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PCA-based Approach for Inhomogeneous PSF

Estimation and Partial Volume Correction in PET
Zacharie Irace, Anthonin Reilhac, Bruno Mendez de Vigo, Hadj Batatia and Nicolas Costes

Abstract—The quality of the measurements obtained in
Positron Emission Tomography (PET) is severely limited by
partial volume effects (PVE). This study proposes a Partial
Volume Correction (PVC) technique that considers the spatial
variability of the system’s Point Spread Function (PSF) across
the Field Of View (FOV). The proposed PSF model uses Principal
Component Analysis to express their variability according to
a small number of components called eigen-PSF, forming an
orthonormal basis. The interpolation of the coordinates of these
PSFs in this created basis allows their precise estimation across
the FOV of the system. The resulting image degradation model
can be expressed as a weighted sum of convolutions that can
be integrated efficiently into classical PVC algorithms. Initial
results shows accurate PSF estimation as well as significant image
restoration.

Index Terms—Partial Volume Effect, Point Spread Function,
Deconvolution, PET

I. INTRODUCTION

MEASUREMENTS obtained in Positron Emission To-

mography (PET) are severely affected by partial vol-

ume effects (PVE) [1]. When the impulse response or Point

Spread Function (PSF) of the system is assumed to be spatially

homogeneous inside the Field of View (FOV), Partial Volume

Correction (PVC) techniques mainly rely on deconvolution

algorithms. However, because of the geometry of the scanner’s

detectors, the PVE behaves significantly inhomogeneously

within the FOV and the assumption of the spatially invariance

of the PSF should be relaxed for improved results. Some

studies have presented parametric models of the PSF, most

often with a 2D or 3D Gaussian [2] that has the advantage

to speed-up the PVC process. Non-parametric methods are

preferred to model the PSF with more precision, but are often

limited by the computational time of the PVC.

This paper proposes a fast PVC method that rely on an

accurate non-parametric model of spatially variant PSF. The

PSF at any position of the FOV is estimated by interpolation

from a set of PSFs previously measured on a regular grid

of source points. The representation of the spatial variability

of the PSFs is assessed by mean of Principal Component

Analysis (PCA), which has already been studied in the field of

astronomy [3], but not, to our knowledge, in medical imaging.
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II. METHOD

When the PSF is inhomogeneous inside the Field of View

(FOV), the acquired image I can be modeled at each location

x of the FOV by:

I(x) =
∑

x′∈Ω

hx′(x) · Î(x′) (1)

where Î is the original image, Ω is the image domain and

hx′(·) is the PSF at point x′. We assume that the PSF has

been measured at P known positions {xp}p=1···P within the

FOV. For simplicity, we denote hp(·) = hxp
(·) the PSF at

point xp and H = {hp}p=1···P the set of known PSFs. The

problems are 1) to estimate hx(·) at any point x knowing the

discrete set of measurements H and 2) to estimate Î .

A. Principal Component Analysis

Principal Component Analysis (PCA), also known as the

Karhunen-Loève transform, is a widely used method to es-

timate the variations of data around their mean. The set of

observations is decomposed into linearly uncorrelated vari-

ables called principal components, or in this case eigen-PSFs,

that define an orthonormal basis, and that are by nature non-

parametric, and suits the data at best. Accordingly, a PSF hx

at any location x can be expressed as a linear combination of

eigen-PSFs {φk}k=1···K . In addition, the variance representing

the spatial variations of the PSF are generally fairly well

represented by the first components, so the dimension of the

data can be significantly reduced by projecting the PSF into

the K first dimensions of the new basis.

hx = hmean +
P
∑

p=1

wp(x) · φp ≃ hmean +
K
∑

k=1

wk(x) · φk (2)

where φk is the kth eigen-PSF, {wk(x)}k=1···K are the

component weights of the PSF hx in the restricted basis and

K ≪ P .

In practice, the eigenvalues and the associated eigenvectors

can be obtained by computing a Single Value Decomposition

(SVD) on the data matrix H . The decomposition returns

the new basis as well as the component weights of the

measured set of PSF wk(xp)
p=1···P

k=1···K . To estimate the PSF hx

at any location x, one can estimate its coefficients wk(x) by

performing traditional linear interpolation.

B. Partial Volume Correction

From 1 and 2 we derive:

I =
(

hmean ⊗ Î
)

+
K
∑

k=1

(

φk ⊗ Îk

)

(3)



where ⊗ is the usual convolution operator and Îk(x) =
wk(x) · Î(x) is the original image where pixels have been

weighted over its full domain by the coefficient field wk(x).
In other terms, the measured image I can be seen as a sum

of weighted original images Îk, each of which having been

convolved by the invariant kernel φk. Provided that most

deconvolution algorithms rely on an iterative scheme including

convolution and that φk and wk are known, problem 1 of

restoring Î from a spatially-variant PSF can be solved by

performing K+1 parallel convolutions (with spatially invariant

kernels) associated to the K principal components.

III. VALIDATION

A. PSF estimation

Imaging data have been generated by the PET-SORTEO

simulation software, modeling the Siemens mMR scanner [4].

A learning set of 35 source points have been simulated on

a regular grid at radii(ρ = [0; 30; 60; 90; 140; 210; 280]mm)

and depth (z = [0; 30; 60; 90; 120]mm) from the center of the

FOV. This initial set has been extended to a grid covering

the whole FOV by exploiting spatial symmetries. The images

have been reconstructed by Filtered Back-Projection (FBP)

with dimensions 256 × 256 × 127 pixels, then cropped to a

17× 17× 17 window.

PCA have been performed on the obtained images, 9
components were sufficient to assess 95% of the variability.

The first 4 eigen-PSFs and the associated coefficient fields

are displayed on figure 1. One sees that the coefficients are

Fig. 1. First 4 eigen-PSFs (top) and associated coefficient fields (bottom).

regular, which legitimates the use of interpolation.

To validate the PSF estimation method, a set of 50 point

sources have been generated at random positions of the FOV.

The measured PSF has been compared to different PSFs:

• pcaPSF: the proposed spatially-variant estimation

• meanPSF: the mean PSF of the initial set

• centerPSF: the PSF measured at the center of the FOV

• GaussPSF: a parametric Gaussian PSF

Figure 2 shows an example of a 2D-slice of the measured

PSF, and the associated estimations. One notice that in this

case, the shape of the measured PSF is hardly approximated

by a Gaussian. Figure 3 plots the estimation error in function

of the radial distance from the FOV. As expected, the center

PSF reproduces fairly well the PSFs that are near the center

but the estimation error grows rapidly as their distance to

the center increases. The spatially-invariant PSF meanPSF and

Measured pcaPSF meanPSF centerPSF GaussPSF

Fig. 2. Example of measured and estimated PSF from different methods.

Fig. 3. Estimation error in function of radial distance to the center of the
FOV.

gaussPSF both give globally good approximations across the

FOV but struggle to model the PSF that are to near or to far

from the center. In contrast, the proposed PSF model presents

good approximation on the whole FOV and outperforms the

other models on each of the 50 instances. Table I sums up the

estimation errors between the measured and estimated PSFs

from the different approaches. The proposed method provides

Method Sum of estimation errors

pcaPSF 0.0204

meanPSF 0.1861

centerPSF 1.0747

gaussPSF 0.2551
TABLE I

SUM OVER THE 50 ESTIMATION ERRORS OF THE PSF ESTIMATIONS.

estimates that are more accurate than spatially-invariant PSFs

across the field of view.

B. Partial Volume Correction

A numerical Derenzo phantom has been simulated. The

reconstructed image (see Fig. 4) illustrates how the spatially-

variant PSF alters the homogeneity of the measured activity.

The restoration results obtained after 5 Landweber iterations

integrating the proposed PSF model have been compared by

those obtained by classical Landweber deconvolution with

several invariant PSFs. Restored images are displayed in Fig. 5

and the associated profiles are shown in Fig. 6.

As expected, when using the spatially-invariant centerPSF,

the activity is correctly restored near the system center but

the activity is underestimated away from the center. This



Fig. 4. Reconstructed Derenzo phantom. The theoretical activity is constant
in each sphere but the spatially-variant PSF produces inhomogeneities in the
measured activity.

pcaPSF meanPSF

centerPSF gaussPSF

Fig. 5. Restored images obtained with the different models of PSF.

phenomenon is also seen when using the parametric Gaus-

sian model. Besides, when using the meanPSF, the restored

activities are overestimated near the center and underestimated

away from the center of the FOV. The proposed method

provides a restored image whose activities are more faithful

to the theoretical values. Furthermore, contrary to the PVC

methods based on a spatially invariant PSF, restored activities

are homogeneous.

IV. CONCLUSION

In this work, we proposed a novel way to account for the

spatially-variant nature of the system’s PSF that allows fast and

accurate partial volume correction. The presented results have

been obtained without any regularization. Note however that

the generalization of the classical deconvolution algorithms

Fig. 6. Profiles corresponding to the selected area in Fig. 4, of the theoretical
activity the measured activity, and of the restored images obtained with the
different PSF models.

integrating the spatially-variant model of the PSF also allows

the usage of regularization to reduce noise and improve the

quantification results.
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