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ABSTRACT

Only a few research works consider LiDAR data while con-

ducting hyperspectral image unmixing. However, the digital

surface model derived from LiDAR can provide meaningful

information, in particular when spatially regularizing the in-

verse problem underlain by spectral unmixing. This paper

proposes a general framework for spectral unmixing that in-

corporates LiDAR data to inform the spatial regularization

applied to the abundance maps. The proposed framework is

validated and compared to existing unmixing methods that

incorporate spatial information derived from the hyperspec-

tral image itself using two different simulated data and digital

surface models. Results show that the spatial regularization

incorporating LiDAR data significantly improves abundance

estimates.

Index Terms— Hyperspectral imagery, spectral unmix-

ing, edge, lidar, classification

1. INTRODUCTION

Due to a relatively low spatial resolution of the sensors, hy-

perspectral images are generally composed of mixed pixels,

i.e., composed by spectral mixtures of several elementary ma-

terials in unknown proportions. Spectral unmixing aims at

deconvolving the spectral mixtures into a collection of refer-

ence spectra, known as endmembers, and their corresponding

proportions or abundances [1]. Most of conventional spec-

tral unmixing methods ignore the intrinsic 2D+λ structure of

the hyperspectral datacube (where λ refers to the wavelength)

but exploit only the spectral information. However, recent

advances in spectral unmixing enable spatial information to

be incorporated into the unmixing process [2, 3]. The key

idea consists in promoting identical or similar abundance es-

timates in a given neighborhood of the pixels of interest. This

strategy relies on the assumption that neighboring pixels gen-

erally show smooth transitions in abundances. These meth-

ods incorporate this spatial information as a regularization to
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describe the spatial variations of abundances in a local neigh-

borhood [4, 5].

One of the well-known limitations of spatial regulariza-

tions consists in not properly preserving the edges between

homogeneous areas, even when using total variation (TV)-

like penalizations. Instead, they tempt to overly smooth

edges, finally leading to poor abundance estimates in these

specific areas. One solution is to build a so-called guidance

map which localizes these edges. The spatial regularization

for these pixels can be subsequently adjusted accordingly, by

resorting to a weighted spatial regularization [6]. This side

information is commonly estimated from the hyperspectral

image to be unmixed directly. However, this estimation may

be greatly affected by noise or illumination variations [7],

which may lead to incorrect weighting of the spatial reg-

ularization. One alternative consists in exploiting external

data, if available, to derive this guidance map. Such strategy

is expected to be robust to the aforementioned problem. In

particular, LiDAR data have a great potential to extract com-

plementary spatial information that can be used to derive a

reliable guidance map. Indeed, LiDAR data can discriminate

different materials and/or areas using height information,

even if they are spectrally similar [8]. Due to its intrinsic

nature, it is robust to any illumination variations during the

acquisition. While LiDAR data have been successfully used

for hyperspectral image classification, only a few studies

proposed to exploit LiDAR data for spectral unmixing. In

[9], the authors investigated whether weighting the spatial

regularization thanks to the LiDAR data can improve the

accuracy when estimating abundances, especially in shaded

pixels. However, it is still unclear whether LiDAR data or a

combination of LiDAR data and another guidance map can

lead to more accurate estimates of abundances. This paper

proposes to fill this gap.

More precisely, the contributions of this paper are twofold:

1) to develop a new spectral unmixing framework that incor-

porates LiDAR data into the weighting of the spatial regu-

larization; and 2) to conduct a comprehensive comparison of

the weighting functions derived from LiDAR data or from

its combination with another guidance map. The proposed

framework has been validated using two simulated data to as-



sess whether LiDAR data can lead to significant improvement

of abundance estimates.

2. LIDAR DATA-DRIVEN UNMIXING

2.1. Unmixing with spatial regularizations

The linear mixture model (LMM) has been widely used to de-

compose a mixed spectrum into a collection of endmembers

and their abundances. LMM represents a mixed spectrum as

a linear combination of the endmember spectra

yi = Sai + ni (1)

where yi ∈ R
L×1 is a mixed spectrum of the ith pixel,

S ∈ R
L×M is the matrix of endmember signatures, ai =

[a1i, . . . , aMi]
T ∈ R

M×1 represents abundance fractions at

the ith pixel, ni ∈ R
L×1 represents noise or modeling error,

L is the number of spectral bands and M is the number of

endmembers. Abundance non-negativity constraint (ANC)

and the abundance sum-to-one constraint (ASC) are usually

imposed as follows

∀m, i, ami ≥ 0 and ∀i,
M
∑

m=1

ami = 1. (2)

When endmembers S have been identified thanks to a pri-

ori knowledge or extracted from the hyperspectral image

using a dedicated endmember extraction algorithm [1], the

abundance vectors ai (i = 1, . . . , N ) can be estimated pixel-

by-pixel by solving the N following optimization problems,

where N is the number of pixels,

min
ai

1

2
‖yi − Sai‖

2
2 s.t. (2). (3)

In the optimization problem, abundances are estimated for

each pixel independently, ignoring the spatial information in-

herent to the abundance maps to be recovered. One conven-

tional way to regularize the associated inverse problem con-

sists in incorporating a spatial regularization into the mini-

mization problem, leading to

min
ai

1

2
‖yi − Sai‖

2
2 + λ

∑

j∈N (i)

wij‖ai − aj‖
p
p s.t. (2) (4)

where λ is a parameter to control the balance between the data

fitting term and the spatial regularization, N (i) is the set of

the neighboring pixels1 of the ith pixel, wij is a weight de-

scribing the expected similarity between the ith and jth pix-

els. Popular ℓp-norms considered in spatial regularizations

include p = 2 and p = 1, which promotes smooth variations

and piecewise constant behaviors of the abundance maps, re-

spectively. In this work, without loss of generality of the

main contribution presented in this paper, the case p = 1
will be considered. Moreover, when the weights are tuned

to wij = 1 (∀i, j) with p = 1, the resulting spatial regulariza-

tion is known as a specific instance of the total variation (TV)

1In this study, a 4-order neighborhood will be considered.

penalization. In this case, each neighboring pixel equally con-

tributes to the spatial regularization term. However, this may

be inappropriate, in particular for pixels located in edges be-

tween several distinct areas characterized by different materi-

als and/or composition. Thus, choosing appropriate weights

describing the spatial relationships between neighboring pix-

els can greatly improve abundance estimates [6]. The wij

can be adjusted according to a guidance image which sum-

marizes this spatial information, such as the edge locations.

This guidance image can be derived directly from the hyper-

spectral image to be unmixed. However, this choice can be

significantly affected by variations in illumination or sensor

noise. Moreover, when distinct areas are composed of spec-

trally similar materials, such a guidance map will hardly be

able to encode the presence of edges. Conversely, digital sur-

face model (DSM) computed from LiDAR data represents a

great opportunity to overcome these limitations. If the height

derived from DSM is different for each region belonging to

a particular mixture of endmembers, DSM can correctly ex-

tract the edge information even under different illumination

conditions. This property is particularly useful in urban or

vegetated areas where the height of materials plays an impor-

tant role [8, 10]. In what follows, various guidance maps are

presented, based on the hyperspectral image, DSM or a com-

bination of both. Then, the spatially regularized optimization

problem is solved using the alternating direction method of

multipliers, following the strategy in [4]. More information

regarding the optimization procedure is given in [11].

2.2. Different types of weights

A variety of guidance images can be used to adjust the

weights in the spatial regularization. In this section, five

different approaches are described. Each weight is calculated

by using a normalized squared difference of features between

a target pixel and the neighborhood pixels.

w-HI: Weights are chosen from the spectral similarity be-

tween neighboring pixels

wij =
1

Qi

exp

(

−
1

σ2
y

‖yi − yj‖
2
2

‖yi + yj‖22

)

(5)

where yi is the spectrum of the ith pixel and σ2
y is a parameter

controlling the weight range and Qi represents the normaliza-

tion constant such that
∑

j∈N (i) wij = 1.

w-PC1: Weights are adjusted from the similarity between

pixels of the first principal component (PC) recovered by PC

analysis

wij =
1

Qi

exp

(

−
1

σ2
p

(pi − pj)
2

(pi + pj)2

)

. (6)

where pi is the value of the ith pixel of the first PC1 and σ2
p is

a parameter controlling the weight range.

w-DSM: When DSM derived from LiDAR data is available,

the guidance map can be computed from the similarity be-

tween the heights of neighboring pixels



wij =
1

Qi

exp

(

−
1

σ2
h

(hi − hj)
2

(hi + hj)2

)

. (7)

where hi is the height of the ith pixel and σ2
h is a parameter

controlling the weight range. Moreover, this DSM informa-

tion can be combined with the previous guidance maps, as

detailed in what follows.

w-HI-DSM: Coupling DSM with previous guidance maps

computed from the hyperspectral image leads to

wij =
1

Qi

[

exp

(

−
1

σ2
y

‖yi − yj‖
2
2

‖yi + yj‖22

)

+exp

(

−
1

σ2
h

(hi − hj)
2

(hi + hj)2

)]

.

w-PC1-DSM: Similarly, the weights can be adjusted as

wij =
1

Qi

[

exp

(

−
1

σ2
p

(pi − pj)
2

(pi + pj)2

)

+exp

(

−
1

σ2
h

(hi − hj)
2

(hi + hj)2

)]

.

3. EXPERIMENTS

3.1. Experiment using simulated data 1 (SIM1)

Generation of SIM1: SIM1 has been generated to assess

whether the weighting function derived from DSM can im-

prove the abundance estimates in the specific situations when

each spatially coherent region is characterized by a different

height. The simulated hyperspectral image and DSM data

have been generated as follows. Five endmember spectra have

been randomly selected from the USGS spectral library. A

synthetic 100× 100 discrete-value image has been randomly

generated as in [12] to identify spatially coherent areas. Each

area is assigned a different height to build synthetic DSM

(Fig. 1a). Within each area, statistically consistent synthetic

mixtures of the M = 5 endmembers are randomly generated,

and then corrupted by an additive Gaussian noise leading to

a signal-to-noise ratio SNR = 20dB. A color composition of

the resulting hyperspectral image is depicted in Fig. 1b.

Validation of methods: Quantitative validation has been

conducted using the root mean square error (RMSE) of the

abundance estimates

RMSE =

√

√

√

√

1

NM

N
∑

i=1

M
∑

m=1

(ami − âmi)2 (8)

where ami and âmi are the actual and estimated abundance

fractions. This quantitative analysis can be also conducted by

restricting the computation of RMSE for the pixels specifi-

cally localized in the edge areas of the hyperspectral image.

Interested readers are invited to consult [11] for details.

Results: For the weighting functions proposed in Section

2.2, RMSE as functions of the regularization parameter λ

are depicted in Fig. 2. As expected, RMSE estimated from

(a) (b)

Fig. 1: SIM1: (a) Synthetic DSM. (b) Color composition of

the synthetic hyperspectral data.

no-weight performs poorly compared to other methods incor-

porating DSM information. In particular, RMSE of the no-

weight approach significantly decrease for large values of λ.

This shows that this method is very sensitive to the value of

the regularization parameter λ. Conversely, the methods that

incorporate DSM information perform favorably. The meth-

ods estimate accurate abundances even when a large value

(>1) of λ is chosen. Among all these methods, those rely-

ing on DSM perform better than their DSM-free counterparts.

This shows that the use of DSM can lead to more accurate

estimates of abundances especially where the height allows

spatially discrete regions to be distinguished.
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Fig. 2: SIM1: Abundance RMSE as a function of λ.

3.2. Experiment using simulated data 2 (SIM2)

Generation of SIM2: This second experiment has been de-

signed to assess whether DSM can still be useful for estimat-

ing abundances when DSM describes only partially the spa-

tial information. To do so, a synthetic yet more realistic hy-

perspectral image has been generated and coupled with real

DSM. More precisely, a real hyperspectral image and its cor-



(a) (b)

Fig. 3: SIM2: (a) Real DSM. (b) Color composition of the

synthetic hyperspectral data.

responding DSM (depicted in Fig. 3a) have been acquired

during a flight campaign conducted in June 2016, over the

city of Saint-André, France. First, M = 4 endmembers have

been extracted from this real image using the n-Dimensional

Visualizer provided by the ENVI software. To build ground-

truth abundance maps, this real hyperspectral image has been

unmixed following the LMM. Finally, based on these end-

member spectra and abundance maps, the synthetic hyper-

spectral image referred to as SIM2 is generated according

to LMM and corrupted by an additive Gaussian noise with

SNR= 20dB (see Fig. 3b).
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Fig. 4: SIM2: Abundance RMSE as a function of λ.

Results: RMSE is depicted as a function of the regularization

parameter in Fig. 4. The method with no weight performs

poorly compared with other methods that incorporate edge

information. RMSE obtained by the w-DSM unmixing model

is smaller than those derived from w-PC1 or w-HI when an

optimal value of λ is used. The combinations of DSM and

other guidance images (w-PC1-DSM and w-HI-DSM) also

show smaller RMSE than those derived from the DSM-free

methods (w-HI or the w-PC1) for a wide range of λ. However,

RMSE derived from the DSM-informed methods are larger

for a large value of the regularization parameter, i.e., when

the unmixing problem is more spatially regularized. This is

probably due to the fact that DSM does not capture all the

spatial information.

4. CONCLUSION

In this study, a new spectral unmixing framework that in-

corporates DSM information derived from LiDAR data was

proposed. The proposed method was compared to the meth-

ods incorporating spatial information derived from the hyper-

spectral image directly. Results showed that the use of Li-

DAR data with other guidance maps can lead to significant

improvement of abundance estimation and robustness.
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