) - (ey; - ADF) (99)
With (93), (97), and (99), we finally have:
=CG =CG

—(1+ ) - (T 20(°) = laof?] | Jack”] (100)

V2

Note, because we defined the closing velocity vector as
Try — gy, We expect Up,, ;- ADFE < 0, and therefore
—(1+4 &) - (Do - ADEE) > 0.

We can thus solve for the magnitude of the closing-
velocity vector component parallel with the PDOF axis

by:

| Ve - 295°| = T+ve U (101)

1 (|A171m| . |A17§G|)

141 Y2

With Knowledge of Only One Av

From Newton’s 3™ Law, we know (again, neglecting
any external forces):

my - ADCC = —m, - ADSC

(102)

Therefore, (91) can be written:

hZ
(A5} - ATE) - A = |AcE| - <1 +z
1

m h%
1 —

+— a8 [ 1+
m2|V1| < k%)

W\ om0k
<1+k_f>+m_2.1+k_22

= |asge] - [l+ﬂ.l
Y1 mz2 V2
1 1
* o
Yimy  ya2my

= |aofe|-

= my - |aofe] |

(103)
Using (97) and (99), this becomes:
—(1+2) - ey - 205°)

1
]
Yamz

(104)

1
= m, - |A556) - [y1m1

We can thus solve for the magnitude of the closing-
velocity vector component parallel with the PDOF axis

by:
. [Pk Aﬁfall .
_— . . SCG| | — -
T 1+ (m1 |Av1 l [}/1m1 + yzmz])

With our mathematical formalism on firm footing, we
now demonstrate the method using staged collision data.

(105)

Demonstration of Method

Above, we derived the corrections needed to transform
Av estimates based on data from accelerometers
positioned away from the CG, to the equivalent values
at the CG. Ideally, this method is tested using staged
collisions where the test vehicles are instrumented with
perfectly accurate accelerometers distributed at various
locations within the test vehicles. In what follows below,
we present the results of applying our transformation to
EDR-based A7 estimates from four EDRs distributed
throughout a test vehicle subjected to a staged collision
event. Though the soundness of the transformation
method is demonstrated, using EDR data for this
purpose comes with its own challenges related potential
errors in the EDR-based Av values themselves. The
tangential but important issue of accounting for
potential EDR-based A7 errors when such
transformations are applied is also discussed below.

2018 IPTM Crash Test 3
Experimental Set-up

A crash test was performed on May 21, 2018 in Orlando,
Florida. The crash test was crash test number 3 from
IPTM’s Symposium on Traffic Safety. The crash
configuration was of the T-bone type. The bullet vehicle
struck the target vehicle behind the rear axle.

The target vehicle was a 1998 Chevrolet Malibu LS 4-
door bearing VIN 1GINE52M3WEXXXXXX (see

Figure 4). The Malibu was stationary at impact. Its
weight was obtained with Rebco 1200-pound scales.
The weight on the front axle was 1806 pounds and the
weight on the rear axle was 1026 pounds, for a total
weight of 2832 pounds.

The bullet vehicle was a 2002 Buick LeSabre Custom
4-door bearing VIN 1G4HP54K72UXXXXXX (see
Figure 5). The bullet was driven into impact at 27 MPH
by a volunteer driver. The impact speed was obtained
with a VBox Sport. The Vbox Sport measures speed
with a 20 Hz GPS engine. The Buick and its driver were
weighed with Rebco 1200-pound scales. The weight on
the front axle was 2334 pounds and the weight on the
rear axle was 1421 pounds for a total weight for the
vehicle and driver of 3755 pounds. The impact
configuration is shown in Figure 6.

The Malibu was instrumented with 2 laboratory-grade
+/-250G accelerometers and 1 laboratory-grade +/-600
deg/sec rate gyro. The rate gyro was a Summit
Instruments model 31206B and the two accelerometers
were Measurement Specialties model 34208A (see
Figures 7 and 8). One accelerometer was mounted at the
center-of-mass and the rate gyro was mounted just
behind the accelerometer mounted at the center-of-mass.
The second accelerometer was mounted on the firewall,
inside the engine compartment. The measured locations
of the accelerometers are documented in Table 1. The
position of the rate gyro was not documented because
angular rate is constant within a rigid body.

The data acquisition equipment used for the laboratory-
grade equipment were two Vericom Computers
VC4000DAQs. The VC4000s were set to sample data
at 1000 Hz. One of the VC4000s was used to record
longitudinal and lateral acceleration data at the center-
mass as well as the yaw rate. The other VC4000
recorded longitudinal and lateral acceleration at the
firewall. Acceleration along the z-axis was not recorded.
All data was stored as voltage, which was later post-
processed in ROOT [4] into accelerations and yaw rate.

Seven “ride-along” EDRs were installed in the Malibu
(see Figure 7). A ride-along EDR is an airbag control
module that is attached to the structure of a vehicle for
capturing the crash pulse. The EDRs used in this crash
test were GM sensing and diagnostic modules (SDM)
that were used in the 2005 to 2009 Chevrolet Trailblazer
and GMC Envoys (Bosch cable 3293). Ride-along
EDRs are not connected to the vehicle’s CAN bus, so
no pre-crash data may be obtained. The ride-along
EDRs are powered by a small external battery back. In
our collision, four of the seven ride-along EDRs
recorded an event. Two of the four ride-along EDRs
were installed in the trunk of the Malibu, close to the
impulse-centroid. One EDR was installed on the center
tunnel just behind the center-of-gravity, and two were
installed on the front passenger floor pan, to the right
and ahead of the center-of-gravity. The two ride-along
EDRs in the trunk were installed with their longitudinal
axes aligned with the negative y-axis of the Malibu. The
two ride-along EDRs in the passenger compartment
were installed with their longitudinal axes aligned with
the positive y-axis of the Malibu. The measured
locations of the ride-along EDRs are documented in
Table 1.

The crash test was documented with several video
cameras including one high-speed camera running at



240 fps and one unmanned aerial system (UAS).
Photographs were taken of both vehicles before and
after the crash test. The scene was photographed after
the test and it was also documented with a Riegl 3-D
laser scanner. The final rest positions of both vehicles
were documented with hand measurements, as well as
the Riegl scanner and the UAS.

Accelerometer Measurements

Table 1 shows the location and the cumulative Av from
the instruments and the ride-along EDRSs. Locations are
given with respect to the CG,y using SAE conventions.
The instrumentation-grade accelerometers were post-
processed in ROOT from voltage to acceleration and
then integrated to get cumulative Av. Figure 9 shows
the longitudinal, lateral acceleration, and yaw rate
graphs from the laboratory-grade instruments. The
black lines show the acceleration values with a 60 CFC
Butterworth filter applied to the acceleration data.
Figure 10 shows the corresponding longitudinal and
lateral Av graphs, as well as the change-in-yaw, which
were obtained by numerically integrating the
accelerometer and rate gyro data. From this data, we
estimate that the cumulative local Av, = 1.04 mph and
the cumulative local Av, = -6.30 mph at the center-of-
gravity. The 250 G accelerometers mounted at the
firewall did not record a crash pulse.

Rate Gyro Measurement

The rate gyro showed an average peak rate of 204.5
deg/sec and a rotation of 12.3° during the ~100 ms crash
pulse. The integrated total rotation from impact to final
rest was 134.6° (see Figure 11). Hand measurements
determined that the total rotation was 135° and that the
Malibu’s center of gravity translated 15.3 feet to final
rest.

EDR Measurements

Figure 12 depicts the location of the four EDRs used in
this analysis.

EDR A was placed in the trunk, toward the rear, at
position (-7.8 ft, -1.5 ft) in the Chevy’s reference frame.
The data obtained from EDR A is shown in Figure 13.
From this data, we estimate Avfhevy =
(5.09 mph, —24.19 mph).

EDR B was placed in the trunk, toward the front, at

position (-6.98 ft, - 1.5 ft) in the Chevy’s reference frame.

The data obtained from EDR B is shown in Figure 14.
From this data, we estimate Avfhy =
(5.09 mph, —21.01 mph).

EDR C was placed in the occupant cabin, behind the
center-of-gravity, at position (-0.67 ft, 0.0 ft) in the
Chevy’s reference frame. The data obtained from EDR
C is shown in Figure 15. From this data, we estimate
AGERRS = (0.64 mph, —6.37 mph).

EDR D was placed in the occupant cabin, in front of the
center-of-gravity, at position (0.3 ft, 0.73 ft) in the
Chevy’s reference frame. The data obtained from EDR
D is shown in Figure 16. From this data, we estimate
Avgpny = (0.0 mph, —5.73 mph).

Crush Damage

The damage profile of the Malibu was documented by
hand measurements as well as a Carlson total station.
Two separate sets of measurements were taken by hand.
One set of measurements included the induced damage,
and one set of measurements included only the contact
damage. The hand measurements are shown in Table 2.
The purpose of the damage profile measurements was
to calculate the position of the damage centroid and not
to perform a CRASH3 damage analysis. That is why the
damage profile for the LeSabre is not reported. In the
analysis that follows, the impulse centroid was taken at
the point of maximum crush on the crush profile of the
Malibu.

Av, and Av,, Estimates

Using equations (81) and (82), the transformed AG¢g,,,
values were obtained. Because all parameters were not
well controlled in the experiment, we used a Monte
Carlo analysis script written for ROOT to obtain best-
estimates, as well as upper and lower limits for our
Ay, values. The inputs used in the Monte Carlo
script are shown in Table 3. In our first round of results,
we assumed no uncertainty on our EDR-based estimates
of Av# and Av;'. In the sections that follow, we explore
the issue of EDR inaccuracies. Note that uniform
probability distributions were used for all inputs. The
best-estimate A7¢g,,, and closing-speed estimates
were obtained by using the best-estimate input values.
The minimum and maximum values were obtained
directly by finding the endpoints of the resulting output
distributions. The accelerometer-based local Av
estimates are shown in Table 4. The EDR-based results
are shown in Table 5. The differences between best-
estimate EDR-based results and results estimated from
the accelerometer are shown in Table 6. The average of
the differences shown in this table for both components
is less than 0.5 mph.

The results from Tables 4, 5, and 6 are shown in Figure
17. The red line illustrates the accelerometer-based Av,
and Av, estimates. The gray boxes illustrate the
uncorrected EDR-based Av, and Av,, values. The black
dots represent the best-estimate local-frame EDR-based
Av, and Av, values at the center-of-gravity. The upper
and lower bound corrected EDR values are illustrated
by the black lines. These results illustrate that the
correction method properly brackets the accelerometer-
based Av, and Av, estimates. Note, the shaded region
about the red line indicates the minimum and maximum
accelerometer-estimated Av, and Av,,. The upper and
lower bound estimates are based on randomly sampling
the pre-impact acceleration bias of the accelerometer,
which was estimated by examining data during a 10
second window before impact.

Closing-speed Estimates

Table 7 shows the EDR-based closing speed estimates
for each EDR, along with the corresponding
uncertainties obtained using our Monte Carlo script.
Table 8 shows the difference between the best-estimate
EDR-based value closing-speed and the true value. The
average of the differences is approximately -2.7 mph.

Figure 18 illustrates the EDR-based closing-speed
estimates versus source of EDR data. The black dots

represent the best-estimate. The lines represent the
upper and lower-bound estimates. We see in
comparison to the true closing-speed, our EDR-based
estimates properly bracket the true results.

An example end-to-end calculation is provided in the
Appendix.

Uncertainty Due to EDR Inaccuracy and the Av
Corridor

In the above presented results, we assumed no
uncertainty on EDR-based estimates of Av;# and Avy;
however, inaccuracies on these input values can have
important consequences for the one’s minimum and
maximum uncertainty range on Avc® and Avf¢ and
closing-speed. This is explored below.

The accuracy of Av estimates from EDRs has been the
subject of numerous studies [5,6,7,8,9,10,11]. Indeed,
the authors of reference [12] delineate a helpful
checklist of potential error sources which can cause
inaccuracies in EDR-reported speed-change data. The
reader is strongly encouraged to review this reference.
We briefly summarize those error sources here:

1. Internal acceleration thresholds: Algorithm
enable acceleration trigger threshold.
Trigger threshold typically in range of 1g
to 29.

2. Short EDR time-window: EDR time-
window for recording Av too short to
capture full acceleration pulse. Can be
ruled out by examining if Av reaches
maximum value and decreases prior to end
of window.

3. Long EDR time-window: Recording
window may be too long, which may cause
post-impact ground-contact tire forces to
contribute to Av over-estimates. This can
be ruled out by examining the EDR data for
alocal Av maximum, followed by decrease,
then an upward drift.

4.  “Clipping™: The true acceleration at the
EDR may exceed the EDR accelerometer’s
minimum or maximum limit. This can
cause a truncation of the true peak
acceleration and therefore a corresponding
underestimate of Av . This may be
discerned by looking for a flattened portion
of the EDR’s acceleration curve if possible.

5. Off-axis: The EDR may be away from the
vehicle CG. The subject of this paper.

6.  Vehicle crush: The EDR is located in the
direct region of crush. This can cause an
overestimate of Av since the crushed
region  will undergo  accelerations
exceeding that of the vehicle CG. This can
also result in underestimates if the EDR
orientation changes during the collision.
For example, material crushing could cause
the EDR’s local x-axis to rotate into the
vehicle’s x-y plane thereby causing the
EDR to lose sensitivity to longitudinal
vehicle acceleration.

7. EDR power loss: The EDR may lose power
before completely recording Av. This will
result in an underestimate of Av. The EDR
report will typically indicate if an event’s
recording is complete.



Because our formalism to obtain Av¢¢ and Av(° relies
on Av; and Av;' as inputs, EDR errors introduced by
sources such as those listed above will naturally
propagate to our estimates of Av£¢ and Avc¢, aswell as
to closing-speed. In some cases, the errors propagated
to the final AvC and AvgC estimates can be quite large
due to delicate numerical cancelations between
Av{, and Av,, and the inverse proportionality to |R].
This important issue is explored in more detail below.

In order to account for potential sources of error such as
those enumerated above, we examined EDR-based
versus accelerometer-based Av values for GM models
ranging from 2002 to 2009 production years from
references [5,6,7,8,9,10,11]. Using this data, a
representative “ Av corridor” was constructed as a
function of EDR Av (see Figure 19 and Figure 20).
Ideally, such a corridor is defined based on test bench
experiments where the orientation of a given EDR can
be precisely controlled, and the input true Av at the
accelerometer is known to a high degree of accuracy.
Unfortunately, such tests are rare, and therefore our
corridor relies on data mostly from staged collisions.
While staged collision data is quite useful for the
researcher, using EDR data from staged collisions
makes it difficult to disentangle Av inaccuracies due to
physical effects such as vehicle rotation during impact
versus inaccuracies due to underlying algorithm design
and accelerometer performance characteristics.
Therefore, the corridor depicted in Figure 19 is meant
to represent a worst-case potential minimum/maximum
range for true Av as a function of our subject EDR Av.

The corridor is defined as follows. For component j, we
have for the lower-bound of the corridor:

AvlT;“e'L"W = sign(AvEPR) - (1 — 10%) |AviPR|

For the upper-bound, we have the piecewise continuous
function:
Avlrr‘ue,mgh

sign(AvfPR) - (4.4 kph),  |AvfPR| < 1.5kph

) 2.9 kph

= {sign(avi?®) - (|avi®| + 29 kph), 1.5 kph < |avE®| < S
‘ 2.9 kph
sign(AvEP®) - (1+17%) - |avsP?],  avipe| > ==

Thus, for high Av, the oft quoted +10% uncertainty on
Av, typically attributed to finite accelerometer accuracy
[13], becomes a +17% upper-bound uncertainty and
—10% lower-bound uncertainty. Thus, our uncertainty
on Av is asymmetric.

For low Av, the behavior is more complex due to both
threshold effects and offset effects (see Figure 20). The
threshold effects cause AvEPR =0 for AvT™€ <
AUThreshold’ whereas for AvTrue > AvThreshold’ we
have AvEPR = ApTrue — ApOffset This behavior can
be attributed to error type (1) and is explored in great
depth in reference [6]. For our Av corridor, we have
ApThreshold = 4 A kph and Av°//s¢t = 29kph. A
non-zero AvThreshold implies, without any other
knowledge, that Av =0 may actually imply Av =
ApThreshold jn the worst-case. This has important
consequences that are explored further below.

With our Av corridor defined, we can now better
understand our uncertainty ranges for Av£¢ and AvgC.
Note, the corridor described above was defined based

on tests related to longitudinal Av. Figure 21 and Figure
22 illustrate Av{®, Avg®, and closing-speed applying
the same corridor for both lateral and longitudinal
components of the EDR Av values. A recent test bench
study involving 2012 GM EDRs indicates uncertainties
for lateral AU components are symmetric about 0 and
less than +10% [18].

Mitigation of Uncertainties
Reduction of Input Uncertainties

The usefulness of speed and change-in-speed estimates
can directly depend on the uncertainty of those
estimates. Though the uncertainties illustrated in Figure
21 and Figure 22 appear formidable, they are primarily
driven by only a few factors. For the Av, and Av,
estimates, the most important contributor to uncertainty
is the a priori unknown EDR accuracy. This source of
uncertainty can be reduced if one has data from tests
conducted on the EDR of same year, make, and model
as the subject vehicle. Ideally, the tests would be
conducted over a wide spectrum of Av values.

The second largest contributor to uncertainty is related
to the physical location of the accelerometer onboard
the EDR circuit board. This can be easily addressed by
removing the EDR housing and visually locating and
measuring the accelerometer with respect to the EDR’s
geometrical center.

Finally, the coefficient of restitution contributes to large
uncertainties in closing-speed. Though a large range
(from 5% to 25%) was used in this analysis, based on
data from staged collisions of similar severity
[15,16,17], using reasonable exemplar vehicles could
help narrow this range of restitution values.

Use of Additional Constraints

Additional evidence collected during scene and vehicle
inspections such as crush damage, departure angles, and
post-impact trajectory lengths can be used to provide
additional constraints on both closing-speed and Av¢.
3D computer simulation engines can be used to quickly
simulate post-impact trajectories over scene data. Such
simulations can provide further constraints. This is
explored in the next section.

Full Virtual CRASH 4 Simulation

We performed a simulation of the 2018 IPTM Crash
Test 3 using Virtual CRASH 4 [19]. Virtual CRASH 4
is a software application for accident reconstruction
which includes the ability to simulate motor vehicle
collisions using an impulse-momentum based model.
Starting with point cloud data created with the Pix4D
application using drone photographs taken after the
crash test, the data was automatically aligned using the
output .tfw file. A 3D surface mesh was created in
Virtual CRASH 4 on top of which the simulated
vehicles were placed (Figure 23). The goal of the
analysis was to determine if, primarily using knowledge
of the post-impact motion of the vehicles and the crush
damage on the vehicles, we could use the simulation
engine to find estimates for the Buick’s pre-impact
ground speed.

Focus on Post-Impact Motion

In our subject crash, simply focusing on the post-impact
trajectory using the Virtual CRASH simulation model
can provide useful constraints on the Chevy’s |A%E¢|
and |Aw, |. Using the real-time feedback given by the
Virtual CRASH simulation engine, it is easy to probe,
as initial conditions to the simulation, various
combinations of A#¢ and Aw, that simultaneously
satisfy (67) and the correct post-impact motion for the
Chevy as loose conditions. Using such an approach, we
can place rough upper and lower bounds on |A7{¢| and
|A®, |, which can be included into our Monte Carlo
script as selection cuts to eliminate Monte Carlo trials
that exceed those bounds. Using this same simulation
approach, we can also place constraints on |A®,| by
searching for upper bound values beyond which the
Buick’s post-impact heading is directed too far from its
documented area of rest. The results are illustrated in
Figure 24 and Figure 25. The reduction in uncertainty
for AE¢ and closing-speed is evident.

Simulation Optimization of Full Event

In addition to using simulation for post-impact motion
studies, we also simulated the full collision event. Using
the post-impact motion path of the Chevy and point of
maximum crush as primary constraints, we obtained a
pre-crash ground speed of 28.9 mph for the Buick, in
good agreement with the known pre-impact speed. The
resulting simulated change-in-velocity for the Chevy is
Tnevy = (0.74 mph, 5.65 mph). This is also in good
agreement with the values obtained from the
accelerometer-based estimate. The simulated motion
sequence can be seen in Figure 26.

As demonstrated above, the uncertainties on Av
corrections presented above can be sensitive to both
EDR position and EDR inaccuracies. In the section
below we explore these dependencies in more detail.

Implications of a Singular R

Point of Zero Motion

Let’s examine the case where the impulse centroid and
accelerometer can be at any arbitrary position within the

Malibu (vehicle 1). The condition |R| = 0 implies:
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Tiy T iy T
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(106)

Thus, there is an imaginary line (the R, line) along
which we cannot solve for a unique A7SC given the
non-homogenous condition A7t # 0. We can describe
the R, line as a function of 7,
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Therefore, for an accelerometer on the R, line, we have:

T;
Avi, = (1—d) - AvfS +r1—'x-d-Avff,
1y
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Ly,
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(111)

Avf, = +d-Avf§

which implies the components of A7 must be related
by:

=1 (112)

This interesting result indicates that if an accelerometer
happens to sit on the R, line, Av# will point either
parallel or anti-parallel to the vector pointing from the
center-of-gravity to the impulse-centroid. Comparing
this to the slope of the R, line (equation (107)), the
vector Az must be perpendicular to the R, line.

With the condition |R| =0, for the homogeneous
condition, A7 = 0, we know we cannot solve for a
unique ATES. We can, however, solve for the point
along the R, line (the R, point), which remains in its
pre-impact velocity state immediately after impact, by
solving:

O=(rE 0o
- cG A
0 Avlyy +Aw; - 1Ty
for ri%, and ;. This gives:
CcG CG | 1,2
A = _A”Ly _ —Avyy ki
o Awy Ty Avfg;, — 7y AvfS (114)
o AvES _ AvES - k?
YT Awy 1y, “AvES — 1y AvfS
which implies:
cG A
Avlyy Ty (115)

TA,CG T A
Aviy 1,

Therefore the R, point must sit on a line going through
the center-of-gravity that is also perpendicular to A7¢¢.

Solving for 7, in (115), then substituting into (107),
we have:

k? r AvES
A __ 71 (D) (_Z7LY a4
=T, () ( avse ) o

Solving the above for r, gives:

vl i

. CG _
Tyx Avyy — Ty

iy = v (117)

Thus, comparing (117) to (114) confirms that the R,
point must be a point on the R, line. Much like the
ground contact point of an ideal (rigid) rolling wheel
that is in motion with no slip, the R, point can be
thought of as the post-impact instantaneous center of
rotation for all points within the vehicle. We can
confirm this by defining a radial vector, L,, originating
from the R, point and pointing to some point in the
vehicle frame P (#%). This vector is given by:

_ AvsS AvESN |
le(rfx+Awy>x+(rfy—A;’>y (118)
1

1

The change in velocity at this point is given by:

ADY = (Avfs — Aw, - 15,)2 (119)
+(Av1y +Aw; - rlx)y

Using (118) and (119), it is easy to show that L, - Av} =
0and L; X Aw = AvY for any point P. This implies that
the R, point acts as the effective instantaneous center of
rotation in the Earth frame for any point within vehicle
1.

Uncertainty Near the R, Line

Recall (81) and (82) tell us how to relate the true
change-in-velocity at the accelerometer position to the
true change-in-velocity at the center-of-gravity. Let’s
assume we have perfect knowledge of our geometry
parameters a, b, ¢, and d with no uncertainties. What
effect does EDR measurement uncertainty have on our
estimates of change-in-velocity at the center-of-
gravity? Suppose our accelerometer-based change-in-
velocity estimates at A differ from the true values by a
simple scale factor (remember, we do not have access
to the “true” wvalue, but only the experimentally
determined estimate). To simplify the analysis, let’s
suppose the scale factor is the same for both
components. That is:

AUA Est — ﬁ AUA True
B (120)

AUA Est ﬁ AUA&’,[‘T“E

For example, we may have g = 1 + 17% as shown in

the above discussion on the Av corridor.

With this, our change-in-velocity estimates at the
center-of-gravity become:

Av}fiE:t (d B A.’]A True _ b B . Av‘ﬁy”rrue)
(121)
Av’fgssf = | ( c B+ Avf;rrue +a-B- A.’]A Tme)
or:
A‘UCG Est — ﬁ A‘UCG True (122)

CG Est __ . CG True
Avy! = p-Aviy

Thus implying, if our change-in-velocity estimates
obtained from our accelerometer differ from the true
value by a simple scale factor, we can expect our
change-in-velocity estimates at the center-of-gravity to
differ by the same scale factor with respect to the true
values.

Now suppose instead, our accelerometer-based change-
in-velocity values at A differ from the true values by
(see reference [6] for examples):

AUiQESt — ﬁ AvATrue +6

AEst _ A True (123)
Avg,St = B - Avy, +6

where § may be due to an acceleration threshold effect.

In this case, we have:

ApCGEst — (d AvAESt — b - ApfiEst)
IRI (d B AUATrue b'ﬂ ,Avf};‘rue)
+W d-5—b- 5)
=B BT+ 8t | (d—b) (124)
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= CG True 1 — (125)
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Thus, here we see the Av{SEst and Avf§ 5t values will
differ from the true values by terms dependent on 1/|R|.
This can have important consequences for one’s
uncertainty analysis. That is, if our accelerometer is
moved closer to the R, line, we can expect our
uncertainty on ASC to increase if Av{ differs from the
true value by a linear constant. This means, when
conducting an error analysis, we should expect to see
larger error bars for EDRs near the R, line. This is
indeed what we see in our data. For our subject crash,
we estimate the R, line to intersect with the center-line
of the Chevy about 9 inches behind the front axle. In
Figure 21, it is observed that the uncertainty range in
AT,y increases as the EDR position gets closer to the
front axle. Since closing-speed is directly proportional
to the magnitude of AGS,,, , this same pattern is
observed in Figure 22.

Threshold Effects

We can gain more insight into the effects of the R, line
and R, point using a forward evaluation calculation
C++ script written for ROOT. In this script, we tested
all possible EDR (x,y) positions within the Malibu. With
the script, we can assume a known A9£¢ T4 as well as
impulse centroid location. With the known (true)
impulse as an input, we can then use equations (76) and
(77) to simulate the exact Av{,[™¢ and Av{ "¢ values
expected at a given point W|th|n the vehlcle Starting



with these expected true Av{'/™¢ and Av{ "¢, we can
probe the effects introduced by EDR measurement error
by modifying them such that Av{iT™*¢ — Av{LESt and
AvTme — ApfEst where our modifications are on
behavior observed in staged collision data (see Figure
19). The Av{tEst and Av{LES* values can then be used to
calculate A7EC Est, This is done for each point within
the vehicle. Using this framework, we can also study the
effect of adding corrections back to Av{.7*¢ and Av{ s
to account for thresholding effects and offsets. After
adding corrections, we can then apply equations (81)
and (82) to obtain our estimates for Av{§Est and
AvSEst as a function of EDR position. The results
introduced below assume: Av{S ™™ = 1.04 mph and
Avf§ e = —6,3 mph.

Figure 27 shows AvfS st and Avf§Est assuming no
modifications to A7{* and with no corrections applied.
As expected, the Avf§F and Av(S 5t values are
constant and independent of position, except at the R,
point where Av{F¢ = 0 and Av{fs“ = 0. Note, the
impulse centroid (“IC”) and impulse unit vector are also

depicted in the figure.

In low-speed tests of EDR performance, it has been
demonstrated that for a given EDR, there is a minimum
Avf ™ value, AvThesheld, below which we expect
Avf F5t — 0 for component j. Av™reshold s hoth EDR
dependent as well as dependent on peak acceleration
and pulse width [4]. The upper-bound Av corridor line
shown in Figure 19 is constructed assuming a worst-
case scenario ApTheshold = 4.4 kph. It is easy to solve
for “zero-corridors” within the x-y plane where either
Av£ESt or Av£ESt will always equal 0. The AviFst
zero-corridor is defined along the x-axis by:

_Ufl')z‘rue — AvThreshold _Avfj"[‘rue + AUThreshold

<rf <

Awq Aw,

Within this corridor, Av{.>* = 0 for any r{,. Similarly,
the AvAEst zero-corridor is given by:

Uf);[’rue + AvThreshold Avﬁ;‘rue — AVThreshold

<rf, <

Aw, v Aw,

Within this corridor, Av{LEst = 0 for any r{,.

Figure 28 illustrates zero corridors using the upper-
bound Av corridor line condition where ApThreshold —
4.4 kph.

The intersection of these two zero-corridors defines a
“zero box” whose sides are given by 2 - AvTreshold jaq,
Within this box, we are guaranteed to have both
AvfESt =0 and Av{5St =0 which implies our
calculations must yield Av{§ 5t = 0 and AvfS 5t = 0
for EDRs within this box.

Figure 29 shows AvfC st and AvfCEst assuming the
Av St and AviL St values were adjusted to follow the
upper bound of the Av corridor ( ApThreshold —
4.4 kph) and no corrections applied. Because of the
threshold, the AvSESt and Av{9Et values are
dependent on position. All points within the white box,
including the R, point, have AvAEst=0 and
Avy Bst = 0; this yields the trivial solution: Av{¢ 5t =

0 and Avf®Ft=0. For this plot, we assume
Avf§Tre = 1,04 mph and Av{S ¢ = —6.3 mph.

Figure 30 shows Avg® 5t and Avf¢ 5t assuming the
Av st and Avf >t values were adjusted to follow the
upper bound of the Av corridor ( ApThreshold —
4.4 kph) and corrections applied. Because Av £t — 0
and Av/'Et >0 for values below 4.4 kph, the
correction applied in this region takes 0kph —
2.9 kph.

It is evident from Figure 27, Figure 29, and Figure 30
that near the R, line, A7CC st is extremely sensitive to
measurement inaccuracies of A4 £ introduced by the
measuring device. Even in cases where the exact
correction is known, threshold effects, which cause low
AvAEst 0 and low Avyt ¢ — 0, when corrected for,
will still yield problematic regions near the R, line
where |A7CCESt| can tend toward extremely large
values, and thus will greatly increase estimate
uncertainties. This is an irreducible effect that the
analyst should be aware of.

Conclusions

Using a 2D rigid-body dynamics approach, we have
created a mathematical model which allows one to
transform change-in-velocity estimates at any position
within a vehicle to the center-of-gravity equivalent
value. We have demonstrated the method by
reproducing experimentally measured change-in-
velocity values from a staged collision. We have also
demonstrated the possibility of reconstructing pre-
impact ground speeds with the Virtual CRASH
simulation.
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Instrument | X (ft) | Y (ft) | Avx (mph) | Avy (mph) | Remarks

250G Accel. | 0.00 0.00 1.29 -3.94 At CGyy position

250G Accel. | 2.83 0.31 N/A N/A In engine compartment
EDRA -7.80 | -1.50 5.09 -24.19 In trunk near impulse
EDR B -6.98 | -1.50 5.09 -21.01 In trunk near impulse
EDR C -0.67 | 0.00 0.64 -6.37 Just behind CGyy
EDRD 0.30 0.73 0.0 5.73 Passenger-front floor pan

Table 1: Location of instruments and cumulative Av values.

Measurement

Contact Damage Only (in)

Contact and Induced
Damage (in)

Indentation Length (L) 23.0 38.0
Offset (D) -91.5 -84.0
C1 13.0 13.0
C2 16.5 16.5
C3 15.5 13.0
C4 14.0 12.0
C5 12.0 3.0
C6 8.0 0.0
Calculated Damage Centroid

Longitudinal Position 924 -89.2
Calculated Damage Centroid 27.0 275

Lateral Position

Table 2: Malibu damage profile hand measurements




Input Parameter Best Estimate Uncertainty Uncertainty Basis
LeSabre Pre-impact Heading -90 degrees +5 degrees Video analysis
IR, 1836.7 slug-ft? +4.8% [14]
raw, 2683.3 slug-ft? +4.8% [14]

EDRA EDRA
("Chevy,x » Tehevy,y) in Chevy frame

(=78 ft,—15 ft)

(+4in,+2 in)

Geometrical size of EDR

EDRB EDRB
(rGoRE . TERRE ) in Chevy frame

(—6.98 ft,—1.5 ft)

(£4in,+2in)

Geometrical size of EDR

EDRC EDRC
(rEoRS, Témes ) in Chevy frame

(—0.67 ft, 0 f)

(£4in,+2in)

Geometrical size of EDR

EDRD EDRD
(rGoRD TERRD ) in Chevy frame

(0.3 ft,0.73 ft)

(£4in,+2in)

Geometrical size of EDR

(Ychevy,x » Tchevy,y) in Chevy frame

(—8.2 ft, 1.46 ft)

(+4.6in,+ 1in)

Sampling distance /
Measuring uncertainty

("Buick,x » TBuick,y) i Buick frame

(7.05 ft, 1.3 ft)

(Range = —1ftto O ft, 0 ft)

Measuring uncertainty

15%

+10%

[15,16,17]

(5.09 mph, —24.19 mph)

See discussion in text.

See discussion in text.

(5.09 mph, —21.01 mph)

See discussion in text.

See discussion in text.

(0.64 mph,—6.37 mph)

See discussion in text.

See discussion in text.

&£
(AvERRS, «  DvERRs ) in Chevy frame
(Avépasy «  AVERRS, ) in Chevy frame
(AvERRS, ., AvERRS, ) in Chevy frame
(AVénayy.x » AVChayyy) in Chevy frame

(0.0 mph, —5.73 mph)

See discussion in text.

See discussion in text.

Table 3: Inputs to Monte Carlo script.




Source Aviplrue AVGhenyy
Accelerometer 1.04%338 mph —6.3%032 mph

Table 4: EDR-based local Av estimates at Chevy CG (Equations 81 and 82).

Source AVEhicpy BT
EDRA 1.62%5:39 mph —6.17%5:22 mph
EDRB 1.83%3:2% mph —5.85%32 mph
EDRC 0.64%33% mph —5.071361 mph
EDRD 1.76%%22 mph —6.457989 mph

Table 5: EDR-based local Av estimates at Chevy CG (Equations 81 and 82).

Source SAVGp BAVG
EDR A 0.58 mph 0.13 mph
EDR B 0.79 mph 0.45 mph
EDR C —0.40 mph 1.23 mph
EDRD 0.72 mph —0.16 mph

Table 6: Difference between best estimate Av and accelerometer value.




Source Closing-speed
EDR A 25.8217% mph
EDR B 24.561§45 mph
EDRC 21.44*33; mph
EDRD 27.07153% mph

Table 7: EDR-based closing-speed estimates.

Source Best Closing-
speed Difference
EDR A —1.18 mph
EDR B —2.44 mph
EDR C —5.56 mph
EDRD 0.02 mph

Table 8: Difference between best EDR-based closing-speed estimates and true value.




Figure 1: lllustration of point P position vector in inertial and moving frames.
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Figure 2: lllustration of instantaneous cylindrical coordinate unit vectors at accelerometer position A.
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Figure 3: lllustration of instantaneous cylindrical coordinate unit vectors at accelerometer position A in simplified
model. Here the angular velocity vector is aligned with the global z-axis and 74 lies in the 2 — §' plane



Figure 4: Photograph of 1998 Chevy Malibu in its pre-impact configuration (target
vehicle).

Figure 5: Photograph of 2002 Buick LeSabre (bullet vehicle).



Figure 6: Impact configuration



“Ride along” EDR

Figure 7: Photograph showing accelerometer and two "'ride along™ ACMs inside Chevy Malibu cabin.
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Figure 9: Longitudinal (top) and lateral (middle) acceleration graphs from accelerometer as well as yaw rate (bottom). Black
lines illustrate acceleration with CFC60 Butterworth filter applied, while gray shows unfiltered data.
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Figure 12: Positions of EDRs A, B, C, and D.
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Figure 13: Data from EDR A obtained using CDR Kkit. Upper graph and table show longitudinal change-in-velocity
(in EDR A's frame). The bottom graph and table show lateral change-in-velocity (in EDR A's frame).
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Figure 14: Data from EDR B obtained using CDR kit. Upper graph and table show longitudinal change-in-velocity (in
EDR B's frame). The bottom graph and table show lateral change-in-velocity (in EDR B's frame).
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Figure 15: Data from EDR C obtained using CDR kit. Upper graph and table show longitudinal change-in-velocity
(in EDR C's frame). The bottom graph and table show lateral change-in-velocity (in EDR C's frame).
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Figure 16: Data from EDR D obtained using CDR kit. Upper graph and table show longitudinal change-in-velocity
(in EDR D's frame). The bottom graph and table show lateral change-in-velocity (in EDR D's frame).
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Figure 17: Longitudinal (top) and lateral (bottom) Avw displayed for each EDR. In red we show the accelerometer
measured Av values. Gray dots represent the EDR Aw values without correction. Black dots represent the best-
estimate Av values based on correcting EDR data, along with minimum and maximum estimates. Here no
uncertainties for EDR Av input values are accounted for.
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Figure 18: In red we show the true closing-speed for the test. Black dots represent the best-estimate closing-speed values based on correcting
EDR data, along with minimum and maximum estimates. Here no uncertainties for EDR Av input values are accounted for.
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Figure 19: Av corridor defining the upper and lower true Av versus EDR Avw.
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Figure 20: Av corridor defining the upper and lower true Av versus EDR Aw. Here we focus on low EDR Av
values.
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Figure 21: Longitudinal (top) and lateral (bottom) Av displayed for each EDR. In red we show the accelerometer measured Av values.
Gray dots represent the EDR Aw values without correction. Black dots represent the best-estimate Av values based on correcting EDR
data, along with minimum and maximum estimates. Here we apply the same Av corridor to both lateral and longitudinal components.
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Figure 22: In red we show the true closing-speed for the test. Black dots represent the best-estimate closing-speed values based on correcting
EDR data, along with minimum and maximum estimates. Here no uncertainties for EDR Av input values are accounted for. Here we apply the
same Awv corridor to both lateral and longitudinal components.
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Figure 23: 3D simulation environment created in Virtual CRASH 4 using point cloud data.
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Figure 24: Longitudinal (top) and lateral (bottom) Av displayed for each EDR. In red we show the accelerometer measured Av
values. Gray dots represent the EDR Awv values without correction. Black dots represent the best-estimate Av values based on
correcting EDR data, along with minimum and maximum estimates. Here we apply the same Av corridor to both lateral and

longitudinal components. Monte Carlo selection cuts based on post-impact motion studies conducted with Virtual CRASH 4 are used
to reduce the uncertainty range.
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Figure 25: In red we show the true closing-speed for the test. Black dots represent the best-estimate closing-speed values based on correcting
EDR data, along with minimum and maximum estimates. Here no uncertainties for EDR Av input values are accounted for. Here we apply the
same Aw corridor to both lateral and longitudinal components. Monte Carlo selection cuts based on post-impact motion studies conducted with

Virtual CRASH 4 are used to reduce the uncertainty range.



Figure 26: Diagram showing Virtual CRASH 4 simulation sequence.
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Figure 27: (Top) Estimated |Av,| at the center-of gravity as a function of EDR position, assuming no thresholds or corrections are applied.
(Bottom) Estimated |Avy| at the center-of gravity as a function of EDR position, assuming no thresholds or corrections are applied. Note, view is
from below vehicle looking up.
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Figure 28: Zero-corridors shown in yellow highlighted areas for Av{ {** (top) and Av{ ;** (bottom) assuming Av™#resheld = 4.4 kph. Note, view is from
below vehicle looking up.



Adjustment applied with ApThreshold — 4 4 kph, no correction
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Figure 29: (Top) Estimated |Av,| at the center-of gravity as a function of EDR position. (Bottom) Estimated |Avy| at the center-of gravity as a

function of EDR position. In both cases, Av4 st and Av§ Est were adjusted values following upper limit of the Av corridor. No corrections were

applied. An EDR within the white box will result in Av{ £st = 0 and Avy £t = 0. Note, view is from below vehicle looking up.



Adjustment applied with ApThreshold — 4 4 kph, with correction
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Figure 30: (Top) Estimated |Av,| at the center-of gravity as a function of EDR position. (Bottom) Estimated |Avy| at the center-of gravity as a
function of EDR position. In both cases, Av4 5t and Av’y* Est were adjusted values following upper limit of the Av corridor. Corrections were
applied. An EDR within the white box will result in Av{ Est = 2.9 kph and Avj £ = 2.9 kph. Note, view is from below vehicle looking up.



Appendix

Example calculation using data from EDR A.

1998 Chevy Malibu 2002 Buick LeSabre
W, :=2832 Ibf W,:=3755 Ibf
w W,
m, =—" =88.021 slug Myi=— 2 =116.709 slug
g g
OL, =190 in OL,:=200 in
WB, =107 in WB,:=112 in
I,:=0.1478-m,-OL, -WB, = (1.837-10°) slug-ft’ I,:=0.1478 m,+ OL,-WB,=(2.683-10°) slug- ft’
[T I
k, =\ =4.568 ft kyi=\| 2 =4.795 ft
my My

FBtoCG,=84.56 in

EDR Data A Impulse Centroid

AVgpp-=5.09 mph Tepmz=—T1-8 ft re=—8.2 ft

Avgppy=—24.19 mph  Tgpp,,=—1.5 ft Ty =1.46 fi
1y, 1= FBtoCG,="T.047 ft
T2y== 1.3 ft

Rotation Matrix

a:=1+_ W "EDRly _q ggr ci=— 1w TEDRIZ _ ¢ £4g

2 2
k, k,
b::_LEszy:—O.E)SQ d:= 1+L‘“4;‘1%":4,[}65
k, ky

_[a b]_[0.895 —0.589]

“Tle d]T|0.546  4.065 | IR =3.960

Vehicle 1 Delta-V at Center-of-Gravity in Vehicle 1 Frame

1
A'ﬂcmm:z.( \.e (d+ Avgpg,—b- Avgpg,,) =1.624 mph
\IRI)
1
Avigry = {: Iz } - (—e+ Avgpg, +as Avgpg,,) =—6.169 mph

AV = \/ﬂl?cm: + A"”cmyz =6.379 mph

Avcaiz _ g 955 Avcary _ ¢ 0g7

AVocry hat™=

AVocig pat*= A A
Yo Vo

=Tt AVeary Ty AVeaiz _g 999 1, 194155 9€9
! 2 ) s ! ) s
k,



Vehicle 2 Delta-V at Center-of-Gravity in Vehicle 1 Frame

AVpgay=— 2' « AV, =—1.225 mph
2

m,

my

AVpgai= \/ AV, + Aucczy2 =4.811 mph

Vehicle 2 Heading Rotation Matrix from Vehicle 1 frame to Vehicle 2 Frame
6,:=—90.0 deg M, =cos (6,) =6.123.10" M ,:=sin (6,) =—1.000
Vgeti s hat = —€08 (65) =—6.123+10"" My, :=—sin (8,) = 1.000 M,,:=cos (6,)=6.123-10""
VReti y hat =511 (8) = 1.000

Vehicle 2 Delta-V at Center-of-Gravity in Vehicle 2 Frame

AV g, =M+ AVpgy, + My AVgey, =—4.652 mph P+ AV gy — T AV g i
__aF ~Lsy v AT (.16 —

A”’cazy =My, » AVppg, + Moy A"cczy =—1.225 mph Wy = >
deg'? ’
s
Lever-arms
T A —7, s A T s AV’ — T, + AV
hl = 1z (T-"Cly 1y CGlx :7558 ft h,2== 2r C'C“?y ’ Zy CG2z :_0-537 ft
Avge, Aoy

Gamma Factors

2 2
k k
Y=y =0.268 Yoi=—g o =0.988
ky +h ky +hy
g:=0.15
Ve = [Avoar | Ao o4 067 mph
l+e l T Ta

€08p:=AVeg1y pat* VReti_z hat T AVec1y hat * VReli y hat = —0-967
Closing-speed

v, o Vel g 518 mph
- |cosip|



