Stefan Weithoffer
email: †stefan.weithoffer@imt-atlantique.fr

Oliver Griebel
email: griebel@eit.uni-kl.de

Rami Klaimi
email: rami.klaimi@imt-atlantique.fr

Abdel Charbel
email: charbel.abdelnour@imt-atlantique.fr

Nour

Norbert Wehn
email: wehn@eit.uni-kl.de

Advanced Hardware Architectures for Turbo Code Decoding Beyond 100 Gb/s

Keywords: Forward Error Correction, Turbo decoder, Fully Parallel, High-throughput

In this paper, we present two new hardware architectures for Turbo Code decoding that combine functional, spatial and iteration parallelism. Our first architecture is the first fully pipelined iteration unrolled architecture that supports multiple frame sizes. This frame flexibility is achieved by providing a set of interleavers designed to achieve a hardware implementation with a reduced routing overhead. The second architecture efficiently utilizes the dynamics of the error rate distribution for different decoding iterations and is comprised of two stages. First, a fully pipelined iteration unrolled decoder stage applied for a pre-determined number of iterations and a second stage with an iterative afterburner-decoder activated only for frames not successfully decoded by the first stage. We give post place & route results for implementations of both architectures for a maximum frame size of K = 128 and demonstrate a throughput of 102.4 Gb/s in 28 nm FDSOI technology. With an area efficiency of 6.19 and 7.15 Gb/s/mm 2 our implementations clearly outperform state of the art.

I. INTRODUCTION

The change towards our nowadays "always-connected" society has been founded on the evolution of mobile communication standards from 3G to 4G and now to the fifth generation 5G, while research is already looking "Beyond 5G" [START_REF] Dahlman | 5g evolution and beyond[END_REF].

For the third and fourth generation mobile communication standards, Turbo Codes [START_REF] Berrou | Near optimum error correcting coding and decoding: turbo-codes[END_REF] were used as codes for the downlink channel, and although they will be replaced by Low Density Parity Check (LDPC) [START_REF] Mackay | Near shannon limit performance of low density parity check codes[END_REF] codes in the 5G standard, they will continue to be part of 5G through the evolution of 4G.

In respect to the requirements of communication systems, LDPC and Turbo Codes have different strengths. While LDPC codes are well suited to achieve ultra high throughputs in the range of hundreds of Gb/s [START_REF] Schläfer | A new dimension of parallelism in ultra high throughput ldpc decoding[END_REF], [START_REF] Balatsoukas-Stimming | A fully-unrolled ldpc decoder based on quantized message passing[END_REF], Turbo Codes are superior in terms of frame and rate flexibility in the medium throughput range of several Gb/s. With respect to ultra high throughput decoder architectures, however, flexibility is generally a challenging design aspect. While rate flexibility comes by design for Turbo Codes [START_REF] Garzón-Bohórquez | Protographbased interleavers for punctured turbo codes[END_REF], the most advanced Turbo decoder implementations with respect to information throughput either have very limited or no flexibility at all with respect to frame sizes [START_REF] Li | Vlsi implementation of fully parallel lte turbo decoders[END_REF], [START_REF] Weithoffer | 25 years of turbo codes: From mb/s to beyond 100 gb/s[END_REF].

In this work, we demonstrate, that with a suitable set of Almost Regular Permutation (ARP) interleavers [START_REF] Berrou | Designing good permutations for turbo codes: towards a single model[END_REF], frame flexibility can be achieved for fully pipelined iteration unrolled decoders. Based on a set of interleavers for the frame sizes K ∈ {32, 64, 128} we present a new decoder architecture, which also features a spacial parallelism of 4 and highly localized channel value pipelines.

The second challenge for highly parallel decoder architectures is area consumption. Most advanced implementations occupy area in the order of tens of mm 2 [START_REF] Li | Vlsi implementation of fully parallel lte turbo decoders[END_REF], [START_REF] Weithoffer | 25 years of turbo codes: From mb/s to beyond 100 gb/s[END_REF]. Therefore, in this work, we combine spatial, functional and iteration parallelism in order to increase the area efficiency. Inspired by the approach from [START_REF] Scholl | Saturated min-sum decoding: An "afterburner" for ldpc decoder hardware[END_REF] for LDPC codes, we present an afterburner-based decoding variant for fully pipelined Turbo decoders to further increase the area efficiency: By using an iterative decoder stage as an afterburner in our second architecture, we are able to reduce the number of fully pipelined half iteration stages and consequently significantly decrease the area complexity. In unrolled architectures area and power consumption linearly depends on the iteration stages. Thus, the afterburner approach is an efficient way to move from worst case to typical number of iteration assumptions, thus reducing area and power.

The rest of this paper is structured as follows: Section II first gives an overview on the state-of-the-art in parallel architectures for Turbo Decoding. In Section III, we introduce our set of interleavers and present two new decoder architectures in Section IV. Place & route results along with results of power simulations and a comparison with state-of-the-art is given in Section V and Section VI concludes the paper.

II. PARALLEL TURBO DECODER HARDWARE ARCHITECTURES

In its basic structure, a Turbo decoder consists of two component decoders, an interleaver Π and a de-interleaver Π -1 connected in an iterative loop [START_REF] Berrou | Near optimum error correcting coding and decoding: turbo-codes[END_REF] as shown in Figure 1. The two component decoders commonly employ the max-Log-MAP algorithm and exchange extrinsic information Λ e . Their iterative processing continues until either a pre-determined maximum number of iterations is reached or an early-stopping criterion is fulfilled. One execution of a component decoder is counted as one Half Iteration (HI), whereas each completed loop is called a (full) Iteration (IT). Hardware architectures for Turbo Decoding are commonly comprised of one (parallel) decoder core, which alternately acts as component decoder 1 and component decoder 2. In order to achieve a high throughput, state-of-the-art Turbo Decoder hardware implementations employ either spatial parallelism as in the parallel MAP (PMAP, [START_REF] Ilnseher | A 2.15gbit/s turbo code decoder for lte advanced base station applications[END_REF]- [START_REF] Roth | Efficient parallel turbodecoding for high-throughput wireless systems[END_REF]) architecture, or functional parallelism in the pipelined MAP (XMAP, [START_REF] Weithoffer | On the applicability of trellis compression to turbo-code decoder hardware architectures[END_REF]- [START_REF] May | A 150mbit/s 3gpp lte turbo code decoder[END_REF]) architecture. The code trellis is in both cases split into smaller sub-trellises, which are then decoded either on parallel sub-decoder cores (PMAP), or several sub-trellises in parallel in a pipelined fashion (XMAP).

Decoder 1 Π Decoder 2 Π -1 λ s λ p1 λ p2 λ s + Λ e1 Λ e2 Λ Λ Π -1
Figure 2 illustrates how different methods of parallel processing are used in state-of-the-art Turbo Decoders. Implementations with moderate levels of parallelism employ only one type of parallelisation and use either the PMAP or the XMAP architecture. Moreover, it is well known that for these architectures, the maximum degree of parallelism is limited, since the resulting small sub-blocks lead to an error correction performance loss [START_REF] Roth | Efficient parallel turbodecoding for high-throughput wireless systems[END_REF], [START_REF] May | A 150mbit/s 3gpp lte turbo code decoder[END_REF]. As a consequence, the maximum throughput of PMAP/XMAP in today's silicon technologies is limited to less than 10 Gb/s [START_REF] Weithoffer | 25 years of turbo codes: From mb/s to beyond 100 gb/s[END_REF].

Therefore, in order to achieve a throughput in the order of 10 -100 Gb/s with a single decoder instance, fully parallel architectures which also employ iteration parallelism, i.e. the parallel processing of two or more HI, have to be considered. Decoder architectures which use iteration parallelism are the fully parallel MAP (FPMAP, [START_REF] Li | Vlsi implementation of fully parallel lte turbo decoders[END_REF]) and the fully pipelined iteration unrolled XMAP (UXMAP, [START_REF] Weithoffer | 25 years of turbo codes: From mb/s to beyond 100 gb/s[END_REF]

A. Fully Parallel MAP

For the FPMAP architecture, the decoding is reformulated to allow a splitting of the frame into sub-blocks of size 1, which are processed on individual parallel processing elements, thereby fully exhausting spacial parallelism. The state metric information for each step in the code trellis is directly exchanged between neighbouring elements. In addition, the FPMAP uses two groups of processing elements to calculate the decoding result for a complete iteration, one group for each component decoder. This shuffled decoding scheme [START_REF] Zhang | Shuffled iterative decoding[END_REF] is used to exchange extrinsic information between the two concurrently running groups representing the component decoders leading to an iteration parallelism of 2 in Figure 2. Due to the extreme spacial parallelism, state metric information exchange between trellis sections that are far apart needs several iteration steps to propagate to the respective processing elements leading to an increase in the number of required iterations for a target error correcting performance level, especially for high code rates [START_REF] Weithoffer | 25 years of turbo codes: From mb/s to beyond 100 gb/s[END_REF]. Moreover, the fully parallel exchange of extrinsic information poses a challenge for the implementation of flexible decoders, since the support of different interleaver patterns is often not possible [START_REF] Li | Vlsi implementation of fully parallel lte turbo decoders[END_REF]. To mitigate this issue, it was proposed to use unequal window lengths in [START_REF] Xiang | Arbitrarily parallel turbo decoding for ultra-reliable low latency communication in 3gpp lte[END_REF]. However, no implementation results are given in [START_REF] Xiang | Arbitrarily parallel turbo decoding for ultra-reliable low latency communication in 3gpp lte[END_REF].

B. Iteration Unrolled XMAP

Combining iteration parallelism with fully pipelined component decoders leads to the fully pipelined Iteration Unrolled XMAP (UXMAP) decoder architecture. In this hardware architecture, the iterative loop is fully unrolled onto a decoder pipeline in which complete frames are processed in parallel as they are progressing through the pipeline. The individual component decoder instances are called iteration stages and implement a pipelined serial max-Log-MAP processing of complete code blocks [START_REF] Weithoffer | 25 years of turbo codes: From mb/s to beyond 100 gb/s[END_REF].

Since complete decoded code blocks are output in each clock cycle, the UXMAP architecture guarantees a very high throughput albeit at a considerable area cost: The area consumption for pipelining the serial max-Log-MAP processing of complete code blocks grows linearly with the frame size and the number of iteration stages. Similar to the FPMAP, flexible interleaving is challenging for UXMAP decoders, since it has to be realized within the pipeline. Therefore, the only reported UXMAP implementation only supported the single frame size of K = 128 [START_REF] Weithoffer | 25 years of turbo codes: From mb/s to beyond 100 gb/s[END_REF].

However with careful selection of a set of interleavers, a frame flexible iteration unrolled decoder can be realized with a tolerable amount of multiplexing between the different iteration stages.

III. INTERLEAVING

To achieve frame flexibility, we consider sets of Almost Regular Permutation (ARP) interleavers [START_REF] Berrou | Designing good permutations for turbo codes: towards a single model[END_REF]. It was shown in [START_REF] Garzón Bohórquez | On the equivalence of interleavers for turbo codes[END_REF] that this family of interleavers can provide the same interleaving properties, guaranteeing minimum Hamming distance values at least as high as most known algebraic interleaver families. An ARP interleaver is defined by a permutation period P , a shift vector S and a disorder degree Q. The interleaving function, defining connections between the bits of the frames at the input of the first and second decoders, is then given by [START_REF] Dahlman | 5g evolution and beyond[END_REF], where K denotes the frame size:

Π ARP (i) = P • i + S (i mod Q) mod K (1)
Since in the UXMAP decoder architecture complete frames are processed in parallel, also the interleaving of complete frames has to be done in parallel. To support different frame sizes K ∈ {K 0 , K 1 , . . . , K n-1 }, the goal therefore is to find sets of n interleavers with the maximum number of overlapping connections, i.e.

Π K0 (i) = Π K1 (i) = . . . = Π Kn-1 (i). (2)
For the addresses that fulfill (2), the hardware realization can be reduced to a wired connection.

For the remaining addresses, satisfying additional constraints can also simplify the hardware implementation by limiting the number of required multiplexers. Without loss of generality, we limit our analysis to power-of-two frame sizes, namely with K ∈ {32, 64, 128} bits. For supporting two frame sizes K m and K n where K m = 2K n , limiting the number of required multiplexers could simply be achieved by applying twice the interleaver of the smaller K n size. Let us denote by Π K 2n the resulting interleaver. However, applying Π K2n comes at the price of a high communications performance penalty since addresses lower (resp. larger) than K n are interleaved to addresses lower (resp. larger) than K n . Consequently, the error correction capability is not expected to improve when increasing the frame size from K n to K m bits.

A compromise between hardware efficiency and communications performance can be achieved by directly designing Π Km with the least possible number of different connections with respect to Π K2n and the lowest impact on performance. We propose to do that by having the maximum number of continuous addresses in Π K2n that can be modified to apply their corresponding connections in Π Km by the simple introduction of the same address shift value s Π . In other words, maximize l, the number of continuous addresses i, i + 1, i + 2, . . . , i + l while designing the interleaving functions of K m and K n such that:

Π Kn (i + s Π) mod K m = Π Km (i). (3)
For the considered cases, we have s Π = K n . Satisfying (3) for the largest possible number (l) of addresses reduces the complexity for switching between the parallel processing of multiple frames of size K n and the processing of frames of size K m . Figure 3 illustrates this on the example of the set of ARP interleavers {Π 32 , Π 64 , Π 128 } with P = 9, S = {3, 13, 27, 5} and Q = 4 which were also chosen with the methods described in [START_REF] Garzón-Bohórquez | Protographbased interleavers for punctured turbo codes[END_REF]. Interleaver connections are highlighted for all three interleavers in reference to the next smaller frame size. Connections only defined by Π 128 (i) are drawn in grey color, while connections shared by Π 64 and Π 128 are drawn in red color. Lastly, connections shared by Π 32 and Π 64 are highlighted in blue color. Figure 3 shows a significant overlap between the different interleavers contained in the selected set. As we will show in Section IV-B, the proposed set of ARP interleavers clearly outperforms the set of comparable interleavers from the LTE standard in terms of implementation complexity. Moreover, it has been shown in [START_REF] Garzón-Bohórquez | Protographbased interleavers for punctured turbo codes[END_REF], that with a careful selection of puncturing patterns, LTE interleavers are outperformed by this type of ARP interleavers in terms communications performance, especially for high coding rates.

IV. PROPOSED ARCHTITECTURES

In this section, we present two new hardware architectures for fully pipelined iteration unrolled Turbo Decoding based on the interleaver set discussed in Section III. Note, that both architectures use all three types of parallelism: Spatial, functional and iteration parallelism (see also Figure 2). As depicted in Figure 4, both architectures are composed of fully pipelined Half-Iteration Stages (HI-Stages), which consist of a number of parallel X-Elements, each with its own channel value FIFO. This localized channel value storage allows a more localized routing and a significantly lowered area footprint compared to the architecture from [START_REF] Weithoffer | 25 years of turbo codes: From mb/s to beyond 100 gb/s[END_REF], where each HI-Stage consists of a monolithic X-Element and the channel value pipeline is separate from the HI-Stages. Moreover, through the reduced size of the individual X-Elements, the length of the FIFOs and therefore overall area consumption is lowered. for only two connections. Moreover, with additional 3 :

1 MUXes, two more configuration modes (32/32/32/32 and 64/32/32) can be supported while keeping the total amount of multiplexers 25% lower than the LTE case. Note, that the numbers are representing the amount of MUXes and the amount of direct wire-connections for each (de-)interleaving instance assuming a quantization of 6 bits for the channel values and 7 bits for each extrinsic information to be (de-)interleaved. A 2-bit FIFO buffer, shown in dark grey in Figure 4, is used to control the (de-)interleaver MUXes (pink and purple respectively) at the output of each HI-Stage.

B. UXMAP with Iterative Afterburner

The drawback of unrolled architectures is the static number of iterations, i.e. pipeline stages, that have to be fixed at design time. A worst case assumption on the iterations has to be made to enable good communication performance also for lower SNR regions. Serial architectures leverage stopping criterions to exploit the dynamics in the channel and stop iterations as early as possible.

In [START_REF] Scholl | Saturated min-sum decoding: An "afterburner" for ldpc decoder hardware[END_REF] it was proposed to utilize a hybrid afterburner approach to combine conventional min-sum decoding and the more complex saturated min-sum (SMS) decoding for LDPC codes. There, an advanced stopping criterion was used to detect erroneous decoding by the min-sum decoder and only activate the saturated min-sum decoder for the wrongly decoded frames. This sequential application of two variants min-sum decoding allowed for a SNR gain of up to 1.6 dB.

Instead of using multiple iterative decoder instances as in [START_REF] Scholl | Saturated min-sum decoding: An "afterburner" for ldpc decoder hardware[END_REF], in our architecture multiple frames are decoded in parallel in a pipelined afterburner stage where they are processed iteratively for a pre-determined number of HI after emerging from the UXMAP pipeline. The resulting UXMAP with iterative afterburner (AB-UXMAP) architecture is illustrated in Figure 4 (b), where, for more clarity, frame flexibility is not considered. In contrast to [START_REF] Scholl | Saturated min-sum decoding: An "afterburner" for ldpc decoder hardware[END_REF], the iterative afterburner stage is used here to minimize the number of needed HI-Stages for a target error correcting performance. Since the power consumption can be estimated to increase linearly with the number of HI-stages, this afterburner approach not only reduces significantly the area but also the power consumption.

To avoid a loss in error correcting performance, a reliable, low complexity stopping criterion is employed in the Afterburner Control unit in Figure 4 (b) to decide, which frames are sent to the afterburner stage for iterative decoding. A number of stopping criteria are known from literature [START_REF] Shao | Two simple stopping criteria for turbo decoding[END_REF]. Since the hard decisions on the decoded frames are available in the pipeline with no overhead, the Hard Decision Aided (HDA) stopping criterion [START_REF] Shao | Two simple stopping criteria for turbo decoding[END_REF] and a Cyclic Redundancy Check (CRC) based criterion are low complexity choices.

Figure 5 shows Frame Error Rate (FER) simulation results of afterburner decoding with both criteria along with the reference consisting of a constant number of 8 HIs for a frame size of K = 128. For the afterburner decoding, the total number of HIs (HI-stages + iterations in the afterburner) for frames which go into the afterburner is set to 14. The amount of frames being iteratively decoded in the afterburner at any given time is limited to 32 which dictates the capacity of the afterburner pipeline.

The HDA-based afterburner configuration matches the FER performance of the reference for 6 pipelined HI and 8 "afterburner-HI" while the CRC based afterburner configuration only needs 5 pipelined HI and in the high SNR region even outperforms the reference by approximately 0.25 dB.

In order to avoid non-negligible rate loss due to the CRC at frame sizes < 200 bits, our implementation discussed in Section III uses the HDA criterion. Note, that for larger frame sizes, CRC becomes viable again, since the additional area savings due to lower number of initial pipelined HIs justify the rate loss due to the CRC.

V. PLACE & ROUTE RESULTS

The hardware architectures presented in Section IV were implemented in VHDL and placed & routed with Synopsis IC Compiler for a 28 nm FD-SOI process under worst case PVT (Process/Voltage/Temperature) constraints. For a fair comparison with previous works, the same frame size and number of iterations was used as in [START_REF] Weithoffer | 25 years of turbo codes: From mb/s to beyond 100 gb/s[END_REF]. Table II lists the algorithmic parameters of the case study implementations. The max-Log-MAP algorithm with an Extrinsic Scaling Factor (ESF) of 0.75 and a radix-4 processing of the trellis [START_REF] Weithoffer | On the applicability of trellis compression to turbo-code decoder hardware architectures[END_REF] are used and the inputs are quantized with 6 bits. Due to the splitting of the decoding into sub-blocks, an initialization of the state metrics at the sub-block borders becomes necessary, which here is done via Next Iteration Initialization (NII, [START_REF] Dielissen | State Vector Reduction for Initialization of Sliding Windows MAP[END_REF]). III. For this, we cap the frequency scaling to 1000 MHz, which is the expected frequency cap necessary to preserve single cycle accesses to SRAM. Note, that in Table III "parallelism" refers to the amount of bits decoded in parallel.

A. Area and Throughput

To the best of our knowledge, no other reported implementations besides the previous work from [START_REF] Weithoffer | 25 years of turbo codes: From mb/s to beyond 100 gb/s[END_REF] use a fully pipelined decoder architecture. Consequently, none of the compared implementations except [START_REF] Weithoffer | 25 years of turbo codes: From mb/s to beyond 100 gb/s[END_REF] achieves a throughput of more than 16 Gb/s. Even when scaled to 28 nm technology, only [START_REF] Li | Vlsi implementation of fully parallel lte turbo decoders[END_REF] is expected to achieve a throughput of around 40 Gb/s. The presented architectures improve on previous work from [START_REF] Weithoffer | 25 years of turbo codes: From mb/s to beyond 100 gb/s[END_REF] by reducing the area consumption by 30% and 40% respectively to 16.54 mm 2 and 14.32 mm 2 . This, in turn increases the area efficiency to 6.19 Gb/s/mm 2 and 7.15 Gb/s/mm 2 , thereby outperforming the most efficient reference implementation from [START_REF] Roth | Efficient parallel turbodecoding for high-throughput wireless systems[END_REF] by 37% and 59%, even when scaling its results to 28 nm.

B. Layout

Layout pictures for our placed & routed designs are shown in Figure 6. Note that they are at the same scale, showing the correct relative sizes for both designs. The HI-Stages and the Afterburner Control (red in Figure 6 (b)) are clearly separated due to the hierarchical place & route process, but also the individual X-Elements can be clearly identified for both designs. Also note the iterative afterburner on the left in Figure 6 (b), where the impact of the internal (de-)interleaving is visible.

VI. CONCLUSION

In this work, we presented two new fully pipelined iteration unrolled hardware architectures for Turbo Decoding along with place & route results and power numbers for the respective case study implementations. Based on our investigations

Figure 1 :

 1 Figure 1: General Turbo Decoder structure.

Figure 2 :

 2 Figure 2: Parallelism in Turbo Decoder hardware architectures.

Figure 3 :

 3 Figure 3: Overlap in the interleaver set {Π 32 , Π 64 , Π 128 } with P = 9, S = {3, 13, 27, 5} and Q = 4.

Figure 5 :

 5 Figure 5: Comparison of the FER performance of different AB-UXMAP variants.

) architectures.

	Iteration Parallelism							
	8							
	6							
	4							
	2							Functional
								Parallelism
	2	2	4	8	16	32	64	128 256
	4							
	8							
	16							
	32							
	64							
	128							
	256							
	512 S p a c i a l P a r a l l e l i s m 4096 8192		PMAP		XMAP		FPMAP	UXMAP

Table I :

 I Figure4(a) shows the Frame Flexible UXMAP (FF-UXMAP) architecture. Based on the interleaver set presented in Section III, it supports flexibility w.r.t. frame sizes K ∈ 32, 64, 128. In addition, different combinations of smaller frame sizes can be decoded in parallel allowing for a constant throughput of 102.4 Gb/s for each combination, assuming a completely filled pipeline. The supported configuration modes are listed in TableIalong with a complexity comparison with LTE. Since LTE does not support a frame size of 32, the comparison is done for two cases: MUXes are needed compared to the LTE case. The rest of the connections are identical between the configurations 128 and 64/64 and can be realized by direct wire-connections, which significantly lowers the routing overhead compared to the LTE case where there is an overlap Complexity comparison of different interleaver sets.

	Branch Metric Units	Backward Recursion Units	Interleaver MUXes	Config FIFOs	(De-)Interleaver
	LLR Units		Forward Recursion Units		De-Interleaver MUXes	Afterburner Control	FIFOs
	Channel Values						Hard Decisions	Channel Values	Π	Π -1	Π
	Config In						Config Out	Valid 0	Hard Decisions 0	Valid 1 Hard Decisions 1
		(a) FF-UXMAP			(b) AB-UXMAP
		Figure 4: Architecture schematics for the new iteration unrolled architectures.
	A. Frame Flexible UXMAP				
	• 2 configurations: 128 and 64/64		
	• 4 configurations: 128, 64/64, 32/32/32/32 and 64/32/32
	Thanks to the shared connections between the different inter-
	leavers, only half of the 2 : 1 Supported Configurations 2 configurations	4 configurations
		LTE		This Work	LTE This Work
	Wires	3328		113152	n/a	59904
	2:1 MUXes	209664	99840	n/a	99840
	3:1 MUXes	/		/	n/a	53248

Table II :

 II Algorithmic properties for the implementations.The post place & route results are shown in TableIIIalongside published results for decoders with FPMAP, PMAP and XMAP architectures. These report a throughput ranging from 1 to tens of Gb/s. Since results from literature are reported for different technology nodes, we provide a scaling to 28 nm technology in the caption of Table

		FF-UXMAP	AB-UXMAP
	Frame Size K	128/64/32	128
	Spacial Parallelism	4	
	Radix	4	
	Algorithm	max-Log-MAP with ESF = 0.75
	State Metric Initialization	Next Iteration Initialization [22]
	Input Quantization	6 bit
	Termination	Tailbiting
	Stopping Criterion	n/a	HDA

ACKNOWLEDGMENT

We gratefully acknowledge financial support by the EU (project-ID: 760150-EPIC)

This Work [START_REF] Weithoffer | 25 years of turbo codes: From mb/s to beyond 100 gb/s[END_REF] [