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Introduction

The question of proving the localization of a quantum state has many mathematical facets. In this article, we investigate the case of the magnetic Laplacian and prove, under a geometric confinement property on the magnetic intensity, an Agmon-type localization estimate for low-lying eigenfunctions of this operator.

The interest in the magnetic Laplacian has several origins. From a quantum mechanical viewpoint, this operator is a simplified model for describing the motion of an electron in a strong magnetic field, when the electrostatic interaction and the relativistic effects are ignored; its construction is explained for instance [START_REF] Bourbaphy | Physics in a Strong Magnetic Field[END_REF]. In the book [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF], the authors recall that the same operator also appears in the linearization of the Ginzburg-Landau functional in the domain of superconductors. In Spectral Geometry, the magnetic Laplacian is often regarded as a natural variant of the Laplace-Beltrami operator when the symplectic form of the cotangent bundle is twisted by the pull-back of a closed 2-form from the base manifold, and has proved important in the study of magnetic geodesics; see for instance [START_REF] Kordyukov | Trace formula for the magnetic laplacian[END_REF], and references therein. In the present study, we consider the magnetic Laplacian on the plane, which can be defined as follows.

When B is a real function on R 2 , a semiclassical magnetic Laplacian associated with B is a family of operators, depending on a parameter h > 0, of the form

(1.1) L h = (-ih∇ -A) 2 = (hD 1 -A 1 (x)) 2 + (hD 2 -A 2 (x)) 2 , D = -i∂ .
Here, A = (A 1 , A 2 ) is a potential vector associated with B, i.e B = ∂ 1 A 2 -∂ 2 A 1 . Notice that the semiclassical limit h → 0 is related to the limit of strong magnetic field (1/h)B.

The spectral theory of L h has received the attention of several authors; in particular, it follows from [START_REF] Helffer | Semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator: the case of discrete wells[END_REF] that if B is smooth and admits a global non-degenerate minimum, uniquely attained at some x ∈ R 2 , the bottom of the spectrum of L h (for h small enough) is comprised of multiplicity one eigenvalues λ 0 (h) < λ 1 (h) . . . , with

λ j (h) = b 0 h + (C 1 + C 2 j)h 2 + o(h 2 ) .
The corresponding eigenfunctions are concentrated around x, in the sense that their L 2 mass outside of a fixed neighbourhood of x is O(h ∞ ). The purpose of this article is to obtain a stronger concentration in the case when B is real analytic.

1.1. Statement of the result. From now on, we assume the following: (i). The magnetic field B has a unique minimum b 0 at x = 0. It is positive, non-degenerate, and not attained at infinity (lim inf B > b 0 ). (ii). There exists a complex strip S = R 2 + i[-a, a] 2 (a > 0) to which B can be holomorphically extended as a bounded function. (iii). The function (x 1 , x 2 ) →

x 1 0 ∂B(u,x 2 ) ∂x 2
du is bounded on the strip S.

For example, B = 2-e -|x| 2 satisfies our assumptions. We will say that a function f : R n → R goes linearly to infinity at infinity if there is a constant C > 0 such for |x| > C, f > |x|/C. Our main result is the following exponential localization estimate.

Theorem 1.1. Consider a Lipschitz function d : R 2 → R + with a unique and non-degenerate minimum at 0, d(0) = 0, and going linearly to infinity at infinity, and let K > 0. Then there exist C, h 0 , ǫ > 0 such that, for all h ∈ (0, h 0 ) and u ∈ L 2 (R 2 ) such that

L h u = hµu with µ ≤ b 0 + Kh , we have R 2 e ǫd(x)/h |u(x)| 2 dx ≤ C u 2 L 2 (R 2 ) ,
Observe that here, the third assumption (iii) seems technical, and depends on a choice of a system of coordinates, but we have not been able to remove it. Also note that since we are not trying to optimize constants in our theorem, the value of a > 0 in (ii) is not essential. As a consequence, to lighten notations, we will use a > 0 as a generic constant throughout the paper. The size of the strip on which we are working will be reduced a finite number of times. 1.2. Eigenvalues asymptotics. Strong localization of eigenfunctions, such as the one claimed by Theorem 1.1, is often a footprint of discrete spectrum. Indeed, under assumption (i), it follows from the usual theory (see [START_REF] Avron | Schrödinger operators with magnetic fields. I. General interactions[END_REF]) that below

h lim inf B, the spectrum of L h is discrete. Let λ 0 (h) ≤ λ 1 (h) ≤ . . . λ ℓ (h) ≤ • • • ≤ lim inf B
be the (possibly finite) sequence of such eigenvalues, repeated according to their multiplicity.

The following theorem has been established via a dimensional reduction in [START_REF] Helffer | Semiclassical spectral asymptotics for a magnetic Schrödinger operator with non-vanishing magnetic field[END_REF] (see also [START_REF] Helffer | Semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator: the case of discrete wells[END_REF] and the review paper [START_REF] Helffer | Semiclassical analysis of Schrödinger operators with magnetic wells[END_REF]) and via a Birkhoff normal form in [START_REF] Raymond | Geometry and spectrum in 2D magnetic wells[END_REF]. In fact, this theorem does not require the analyticity of B (i.e assumptions (ii) and (iii)), but rather C ∞ bounds on B. Theorem 1.2 ( [START_REF] Helffer | Semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator: the case of discrete wells[END_REF][START_REF] Helffer | Semiclassical spectral asymptotics for a magnetic Schrödinger operator with non-vanishing magnetic field[END_REF], [START_REF] Raymond | Geometry and spectrum in 2D magnetic wells[END_REF]).

(1.2) ∀ℓ ∈ N , λ ℓ (h) = b 0 h + 2ℓ √ det H b 0 + (Tr H 1 2 ) 2 2b 0 h 2 + o(h 2 ) ,
where b 0 = min R 2 B and H = 1 2 Hess (0,0) B.

1.3.

Complex WKB expansions. With Theorem 1.2 comes the question of describing the eigenfunctions. Inspired by the results about the semiclassical Schrödinger operator with an electric potential, we can wonder whether the complex version of the famous Wentzel-Kramers-Brillouin (WKB) Ansatz can be adapted to the magnetic case. Such constructions, solving formally the eigenvalue problem, are rather rare in the context of the pure magnetic Laplacian; see however [START_REF] Maslov | The complex WKB method for nonlinear equations. I[END_REF]VI,[START_REF] Avron | Schrödinger operators with magnetic fields. I. General interactions[END_REF]. Their existence has been established for the first time in a multi-scale framework in [START_REF] Bonnaillie-Noël | Magnetic WKB constructions[END_REF] and then in non-degenerate magnetic wells (i.e., under Assumption (i)) in [START_REF] Bonthonneau | WKB constructions in bidimensional magnetic wells[END_REF]. Let us recall the latter result (which was generalized to the Riemannian setting in [START_REF] Nguyen | Classical and Semi-classical dynamics of magnetic fields[END_REF]).

Theorem 1.3 ([15]

). Under Assumption (i), and after a rotation, we can assume

(1.3) B(x 1 , x 2 ) = b 0 + αx 2 1 + γx 2 2 + O( x 3 ) , with 0 < α ≤ γ . Let ℓ ∈ N. There exist (i). a neighborhood V of (0, 0) in R 2 , (ii). an analytic function S on V satisfying Re S(x) = b 0 2 √ α √ α + √ γ x 2 1 + √ γ √ α + √ γ x 2 2 + O( x 3 ) , (iii) 
. a sequence of analytic functions (a j ) j∈N on V, (iv). a sequence of real numbers (µ j ) j∈N satisfying

µ 0 = b 0 , µ 1 = 2ℓ √ αγ b 0 + ( √ α + √ γ) 2
2b 0 , such that, for all J ∈ N, and uniformly in V,

e S/h (-ih∇ -A) 2 -h J j≥0 µ j h j e -S/h J j≥0 a j h j = O(h J+2 ) .
The WKB constructions in [START_REF] Bonnaillie-Noël | Magnetic WKB constructions[END_REF][START_REF] Bonthonneau | WKB constructions in bidimensional magnetic wells[END_REF] give a positive answer to the open problem mentioned by Helffer in [16, Section 6.1]: in generic situations with pure magnetic field, WKB constructions corresponding to the low lying spectrum exist. Once the WKB analysis is done, we want to know to which extent the Ansätze are approximations of the exact eigenfunctions u ℓ ∈ L 2 (R 2 ). It follows from Theorem 1.2 that, when h is small enough, the eigenvalues are simple and separated by a gap of order ∼ h 2 . Thanks to the Spectral Theorem, we deduce that the WKB Ansätze are approximations in the L 2 -sense, and even in a weighted L 2 -space thanks to Theorem 1.1 (up to taking a smaller ε).

Corollary 1.4. Denote by u ℓ,J = χ(x)e -S/h J j≥0 a j h j , with χ ∈ C ∞ 0 (V), and constant around the origin. Then, for fixed ℓ ∈ N and ε > 0 small enough, we have for some θ ∈ R

e εd(x)/h (e iθ u ℓ -u ℓ,J ) L 2 (R 2 ) = O(h J 2 ).
(This will be proved at the end of section 5). In contrast with Theorem 1.1, the WKB Ansätze decay like e -Re S/h away from the magnetic well; thus, the approximation should actually hold in a slight perturbation of the weighted space L 2 (e -2Re S/h ). Behind this question lies the tunneling effect problem: such exponential estimates are the heart of the analysis of the interaction between multiple magnetic wells. The present paper does not go that far1 , but establishes that the eigenfunctions decay like e -ϕ(x)/h for some non-negative function ϕ. These types of estimates are well-known and proved in the electric Schrödinger operator -h 2 ∆ + V , where they go by the name of Agmon (see [START_REF] Agmon | Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N -body Schrödinger operators[END_REF][START_REF] Helffer | Multiple wells in the semiclassical limit[END_REF][START_REF] Simon | Semiclassical analysis of low lying eigenvalues[END_REF]). As we will see, the purely magnetic case seems to necessitate a significantly more advanced strategy, based on the Fourier-Bros-Iagolnitzer (FBI) transform. (In [START_REF] Helffer | Multiple wells in the semiclassical limit[END_REF], the FBI transform does appear, but not for proving the exponential localization; it is used in a second step, to control the asymptotic expansion of eigenvectors and eigenvalues.) 1.4. Failure of the naive Agmon estimates. Let us explain formally why the electric strategy fails in giving the optimal Agmon estimates in the pure magnetic case (see also [START_REF] Raymond | Bound states of the magnetic Schrödinger operator[END_REF]Prop. 4.23] for a slightly different presentation). This strategy is based on the following formula:

e ϕ/h (-ih∇ -A) 2 e -ϕ/h = (-ih∇ -A + ∇ϕ) 2 ,
where ϕ is bounded and Lipschitz continuous, and on using the coercivity of the real part

Re e ϕ/h (-ih∇ -A) 2 e -ϕ/h u, u = (-ih∇ -A)u 2 -∇ϕ u 2 , where u ∈ C ∞ 0 (R 2 )
. Then, we want to use the magnetic field, and we notice that

(-ih∇ -A)u 2 ≥ h R 2 B(x)|u| 2 dx , so that, for all λ ∈ R, Re e ϕ/h (-ih∇ -A) 2 -λ e -ϕ/h u, u ≥ R 2 hB(x) -|∇ϕ| 2 -λ |u| 2 dx .
From this last inequality, we see that the only possibility to control the gradient is that ϕ actually depends on h. With the choice ϕ = h 1 2 Φ, where Φ is the Agmon distance (to 0) associated with the metric (B -b 0 -|∇Φ| 2 ) + dx 2 , we can deduce that, for eigenvalues such that λ = b 0 h + O(h 2 ), the corresponding eigenfunctions ψ(= e -ϕ/h u) satisfy, for h small enough,

(1.4) R 2 e 2Φ/h 1 2 |ψ| 2 dx ≤ C ψ 2 .
Due to the non-degeneracy of the minimum of B, Φ may be chosen with a unique and non-degenerate minimum at 0. Thus, (1.4) tells us for instance that the ground state is a priori exponentially localized at the scale h 1 4 near the minimum. This is consistent with Theorem 1.3, but much worse than expected. One should be able to prove that the eigenfunctions, just as the WKB quasi-modes suggest, are localized at the scale h 1 2 near the minimum. That it is indeed the case is the main result of this article. 1.5. Related results. Some articles have been devoted to the Agmon estimates in the presence of a magnetic field, but almost always with an additional electric potential. For instance, in [START_REF] Helffer | Effet tunnel pour l'équation de Schrödinger avec champ magnétique[END_REF], the decay estimates are inherited from the electric potential and the magnetic field is considered as a perturbation (see in particular [21, p. 629]). In the same spirit, Agmon estimates are considered in [START_REF] Nakamura | Tunneling estimates for magnetic Schrödinger operators[END_REF]Theorem 1.1] (see also the closely related articles [START_REF] Erdős | Gaussian decay of the magnetic eigenfunctions[END_REF][START_REF] Nakamura | Gaussian decay estimates for the eigenfunctions of magnetic Schrödinger operators[END_REF]) in the case of an electric well with constant magnetic field. It is proved that the magnetic field improves the decay of the eigenfunctions away from the electric well.

We will see in this paper that pure magnetic Agmon estimates at the "right" semiclassical scale can be obtained as projections of microlocal exponential estimates. Our strategy will be inspired by the ideas of Martinez [START_REF] Martinez | Microlocal exponential estimates and applications to tunneling[END_REF] (see also [START_REF] Nakamura | Agmon-type exponential decay estimates for pseudodifferential operators[END_REF], and [START_REF] Martinez | Microlocal WKB expansions[END_REF] in relation with the corresponding WKB analysis). The fact that we are able to refine this point of view, which is based on the FBI transform, and to apply it to establish our new magnetic Agmon estimates, is reminiscent of Sjöstrand's pioneer work on analytic hypo-ellipticity [START_REF] Sjöstrand | Analytic wavefront sets and operators with multiple characteristics[END_REF].

Remark 1.5. Throughout our analysis, we will meet some known close links between magnetic and Toeplitz operators. These connections are described, for instance, in [START_REF] De Verdière | Champs magnétiques classiques et quantiques[END_REF], or [START_REF] Kordyukov | Semiclassical spectral analysis of toeplitzoperators on symplectic manifolds: the caseof discrete wells[END_REF]Section 4]. In the context of Toeplitz operators, exponential decay estimates of eigenfunctions have been the subject of the recent works [START_REF] Kordyukov | Semiclassical spectral analysis of toeplitzoperators on symplectic manifolds: the caseof discrete wells[END_REF]Theorem 1.3] and [START_REF] Deleporte | Toeplitz operators with analytic symbols[END_REF]Theorem C]. In these papers, the semiclassical parameter is of the form h = p -1 , where p ∈ N is the degree of tensorization of a line bundle. 1.6. Organization and strategy. In Section 2, we perform various reductions to put the magnetic Laplacian in a "normal form". Section 3 is central in our analysis and is devoted to general properties of the Fourier-Bros-Iagolnitzer transform. Our presentation closely follows and, sometimes, completes the one exposed in the book by Martinez [26,Chapter 3]. This part of the investigation can also be considered an interpretation of the magnetic Laplacian as a Toeplitz operator. In Section 4, we prove that the FBI transform of an eigenfunction (with low energy) is exponentially localized at the scale h 1 2 near 0 ∈ R 2 × (R 2 ) * . We proceed in two steps: firstly, we prove the exponential microlocalization near the characteristic manifold (Theorem 4.4); secondly, we establish an exponential localization inside the manifold (Theorem 4.5). In Section 5, we use the microlocal exponential estimates to deduce Theorem 1.1.

Normal form

In [START_REF] Raymond | Geometry and spectrum in 2D magnetic wells[END_REF], the second and third author constructed a Fourier integral operator U h that conjugates the magnetic Laplacian L h to an operator of the form

Op w h (f (H, x 2 , ξ 2 )) + O(h ∞ ), microlocally near the characteristic set of L h , where H = h 2 D 2 x 1 + x 2 1
and Op w h denotes the Weyl quantization. If the symbol f were analytic, and the remainder O(h ∞ ) improved to O(e -C/h ), this would imply a natural (and probably optimal) exponential estimate on the bottom eigenfunctions of L h . However, the FIO U h is constructed in a relatively non-explicit fashion, including a generically divergent Birkhoff normal form, and tracking those estimates down would require quite sophisticated tools of analytic microlocal analysis. Since we "only" want to obtain decay of eigenfunctions and not the expansion of the bottom eigenvalues of L h to any power of h, we will only need a rather crude normal form.

Lemma 2.1. Under assumptions (i), (ii), (iii), there exists a > 0 and, for h > 0, a unitary operator U h acting on L 2 (R 2 , dx) such that

(2.1) U h L h U -1 h = Op w h (p L ), where p L is an h-dependent holomorphic function on R 4 + i[-a, a] 4 , such that (2.2) p L = g 11 ξ 2 1 + 2g 12 ξ 1 x 1 + g 22 x 2 1 + h 2 q
, where g 11 , g 12 , g 22 and q are holomorphic, bounded, and on R 4 they are real valued. Additionally, the g ij are critical at 0, and

(2.3) B(x, ξ) = g 11 g 22 -(g 12 ) 2 ,
when restricted to R 4 , admits a positive non-degenerate minimum at 0, uniquely attained, and not attained at infinity.

This type of operators, whose symbol is a quadratic form of some variables, with parameters, was studied by several authors in the context of hypo-ellipticity in the smooth category (see [START_REF] Boutet De Monvel | Parametrixes d'opérateurs pseudodifférentiels à caractéristiques multiples[END_REF] and references therein), and in the analytic category by Sjöstrand in [START_REF] Sjöstrand | Analytic wavefront sets and operators with multiple characteristics[END_REF]. It would be interesting to obtain a global version of Sjöstrand's results in order to give a different proof of Theorem 1.1.

Observe that the exponential decay of eigenfunctions is not preserved by general unitary operators. However, we will see that U h can be explicitly described, so this will not be an issue.

For a given magnetic field B, the choice of magnetic potential A is not unique. Any other choice A ′ differs from A by a gradient, i.e. A ′ = A + ∇f . Then, the corresponding magnetic Laplacian is obtained by conjugating L h by the multiplication operator u → e if /h u, which is unitary, both pointwise and in L 2 . Hence, it does not impact Theorem 1.1. Therefore we may, and we will, assume that (2.4)

A(x) = (0, A 2 (x)) , A 2 (x) = x 1 0 B(u, x 2 ) du ,
Notice that A 2 is real-analytic, admits a holomorphic extension to the strip S, and its derivatives are bounded on S according to assumption (iii). For d = 2 or d = 4 depending on the context and a > 0, it will be convenient to set

S a := R d + i[-a, a] d .
2.1. Normal form near the characteristic set. In this section, we prove Lemma 2.1. The operator U h will be decomposed as the composition of a change of variables and a metaplectic operator. Let us start by constructing the change of variable.

The first idea, which is quite standard, is to choose coordinates in which the magnetic field is constant as a 2 form. In that case, the natural symplectic structure becomes canonical, and all the magnetic information is transferred to a variable Riemannian metric. The guiding model is the case of constant magnetic field and constant metric, where the magnetic Laplacian takes the form

L ct h = (hD x 1 ) 2 + (hD x 2 -Bx 1 )
2 , and its bottom eigenvalue is hB. The solutions, sometimes called zero modes, to

L ct h -hB u = 0
are of the form e -Bx 2 1 /2h f , with f holomorphic, and they play an important role in the spectral analysis of the magnetic Dirac operator (see [START_REF] Barbaroux | On the semiclassical spectrum of the Dirichlet-Pauli operator[END_REF]).

Coming back to our problem, there are many diffeomorphisms κ of R 2 such that κ * B is the canonical 2 form (Darboux' Lemma), so we pick the following

(x 1 , x 2 ) = κ(x 1 , x2 ), x1 = x 1 0 B(x ′ , x 2 ) dx ′ , x2 = x 2 .
That this defines indeed a global diffeomorphism of R 2 is ensured by assumption (i).

Lemma 2.2. Under Assumption (i), (ii) and (iii), κ is a bi-Lipschitz analytic diffeomorphism of R 2 such that κ * B = dx 1 ∧ dx 2 and κ * A = x1 dx 2 . Moreover, there exists λ ≥ 1 and a > 0 such that κ and κ -1 send S a ′ to S λa ′ for all a ′ ∈ (0, a/λ).

It will be useful to let

α(x 1 , x 2 ) = x 1 0 ∂ x 2 B(u, x 2 )dx 1 .
Proof. κ is a global diffeomorphism of R 2 because B is positive, and κ -1 is well defined on S a . Next, there is a C > 0 such that |B| ≤ C and |α| ≤ C , so that κ -1 maps S a ′ into S 2Ca ′ for 0 < a ′ < a.

We can compute

d x (κ -1 ) = B(x) α(x) 0 1 .
In particular,

(d x (κ -1 )) -1 = 1 B(x) -α(x) B(x) 0 1 .
Since B ≥ b 0 > 0 on R 2 , and using Assumption (ii), there exists 0 < a 0 < a such that |B| -1 ≤ (Re B) -1 ≤ 1/(2b 0 ) on S a 0 . In particular, on S a 0 , (d x (κ -1 )) -1 is bounded.

Around each real point x, we can apply the holomorphic local inversion theorem and deduce that there are ǫ x , ǫ ′

x > 0 such that κ -1 is a biholomorphism between the ball of radius ǫ x centered at x and its image, which contains the ball of radius ǫ ′ x around κ -1 (x). One can give lower bounds to the constants ǫ x , ǫ ′

x , expressed only in terms of the C 2 norms of κ -1 , and an upper bound on (d x (κ -1 )) -1 . In particular, we can choose them independent of x.

Additionally, if κ -1 (x) = κ -1 (y) for some x, y ∈ S a ′ with 0 < a ′ < a 1 , then x 2 = y 2 , and

y 1 x 1 B = 0. Observe that 0 = Re y 1 x 1 B = Re y 1 Re x 1 Re B(t + iIm x 1 , x 2 ) dt - Im y 1 Im x 1 Im B(Re y 1 + it, x 2 ) dt. Since Re B ≥ b 0 /2 on S a 1 , we deduce that |Re (x 1 -y 1 )| ≤ C(a ′ ) 2 for some C > 0.
In particular, according to the argument above, if a ′ is small enough, this implies that x 1 = y 1 . For such an a ′ > 0, κ -1 is a biholomorphism between S a ′ and κ -1 (S a ′ ), which satisfies

S a ′′ ⊂ κ -1 (S a ′ ) ⊂ S Ca ′ ,
for some a ′′ > 0. Further, κ -1 is uniformly Lipschitz, and so is its inverse. Taking min(a ′ , a ′′ ) as the new value of a and λ the Lipschitz constant of κ, κ -1 ends the proof.

We can associate κ with a unitary operator U κ by setting

U κ f (y) = Jac(κ) 1/2 f (κ(y)).
According to Lemma A.1 and keeping the same notation, we have

(2.5) U κ L h U -1 κ = (-ih∇ y -Ã)g * (-ih∇ y -Ã) -h 2 V .
Here, V is explicit in terms of κ, and g * is the dual Riemannian metric (dκ T dκ) -1 . Note also that

(2.6) (-ih∇ y -Ã)g * (-ih∇ y -Ã) = Op w h (g * (η -A(y), η -A(y))) + O(h 2 )
, where the O(h 2 ) comes from the explicit computation of the subprincipal term with the composition formula (the operator in the right hand side is symmetric).

From explicit expressions for the remainders, we deduce that

(2.7) U κ L h U -1 κ = Op w h ( (ξ 1 , ξ 2 -x 1 ) 2 g * + O(h 2 ))
, where the remainder symbol is of the form h 2 q 1 , q 1 holomorphic and bounded on some S a with a > 0. Moreover, letting B = B • κ and α = α • κ, we get

(2.8) (ξ 1 , ξ 2 -x 1 ) 2 g * = B2 ξ 2 1 + (ξ 2 -x 1 + αξ 1 ) 2 .
We are now almost in the desired form. We consider the following symplectomorphism

κ M (x, ξ) = (x + Aξ, ξ) ,
where

A = 0 1 1 0 , A -1 = A .
It is associated with the metaplectic operator M, defined as (2.9)

Mu(x 1 , x 2 ) := 1 (2πh) 2 R 4 e i h Φ(x,y,ξ) u(y) dy dξ ,
the phase being given by

Φ(x, y, ξ) = ϕ(x, ξ) -y, ξ , ϕ(x, ξ) = x - 1 2 Aξ, ξ ,
and ϕ being the generating function of κ M . We observe that

Mu(x) = (2πh) -2 R 2 e i h x,ξ F h u(ξ)e -i 2h Aξ,ξ dξ ,
where we used the semiclassical Fourier transform

F h u(ξ) = R 2 e -i h x,ξ u(x) dx , F -1 h v(x) = (2πh) -2 R 2 e i h x,ξ v(ξ) dx .
Recalling that

F -1 h (UV ) = F -1 h (U) ⋆ F -1 h (V )
, the operator M can be written as a convolution operator (2.10)

Mu = K ⋆ u , K = F -1 h e -i 2h Aξ,ξ = 1 2πh e i 2h Ax,x ,
where we used the well-known result about the Fourier transform of a quadratic exponential.

For a symbol σ in S ′ (R 4 ) (which is surely the case of the symbols we are manipulating so far, we have the exact "Egorov" correspondence

(2.11) M -1 Op w h (σ)M = Op w h (σ • κ M ) . It follows that M -1 U κ L h U -1
κ M is in the form announced by Lemma 2.1. It remains to check the conditions on the coefficients. We find that

g 11 = ( B2 + α2 ) • κ M , g 12 = α • κ M , g 22 = 1. Then (2.12) B(x, ξ) = g 11 g 22 -(g 12 ) 2 = B(κ(κ M (x, ξ))),
is suitably non-degenerate according to assumption (i), and it remains to check that α • κ M is critical at 0. But this is true if α itself is critical at 0, and this holds since (B being critical at 0)

α = x 2 1 ∂ 2 x 2 ,x 1 B(0) + O(x 3 ).
It is important to observe that since M somehow mixes x and ξ variables, it does not preserve exponential decay of functions. However, in a sense to be precised later, we will get decay in "x and ξ", which is preserved by M.

In the sequel, it will be convenient to let (2.13)

p M := g 11 ξ 2 1 + 2g 12 x 1 ξ 1 + g 22 x 2
1 . Additionally, we will distinguish variables by setting X 1 = (x 1 , ξ 1 ), X 2 = (x 2 , ξ 2 ).

2.2.

Reduction to a bounded symbol. Our strategy strongly relies on the presentation of the Fourier-Bros-Iagolnitzer (in short, FBI) transform given in Martinez' book [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF]. There, many results require that operators have symbols in the class S(1), which is the space of smooth functions on phase space that are uniformly bounded, together with all their derivatives. However, because the magnetic Laplacian is a differential operator of positive order, its symbol does not belong to that class. The statements we will use could probably be extended to the general case of symbols with more general order functions. It is to avoid this, and concentrate on the essential arguments, that we have decided to restrict ourselves to the case of a bounded magnetic field, a situation where we can reduce the problem to a problem in the S(1) class, as follows.

Initially, the symbol of magnetic Laplacian is polynomial in ξ and hence belongs to a class with gains of powers of ξ : locally in x,

(2.14) |∂ α x ∂ β ξ p κ | ≤ C α,β ξ 2-|β|
. This still holds after the change of variables κ. However, the metaplectic transform M mixes the x and ξ variables, so that we do not gain powers of ξ anymore. Recall that for a non-negative function m on R d , S R d (m) is defined as the set of functions σ that satisfy estimates

|∂ α x σ| ≤ C α m, α ∈ N d . If σ is holomorphic on a complex strip R d ⊂ S ⊂ C d , we shall say that σ ∈ S S (m) if ∀z ∈ S, |∂ α x σ(z)| ≤ C α m(Re z), α ∈ N d .
Also recall what it means for a non-vanishing smooth function m on T * R 2 = R 4 to be an admissible order function. First, one requires that m ∈ S R 4 (m). Second, there is an N > 0 such that for some C > 0 and any (x, ξ),

(x ′ , ξ ′ ) ∈ T * R 2 , (2.15) m(x, ξ) m(x ′ , ξ ′ ) ≤ C (x -x ′ , ξ -ξ ′ ) N .
Given two admissible order functions m and m ′ , then 1/m and mm ′ also are admissible and we have the following result (see for instance [12, Proposition 7.7]): if σ ∈ S(m) and σ ′ ∈ S(m ′ ), then (2.16)

Op w h (σ) Op w h (σ ′ ) = Op w h σσ ′ + h 2i {σ, σ ′ } + O S(mm ′ ) (h 2 ) ,
with the usual sign convention {f, g} = ∂ ξ f ∂ x g -∂ x f ∂ ξ g. Following the result of Boutet de Monvel-Krée [START_REF] Boutet De Monvel | Pseudo-differential operators and Gevrey classes[END_REF], a refinement of estimate (2.16) shows that if σ, σ ′ had a holomorphic extension to a strip, with uniform estimates, then the symbol of the product also does, with uniform estimates. Consider now

m M (X 1 , X 2 ) = 1 + p M (X 1 , X 2 ) .
Lemma 2.3. Assume that p M is in the form (2.13), with coefficients satisfying the conclusion of Lemma 2.1. Then m M is an admissible order function, and p M ∈ S Sa (m M ) for some a > 0.

If these assumptions are satisfied, we will introduce a bounded spectral parameter µ and work with

P = Op w h 1 1 + p M Op w h (p L -hµ) = Op w h p M -hµ 1 + p M + O S Sa (1) (h 2 ) = Op w h (p h ), (2.17) 
where p L = p M + h 2 q, see (2.2), so that p h ∈ S Sa (1), uniformly with respect to h and µ.

Remark 2.4. Since the intensity of the magnetic field is given by

det Hess X 1 (p h ) |X 1 =0 + O(h)
(see Equation (2.12)) the fact that it is globally bounded is actually necessary for obtaining p h ∈ S Sa (1).

Proof. Let us check that p M ∈ S Sa (m M ). Since the coefficients g ij are in S Sa (1) for some a > 0, one finds that

|∂ α p M | ≤ C α (1 + |X 1 | 2 ) on S a .
Thus, it suffices to show that there exists λ > 0 such that (2.18)

1 + Re p M ≥ λ(1 + |X 1 | 2 ) .
Let us start by proving this on R 4 . Note that (2.18) is satisfied for example if λ ≤ 1 and everywhere

λ ≤ g 11 + g 22 -(g 11 -g 22 ) 2 + 4(g 12 ) 2 2 . Let C = sup{|g 11 | + |g 22 |} , C ′ = inf{g 11 g 22 -(g 12 ) 2 } .
The quantity in the right hand side is larger than 2(g 11 g 22 -(g 12 ) 2 )/(g 11 + g 22 ) ≥ 2C ′ /C > 0 , uniformly on T * R 2 . Now, we turn to the case that (x, ξ) = (Re x, Re ξ) + i(u, v).

Then, we can write

Re p M = Re g 11 (ξ 2 1 -v 2 1 ) + 2g 12 (ξ 1 x 1 -u 1 v 1 ) + g 22 (x 2 1 -u 2 1 ) -2Im g 11 ξ 1 v 1 + 2g 12 (ξ 1 u 1 + x 1 v 1 ) + g 22 x 1 u 1 ≥ λ ′ (Re X 1 ) 2 -Ca 2 (1 + |Re X 1 |),
where λ ′ may be smaller than the λ from before, but is still non-negative if we assume that inf{Re g 11 Re g 22 -(Re g 12 ) 2 } > 0 on R 4 + i[-a, a] 4 . Up to taking a small enough, this holds.

Finally, we consider the temperance of the symbol. We already know that for some constants C, C ′ ,

1 + p M (x, ξ) 1 + p M (x ′ , ξ ′ ) ≤ 1 + C(X ′ 1 ) 2 1 + C ′ X 2 1 , whence we find 1 + p M (x, ξ) 1 + p M (x ′ , ξ ′ ) ≤ C C ′ (1 + λ(X 1 -X ′ 1 ) 2 ) ,
for λ large enough.

About the FBI transform

Our main tool in this section will be the Fourier-Bros-Iagolnitzer (FBI) transform. Several versions exist in the literature, see [START_REF] Hitrik | Two minicourses on analytic microlocal analysis[END_REF]; in this paper we follow [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF]Chapter 3], and the FBI transform we use here is defined, for u ∈ S ′ (R2 ), by

T u(x, ξ) = α h R 4 e i(x-y)ξ/h e -|x-y| 2 /2h u(y) dy , α h = 2 -1 (πh) -3 2 .
The α h is chosen so that T is isometric from L 2 (R 2 ) to L 2 (R 4 ). The knowledge of T u implies the knowledge of u via the inversion formula 2 :

(3.1)

u(y) = α h R 4
e -i(x-y)ξ/h-|x-y| 2 /2h T u(x, ξ) dx dξ = T * T u .

It will be essential later that

(3.2) (h(∂ x -i∂ ξ ) -iξ)T = 0.
In other words, T maps L 2 (R 2 ) into the closed subspace of L 2 (R 4 ) of functions of the form e -ξ 2 2h f (x -iξ), where f is holomorphic on C 2 .

3.1. Towards a Toeplitz representation. Since the naive Agmon tactic fails, it seems natural to try and use weights in phase space that depend on both x and ξ. However, it is not easy to understand the behavior of an operator of the type Op w h (e ψ(x,ξ)/h ), all the more if ψ was not bounded. (Although, in the case of a quadratic ψ, see the recent article [START_REF] Coburn | Positivity, complex FIOs, and Toeplitz operators[END_REF]). Following the strategy of [26, 3.5], [START_REF] Nakamura | On Martinez' method of phase space tunneling[END_REF], we use the FBI transform to simplify this, as e ψ(x,ξ)/h can be seen as an multiplication operator on L 2 (R 4 ). Precisely, let us consider the following quantity

(3.3) me ψ/h T Pu, e ψ/h T u L 2 (R 4 ) ,
where P is defined in (2.17), and m ∈ S(1) is multiplier (it is not an order function!). In this section, ψ ∈ S(1) and might depend on parameters uniformly with respect to the S(1)-topology, and all the bounds will depend on dψ only.

Since the FBI transform we are using has a quadratic phase, we have an exact formula T Op w h (σ) = Op w h (σ T )T , where σ T (x, ξ, x * , ξ * ) = σ(x -ξ * , x * ), valid for σ ∈ S ′ (R 4 ). From this, we get

me ψ/h T Pu, e ψ/h T u L 2 (R 4 ) = me ψ/h P T T u, e ψ/h T u L 2 (R 4 ) .
We set

P ψ T = e ψ/h P T e -ψ/h , u ψ = e ψ/h T u = T ψ u , so that (3.3) = mP ψ T u ψ , u ψ L 2 (R 4
) . Thanks to our analyticity assumption and [30, Corollary 5] or [26, Lemma 3.5.4], P ψ T is still a pseudo-differential operator with symbol in S(1). Its symbol satisfies (3.4)

p ψ h = p h (x -ξ * -i∂ ξ ψ, x * + i∂ x ψ) + O(h 2 ) .
Since we use the Weyl quantization, we have indeed O(h 2 ) and not only O(h). Now, we apply [30, Theorem 1] or [26, Theorem 3.5.1], which gives

(3.5) T Pu, me 2ψ/h T u L 2 (R 4 ) = R 4 p ψ h,m (x, ξ; h)|u ψ | 2 dx dξ + O(h 2 ) u ψ 2 , with (3.6) p ψ h,m (x, ξ; h) := m(x, ξ)p h (x + 2∂ z ψ, ξ -2i∂ z ψ) + O(h) .
Here, we have introduced the complex variable z = x + iξ, and

∂ z = 1 2 (∂ x -i∂ ξ ), ∂ z = 1 2 (∂ x + i∂ ξ ).
We stress again that the all the constants in the estimates only involve ψ via semi-norms of dψ in S(1).

Subprincipal term.

In fact, we can even describe the term estimated by O(h) and we will actually need it. For that purpose, and also for the convenience of the reader, let us revisit and refine [26, Theorem 3.5.1].

3.2.1.

General expression of the subprincipal term. Let us focus on the proof of (3.5) once we have (3.4). The following proposition shows how to explicitly write a pseudo-differential operator acting on the range of T ψ (in the sense of quadratic forms) as a multiplication operator modulo O(h 2 ).

Proposition 3.1. Consider a symbol q = q 0 (x, ξ, x * , ξ * ) ∈ S R 8 (1). We have

Op w h (q) u ψ , u ψ L 2 (R 4 ) = R 4 (q 0 (x, ξ) + hq 1 (x, ξ))|u ψ | 2 dx dξ + O(h 2 ) u ψ 2 L 2 (R 4 ) , where q0 (x, ξ) = q 0 (x, ξ, ξ -∂ ξ ψ, ∂ x ψ) , q1 (x, ξ) = 1 2 ({σ f , g} + {f, σ g }) f =g=0 , with f = x * -ξ + ∂ ξ ψ g = ξ * -∂ x ψ σ f = 1 0 ∂ x * q 0 (x, ξ, ξ -∂ ξ ψ + tf, ξ * ) dt σ g = 1 0 ∂ ξ * q 0 (x, ξ, ξ -∂ ξ ψ, ∂ x ψ + tg) dt . (3.7)
Proof. Let us follow the presentation by Martinez. The computations also appear in [START_REF] Nakamura | On Martinez' method of phase space tunneling[END_REF]. We consider

r 1 (x, ξ, x * , ξ * ) = q(x, ξ, x * , ξ * ) -q(x, ξ, ξ -∂ ξ ψ, ∂ x ψ) ,
By the Taylor formula, r 1 = f σ f + gσ g . We set F = Op w h f and G = Op w h g. Since we use the Weyl quantization, we have

Op w h (f σ f ) = 1 2 (F Op w h (σ f ) + Op w h (σ f )F ) + O(h 2 ) .
(Here, the symbol f is not in S( 1), however all its derivatives are, which is essential in the computation). Next, we observe that Equation (3.2) implies that F T ψ = iGT ψ and deduce

1 2 (F Op w h (σ) + Op w h (σ)F )u ψ , u ψ = i 2 [Op w h (σ), G]u ψ , u ψ . Thus (again, since dg ∈ S(1)) Op w h (f σ f )u ψ , u ψ = h 2 Op w h ({σ f , g})u ψ , u ψ + O(h 2 ) u ψ 2 .
In the same way, we get

Op w h (gσ g )u ψ , u ψ = h 2 Op w h ({f, σ g })u ψ , u ψ + O(h 2 ) u ψ 2 .
Therefore, iterating the argument,

Op w h r 1 u ψ , u ψ = h 2 R 4 ({σ f , g} + {f, σ g }) f =g=0 |u ψ | 2 dx dξ + O(h 2 ) u ψ 2 . Notation 3.2. When a ∈ S R 4 (1), we let a(x, ξ) = a(x + 2∂ z ψ, ξ -2i∂ z ψ) .
Corollary 3.3. We have

(3.8) T Pu, me 2ψ/h T u L 2 (R 4 ) = R 4 p ψ h,m (x, ξ; h)|u ψ | 2 dx dξ + O(h 2 ) u ψ 2 ,
where

(3.9) p ψ h,m (x, ξ; h) = m(x, ξ) p h (x, ξ) + hp ψ h,m,1 , and p ψ h,m,1 = -2∂ z m ∂ z p h + ms(x, ξ) , with s(x, ξ) = 1 2 ({σ f , g} + {f, σ g }) |f =g=0 ,
where we used the notations of Proposition 3.1 with

q 0 (x, ξ, x * , ξ * ) = p h (x -ξ * -i∂ ξ ψ, x * + i∂ x ψ) .
Proof. We apply Proposition 3.1 to the pseudo-differential operator Op w h q = mP ψ T . By the composition formula, q(x, ξ, x * , ξ * ) = mq 0 (x, ξ, x * , ξ * ) + hq 1 (x, ξ, x * , ξ * ) + O(h 2 ) , where

q 1 (x, ξ, x * , ξ * ) = (2i) -1 {m(x, ξ), p h (x -ξ * -i∂ ξ ψ, x * + i∂ x ψ)} = -(2i) -1 ∂ x m • ∂ ξ p h + (2i) -1 ∂ ξ m • ∂ x p h .
We deduce that

p ψ h,m = m(x, ξ) p h (x, ξ) + ih 2 ∂ x m • ∂ ξ p h -∂ ξ m • ∂ x p h + hs(x, ξ) , with s = 1 2 ({mσ f , g} + {f, mσ g }) |f =g=0 = m 2 ({σ f , g} + {f, σ g }) |f =g=0 + 1 2 (-∂ ξ p h • ∂ ξ m -∂ x p h • ∂ x m).

But we have

i 2 ∂ x m • ∂ ξ p h -∂ ξ m • ∂ x p h + 1 2 (-∂ ξ p h • ∂ ξ m -∂ x p h • ∂ x m) = 1 2 ∂ x m • (-∂ x p h + i∂ ξ p h ) + 1 2 ∂ ξ m • (-i∂ x p h -∂ ξ p h ) = -2∂ z m • ∂ z p h .

3.2.2.

Rough estimate of the subprincipal terms. Let us describe p ψ h,m,1 in the case when m = m(X 2 ) ∈ S(1). Recall that

p h = g 11 ξ 2 1 -2g 12 ξ 1 x 1 + g 22 x 2 1 -hµ 1 + g 11 ξ 2 1 -2g 12 ξ 1 x 1 + g 22 x 2 1 + O(h 2 ),
where the coefficients g ij are in S(1) on R 4 + i[-a, a] 4 , and µ ≥ 0. Then we notice that, since m only depends on z 2 ,

|∂ z m • ∂ z p h | = (∂ z 2 m) ∂ z 2 p h ≤ C(min(|X 1 | 2 , 1) + h 2 ) ,
and that this term is zero when m = 1. Also, we observe that a priori, s ∈ S(1), so that p ψ h,m = m p h + hmO(1) + hO(min(|X 1 | 2 , 1)) + O(h 3 ) .

3.2.3.

A more accurate description. When ψ = Ψ(X 2 ), we can give a more explicit expression for s. It will be convenient to set

(3.10) w(x, ξ, f, g) := p h (x -2∂ z ψ -g, ξ + 2i∂ z ψ + f ) ,
Then,

σ f = 1 0 ∂ f w(x, ξ, tf, g) dt , σ g = 1 0 ∂ g w(x, ξ, 0, tg) dt .
We have

{σ f , g} f =g=0 = k,j {ξ j , g k }∂ f k ∂ ξ j w(x, ξ, 0, 0) + 1 2 {f j , g k }∂ f k ∂ f j w(x, ξ, 0, 0) + {g j , g k }∂ f k ∂ g j w(x, ξ, 0, 0) , and 
{f, σ g } f =g=0 = k,j {f k , x j }∂ g k ∂ x j w(x, ξ, 0, 0) + 1 2 {f k , g j }∂ g k ∂ g j w(x, ξ, 0, 0) .
From the expressions of f and g, we notice that {ξ j , g

k } = -δ jk , {f k , x j } = δ jk and {g k , g j } = -∂ 2 ξ k ,x j ψ -∂ 2 ξ j ,x k ψ , {g k , f j } = -δ k,j + ∂ 2 ξ k ,ξ j ψ + ∂ 2 x k ,x j ψ . Since ψ = Ψ(X 2
), the only non-zero terms involving ψ are obtained for j = k = 2. Thus,

(3.11) 2s(x, ξ) = k -∂ f k ∂ ξ k + 1 2 ∂ f k ∂ f k + ∂ g k ∂ x k + 1 2 ∂ g k ∂ g k w(x, ξ, 0, 0)+R 1 ,
where

R 1 = O(|d 2 ψ||d 2 X 2 p h |).
Let us look at the first term in the right-hand side of (3.11) and recall (3.10). Then, we can write it as

k -∂ f k ∂ ξ k + 1 2 ∂ f k ∂ f k + ∂ g k ∂ x k + 1 2 ∂ g k ∂ g k w(x, ξ, 0, 0) = - 1 2 ∆p h + R 2 ,
where again,

R 2 = O(|d 2 ψ||d 2 X 2 p h |), so that finally, s = - 1 4 ∆p h + O(min(|X 1 | 2 , 1)) + O(h 2 ).
We can summarize the discussion above in the following. 

(i). When m = 1, r = 0 (ii). When ψ = Ψ(X 2 ), s = - 1 4 ∆p h (x, ξ) + Ř , where Ř ∈ S(1) and Ř = O(|d 2 Ψ| min(|X 1 | 2 + h 2 , 1)
). Moreover, all estimates are uniform for h small and dψ varying in a bounded subset of S(1).

Noticing that Ř is zero when ψ = 0, we get the following.

Proposition 3.5. When σ ∈ S(1), Op w h (σ)u, u L 2 (R 2 ) = T Op w h (σ)u, T u L 2 (R 4 ) = R 4 σ(x, ξ) - h 4 ∆σ(x, ξ) + O(h 2 ) |u ψ | 2 dx dξ . (3.12)
Remark 3.6. This classical proposition (see [26, Corollary 3.5.7 & Section 3.6, Ex. 7] and consider also [START_REF] Zworski | Semiclassical analysis[END_REF]Theorem 13.10]) is also true when σ is a quadratic form, and in this case the remainder O(h 2 ) is zero.

Microlocal Agmon estimates

In this section, we establish Agmon estimates with respect to X 1 in an exponentially weighted space with respect to X 2 . These estimates are stated in Theorem 4.3 and 4.4. They imply Theorem 4.1. In this whole section we will consider u ∈ L 2 (R 2 ) solving the equation

(4.1) Pu = Op w h 1 1 + p M Op w h (p M -hµ + h 2 q)u = 0.
with p L = p M +h 2 q satisfying the conclusion of Lemma 2.1, so that the conclusions of Scholium 3.4 applies.

Theorem 4.1. Let Ψ 1 , Ψ 2 be non-negative Lipschitz functions with a unique and non-degenerate minimum at 0 with minimum value 0. We also assume that they go linearly to infinity at infinity. We set ψ(x, ξ) = Ψ 1 (X 1 ) + Ψ 2 (X 2 ). Given K > 0, there exist ε, h 0 , C > 0, such that, for all h ∈ (0, h 0 ), µ ≤ b 0 + Kh and u solving (4.1), we have

R 4 e 2εψ(x,ξ)/h |T u| 2 dx dξ ≤ C R 4
|T u| 2 dx dξ (= C u 2 ).

4.1.

Decay away from the characteristic manifold. In this section, we establish the exponential decay of T u with respect to X 1 .

4.1.1. First estimate. One will need the following elementary lemma.

Lemma 4.2. Recall that p M (x, ξ) = g 11 ξ 2 1 -2g 12 ξ 1 x 1 + g 22 x 2 1 . Then, there exist non-negative numbers γ, c 1 , c 2 , c 3 such that (i). for all

|X 1 | ≥ γ, p M 1+p M ≥ c 1 , (ii). for all |X 1 | ≤ γ, p M 1+p M ≥ c 2 |X 1 | 2 . If, moreover, ε is small enough, (i). for all |X 1 | ≥ γ, Re p M 1+ p M ≥ c 1 , (ii). for all |X 1 | ≤ γ, Re p M 1+ p M ≥ Re p M -c 3 |X 1 | 4 , and Re p M ≥ c 2 |X 1 | 2
, where we used Notation 3.2. Theorem 4.3. Given K > 0, there exist ε, h 0 , C > 0 such that, for all h ∈ (0, h 0 ), µ ≤ K and u solving (4.1), we have

R 4 e 2ε(Ψ 1 (X 1 )+Ψ 2 (X 2 ))/h |T u| 2 dx dξ ≤ C R 4 e 2εΨ 2 (X 2 )/h |T u| 2 dx dξ .
Proof. Assume temporarily that Ψ 1 is bounded. Let us use Scholium 3.4 with m = 1. Then, taking the real part, we get

R 4 (Re p h -Ch)|u ψ | 2 dx dξ ≤ 0 . Recall p h (x, ξ) = p M (x, ξ) -hµ 1 + p M (x, ξ) + O(h 2 ) . Since p M ≥ 0, R 4 Re p M 1 + p M -C(1 + K)h |u ψ | 2 dx dξ ≤ 0 .
Consider R > 0 and the set

J R = {X ∈ R 4 : |X 1 | ≥ Rh 1 2 } . We write J R Re p M 1 + p M -C(1 + K)h |u ψ | 2 dx dξ ≤ - ∁J R Re p M 1 + p M -C(1 + K)h |u ψ | 2 dx dξ ,
and notice

∁J R Re p M 1 + p M -Ch |u ψ | 2 dx dξ ≤ C R h(1 + K) R 4 e 2Ψ 2 (X 2 )/h |T u| 2 dx dξ .
From Lemma 4.2, we get c2 > 0 such that on J R ,

Re p M 1 + p M -C(1 + K)h ≥ c2 R 2 h -C(1 + K)h .
Choosing R large enough, we get

J R |u ψ | 2 dx dξ ≤ C R R 4 e 2Ψ 2 (X 2 )/h |T u| 2 dx dξ ,
and then

R 4 |u ψ | 2 dx dξ ≤ C R 4 e 2Ψ 2 (X 2 )/h |T u| 2 dx dξ .
If Ψ 1 is not bounded, we introduce an appropriate cutoff function. For example, we apply the previous estimates to Ψ 1,k := χ(k -1 εΨ 1 (X 1 ))εΨ 1 (X 1 ) and send k to +∞. The estimates are independent of k because dΨ 1,k is uniformly bounded in S(1). Then, we conclude with the Fatou lemma. Then, for M > 0, there exist ǫ, h 0 , C > 0 such that, for all h ∈ (0, h 0 ), µ ≤ M and u solving (4.1), we have (mRe

R 4 me 2ε(Ψ 1 (X 1 )+Ψ 2 (X 2 ))/h |T u| 2 dx dξ ≤ C R 4 (m + h)e 2εΨ
p h (x, ξ; h) -Chm) |u ψ | 2 dx dξ ≤ Ch 2 R 4 e 2εΨ 2 (X 2 )/h |T u| 2 dx dξ .
Then, the analysis the same lines as in the proof of Theorem 4.4. The same splitting of the integral in the left-hand-side gives the conclusion.

4.2. Subprincipal decay estimates. Let us now prove an exponential estimate with respect to all the phase space variables. In the previous section, we essentially used the ellipticity of the operator outside of the characteristic set. The results, while new in this precision as far as we know, are not surprising. However, in this section, we have to understand what is happening directly on the characteristic set, i.e understand in detail the subprincipal terms. This is a much finer analysis. At the microlocal level, the computations are similar to the ones in [START_REF] Sjöstrand | Analytic wavefront sets and operators with multiple characteristics[END_REF]; however, instead of using the Boutet de Monvel calculus for polynomial operators, we directly use the invertibility of an effective harmonic oscillator.

Theorem 4.5. For M > 0, there exist ε, h 0 , C > 0 such that, for all h ∈ (0, h 0 ), µ ≤ b 0 + Mh and u solving (4.1), we have

R 4 e 2εΨ 2 (X 2 )/h |T u| 2 dx dξ ≤ C R 4
|T u| 2 dx dξ .

Proof. This time, ψ = Ψ(X 2 ). Let us use Scholium 3.4 again with m = 1. We get

R 4 Re p h - h 4 ∆p h -Ř -Ch 2 |u ψ | 2 dx dξ ≤ 0 .
With Theorem 4.3, we can estimate Ř and get

R 4 Re p h - h 4 ∆p h -Ch 2 |u ψ | 2 dx dξ ≤ 0 .
Observe that (4.2)

p h + O(h 2 ) = p M -hµ 1 + p M = p M -hµ + hµ p M 1 + p M - p 2 M 1 + p M .
The fourth term in the right-hand side is O(min(|X 1 | 4 , 1)), and can be absorbed using Theorem 4.3, and replaced by a O(h 2 ). The third term can also be absorbed in the same fashion, and replaced by O(h 2 µ). We deduce that

R 4 Re p M -b 0 h - h 4 Re ∆p h -C(1 + K)h 2 |u ψ | 2 dx dξ ≤ 0 .
Using Equation (4.2) to estimate the contribution from ∆p h , and using the same arguments,

R 4 Re p M -b 0 h - h 4 Re ∆ X 1 p M -C(1 + K)h 2 |u ψ | 2 dx dξ ≤ 0 ,
Now, we will approximate p M by a quadratic form in X 1 , with coefficients depending only on X 2 . To this end, let

Q X 2 (X 1 ) := g 11 |X 1 =0 ξ 2 1 -2 g 12 |X 1 =0 ξ 1 x 1 + g 22 |X 1 =0 x 2 1 .
(Observe that since ψ does not depend on X 1 , and differentiation in X 1 commute). Since the coefficients g ij are assumed to be critical at 0, and dψ(0) = 0, we find

Re p M - h 4 Re ∆ X 1 p M = Re Q X 2 (X 1 ) - h 2 Tr Re Q X 2 +O(|X 1 | 2 (min(|X 1 | 2 + |X 2 | 2 , 1) + h|X 1 | 2 + h|X 1 | min(|X 2 |, 1))) Using Theorem 4.4, we can absorb O(h k |X 1 | 2ℓ min(|X 2 | 2 , 1 
)) and replace it by

O(h k+ℓ (min(|X 2 | 2 , 1) + h)).
Therefore, using also

|X 1 ||X 2 | ≤ ε -1 |X 1 | 2 + ε|X 2 | 2 , we get Re Q X 2 (X 1 ) -b 0 h - h 2 Tr Re Q X 2 -Cεh min(|X 2 | 2 , 1) |u ψ | 2 dX 1 dX 2 ≤ (1 + ε -1 + K)h 2 |u ψ | 2 dX 1 dX 2 .
For fixed X 2 , we recognize the Bargmann symbol of the "harmonic oscillator" in X 1 (see Remark 3.6) and thus

R 2 Re Q X 2 (X 1 ) - h 2 Tr Re Q X 2 |u ψ | 2 dX 1 ≥ h det Re Q X 2 |u ψ | 2 dX 1 . So that R 4 det Re Q X 2 -b 0 -Cε min(|X 2 | 2 , 1) -C(1 + ε -1 + K)h |u ψ | 2 dx dξ ≤ 0 . Recall now that B = √ det Q, so that √ det Re Q = B(1 + O(Tr Re Q -1 Im Q)) = B(1 + εO(min(|X 2 | 2 , 1))).
Under the conclusion on Lemma 2.1, we get the estimate

R 4 min(|X 2 | 2 , 1)(1 -Cǫ) -C(1 + ε -1 + K)h |u ψ | 2 dx dξ ≤ 0 .
The conclusion follows from the usual Agmon arguments, and again the fact that the constant only depend on derivatives of ψ.

Space exponential decay

We are now in position to prove Theorem 1.1. Let û ∈ L 2 (R 2 ) such that L h û = hµû and let u = M -1 U κ û = M * U κ û. We have Pu = 0, see Equation (4.1).

Remark 5.1. Following [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF]Theorem 4.1.2], with Theorem 4.1, one could deduce (up to technicalities) that, if K is a compact set away from 0, we have

û L 2 (K) = O(e -c/h )
for some c > 0. Below, one will get a more explicit result. Already observe that we can drop the factor U κ . Indeed, since κ is uniformly bi-Lipschitz, it preserves spatial exponential decay. So we can concentrate on ũ := Mu = U κ û.

With the notation of Theorem 4.1, we have, for ǫ small enough,

T u ∈ L 2 ǫψ (R 4 ), where L 2 ǫψ (R 4 ) := L 2 (R 4 ; e ǫψ dx dξ) , with a uniform bound: T u L 2 ǫψ (R 4 ) ≤ C u L 2 (R 2 )
, where C does not depend on h. From this exponential decay in phase space, we wish to obtain exponential decay in the position variable x for ũ. We start with the inversion formula (3.1):

û = MT * (T u).
Let ϕ be a non-negative Lipschitz function, going linearly to infinity at infinity, having a unique and non-degenerate minimum at the origin, with minimal value 0 (let us call these functions admissible weights). We would like to obtain a uniform bound e ǫ ′ ϕ û L 2 (R 2 ) ≤ C û L 2 (R 2 ) , for some ǫ ′ > 0 small enough. Thus, it is enough to prove that the operator (5.1)

MT * : L 2 ǫψ (R 4 ) → L 2 ǫ ′ ϕ (R 2
) is uniformly bounded with respect to h ∈ ]0, h 0 ]. Lemma 5.2. Let ϕ 1 , ϕ 2 be admissible weights on R d . Then there exists C > 0 such that

(5.2) C -1 ϕ 1 ≤ ϕ 2 ≤ Cϕ 1 .
Proof. By the Taylor formula at the origin, the estimate (5.2) is valid in a neighborhood of 0. By the linear behavior at infinity, it is valid outside of a compact set. On the remaining compact subset of R d \ {0}, it is enough to use that the range of ϕ j is a compact interval of ]0, +∞].

A consequence of the lemma is that the choice of ϕ and ψ in (5.1) is not relevant, as long as we don't seek the optimal constants and are allowed to play with ǫ, ǫ ′ . Proposition 5.3. Given an admissible weight ϕ on R 2 , there exists an admissible weight ψ on R 4 of the form required by Theorem 4.1, and a constant C > 0 independent of h, such that for all ǫ ′ ≤ ǫ/C, ǫ ≤ 1, the operator MT * defined in (5.1) is bounded by O(1).

As a consequence, there exists ǫ ′ 0 such that if ǫ ′ ≤ ǫ ′ 0 , then there exists C > 0 such that

R 2 e ǫ ′ ϕ(x)/h |û(x)| 2 dx ≤ C û 2 L 2 (R 2 ) .
Proof. By Lemma 5.2, we can always change the function ϕ, so we will pick a convenient one. First, consider the C 1 Lipschitz function f defined by f (ρ) = ρ 2 if ρ ∈ [0, 1] and f (ρ) = 2ρ -1 if ρ ≥ 1. Notice that (5.3) ∀ρ ≥ 0 , f (2ρ) ≤ 4f (ρ) .

We define now the admissible weight ϕ(x) := f (|x|), x ∈ R 2 .

A formula for MT * can be obtained from the action of the FBI transform T on arbitrary metaplectic operators, see [26, 3.4]; here we derive it explicitly. We have We wish to conclude on the L 2 continuity of MT * by applying the Schur lemma.

For given (x, ξ), we make a change of variables to get Using again the convexity of ϕ, On the other hand, for a given y, we make an analogous change of variables: With this Proposition 5.3, the proof of Theorem 1.1 is complete. It would be very interesting to investigate the optimality of (ϕ, ǫ ′ ) for which Proposition 5.3 holds, in particular by relating ϕ ′′ (0) to the behaviour of the magnetic field at the origin.

(

Scholium 3 . 4 .

 34 Under the conclusion of Lemma 2.1, consider ψ bounded with dψ ∈ S(1) and m = m(X 2 ) ∈ S(1). Then me -ψ/h T Pu, e -ψ/h T u = R 4 |u ψ | 2 m p h + hms + hr + O(h 2 ) dX 1 dX 2 , where r, s ∈ S(1) and |r| ≤ C(min(|X 1 | 2 , 1)). Moreover, we have the following properties.

Theorem 4 . 4 .

 44 Consider m = m(X 2 ) non-negative with m ∈ S(1).

α h √ 2 , 4 e-.-

 24 T u(x, ξ) = α h e -ξ 2 2h (L ⋆ u)(z), with L(x) = e -x 2 2h , z := x -iξ ∈ C 2 .From (2.10) we obtainT M * u(x, ξ) = α h e -ξ 2 2h ((L ⋆ K) ⋆ u)(z), where L ⋆ K is a complex Gaussian that can be computed explicitly, using in particular that(I + iA) -1 = 1 2 (I -iA): L ⋆ K(y) = √ 2πhe )(z-y),z-y u(y) dy , αh =and therefore, taking the adjoint, we have forv ∈ L 2 ǫψ (R 4 ) (MT * )v(y) = αh R iA)(z-y),z-y v(x, ξ) dx dξ , z = x + iξ .Let K MT * (y, x, ξ) be the Schwartz kernel of e ǫ ′ ϕ h MT * e -ǫψ h , viewed as an operatorL 2 (R 4 ) → L 2 (R 2 ), i.e. K MT * (y, x, ξ) = αh e ǫ ′ ϕ(y) h -|ξ| 2 2h -1 4h (I-iA)(z-y),z-y -ǫψ(x,ξ) h .We haveRe (I -iA)(z -y), z -y = |x -y| 2 -|ξ| 2 -2 Aξ, x -y = |Aξ -(x -y)| 2 -2 |ξ| 2 ,where in the second line we used |Aξ| 2 = |ξ| 2 . Therefore,|K MT * (y, x, ξ)| ≤ αh e ǫ ′ ϕ(y) hLet us choose now, as we may, ψ(x, ξ) := ϕ(x) + |ξ| 2 / ξ . Indeed, ψ is not of the form Ψ 1 + Ψ 2 , but is bounded from below by a function of this form (this can be written explicitly, or by invoking Lemma 5.2). By convexity of ϕ, ϕ(y) ≤ 1 2 ϕ(2x) + 1 2 ϕ(2(y -x)) , and hence|K MT * (y, x, ξ)| ≤ αh e ǫ ′ ϕ(2x) 2h -ǫϕ(x) h + ǫ ′ ϕ(2(y-x)) 2h -|x-y-Aξ| 2 2h -ǫ|ξ| 2 h ξ .If ǫ ′ ≤ ǫ/2 then, by (5.3), ǫ ′ ϕ(2x)/2 ≤ ǫϕ(x) for all x ∈ R 2 so that (5.4) |K MT * (y, x, ξ)| ≤ αh e ǫ ′ ϕ(2(y-x)) 2h

R 2 |K 2 |K

 22 MT * (y, x, ξ)| dy = R MT * (y + x + Aξ, x, ξ)| dy.From (5.4) we have|K MT * (y + x + Aξ, x, ξ)| ≤ αh e ǫ ′ ϕ(2(y+Aξ)) 2h-

R 4 |K 4 |K 2 2h -ǫξ 2 h ξ Applying Equation ( 5 . 5 ) 4 |K 2 e -ǫξ 2 2h ξ dξ R 2 eǫ 4 |K

 442554224 MT * (y, x, ξ)| dx dξ = R MT * (y, x + y + Aξ, ξ)| dx dξ and write (5.4) as |K MT * (y, x + y + Aξ, ξ)| ≤ αh e ǫ ′ ϕ(2(x+Aξ)) 2h -|x| with y replaced by x, and choosing ǫ′ ≤ 2C ϕ ǫ, gives R MT * (y, x + y + Aξ, ξ)| dx dξ ≤ αh R ′ ϕ(4x) 4h -|x| 2 2h dx .Using that both integrals are O(h), we haveR MT * (y, x + y + Aξ, ξ)| dx dξ ≤ Ch 2 αh .Hence, the Schur lemma givesMT * = O( αh h 3/2 ) = O(1) : L 2 ǫψ (R 4 ) → L 2 ǫ ′ ϕ (R 2 ).

  4.1.2. Agmon estimate with multiplier. Let us now add a multiplier in the previous estimate. This can be done modulo O(h).

  2 (X 2 )/h |T u| 2 dx dξ . Re p ψ h,m (x, ξ; h)|u ψ | 2 dx dξ ≤ Ch 2 R 4 e 2εΨ 2 (X 2 )/h |T u| 2 dx dξ . (mRe p h (x, ξ; h) -Chm) |u ψ | 2 dx dξ ≤ Ch (X 2 )/h |T u| 2 dx dξ .Using again Theorem 4.3 with a smaller ε to absorb the |X 1 | 2 term,

	Then, by Scholium 3.4,		
	R 4		R 4	|X 1 | 2 |u ψ | 2 dx dξ
	+ Ch 2 e 2εΨ 2 R 4 R 4
	Proof. We use again Scholium 3.4, this time without assuming that m = 1. We
	have			
	Re	R 4	p ψ h,m (x, ξ; h)|u ψ | 2 dx dξ = O(h 2 ) u ψ	2 ,
	so that, with Theorem 4.3,	
	R 4			

  From Lemma 5.2, there existsC ϕ > 0 such that, ϕ(4Aξ) ≤ C ϕ |ξ| 2 / ξ . Hence, if ǫ ′ ≤ 4C ϕ ǫ, we get ǫ ′ ϕ(4Aξ) 

	5.5)	ǫ ′ ϕ(2(y + Aξ)) 2h	-	|y| 2 2h	-	ǫξ 2 h ξ	≤	ǫ ′ ϕ(4y) 4h	+	ǫ ′ ϕ(4Aξ) 4h	-	|y| 2 2h	-	ǫξ 2 h ξ	.
			4h	-ǫξ 2 h ξ ≤ 0, and							
		R 2	|K MT R 2	e	ǫ ′ ϕ(4y) 2h	-	|y| 2 2h dy .

* (y + x + Aξ, x, ξ)| dy ≤ αh Using Laplace's method, the integral on the right-hand side is O(h) provided ǫ ′ < 1/16. Hence, R 2 |K MT * (y, x, ξ)| dy ≤ Chα h .

The only known (and optimal) result of pure magnetic tunnelling has recently been proved in a two-dimensional setting in[START_REF] Bonnaillie-Noël | On a purely magnetic tunnel effect in two dimensions[END_REF] by means of microlocal dimensional reductions.

sometimes called coherent state decomposition; in relation with the magnetic Laplacian, it has been used in[START_REF] Bonnaillie-Noël | Magnetic WKB constructions[END_REF] Section 2.3] 
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Corollary 1.4. In L 2 (R 2 ), we can decompose u ℓ,J = αe iθ u ℓ + w with w orthogonal to u ℓ , θ ∈ R and α ≥ 0. Since the eigenvalues of L h are h 2 separated, the Spectral Theorem implies that (L h -λ ℓ (h))u ℓ,J ≥ Ch 2 w , so w ≤ Ch J . In particular, 1 -α ≤ (Ch J ) 2 /2. We then get 2 . Now, we turn to exponentially weighted spaces. We consider ǫ > 0 small enough so that Theorem 1.1 applies to 2ǫ. Then we observe that

Appendix A. Change of variables

Since L h is invariantly defined by the 2-form B and the Riemannian metric on M, its principal and subprincipal Weyl symbols are well defined, which implies that a change of variables like the one defined in Lemma 2.2 and used in Lemma 2.1 acts naturally on the Weyl symbol modulo terms of order O(h 2 ) (see also [START_REF] Morin | A semiclassical Birkhoff normal form for symplectic magnetic wells[END_REF]).

Here we give a direct proof of this and compute explicitly the O(h 2 ) remainder.

We have

)) + g * ∇(|g|

and

where

In terms of forms, this means that

We let P = -ih∇ y -Ã(y) and notice that

and then

, P ] ψ g * dy , so that

[|g| 1 4 , P ] ψ, |g| 4 , P ] ψ 2 g * dy .

Since [P, |g| 4 ) and à is real-valued, we deduce that 2Re ). Therefore,

V (y)|Uψ| 2 dy , and the conclusion follows.