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SLA Definition for Multi-Tenant DBMS
and its Impact on Query Optimization

Shaoyi Yin , Abdelkader Hameurlain , and Franck Morvan

Abstract—In the cloud context, users are often called tenants. A cloud DBMS shared by many tenants is called a multi-tenant DBMS. 
The resource consolidation in such a DBMS allows the tenants to only pay for the resources that they consume, while providing the 
opportunity for the provider to increase its economic gain. For this, a Service Level Agreement (SLA) is usually established between 
the provider and a tenant. However, in the current systems, the SLA is often defined by the provider, while the tenant should agree with
it before using the service. In addition, only the availability objective is described in the SLA, but not the performance objective. In this 
paper, an SLA negotiation framework is proposed, in which the provider and the tenant define the performance objective together in
a fair way. To demonstrate the feasibility and the advantage of this framework, we evaluate its impact on query optimization. We formally 
define the problem by including the cost-efficiency aspect, we design a cost model and study the plan search space for this problem,

we revise two search methods to adapt to the new context, and we propose a heuristic to solve the resource contention problem caused 
by concurrent queries of multiple tenants. We also conduct a performance evaluation to show that, our optimization approach (i.e., driven 
by the SLA) can be much more cost-effective than the traditional approach which always minimizes the query completion time.

Index Terms—Cloud computing, cost-efficiency, multi-tenancy, query optimization, service level agreement

1 INTRODUCTION

A multi-tenant DBMS can be used by a PaaS (Platform as
a Service) provider to manage the data of all its custom-

ers (which become tenants in the cloud context). This kind of
service is often called DBaaS (Database as a Service). As in
any other cloud-based service, the resource consolidation
allows the tenants to only pay for the resources that they
consume (pay-as-you-go), while providing the opportunity
for the provider to increase its economic gain. Examples of
such systems include MS SQL Azure [23], Amazon RDS [2]
and Oracle Data Cloud [17]. With these systems, a Service
Level Agreement (SLA) is established between the provider
and a tenant. However, they are often defined by the pro-
vider, while the tenant should agree with it before using
the service. In addition, only the availability objective is
described in the SLA of these services, but not the perfor-
mance objective. Indeed, defining performance objectives
and above all, guaranteeing them is very challenging. Data-
base queries have different levels of complexity, so defining
a unique performance objective for all queries is not realistic.

In the research community, somework [13], [19] has intro-
duced the performance SLO (Service Level Objective) to the
DBaaS systems, for OLTP applications [13] and for OLAP
applications [19] respectively. In this paper,we are interested
in OLAP applications. Similar to but slightly different from

[19], we will include the performance objective in the SLA by
fixing a threshold for each query template1 and associate a
price to it. In order to do so, we will define a negotiation
framework such that the tenant and the provider could
define this threshold together in a rather fair way. The aim is
to find a performance objective that is satisfactory or at least
acceptable by the tenant and reachable (i.e., technically
achievable and financially profitable) for the provider. In the
SLA, we also fix the pricing policy, which is used to adjust
the price according to the real performance and the parame-
ter values. If the query answer is delayed or the query is
rejected, a penalty should be paid by the provider.

In a multi-tenancy environment, the performance for an
individual tenant can be degraded because of the interfer-
ence of other tenants. Guaranteeing the satisfaction of a ten-
ant in terms of performance is a critical problem. A possible
solution is to enforce performance isolation [16], [6], i.e., to
specify the performance objective in the SLA by fixing
the absolute amount of required resources (e.g., CPU, I/O,
memory, and network) and the penalty in case of violation.
This solution requires a lot of responsibility from the tenant:
the tenant has to know in advance how many resources
will be needed for its query, which is a very difficult task
with OLAP applications. Thus, in our work, we will define
the SLA in a different way such that the tenant does not
need to know the resource consumption in advance. During
the SLA negotiation, the tenant only provides the query
templates with some basic statistics, and it is the provider
who is responsible for estimating the resource requirements
of a query in order to propose a reasonable price. Then,
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1. A query template is a parameterized SQL query, i.e., to use varia-
bles instead of constant values in the selection predicates, as can be
seen in the TPC-H benchmark.



controlling the real resource consumption for a specific
query becomes an important task of the query optimizer.

Once the SLA is defined, the objective of the query opti-
mizer is to find an execution plan for a given query such
that the performance expectation of the tenant is satisfied
and the economic benefit of the provider is maximized.
Sometimes, the optimizer detects that there are not enough
resources to reach the performance objective, or that the eco-
nomic benefit could be negative. In these cases, the opti-
mizer should decide whether to wait for resources to be
released, or to reject the query, or to start the current query
but suspend other running queries which are relatively less
beneficial. In other words, the query optimizer should be
revisited to solve these problems.

The contributions of this paper are: (1) we define a frame-
work which allows a fair negotiation between both the
provider and the tenant. The tenant prepares a test case
containing a small set of query templates, specifying a per-
formance expectation for each template, and the provider
proposes a pricing function with regard to the real perfor-
mance and the parameter values. The tenant could compare
offers from different providers and choose the most appro-
priate one; (2) we study the impact of the SLA on query
optimization to demonstrate the feasibility and the advan-
tage of our framework. We formally define the problem by
taking into account the economic aspects. We revise the cost
model, the search space and some search methods to adapt
to the new context. We also propose a heuristic to solve the
resource contention problem caused by concurrent queries
of multiple tenants.

The rest of the paper is organized as follows. Section 2
analyzes the related work. Section 3 defines the SLA negoti-
ation framework. Section 4 studies the impact on query
optimization, including the problem formulation, a cost
model, the search space and two search methods. Section 5
shows the experimental results. Finally, Section 6 concludes
the paper and points out future work.

2 RELATED WORK

As said above, in this paper, we deal with two main chal-
lenges: (1) the SLA definition for multi-tenant DBMS, which
takes into account the performance objectives, and (2) cost-
effective query optimization. Below, we study the related
work corresponding to these two directions.

2.1 Performance Concerned SLA Definition

In the DBaaS context, [13] is one of the first research work
which takes the performance SLO into consideration for query
processing. This work has been done for OLTP applications
and the performance metric is transactions per second (tps).
Two types of SLO are distinguished: (1) H, associated with
a high performance of 100 tps and (2) L, associated with a
lower performance of 10 tps. The authors present a frame-
work that takes as input the tenant workloads, their perfor-
mance SLOs, and the available hardware resources, and
outputs a cost-effective recipe that specifies how much hard-
ware to provision and how to schedule the tenants on each
hardware resource.

A recent work [19] which focuses on OLAP applications
introduces the notion of Personalized Service Level

Agreement (PSLA). The main idea is that a tenant should
specify the database schema with basic statistics (e.g., base
table cardinalities), and then the cloud provider shows dif-
ferent levels (tiers) of services that can be provided. Each
service tier contains a set of query templates, the estimated
performance for each template and the price (dollars/hour)
corresponding to this level of service. The advantage is that
the tenant does not need to specify its query templates in
advance, but only needs to choose a service level. However,
PSLA has some constraints. In fact, each defined service
tier is generated based on a specific hardware configuration,
for example, a shared-nothing architecture with 4 nodes, 6
nodes or 8 nodes. Thus, inside a tier, the performance
degrades with the complexity of the query. Once the tier is
chosen, a tenant cannot expect a good scalability (i.e., hav-
ing more or less the same performance for simple and com-
plex queries by allocating different amounts of resources).

In our paper the target workload is OLAP applications,
and the performance metric is the Query Completion Time
(QCT)2. Unlike in [19], we allow a tenant to specify an
expected performance threshold for each query template
independently, and each query will be invoiced separately.
It is the query optimizer of the provider which decides how
many resources should be dedicated to a given query and
issues performance isolation if necessary. Indeed, the tenant
has to provide in advance a small set of query templates
that he will make. However, in the context of OLAP applica-
tions, this is not a hard problem.

2.2 Monetary-Cost-Aware Query Optimization

Some research work treats monetary-cost-aware query opti-
mization as a multi-objective optimization problem [27]. QCT
and Monetary Cost (MC) are defined as independent cost
metrics. The query optimizer tries to find the best trade-off.

Algorithms like Dynamic Programming (DP) [21] that
prune plans based on a single cost metric rely on the follow-
ing principle of optimality: replacing subplanswithin a query
plan by better subplans with regard to that cost metric cannot
worsen the entire query plan. This principle breaks when
there are multiple cost metrics [7]. Based on that insight,
Ganguly et al. [7] proposed an extended DP algorithm that
uses a multi-objective version of the principle of optimality.
This algorithm guarantees to generate optimal query plans.
However, it is too computationally expensive for practical
use, as shown in [27]. Thus, Trummer et al. [27] proposed
two approximation schemes for multi-objective query opti-
mization problem which formally guarantee to return near-
optimal query plans while speeding up optimization by
several orders of magnitude in comparison with exact algo-
rithms. However, as we will demonstrate in Section 4.4.1,
when the parallelism of query execution is considered, the
pruning strategy used in [7] and [27] becomes invalid.

Kllapi et al. [12] also tackled the problem ofmulti-objective
optimization, but it focuses on the resource allocation phase
of data processing flows in the cloud. The authors propo-
sed some heuristics based on greedy algorithms and simu-
lated annealing [8] to find the optimal schedule for three
types of problems: (1) minimize QCT given a fixed budget,

2. QCT is defined to be the elapsed time between the query submis-
sion and the return of the complete result (Section 4.1).



(2) minimize MC given a deadline, and (3) find trade-offs
between QCT and MC without any a-priori constraints.
Indeed, resource allocation is also an important step in
query optimization. However, it is not the focus of our paper.
We deal mainly with the join order determination problem,
as in [27].

Although multi-objective optimization is relevant to our
work, it is a general approach, and for our specific problem
described in Section 1, we think that it is more appropriate to
define it as a single objective optimization problem. We try
to maximize the provider’s benefit, while treating the query
completion time threshold and the maximum resource
consumption as constraints to meet. The reason of doing this
is twofold: first, the tenant does not need to choose a plan
from a set of proposed plans for each query. Thus, the query
processing is transparent; second, the constraints can be
used by the optimizer to prune some intermediate results, so
that the search method is more efficient, as will be shown in
Section 5.5.

3 SLA NEGOTIATION FRAMEWORK

In the existing SLAs for DBaaS systems, the performance
objective (i.e., the QCT) is not explicitly described [3], [18],
[22]. The main reasons are as follows. First, even if the ten-
ant may have a rough expectation for the QCT, it is not sure
that this expectation could be met by the provider. Second,
if we let the provider define the QCT threshold and the
price, it may trick the tenant. In fact, the commonly used
pricing policy is that the price is a function of the consumed
resources. However, for a database query, the resource con-
sumption depends on the execution plan chosen by the opti-
mizer. If the optimizer chooses a bad plan, not only will the
QCT be larger, but also the bill will be higher, which is not
fair for the tenant. Therefore, neither the tenant nor the pro-
vider should decide alone the performance objective and
the corresponding price for a query. In this section, we will
define a framework which allows a fair negotiation between
both sides. The negotiation is aided by an automated Offer
Generation Tool (OGT) at the provider’s side. The design of
a good OGT is not trivial. It should follow some guidelines:
(1) the generated offer should be simple enough so that the
tenant can easily understand it, (2) the defined performance
objective should be reachable by the provider for any
instantiated query, (3) the defined objectives should be
auditable by the tenant, and (4) the communication during
the negotiation between the provider and the tenant should
be minimized.

The main idea of our negotiation framework is as fol-
lows. For each template, the tenant specifies an expected
QCT ðQCTEXP Þ and a tolerance threshold '. The OGT
estimates the shortest QCT ðQCTSÞ with the correspond-
ing price, and the lowest price with the corresponding
QCT . If QCTEXP is smaller than QCTS , the expected QCT
will be automatically adjusted to QCTS . Then, the OGT
defines a price function with regard to the actual QCT .
The tenant could compare this offer with the offers from
other providers. Once the provider is chosen, the tenant
can add new query templates whenever he wants, and
the OGT can automatically extend the SLA. Note that the
statistics the tenant provides may be inaccurate so the

estimation may be irrelevant. In this case, a renegotiation
may be triggered. These steps will be discussed in detail
in Section 3.1. An example will be given in Section 3.2.

3.1 Steps for Generating the SLA Offer

The main steps are explained in detail below.

Step 1: Fixing the QCT threshold for each query tem-
plate. The input to the OGT includes: (a) the schema of the
database (i.e., relations, attributes, data types, and con-
straints, etc.), (b) the estimated number of tuples in each
base relation, (c) a set of query templates with parameter-
ized predicates (as in the benchmark TPC-H), (d) a QCTEXP

and a tolerance threshold ' for each template, and (e) some
other statistics that are needed to estimate cadinalities of
intermediate results (e.g., numbers of distinct values of the
attributes), if available. If (e) is not provided by the tenant,
the OGT will use some default values. The inaccuracy prob-
lem is addressed in Step 4.

For each query template, the OGT first supposes the
highest selectivity for each parameter and calculates the fol-
lowing information, by running its query optimizer: (1) the
shortest query completion time QCTS and the correspond-
ing price PRS, and (2) the lowest price PRL and the corre-
sponding query completion time QCTL.

IfQCTEXP is smaller thanQCTS , the expectedQCT will be
automatically adjusted to QCTS . For example, for a given
query template, the tenant has an initial expected query
completion time, which is 15s. If the optimizer returns the
following result: QCTS ¼ 5s, PRS ¼ 50 cents; QCTL ¼ 10s,
PRL ¼ 5 cents, then the threshold 15s will be maintained, and
the price will be 5 cents. However, if the optimizer returns:
QCTS ¼ 20s, PRS ¼ 30 cents; QCTL ¼ 50s, PRL ¼ 5 cents,
then the tenant‘s expectation will be adjusted automatically
by the OGT to 20s.

If QCTS % QCTEXP % QCTL, the corresponding price
PREXP is fixed by using the following function:

PREXP ¼ PRL þ
PRs ' PRL

QCTL 'QCTS
( QCTL 'QCTEXPð Þ: (1)

For the last example, if the threshold was 30s, then
according to this function, the expected price is 22 cents.

Step 2: Defining the price function with regard to the
real QCT. A na€ıve pricing policy could be that: if the real
QCT is not larger than QCTEXP , the provider returns back
the query result and the tenant will be billed with the
expected price; otherwise, the provider does not give back
the result and pays a penalty instead. However, we find it
too strict. In fact, very often, the tenant could tolerate a small
delay if the price is reduced correspondingly. Thus, in our
framework, we allow the tenant to define a factor ' such
that a penalty is only paid if QCT > ') QCTEXP . More pre-
cisely, the following function is applied to compute the
price to be invoiced (denoted by PRSLA):

PRSLA ¼

PREXP ; if QCT % QCTEXP
!QCTEXP

QCT

"

( PREXP ; if QCTEXP < QCT % '(QCTEXP

'PREXP ; if QCT > '(QCTEXP

8

>

<

>

:

:
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This is illustrated by Fig. 1. Once the price functions are
defined, the tenant compares them with the offers from
other providers and chooses the best one for him.

We define the price as a piecewise function with
respected to the QCT value, but it does not mean that each
point is achievable, since the solutions for a query are dis-
crete points. However, we think that it is not a problem, and
the most important thing is that the way that we fix the
QCT threshold and define the price function is fair for both
sides. On the one hand, the tenant cannot trick the provider
to acquire a penalty by defining a lower QCTEXP . First, as
said above, QCTEXP cannot be smaller than QCTS , so there
is always a chance that the provider meets the threshold.
Second, if the tenant picks a low QCTEXP and the provider
meets it, the tenant has to pay a high price. Thus, the best
strategy for the tenant is to show his expectation honestly.
On the other hand, the provider cannot trick the tenant by
offering higher PRS and PRL either, due to the pressure
that the tenant may choose another provider.

Step 3: Varying the price according to the selectivity.
Since the price PREXP in Step 1 is computed by supposing
the highest selectivity for each parameter, there might be an
overpricing problem. To avoid this, it is better to define a
finer pricing function with respect to the selectivity for each
parameter. However, unfortunately, such a function can be
extremely complex, especially when there are multiple
parameters in a query template. In order to make a tradeoff
between the fairness and the ease of comprehension, we
propose to compute three expected prices (PREXP LOW ,
PREXP MEDIUM and PREXP HIGH) corresponding to three
levels of selectivity: low, medium and high. For example, if
a query template contains two parameters X and Y, the
selectivity interval of X is [0.1, 0.5] and the selectivity inter-
val of Y is [0.3, 0.9], then the OGT will estimate three prices:
for example, 10 cents for (0.1, 0.3), 30 cents for (0.3, 0.6), and
100 cents for (0.5, 0.9).

For a specific query, when we generate the invoice, we
will compute the Euclidean distances between its selectivity
vector and the three pre-defined vectors respectively.
The one with the shortest distance decides the price.

Step 4: Renegotiating and extending the SLA. The reli-
ability of the OGT relies on the cost model of the query opti-
mizer, especially the cardinality estimation module. In fact,
cardinality estimation is itself a complicated subject which
has been well-studied in the literature [14], [1]. With the pro-
posed techniques, estimation errors can be reduced but are
still inevitable. Therefore, we accept that the first estimation
of the OGT can be inaccurate. This is not a problem for the
tenant, because the main objective of the initial negotiation is

to compare offers from different providers. Since all pro-
viders receive the same statistics, the comparison remains
valuable. However, for the provider, it may cause some
financial loss. Our solution is to periodically detect the esti-
mation inaccuracy by using execution traces and propose a
renegotiation if it is significant enough (e.g., the overall eco-
nomic loss during the last month reaches 5 percent due to
this inaccuracy). During the renegotiation, since the OGT
can extract exact cardinalities from the execution traces, the
new cost estimations become much more accurate. The pro-
vider can even get refunded for the past queries. Of course,
the refunding policy should be written clearly in the SLA to
avoid that malicious tenants refuse to be responsible. The
execution traces can be used by the tenant to prepare a new
test case to see if other providers could propose cheaper
offers. Evidently, the provider shouldminimize the renegoti-
ation risk. A possible track is to adapt robust query optimiza-
tionmethods [28] to the cloud context.

Another case is that the database grows with time, so
the statistics become obsolete. In this case, the provider
can update the SLA periodically without renegotiations.
The tenant is not obliged to check each updated version
of the SLA, but he can make a control whenever he
wants.

As said before, once the initial SLA is established, it can
be dynamically extended. That is to say, new templates can
be added at any moment and the corresponding price func-
tions will be generated immediately. Thus, ad-hoc queries
can be handled easily. To insure that the provider treats
new query templates equally with those defined in the ini-
tial SLA, he is obliged to provide a detailed invoice and nec-
essary execution traces for each query, so the tenant can
carry out an audit process if in doubt. To insure the credibil-
ity of the traces, fraud detection techniques should be
designed. However, in our paper, we do not address
this issue.

3.2 An Example

Let us consider the query template given in Step 3. The OGT
uses the query optimizer to make estimates and gets the
following information: for the highest selectivity, the short-
est time QCTS ¼ 52s and PRS ¼ 150 cents; the lowest price
PRL ¼ 50 cents and QCTL ¼ 60s.

We assume that the expected QCT of the tenant is 56s
and the tolerance factor is 2. Then, QCTEXP is accepted
as 56s and the expected price for the high selectivity is
100 cents. After that, the optimizer estimates the lowest
prices for medium and low selectivities, under the con-
straint of QCT <¼ 56s. Suppose that they are 30 cents
and 10 cents.

Now, let us consider a query with selectivity vector (0.3,
0.7). Normally, the provider could answer it in at most 56s
and the price should be 30 cents. However, if the provider is
overloaded and answers the query in 80s, the tenant will
accept it, even though he is less satisfied. The good news is
that he only needs to pay a bill of 21 cents.

4 IMPACT ON QUERY OPTIMIZATION

In order to meet the defined SLA while maximizing the
provider’s benefit, in this section, we reformulate the query

Fig. 1. Pricing function.



optimization problem and revisit the principle components
of the query optimizer.

4.1 Problem Formulation

In this study, we assume that the database server is a paral-
lel DBMS running on top of a shared-nothing architecture.
We deal with SPJ (Select-Project-Join) queries, which are the
most frequent queries in OLAP applications. Thus, a query
Q can be represented as a connected graph, where each ver-
tex is a relation, and each edge is a join predicate.

Before defining the optimization problem, we first intro-
duce some important cost metrics for a query execution plan.

Query Completion Time (QCT): the elapsed time between
the query submission and the return of the complete result.

Maximum Parallelism Degree (MPD): the maximum num-
ber of nodes occupied at the same time during the query
execution.

Monetary Cost (MC): the economic cost with regard to
resource consumption.

MC ¼
X

N

i¼1

DRi ( PRNode þ Vtr ( PRnet; (3)

where N is the number of nodes used for the query execu-
tion, DRi is the duration that Node i is occupied, PRNode is
the monetary cost of a node during a time unit (e.g.,
cents/s), PRnet is the monetary cost of the network to trans-
fer a bit, and Vtr is the total volume of data (number of bits)
transferred during query execution.

Note that the MC is the monetary cost for the provider,
but not the price provided to the tenant. In order to have
some benefit, the provider defines a gain factor a ða > 0Þ,
and the proposed price is:

PR ¼ ð1þ aÞ )MC: (4)

When the query is submitted, the optimizer needs to esti-
mate the economic benefit of each plan with regard to the
defined SLA. Thus, we add the following metric:

Unit Benefit Factor (UBF): the average benefit in a time unit.

UBF ¼ PRSLA 'MCð Þ=QCT: (5)

Using the above cost metrics, we define our problem as
follows:

SLA-driven Cost-effective Query Optimization is a process
which finds, for a query Q, the execution plan P that maximizes
the UBF, while satisfying the conditions QCT ðP Þ <¼ QCT th
andMPDðP Þ <¼ MPD th, where:

QCT(P) and MPD(P) are the QCT and MPD of the plan P,
respectively;

QCT_th is the threshold of the query completion time
ðQCT th ¼ ') QCTEXP Þ;

and MPD_th is the maximum number of nodes that can be
used to execute the query, which is decided by the system’s
resource manager according to the current load.

Note that the query optimization cost is not negligible.
It has an impact on theQCT, theMC and thus theUBF. How-
ever, this cost cannot be considered directly by the optimiza-
tion process. Therefore, we divide the problem into two
steps: the first step is to choose an appropriate searchmethod

which minimizes the optimization cost; and the second step
is to find the optimal plan by using the chosenmethod.

Compared to a traditional query optimization problem
which simply minimizes the QCT, our problem is more
complex. First, the objective function is specific, so the cost
model needs to be redesigned (see Section 4.2), the existing
search space restriction rules need to be rechecked (see Sec-
tion 4.3). Then, due to the constraint checks, pruning strate-
gies like Dynamic Programming (DP) often used by
classical enumerative search methods cannot work effi-
ciently. This will be seen in Section 4.4.1. In order to make
the optimization process more efficient, we will also revise
a randomized search method in Section 4.4.2. Finally, it is
possible that no solution can be found for our optimization
problem when there is a resource contention caused by con-
current queries of other tenants. We will propose a heuristic
to solve the resource contention problem in Section 4.4.3.

We point out that maximizing the UBF for each query
does not mean the maximization of provider’s overall profit
in a long term. However, it can be seen as a greedy strategy.
In Section 5, we will experimentally show that, with our
proposal, the overall profit can truely be increased, com-
pared to the traditional approach which does not consider
the economic aspects.

4.2 Cost Model

To illustrate our proposal, we use a classical execution
model: a query execution plan is represented as a binary
operator tree, and the join algorithm is parallel hash join
[11], [20]. Details are given in Section 4.2.1. The reason to
choose this model is that, our target applications are OLAP
queries, which deal with huge volumes of data, and execut-
ing a single query usually requires multiple nodes running
in parallel. For simplicity, we assume that the nodes are
homogeneous. We also assume that queries from the same
tenant are launched sequentially. Actually, concurrent
queries from a tenant are much more difficult to take care
of, because they share the same data. Either they should be
serialized to avoid data migration, or some data should
be (statically or dynamically) replicated to increase the par-
allelism. We will study this problem deeply in future work.

Obviously, new cost models should be designed when
other execution models are used. For example, new multi-
way join operators and data shuffling algorithms have been
proposed recently in [4] which aim to reduce the communi-
cation cost for complex multi-join queries. This section can
be served as an example for designing other cost models.

4.2.1 Query Execution Paradigm

A query execution plan is represented as an operator tree.
The relationship between two operators could be: (i)
sequential, meaning that one operator cannot start until the
other one finishes, (ii) independent, so both operators can
be executed in parallel, or (iii) pipelinable, meaning that one
operator consumes the output of the other operator and
they are executed in parallel. Thus, the plan tree can be seen
as a set of pipeline chains (PC). At a given time, if all the
inputs of a PC are available (i.e., the preceding operators
are all executed), this PC is called an executable pipeline
chain (EPC).



The relationships between operators can be represented
through an operator dependency graph [20]. Fig. 2 shows
an operator tree (left side) and the corresponding depen-
dency graph (right side). A PC is enclosed by a dashed line.
A dependency between PCs is represented by a bold
directed arc. [20] proposed the following scheduling strat-
egy for this example operator tree:

Seq
Par
Pipe scan R2 – build R2 End_Pipe
Pipe scan R1 – build R1 End_Pipe

End_Par
Pipe scan R3 – probe R2 – probe R1 End_Pipe

End_Seq

This operator scheduling model can be generalized using
the notion of pipeline chains defined above, as shown in
Fig. 3. Thereafter, an iteration will be called an execution
phase (EP).

To summarize, a query plan is executed in a sequence of
phases. An execution phase contains one or more pipeline
chains, which are executed in parallel. A pipeline chain
has one or more physical operators, which are executed
in pipeline. In addition, a physical operator is executed by
multiple nodes in parallel (i.e., intra-operation parallelism).
Note that, at any given moment, a resource is used by only
one query, and there is no interference of other queries.
We argue that the resource isolation [16] is very important
to make the estimation more accurate, and above all, to
avoid unexpected SLA violations.

In order to estimate the cost of a query plan, we distin-
guish the following three types of executable pipeline
chains (see Figs. 4, 5, and 6). Type I: Scan-Build (a scan oper-
ator followed by a build operator), Type II: Scan-Probe-
. . .-Probe (a scan operator followed by one or more probe
operators), and Type III: Scan-Probe-. . .Probe-Build (a scan
operator followed by one or more probe operators and then
by a build operator).

Tomake the analysismore concise, we can further general-
ize these three types of EPCs into the following form: Scan'
(Probe)) ' (Build), where () means the operation is optional,
and ) means the operation can be repeated. Consequently, in
section 4.2.3, we will give only the cost formulas for Type III.
Those for Type I and Type II can easily be extracted.

4.2.2 Parameters

The parameters of the cost model and some values that
we will use are listed in Table 1. The relation Rx is ini-
tially distributed on dd_x nodes. The data placement
problem is outside of our scope. An algorithm can be
found in [5]. For simplicity, we choose the values of the
parameters dd x and pd x in such a way that all data par-
titions could fit into the main memory during the query
execution.

Note that the price of the data storage is not included in
our cost model, because the data storage cost is independent
of the query optimization problem.

Fig. 2. An operator tree and its dependency graph.

Fig. 3. Generalized operator scheduling model.

Fig. 4. EPC Type I.

Fig. 5. EPC Type II.

Fig. 6. EPC Type III.



4.2.3 Cost Estimation

We first give the cost model for a PC of Type III, then for an
execution phase, and finally for the complete query.

For a PC of Type III. The scan operator and the build oper-
ator are executed in pipeline by different nodes. The elapsed
time of a scan operator is the sum of the time to load the
data into memory, the time to execute the select operator
and the time to prepare the tuple partitioning. The time of
transferring b bytes of data from N nodes toM nodes is esti-
mated using the following formula:

Ttr ¼ b= M)Nð Þ=nbþ ndð Þ)MAX N;Mð Þ: (6)

For example, in Fig. 7, there is 60 MB data stored on
3 nodes. Suppose that the network bandwidth nb ¼ 10GB=s
and the network delay is 1 ms. Thus, the time for transfer-
ring the data to 2 nodes is 6 ms. In fact, each destination
node has to receive sequentially 3 packages of 10 MB, which
constitutes a bottleneck.

Based on this formula, we estimate the elapsed time for
a PC of type III as follows:

ElapsedElapsed timetimeETET ¼
MAXðET Scan R1ð Þ;ET Transfer R1ð Þ;ET Probe R1ð Þ;
. . . ;ET Transfer R12 . . . n'1ð Þð Þ;ET Probe ðR12 . . . n'1ð ÞÞ;
ET Transfer R12 . . .nð Þ;ET Build R12 . . .nð ÞÞ; where
ET ScanðR1Þ ¼ET ScanðR1Þ ¼
SUM ð R1j j) S1j j=dd 1=dbþ dl; ==read the pages fromdisk

R1j j) S1j j)ipc=dd 1=cpu; ==executethe select operator
s R1ð Þj j) S1j j)iph=dd 1=cpu

==prepare the tuple partitioningÞ;
ET TransferET Transfer R1R1ð Þ¼¼
s R1ð Þj j) S1j j= dd 1)pd 2ð Þ=nbþ ndð Þ

)
max dd 1; pd 2ð Þ;

ET ProbeðR1Þ ¼ET ProbeðR1Þ ¼
SUM ð s R1ð Þj j) S1j j)iph=pd 2=cpu; ==execute the probe

R12j j) S12j j)iph=pd 12=cpu
==prepare the repartitioningÞ;

ET TransferðR12 . . . ðn' 1ÞÞ ¼ET TransferðR12 . . . ðn' 1ÞÞ ¼
jR12 . . . ðn' 1Þj)jS12 . . . ðn' 1Þj=ðpd ðn' 1Þ)pd nÞ=nbþ ndÞ
)maxðpd ðn' 1Þ; pd nÞ;
ET ProbeET Probe R12 . . .R12 . . . n' 1n' 1ð Þð Þ¼¼
SUMð R12 . . . n' 1ð Þj j) S12 . . . n' 1ð Þ)iphj j=pd n=cpu;

==to execute the probe operator
R12 . . .nj j) S12 . . .nj j)iph=pd n=cpu

==to prepare the tuple repartitioningÞ;
ET TransferET Transfer R12 . . .nR12 . . .nð Þ¼¼
ð R12 . . .nj j) S12 . . .nj j= pd n)pd 12 . . .nð Þ=nbþ ndÞ
)max pd n; pd 12 . . .nð Þ;
ET BuildðR12 . . .nÞ ¼ET BuildðR12 . . .nÞ ¼
R12 . . .nj j) S12 . . .nj j)iph=pd 12 . . .n=cpu:

(7)

The transferred data volume is:

TDVTDV ¼ s R1ð Þj j) S1j j þ R12j j) S12j j þ + + + þ R12 . . . n' 1ð Þj j)

S12 . . . n' 1ð Þj j þ R12 . . .nj j) S12 . . .nj j:

(8)
The maximum number of occupied nodes is:

MNNMNN ¼ dd 1þ
Xn

i¼2
pd iþ pd 12 . . .n: (9)

For an execution phaseEPi composed of k pipeline chains:
EPi ¼ fPC1; PC2; . . . ; PCkg.

These pipeline chains are executed in parallel, so the
elapsed time of an execution phase is computed like:

ETET EEPP iið Þ ¼ MAX ET PC1ð Þ;ET PC2ð Þ; . . . ;ET PCkð Þð Þ: (10)

The transferred data volume is the sum of the TDV of all
pipeline chains:

TDVTDV EEPP iið Þ ¼
Xk

j¼1
TDV PCj

! "

: (11)

The maximum number of occupied nodes is:

MNNMNN EPiEPið Þ ¼
Xk

j¼1
MNN PCj

! "

: (12)

The monetary cost is:

MCðEPiÞ ¼MCðEPiÞ ¼
MNN EPið Þ)ET EPið Þ)PRNode þ TDV EPið Þ)PRnet:

(13)

For a complete query composed of m phases:
The query Q is a sequence ofm execution phases:

Q ¼ EP1; EP2; . . . ; EPmf g:

The query completion time is the total elapsed time of
these phases:

QCTQCT ¼
Xm

i¼1
ET EPið Þ: (14)

TABLE 1
Some Required Parameters

Parameter Signification Value used

jRxj number of tuples in Rx
jSxj size of a tuple in Rx (bytes)
jRx' yj number of tuples in Rxffl...ffl

Ry (estimated)
dl average disk latency 2ms
db disk I/O bandwidth 100 MB/s
cpu CPU processing speed 100 GIPS
iph number of instructions for

hashing a byte
3

ipc number of instructions for
comparing two bytes

3

nd network delay 1ms
nb network bandwidth 80 Gb/s
m main memory size 3 GB
pr_node price of a node 1 cent/s
pr_net price of the network transfer 0.0125 cent/Mb
dd_x distribution degree of the

relation Rx
pd x parallelism degree of the

build operator for Rx

Fig. 7. An example of data transfer.



The maximum number of occupied nodes is:

MPDMPD ¼ MAX MNN EP1ð Þ;MNN EP2ð Þ; . . . ;MNN EPmð Þð Þ:

(15)

The monetary cost is:

MCMC ¼
Xm

i¼1
MC EPið Þ: (16)

4.3 Study on Three Operator Tree Formats

To make the optimization more efficient, the search space is
often restrained to one of the following tree formats: left
deep tree, right deep tree or bushy tree [10], [20]. In this sec-
tion, we use an example to show that it is better to explore
all these tree formats in our context. The analysis is based
on the above cost model.

For the example query, we first enumerate all possible
execution plans except those with Cartesian products and
estimate the QCT, MC and MPD for each plan. Based on
this result, we get the QCTS , PRS , QCTL and PRL, as well as
the maximum value and the minimum value of MPD. We
then analyze the impact of QCTEXP and MPD th on the
UBF, in order to discover the behavior of different tree for-
mats under various conditions.

The impact ofQCTEXP is shown in Fig. 8. The x-axis repre-
sents the QCTEXP varying between QCTS and QCTL. The y-
axis represents the UBF . Each point represents a query
planwhich has the highestUBF for the givenQCTEXP value.
The three formats of trees are distinguished by different
symbols. For this experiment, theMPD th is fixed as infinity.
We can see that, when the tenant’s expectation on QCT is
very strict, the right deep tree brings the highest UBF ,
because it can meet the QCTEXP due to the high degree of
parallelism. An interesting phenomenon is revealed by this
figure: the UBF decreases when the QCTEXP grows. How-
ever, this is logical, because a low QCTEXP implies a high
risk of not being met, and thus corresponds to a high reward
if it is met.

The impact of MPD th is shown in Fig. 9. The x-axis rep-
resents the MPD th. The y-axis represents the UBF . Each
point represents a query plan which has the highest UBF
for the given MPD th value. Again, the three formats of
trees are distinguished by different symbols. For this experi-
ment, the QCTEXP is fixed as 53s. We can see that when the
system resources are limited (i.e., MPD th is low), the left
deep tree could be used to avoid the rejection of the query.

To summarize, the right deep tree is useful when the
expectation of the tenant is strict, the left deep tree is neces-
sary when the resources are very limited, while the bushy
tree is the most benefitial in other cases. Therefore, we pro-
pose to consider all these three tree formats.

4.4 Search Strategy

In this section, we first revise two types of search strategies:
enumerative and randomized. Then, we propose a heuristic
for solving the resource contention problem.

4.4.1 Enumerative Method

The plan enumerationmethod that we have revised is the one
proposed in [15], which has been shown to be efficient for the
generation of optimal bushy join trees. A query is represented
as a connected graph with n relations R0; R1; . . . ; Rn' 1.
The algorithm is based on the notion of csg-cmp-pairs, where
csg means connected subgraph and cmp is the abbreviation
of complement. Suppose that, S1 is a non-empty subset of
fR0; . . . ; Rn' 1g, and S2 is another non-empty subset of
fR0; . . . ; Rn' 1g, the pair (S1, S2) is called a csg-cmp-pair, if:
(1) S1 is connected, (2) S2 is connected, (3) S1 \ S2 ¼ f,
and (4) there exist nodes v1 2 S1 and v2 2 S2 such that there
is an edge between v1 and v2 in the query graph. The algo-
rithm to efficiently list all the csg-cmp-pairs is given in [15].
Once the csg-cmp-pairs are enumerated, the algorithm uses
dynamic programming to construct the optimal bushy join
tree recursively. Therefore, the method is named as DPccp
(i.e., Dynamic Programmingwith csg-cmp-pairs).

If we use directly the DPccp algorithm for our problem,
the following pruning strategy should be applied: given
two equivalent sub-plans SP1 and SP2, if UBF ðSP1Þ >
UBF ðSP2Þ, then we can eliminate SP2.

However, this is not a valid pruning strategy in our
context. Here is a counter example. For a subset fR1; R2g,
we compare two sub-plans SP1 ¼ R1 ffl R2 and SP2 ¼
R2 ffl R1, supposing that UBF ðSP1Þ > UBF ðSP2Þ. Con-
sider the following two cases: (1) QCT ðSP1Þ > QCT th or
MPDðSP1Þ > MPD th; (2) QCT ðSP1Þ <¼ QCT th and
MPDðSP1Þ <¼ MPD th. For case (1), if we eliminate SP2,
then no solution will be found, because the entire plan con-
structed from the sub-plan SP1 will violate the optimization
constraints. For case (2), it is not sufficient to guarantee that
the entire plan constructed from SP1 will meet the con-
straints, so we still cannot eliminate SP2. Therefore, in both
cases, we should keep SP2.

Fig. 8. Impact of the QCTEXP on the UBF. Fig. 9. Impact of theMPD th on the UBF .



Another pruning strategy, as used by [7], [27], is: given two
equivalent sub-plans SP1 and SP2, if QCTðSP1Þ <¼
QCT ðSP2Þ, MCðSP1Þ <¼ MC ðSP2Þ and MPDðSP1Þ <¼
MPD ðSP2Þ, we say that SP1 dominates SP2 andwe eliminate SP2.

Again, it is invalid in our context due to the use of the inde-
pendent and pipeline parallelism. We show this by a counter
example, illustrated in Fig. 10. For a subset fR1; R2g, we take
the two sub-plans SP1 ¼ R1 ffl R2 and SP2 ¼ R2 ffl R1.
Suppose that jR1j < jR2j. For SP1, the operation BuildðR1Þ
takes 1s, ProbeðR2Þ takes 2s, and for SP2; BuildðR2Þ takes
1.8s, ProbeðR1Þ takes 1.5s. We have QCT ðSP1Þ ¼ 1þ 2 ¼ 3s,
and QCT ðSP2Þ ¼ 1:8 þ 1:5 ¼ 3:3s. It is possible that
MPDðSP1Þ ¼ 2, MPDðSP2Þ ¼ 3, MCðSP1Þ ¼ 8 cents, and
MCðSP2Þ ¼ 10 cents. In this case, we can say that SP1 domi-
nates SP2. Now we compare an entire plan generated from
SP1 which is SP10 ¼ R3 ffl ðR1 ffl R2Þ, with the plan gener-
ated in the same way from SP2 which is SP20 ¼ R3 ffl
ðR2 ffl R1Þ. Suppose thatBuildðR3Þ takes 3s and ProbeðR12Þ
takes 1s. We have QCT ðSP10Þ ¼ maxð1; 3Þ þmaxð2; 1Þ ¼ 5s
and QCT ðSP20Þ ¼ maxð1:8; 3Þ þmaxð1:5; 1Þ ¼ 4; 5s, so SP10

does not dominate SP20. Thuswe cannot eliminate SP2.
Nevertheless, there exists a valid pruning strategy in

our context: as said above, if QCT ðSP1Þ > QCT th or
MPDðSP1Þ > MPD th, the entire plan constructed from
the subplan SP1 will violate the optimization constraints.
Thus, SP1 can be eliminated.

In Fig. 11, we show the new enumerative algorithm using
this pruning strategy, where the procedure ConstraintsMet
(Plan) checks if the sub-plan meets the optimization
constraints.

4.4.2 Randomized Method

We propose an extension of the Iterative Improvement (II)
algorithm [24], as shown in Fig. 12. First, we randomly choose
several plans as starting points. For each starting point,
we check a certain number of adjacent plans. This number
is a tunable parameter called “runs”. We do not check all
the adjacent plans, because there could be a huge number.
If no adjacent plan is found better, the current plan is consid-
ered to be a local optimal plan. If an adjacent plan is better, we
move to that plan and repeat the same check procedure. The
number ofmoves is also limited by the value of the parameter
runs. Finally, we compare the obtained local optimal plans
and return the global optimal one.

Fig. 10. Counter example for a pruning strategy.

Fig. 11. Revised enumerative algorithm.

Fig. 12. Extended II algorithm.



In the getNeighbourðÞ function, we randomly pick a join
operation in the plan, and check the following transforma-
tion rules [9]:

Join commutativity: affl b ¼ bffl a
Join associativity: (affl b)ffl c ¼ affl (bffl c)
Left join exchange: (affl b)ffl c ¼ (affl c)ffl b
Right join exchange: affl (bffl c) ¼ bffl (affl c)

A transformation which produces a Cartesian product
is considered as invalid. Among the valid transformation
results, we randomly choose one.

4.4.3 Heuristic for Resource Contention

In the above algorithms, the value of the parameterMPD th
is decided by the system’s resource manager according to
the current load. Assuming that, at the query optimization
time, the number of available nodes in the system is nb avb,
we first run the optimizer usingMPD th ¼ nb avb. If no solu-
tion is found, it means that, there are not enough resources to
run the query. In this case, we use the following heuristic:
first, we run the optimizer without constraint on MPD
to find an optimal plan; then, we decide whether to execute
this plan later when enough resources will be available, or
suspend some other running queries to release resources, or
give up the current query, according to the estimated costs.

More precisely, the heuristic includes the following steps:

1) If the optimizer cannot find a solution due to the
resource limitation, we set MPD th ¼ 1 and run the
optimizer. Suppose that theMPD of the obtained plan
isMPDopt, theQCT isQCTopt and theUBF isUBFopt.

2) Rank the running queries by their completion time
in ascending order. Take the first n queries such
that

Pn
i¼1 MPDi þ nb avb >¼ MPDopt. Assume that

these queries are expected to finish in time t.
3) If tþQCTopt <¼ QCT th, then we wait the n queries

to finish and start executing the queryQ after.
4) Otherwise, rank the running queries by their UBF

in ascending order. Take the first k queries such
that

Pk
i¼1 MPDi þ nb avb >¼ MPDopt. We suspend

these queries if the following condition holds:

UBFopt
)t'

X

k

i¼1

Plti >
X

k

i¼1

UBFi
)QCTi ' Plt Qð Þ; (17)

where, Plti is the penalty to pay if we stop the query i,
and PltðQÞ is the penalty to pay if we refuse the query Q.

5) If the above condition does not hold, we reject the
query Q and pay the penalty.

Note that, if there are too many query rejections, the pro-
vider should consider adding new computing resources
or canceling some service contracts. In this paper, we do not
discuss this problem further.

5 EXPERIMENTAL EVALUATION

We have implemented the cost model and the proposed
search methods inside a query optimizer. Experiments have
been made to evaluate the cost-effectiveness of our SLA-
driven optimization approach. We have also compared dif-
ferent plan search methods in terms of optimality and query

optimization cost. The latter includes optimization time and
memory consumption.

5.1 Experiment Setting and Evaluated Methods

For the evaluation of cost-effectiveness of our SLA-driven
approach, we use a simulated multi-tenant parallel DBMS
running on top of a shared-nothing architecture. Each node
is composed of a 100 GIPS CPU, a 3 GB RAM, and a hard
disk whose I/O bandwidth is 100MB=s. The average disk
latency is 2ms. The multi-tenant DBMS is simulated in the
following way: (1) the execution of a query is simulated by
using several parameters like start-time, end-time and num-
ber of nodes used, (2) we assume that, at the beginning, N
queries from N different tenants arrive at the same time,
and the optimizer chooses an execution plan for each query
one after the other according to their session numbers. The
chosen plan depends on the still available resources. Once
the query plans are chosen, we assume that they start being
executed in parallel at time 0, (3) when the execution
of query i of tenant j is finished, the optimizer chooses
a plan for query iþ 1 of the same tenant under the current
resource constraints. If there are enough resources, the plan
starts being executed immediately. Otherwise, the execution
is postponed or the query is rejected.

We compare the average UBF of the following two meth-
ods: (1) Enumerative method using the traditional approach
ENUM TRAD which always minimizes the QCT under the
system resource constraints, and (2) Enumerative method
using the cost-effective approach ENUM CEM which maxi-
mizes the UBF under the system resource constraints
and the QCT threshold constraint of the SLA. To be fair,
they are implemented by using the same cost model for the
QCT estimation.

For the comparison of the plan search methods, we
run our optimizer (implemented in JAVA) on a PC with
Intel Core i5-3570 CPU 3.4 GHz, 8 GB RAM, Windows 10
(64 bits). We compare the optimality, optimization time and
memory consumption of three methods: (1) ENUM CEM,
(2) our proposed randomized method RAND CEM , and (3)
the Iterative-Refinement Algorithm (IRA) method proposed
in [27], which adopts the Multi-Objetive Optimization
(MOO) approach: IRA MOO.

The way that we do the optimality measurement of
RAND CEM is as follows: for each sample query, we run
the method 100 times, calculate the average UBF value and
compare it with the UBF of the optimal plan generated by
the method ENUM CEM.

5.2 Benchmark Description

We selected a subset of TPC-H [26] queries ðQ3; Q4; Q5;
Q8 and Q10Þ which represent different levels of complexity
(2, 1, 5, 7 and 3 joins respectively). For each query template,
we first define the SLA under the proposed negotiation
framework (see Section 5.3). The scale factor that we use for
the TPC-H dataset is 10. Then, we optimize the queries
according to the SLA and simulate a parallel execution
of queries launched simultaneously by several tenants.
The workload that we use is similar to the workload for the
throughput test in TPC-H benchmark. There are 3 parallel
sessions which represent 3 tenants. The query sequences in
these sessions are shown below:



Session 1: Q3, Q5, Q10, Q8, Q4
Session 2: Q10, Q8, Q5, Q4, Q3
Session 3: Q8, Q5, Q4, Q10, Q3

For each query, we note the start time, end time, UBF and
MPD, in order to compute the average UBF for the complete
workload.

5.3 Defined SLA

In Table 2, we show the shortest QCT with the correspond-
ing price, the lowest price with the corresponding QCT,
and the expected QCT of the tenant with the expected price.
We suppose that the tolerance threshold of the tenant is 2
and the gain factor of the provider is 1. In this section, for
illustration purpose, we suppose the highest selectivity for
each parameter of all queries.

5.4 Cost-Effectiveness of the SLA-Driven Approach

We evaluate the cost effectiveness under two different
configurations. In the first configuration, we assume that
the system has enough resources. In the second configu-
ration, we assume that the system resources are limited,
for example, there are only 16 nodes available for the
workload.

5.4.1 With Enough Resources

Under this configuration, a query can be processed as soon as
it arrives. Fig. 13 shows the result of the ENUM_TRAD
methodwhich always minimizes the query completion time.
Fig. 13a is a Gantt chart illustrating the progress of the three
sessions. They start at the same time and finish at the same
time. The elapsed time is 238.8 seconds. Fig. 13b shows the
benefit (i.e., revenue - cost) gained by each query. Note that,
when the deadline ismet, the benefit is often positively corre-
lated to the price. This is normal, because a high price is usu-
ally due to high resource consumption, and a high reward is
deserved. The total benefit is 4407.34 cents. Fig. 13c is the
number of occupied nodes at each point of time during the
execution. The maximum number is 25 nodes. Based on the
obtained numbers, we compute the averageUBF as follows:

UBFavg ¼ total benefit=elapsed time

¼ 4407:34=238:8 ¼ 18:46 cents=sð Þ:

Fig. 14 shows the result of our method ENUM CEM
which maximizes the UBF for each query. We can see that,
the elapsed time is 246.4 seconds, a little longer than the
ENUM TRAD method. However, the benefits of some
queries are higher, and the total benefit is 5612.17 cents,
21 percent higher than ENUM TRAD. The reason is that
fewer resources are consumed, as can be seen in Fig. 13c:
the maximum number of occupied nodes is 18. The average
UBF is computed as follows:

UBFavg ¼ 5612:17=246:4 ¼ 22:78 cents=sð Þ:

5.4.2 With Limited Resources

We assume that there are only 16 nodes available for the
workload. When a query arrives, if there are not enough
resources, it cannot be processed until some other queries

TABLE 2
Defined SLA

QCTs

(s)
PRs

(cents)
QCTL

(s)
PRL

(cents)
QCT
exp (s)

PR exp
(cents)

Q3 51.6 459 55.2 370 55 375
Q4 51.7 569 51.7 569 55 569
Q5 51.7 1672 72.5 925 55 1553
Q8 32.1 821 55.3 689 55 691
Q10 51.7 563 59.1 457 55 516

Fig. 14. Method ENUM CEM with enough resources.

Fig. 13. Method ENUM TRAD with enough resources.



finish. Fig. 15 shows the result of ENUM TRAD. In Fig. 15a,
we see that some queries have to wait due to resource limita-
tion, and some others have to be rejected because the SLA
cannot bemet. For example, the first queryQ8 of tenant 3 and
two queries of tenant 2 have been rejected. The second query
of tenant 3 waited 16.6 seconds. Therefore, the total elapsed
time is longer (342 seconds). The benefits for some queries
are negative, for example,Q5 of tenant 1,Q5 andQ8 of tenant
2, etc. The total benefit is -1162.42 cents, as shown in Fig. 15b.
Fig. 15c shows the number of occupied nodes at each point of
time during the execution. The averageUBF is negative:

UBFavg ¼ '1162:42=342 ¼ '3:4 cents=sð Þ:

The result of our method ENUM CEM can be found in
Fig. 16. The total elapsed time is 294 seconds, and the total
benefit is 4892.59 cents. So the average UBF is:

UBFavg ¼ 4892:59=294 ¼ 16:64 cents=sð Þ:

5.4.3 Summary

With enough resources, the ENUM TRAD method spends
very little time to finish the queries, but its economic cost is
rather high, so the benefit is low. Our method ENUM CEM

has a better trade-off between the query completion time
and the economic cost, so the overall benefit is higher.

With limited resources, both methods need more time to
finish the queries, because some queries have to wait for
resources to be released. In addition, some queries may
be rejected. This situation happens less frequently for
ENUM CEM, so its total elapsed time is shorter than that of
ENUM TRAD. The average UBF of ENUM CEM is always
higher due to the SLA-driven cost-effective optimization
problemdefinition.

The experimental results are summarized in Table 3.
We can conclude that, under both configurations, ourmethod
is more cost-effective than the method ENUM TRAD.
With enough resources, ENUM CEM gains 23 percent more
than ENUM TRAD. With limited resources, ENUM CEM
still gains, but ENUM TRAD starts losing due to query
rejections.

5.5 Comparison of the Plan Search Methods

The RAND CEM method does not enumerate all possible
execution plans, so the optimal plan may be skipped by the
search algorithm. As for the method IRA MOO, since its
pruning strategy is not valid when parallel execution is conci-
dered, as demonstrated in Section 4.4.1, the optimal plan may
be eliminated in an early stage. When a sub-optimal plan is

Fig. 15. Method ENUM TRAD with limited resources.

Fig. 16. Method ENUM CEM with limited resources.

TABLE 3
Overview of the Results

With enough resources With limited resources

ENUM_TRAD ENUM_CEM ENUM_TRAD ENUM_CEM

Total elapsed time (seconds) 238.8 246.4 342 294
Total benefit (cents) 4407.34 5612.17 '1162.42 4892.59
Average UBF (cents/s) 18.46 22.78 '3.4 16.64



proposed, the UBF becomes lower. Therefore, we compare
the optimality of RAND CEM and IRA MOOwith the exact
method ENUM CEM. For RAND CEM, we run 100 times
the method for each query template and compute the average
UBF , in order to measure the long term consequence on the
UBF . In this experiment, we assume that there are enough
resources. The result is shown in Fig. 17a. We can see that,
compared to the optimal UBF , the degradation of
RAND CEM is no more than 6 percent, while the degrada-
tion of IRA MOO can reach 19 percent. Note that the value of
runs ofRAND CEM for each query template has been tuned
to make the result close to optimal. The approximation factor
of IRA MOO is 1.15 which was shown to be a good trade-off
between the optimiality and the optimization cost in [27].

For fairness, based on the same setting, we measure the
optimization time and memory consumption for the exam-
ple queries and compare the three methods. The optimiza-
tion time is shown in Fig. 17b and the memory consumption
is shown in Fig. 17c. With the ENUM CEM , both the opti-
mization time and the memory consumption become very
high when there are 7 joins. Even though some plans can be
eliminated by the pruning strategy, the number of gener-
ated plans is still proportional to the total number of possi-
ble plans, which grows exponentially with regard to the
number of joins [25]. With the RAND CEM method, the
optimization time also grows when there are more joins,
because the number of runs should be increased to find
a near optimal plan. However, it is always much more
efficient than the ENUM CEM method. As for the memory
consumption of the RAND CEM method, it is almost a
constant. The IRA MOO method is often less expensive
than ENUM CEM , but more costly than RAND CEM .

Despite the expensive optimization cost, we believe that
in some situations, the ENUM CEM method could be
more advantageous than the other methods. For example:
(1) when there are less than 7 joins, all methods have
equivalent optimization costs, but the ENUM CEM method
guarantees the optimality; (2) when the QCTEXP is very
large due to the huge size of the database, the optimization
time of the ENUM CEM method becomes relatively small
compared to the query execution time thus can be ignored;
(3) when the QCTEXP is very close to the QCTS , or the
MPD th is very close to the minimum value of MPD,
the ENUM CEM method could eliminate many intermedi-
ate sub-plans thus becomes very efficient. On the other
hand, the RAND CEM and IRA MOO methods will have
a high risk of not being able to find the optimal plan.

6 CONCLUSION AND FUTURE WORK

In this paper, we first proposed a SLA negotiation frame-
work such that a tenant could define the performance objec-
tive together with the provider. The tenant does not have to
know the query execution detail, but he should not worry
about being cheated, because he can compare offers from
different providers and choose the best one. As for the pro-
vider, the offer that he proposes is based on its own estima-
tion, so the performance objective is achievable and the
benefit could be maximized by using appropriate techni-
ques. For this purpose, we then formally defined the cost-
effective query optimization problem. We included the eco-
nomic cost and benefit into our cost model. We explored a
large search space with different tree formats. We revised
an enumerative search method and a randomized search
method to make the optimization more efficient.

Experimental results show that: (1) our optimization
method ENUM CEM is much more cost-effective than the
ENUM TRAD method which always minimizes the query
completion time (e.g., more than 23 percent); (2) for our
optimization problem, the enumerative search method
ENUM CEM may become prohibitive when there are more
than 6 joins, while the randomized search method
RAND CEM has reasonable query optimization time and
memory consumption, and it is superior in all aspects to a
related work IRA MOO; (3) however, the ENUM CEM
method can be a good choice in some special cases.

In the future, we will include the aggregation operators
into our cost model. After that, as previously said, a further
research direction could be adapting robust query optimiza-
tion methods [28] to the cloud context, in order to minimize
the renegotiation risk.
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