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Abstract

We present a simple ceteris paribus logic based on 
propositional equivalence, which we call CP. We show that 
CP provides an yardstick for compar-ing and unifying 
existing logics STIT, CL−PC and DL−PA.

1 Introduction

The logical analysis of agency and games—for an exposi-
tory introduction to the field see van der Hoek and Pauly’s
overview paper 2007—has boomed in the last two decades
giving rise to a plethora of different logics in particular within
the multi-agent systems field.1 At the heart of these logics are
always representations of the possible choices (or actions) of
groups of players (or agents) and their powers to force spe-
cific outcomes of the game. Some logics take the former
as primitives, like STIT (the logic of seeing to it that, [Bel-
nap et al., 2001; Horty, 2001]), some take the latter like CL

(coalition logic, [Pauly, 2002; Goranko et al., 2013]) and ATL

(alternating-time temporal logic, [Alur et al., 2002]).
In these formalisms the power of players is modeled in

terms of the notion of effectivity. In a strategic game, the
α-effectivity of a group of players consists of those sets of
outcomes of the game for which the players have some col-
lective action which forces the outcome of the game to end
up in that set, no matter what the other players do [Moulin
and Peleg, 1982]. So, if a set of outcomes X belongs to the
α-effectivity of a set of players J , there exists an individual
action for each agent in J such that, for all actions of the other
players, the outcome of the game will be contained in X . If
we keep the actions of the other agents fixed, then the selec-
tion of an individual action for each agent in J corresponds to
a choice of J under the assumption that the other agents stick
to their choices.

Scientific Context It was already observed by [van Ben-
them et al., 2009] that this formalization of choice and power

1The richness of this logical landscape was the object of the IJ-
CAI’13 invited talk by A. Herzig Logics for Multi-Agent Systems: a
Critical Overview.

in games is of an ‘all other things being equal’, or ceteris
paribus, nature. Considering which outcomes of a game are
possible for a set of players J once the other players have
fixed their actions, amounts to considering what may be the
case under the ceteris paribus condition ‘all actions of the
agents not in J being equal (to their current ones)’. In the
current paper we leverage this intuition further and show how
it can provide a novel systematization of many of the most
influential formalisms in the field of logic and games.

Formal relationships linking the logics (or fragments
thereof) we mentioned above have been object of several
publications. Notable examples are: the embedding of CL

into the next-time fragment of ATL [Goranko, 2001] and
the embedding of CL into NCL (normal coalition logic,
[Broersen et al., 2007; Balbiani et al., 2008a]), the em-
bedding of CL and ATL into STIT [Broersen et al., 2005;
2006]. Earlier contributions have also attempted more com-
prehensive systematizations of the field of logic and games.
Two in particular are worth mentioning: Goranko and Jam-
roga’s work 2004, which compares game logics based on the
computation tree abstraction like ATL and its variants; and
Herzig’s work 2014, which provides a conceptual and syntax-
based—while we favor here semantic methods—comparison
of all the main formalisms in the literature.

We focus on the components of the semantics of those log-
ics that have directly to do with the representation of choice
and power, and we abstract away from the representation of
time and repeated interaction. So the logics we will be work-
ing with are: the atemporal fragment of STIT, logic CL−PC

(coalition logic of propositional control, [van der Hoek and
Wooldridge, 2005]) and the starless fragment of DL−PA (dy-
namic logic of propositional assignments, [van Eijck, 2000;
Balbiani et al., 2013]). These logics cover, arguably, a
large spectrum of the most influential existing formalisms.
Logic STIT is often considered a standard in the litera-
ture, as it embeds both CL and ATL [Broersen et al., 2005;
2006], so we use it as a natural starting point. Logic CL−PC

is an influential extension of CL. Finally, logic DL−PA is
an extension of PDL (propositional dynamic logic, [Harel
et al., 2000]), recently proposed in [Herzig et al., 2011;
Balbiani et al., 2013].

Contribution To articulate our analysis, whose main tech-
nical tool consists of satisfiability-preserving embeddings,



DL−PACPCL−PC

S5

STIT NCL

exponential

bo
un

de
d

m
od

el
s

restricted languages

Figure 1: Summary of the embeddings established in the paper and
known from the literature

the paper introduces and studies—in its axiomatization and
complexity—a simple ceteris paribus logic based on proposi-
tional equivalence, which we call CP. Such logic is the yard-
stick allowing us to compare and unify STIT, CL−PC and
DL−PA. Figure 1 gives a graphical presentation of the em-
beddings established in the paper—as well as relevant ones
already known in the literature.

An arrow indicates that each formula of the source logic is
satisfiable if and only if a suitable translation of that formula
is satisfiable in the target logic. DL−PA denotes the starless
version of dynamic logic of propositional assignments, NCL
and STIT denote the atemporal version of, respectively, nor-
mal coalition logic and the seeing-to-it logic. S5 denotes the
normal modal logic of equivalence relations. Dotted lines in-
dicate embeddings known in the literature: from CL−PC to
DL−PA [Balbiani et al., 2013] and from STIT to NCL (and
vice versa) with respect to fragments of the respective lan-
guages [Lorini and Schwarzentruber, 2011]. The embedding
from STIT to CP assumes a bound on the STIT-models. All
embeddings are polynomial except for the one from CP to S5.

2 A Simple Ceteris Paribus Logic

2.1 Equivalence Modulo a Set of Atoms

Consider a structure (W,V ) where W is a set of states, and
V : P −→ 2W a valuation function from a countable set of
atomic propositions P to subsets of W .

Definition 1. (Equivalence modulo X) Given a pair (W,V ),
X ⊆ P and |X| < ω, the relation ∼

V
X⊆W 2 is defined as:

w ∼
V
X w′ ⇐⇒ ∀p ∈ X : (w ∈ V (p) ⇐⇒ w′ ∈ V (p))

WhenX is a singleton (e.g. p), we will often write ∼V
p instead

of ∼V
{p}. Also, in order to avoid clutter, we will often drop the

reference to V in ∼
V
X when clear from the context.

Intuitively, two states w and w′ are equivalent up to set X ,
or X-equivalent, if and only if they satisfy the same atoms in
X (according to a given valuation V ). The finiteness of X is
clearly not essential in the definition. It is assumed because,
as we will see, each set X will be taken to model a set of
actions of some agent in a game form and sets of actions are
always assumed to be finite.

Fact 1. (Properties of ∼X ) The following holds for any set of
statesW , valuation V : P −→ 2W and finite setsX,Y ⊆ P:

(i) ∼X is reflexive, transitive and symmetric; (ii) if X ⊆ Y
then ∼Y ⊆ ∼X ; (iii) if X is a singleton, ∼X induces a par-
tition of W with at most 2 cells; (iv) ∼X ∩ ∼Y = ∼X∪Y ;
(v) ∼∅ = W 2.

2.2 A Modal Logic of the ∼X Relation

In this section we consider a simple modal language inter-
preted on relations ∼X and axiomatize its logic on the class
of structures (W,V ). The key modal operator of the language
will be 〈X〉, whose intuitive meaning is ‘ϕ is the case in some
state which is X-equivalent to the current one’ or, to stress a
ceteris paribus reading, ‘ϕ is possible all things expressed in
X being equal’. We call the resulting logic propositional ce-
teris paribus logic, CP in short.

Let P be a countable set of atomic propositions. The lan-
guage LCP(P) is defined by the following BNF:

LCP(P) : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 〈X〉ϕ

where p ranges over P and X is a finite subset of atomic
propositions (X ⊆ P and X finite). Note that as the set
of finite subsets of atomic propositions is countable, the lan-
guage LCP(P) is also countable. The Boolean connectives
⊤,∨,→,↔ and the dual operators [X] are defined as usual.
Although we have taken diamond operators as primitive, we
will for convenience also make use of box operators to state
some results in later sections. The set SF (ϕ) of subformulas
of a formula ϕ is defined inductively in the usual way.

This is the class of models we will be working with:

Definition 2. (CP-models) Given a countable set P, a CP-
model for LCP(P) is a tuple M = (W,V ) where: W is a
non-empty set of states; V : P −→ 2W is a valuation func-
tion. A CP-model is called universal if W = 2P and V is s.t.
V (p) = {w | p ∈ w}. It is called non-redundant if ∼P is the
identity relation in W 2.

Intuitively, a CP-model consists just of a state-space and a
valuation function for a given set of atoms.

Definition 3. (Satisfaction for CP-models) Let M = (W,V )
be an CP-model for LCP(P), w ∈ W and ϕ,ψ ∈ LCP(P)
(Boolean clauses omitted):

M, w |=CP 〈X〉ϕ⇐⇒ ∃w′ : w ∼
V
X w′

AND M, w′ |=CP ϕ

Formula ϕ is CP-satisfiable, if and only if there exists a model
M and a state w such that M, w |=CP ϕ. Formula ϕ is
valid in M, noted M |=CP ϕ, if and only if for all w ∈ W ,
M, w |=CP ϕ. Validity and consequence are defined as usual.

So, modal operators are interpreted on the equivalence re-
lations ∼X induced by the valuation of the model. It is worth
observing that the logic of this class of models is not closed
under uniform substitution,2 that is, logic CP is not uniform.3

To witness that, notice that formula [{p}]p∨ [{p}]¬p is valid,
whereas [{p}]ϕ ∨ [{p}]¬ϕ is not.

2For the definition of uniform substitution the reader is referred
to the textbook by [Blackburn et al., 2001, Def. 1.18].

3The terminology comes from Goldblatt’s work 1992.



Lemma 1. Let L∅
CP

(P) the set of formulae ϕ ∈ LCP(P) con-

taining only 〈∅〉 operators. The set of formulae of L∅
CP

(P)
which are CP-valid is the modal logic of Kripke frames
(W,W 2), i.e., logic S5.

In other words, the 〈∅〉 operator of LCP is nothing but the
global modality [Blackburn et al., 2001, pp. 367–370]. The
next lemma states that CP is actually the logic of the class of
relevant CP-models.

Lemma 2. Every satisfiable CP-formula is satisfiable on a
non-redundant model.

One can obtain a sound and strongly complete axiom sys-
tem for CP by a standard reduction technique exploiting
Lemma 1. It can also be shown that CP can be embedded
in S5 by an exponential satisfiability-preserving translation,
and therefore that the satisfiability problem for CP is decid-
able and in NEXPTIME. We refer to the full paper for the
details.

3 The Ceteris Paribus Structure of STIT

3.1 Atemporal Group STIT

First let us recall the syntax and the semantics of atemporal
group STIT. The language of this logic is built from a count-
able set of atomic propositions P and a finite set of agents
AGT = {1, . . . , n} and is defined by the following BNF:

LG−STIT(P, AGT ) : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | [J : stit]ϕ

where p ranges over P and J ranges over 2AGT . The con-
struction [J : stit]ϕ is read “group J sees to it that ϕ is true
regardless of what the other agents choose”. We define the

dual operator 〈J : stit〉ϕ
def

= ¬[J : stit]¬ϕ. When J = ∅,
the construction [∅ : stit]ϕ is read “ϕ is true regardless of
what every agent chooses” or simply “ϕ is necessarily true”.

Definition 4 (STIT-Kripke model, [Herzig and
Schwarzentruber, 2008]). A STIT-Kripke model
M = (W, {RJ}J⊆AGT , V ) is a 3-tuple where:

• W is a non-empty set of worlds;

• for all J ⊆ AGT , RJ is an equivalence relation
such that: (i) RJ ⊆ R∅; (ii) RJ =

⋂
j∈J R{j};

(iii) for all w ∈ W and (w1, . . . , wn) ∈ Wn,
if u1 ∈ R{1}(w), . . . , un ∈ R{n}(w) then⋂

1≤j≤nR{j}(uj) 6= ∅;

• V : P → 2W is a valuation function for atomic propo-
sitions;

with RJ(w) = {u ∈W : (w, u) ∈ RJ} for any J ∈ 2AGT .

The partition induced by the equivalence relation RJ is the
set of possible choices of the group J . Indeed, in STIT a
choice of a group J at a given world w is identified with the
set of possible worlds RJ(w). We call RJ(w) the set of pos-
sible outcomes of group J’s choice at world w, in the sense
that group J’s current choice at w forces the possible worlds
to be in RJ(w). The set R∅(w) is simply the set of possi-
ble outcomes at w, or said differently, the set of outcomes
of the current game at w. According to Condition (i), the

set of possible outcomes of a group J’s choice is a subset
of the set of possible outcomes. Condition (ii), called addi-
tivity, means that the choices of the agents in a group J is
made up of the choices of each individual agent and no more.
Condition (iii) corresponds to the property of independence
of agents: whatever each agent decides to do, the set of out-
comes corresponding to the joint action of all agents is non-
empty. More intuitively, this means that agents can never be
deprived of choices due to the choices made by other agents.
In Lorini and Schwarzentruber’s work 2011 determinism for
the group AGT was assumed. That is to say that the set of
outcomes corresponding to a joint action of all agents is a
singleton. Horty’s group STIT logic [Horty, 2001] does not
suppose this. Here we deal with Horty’s version of STIT. So
a STIT model is a game form in which a joint action of all
agents might determine more than one outcome.

3.2 Embedding Atemporal STIT into CP

That STIT is not embeddable into CPcan be inferred from
various reasons, for instance: STIT satisfiability problem
is undecidable if there are more than 3 agents [Herzig and
Schwarzentruber, 2008], unlike CP; STIT does not have the
finite model property [Herzig and Schwarzentruber, 2008],
unlike CP, which we have seen is embeddable S5.

We can nevertheless embed a variant of group STIT un-
der the assumption that every agent has a finite and bounded
number of actions in his repertoire. The embedding uses a
special formula GRIDm which enforces a CP model to en-
code a game form, and a suitably defined translation tr1.

Theorem 1. Let us consider a group STIT formula ϕ. Let
m be an integer. Then the following items are equiva-
lent: 1. ϕ is STIT-satisfiable in a STIT-model where each
agent has at most 2m actions; 2. ϕ is STIT-satisfiable in
a STIT-model where each agent has exactly 2m actions;
3. GRIDm ∧ tr1(ϕ) is CP-satisfiable.

3.3 Atemporal Individual STIT

In this subsection, we consider the following fragment of
STIT called atemporal individual STIT:

LI−STIT(P, AGT ) : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | [{j} : stit]ϕ

where p ranges over P and j ranges over AGT .
This fragment of STIT, axiomatized by [Xu, 1998], has the

exponential finite model property (see Lemma 7 in [Balbiani
et al., 2008b]). Moreover, as the following theorem high-
lights, it can be embedded in logic CP, through the above
translation.

Theorem 2. Let us consider a STIT formula ϕ of the indi-
vidual STIT fragment. Let m be the length of ϕ. Then the
following three items are equivalent: 1. ϕ is STIT-satisfiable
2. ϕ is STIT-satisfiable in a model where each agent has at
most 2m actions; 3. GRIDm ∧ tr1(ϕ) is CP-satisfiable.

Thanks to Theorem 2, we reduce the NEXPTIME-
complete satisfiability problem of individual STIT [Balbiani
et al., 2008b] to the CP-satisfiability problem. As the re-
duction is polynomial, we obtain the following lower bound
complexity result for the CP-satisfiability problem. We thus
obtain also a lower bound result of NEXPTIME-hardness for
the complexity of the satisfiability problem of CP.



4 The Ceteris Paribus Structure of Coalition

Logic of Propositional Control

4.1 Logic CL−PC

CL−PC was introduced by [van der Hoek and Wooldridge,
2005] as a formal language for reasoning about capabilities
of agents and coalitions in multiagent environments. In this
logic the notion of capability is modeled by means of the con-
cept of control. In particular, it is assumed that each agent i
is associated with a specific finite subset Pi of the finite set
of all propositions P. Pi is the set of propositions controlled
by the agent i. That is, the agent i has the ability to assign a
(truth) value to each proposition Pi but cannot affect the truth
values of the propositions in P\Pi. In the variant of CL−PC

studied by [van der Hoek and Wooldridge, 2005] it is also as-
sumed that control over propositions is exclusive, that is, two
agents cannot control the same proposition. Moreover, it is
assumed that control over propositions is complete, that is,
every proposition is controlled by at least one agent.

The language of CL−PC is built from a finite set of atomic
propositions P and a finite set of agents AGT = {1, . . . , n},
and is defined by the following BNF:

LCL−PC(P, AGT ) : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | ♦Jϕ

where p ranges over P and J ranges over 2AGT . Operator
♦J is called cooperation modality, and the construction ♦Jϕ
means that “group J has the contigent ability to achieve ϕ”.

Definition 5 (CL−PC model). A model for CL−PC is a tuple
M = (P1, . . . ,Pn, X) where: (i) P1, . . . ,Pn is a partition
of P among the agents in AGT ; (ii) X ⊆ P is the set of
propositions which are true in the initial state.

For every group of agents J ⊆ AGT , let PJ =
⋃

i∈J Pi

be the set of atomic propositions controlled by the group J .
Moreover, for every group J ⊆ AGT and for every set of
atomic propositions X ⊆ P, let XJ = X ∩PJ be the set of
atomic propositions in X controlled by the group J . Sets XJ

are called J-valuations.
Given a CL−PC model M = (P1, . . . ,Pn, X), the truth

condition for the CL−PC modal operators is:

M |=CL−PC ♦Jϕ⇐⇒ ∃X ′
J ⊆ PJ : M

⊕
X ′

J |=CL−PC ϕ

where M
⊕
X ′

J is the CL−PC model (P1, . . . ,Pn, X
′′)

such that: X ′′
AGT\J = XAGT\J and X ′′

J = X ′
J . That is, ♦Jϕ

is true at a given model M if and only if, the coalition J can
change the truth values of the atoms that it controls in such a
way that ϕ will be true afterwards (i.e., given the actual truth-
value combination of the atoms which are not controlled by
J , there exists a truth-value combination of the atoms con-
trolled by J which ensures ϕ).

4.2 Embedding CL−PC into STIT and CP

The aim of this section is to provide an embedding of CL−PC

into the variant of atemporal group STIT with bounded
choices (atemporal ‘bounded’ group STIT) that have been
presented in Section 3.1. This is achieved by making use of
a suitably defined translation tr2 and dedicated formulae en-
forcing a CL−PC-like structure on STIT models: formulae

EXC
+ and EXC

− enforce that control over atomic proposi-
tions in P is exclusive, formula COMPL enforces that exer-
cise of control over atomic propositions in P is complete; for-
mula GRID

∗ enforces that all the possible truth-value com-
binations of the atomic propositions in P are possible.

Theorem 3. Let m = |P|. Then, a CL−PC formula ϕ

is CL−PC-satisfiable if and only if (EXC+ ∧ EXC
− ∧

COMPL ∧GRID
∗) ∧ tr2(ϕ) is satisfiable in a STIT model

where each agent has at most 2m actions.

As CP embeds atemporal ‘bounded’ group STIT (Theorem
1 in Section 3.1), from Theorem 3 it follows that CP also
embeds CL−PC.

5 The Ceteris Paribus Structure of Dynamic

Logic of Propositional Assignments

5.1 Logic DL−PA

The dynamic logic of propositional assignments (DL−PA) is
the concrete variant of propositional dynamic logic (PDL)
[Harel et al., 2000] in which atomic programs are assign-
ments of propositional variables to true or to false. The
complexities of the model checking and of the satisfiability
problem for DL−PA have been recently studied by [Balbiani
et al., 2013]. The starless version of DL−PA was previ-
ously studied by [van Eijck, 2000] and recently put to use by
[Herzig et al., 2011], who have shown that it embeds CL−PC.

The language of DL−PA is built from a finite set of atomic
propositions P and is defined by the following BNF:

π ::= +p | −p | π;π | π ∪ π | π∗ | ϕ?

LDL−PA(P) : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 〈π〉ϕ

We will use ±p to denote (+p ∪ −p). A DL−PA-
model is a set X ⊆ P, that is, a propositional valuation.
We provide the semantics for the key operators, the
rest is standard: J+pK = {(X,X ′) | X ′ = X ∪ {p}};
J−pK = {(X,X ′) | X ′ = X \ {p}}; J〈π〉ϕK =
{X | there exists X ′ s.th. (X,X ′) ∈ JπK and X ′ ∈ JϕK}.

We write X |=DL−PA ϕ for X ∈ JϕK. We will refer to the
fragment of DL−PA without ∗ operator as starless DL−PA.

5.2 Embeddings between Starless DL−PA and CP

A DL−PA model X can be translated directly to the pointed
CP model MCP, X . The desired embedding is obtained
through a suitable translation tr3

Theorem 4. Let X be a DL−PA model and ϕ belong to the
language of starless DL−PA:

X |=DL−PA ϕ ⇐⇒ MCP, X |=CP tr3(ϕ)

An embedding in the opposite direction can also be ob-
tained, through a suitably defined translation tr4:

Theorem 5. Let M be an CP-model and ϕ ∈ LCP(P):

M, w |=CP ϕ ⇐⇒ w |=DL−PA tr4(ϕ)

From Theorem 5 we can finally obtain as corollary a
satisfiability-preserving embedding of CP into DL−PA ex-
ploiting a formula GRID∗∗ forcing a CP-model to contain
all propositional valuations from P. Then, tr4(ϕ) is DL−PA

satisfiable if and only if GRID∗∗ ∧ ϕ is CP satisfiable.



References

[Alur et al., 2002] R. Alur, T. Henzinger, and O. Kupferman.
Alternating-time temporal logic. Journal of the ACM,
49:672–713, 2002.

[Balbiani et al., 2008a] P. Balbiani, O. Gasquet, A. Herzig,
F. Schwarzentruber, and N. Troquard. Coalition games
over kripke semantics. In C. Dégremont, L. Keiff, and
H. Rückert, editors, Festschrift in Honour of Shahid Rah-
man, pages 1–12. College Publications, 2008.

[Balbiani et al., 2008b] P. Balbiani, A. Herzig, and N. Tro-
quard. Alternative axiomatics and complexity of de-
liberative stit theories. Journal of Philosophical Logic,
37(4):387–406, 2008.

[Balbiani et al., 2013] P. Balbiani, A. Herzig, and N. Tro-
quard. Dynamic logic of propositional assignments: A
well-behaved variant of PDL. In Proceedings of the 28th
ACM/IEEE Symposium on Logic in Computer Science
(LICS 2013), pages 143–152. IEEE Computer Society,
2013.

[Belnap et al., 2001] N.D. Belnap, M. Perloff, and M. Xu.
Facing the future: agents and choices in our indeterminist
world. Oxford University Press, USA, 2001.

[Blackburn et al., 2001] P. Blackburn, M. de Rijke, and
Y. Venema. Modal Logic. Cambridge University Press,
Cambridge, 2001.

[Broersen et al., 2005] J. Broersen, A. Herzig, and N. Tro-
quard. From coalition logic to STIT. In A. Lomuscio,
E. de Vink, and M. Wooldridge, editors, Proceedings of
the Third International Workshop on Logic and Communi-
cation in Multi-agent Systems (LCMAS’05), pages 23–35,
2005.

[Broersen et al., 2006] J. Broersen, A. Herzig, and N. Tro-
quard. Embedding alternating-time temporal logic in
strategic STIT logic of agency. Journal of Logic and Com-
putation, 16(5):559–578, 2006.

[Broersen et al., 2007] J. Broersen, A. Herzig, and N. and
Troquard. A normal simulation of coalition logic and an
epistemic extension. In D. Samet, editor, Proceedings
TARK’07, pages 92–101. ACM Press, 2007.

[Goldblatt, 1992] R. Goldblatt. Logics of Time and Compu-
tation. CSLI, 1992.

[Goranko and Jamroga, 2004] V. Goranko and W. Jamroga.
Comparing semantics of logics for multi-agent systems.
Synthese, 139:241–280, 2004.

[Goranko et al., 2013] V. Goranko, W. Jamroga, and P. Tur-
rini. Strategic games and truly playable effectivity func-
tions. Journal of Autonomous Agents and Multi-Agent Sys-
tems, (26):288–314, 2013.

[Goranko, 2001] V. Goranko. Coalition games and alternat-
ing temporal logics. In Proceedings of the 8th confer-
ence on theoretical aspects of rationality and knowledge
(TARK’01), pages 259–272, 2001.

[Harel et al., 2000] D. Harel, D. Kozen, and J. Tiuryn. Dy-
namic Logic. MIT Press, 2000.

[Herzig and Schwarzentruber, 2008] A. Herzig and
F. Schwarzentruber. Properties of logics of individual and
group agency. Advances in modal logic, 7:133–149, 2008.

[Herzig et al., 2011] A. Herzig, E. Lorini, F. Moisan, and
N. Troquard. A dynamic logic of normative systems. In
T. Walsh, editor, Proceedings of the Twenty-Second Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2011), pages 228–233. AAAI Press, 2011.

[Herzig, 2014] A. Herzig. Logics of knowledge and action:
A critical analysis and challenges. Journal of Autonomous
Agents and Multi-Agent Systems, DOI: 10.1007/s10458-
014-9267-z, 2014.

[Horty, 2001] J. F. Horty. Agency and Deontic Logic. Oxford
University Press, Oxford, 2001.

[Lorini and Schwarzentruber, 2011] E. Lorini and
F. Schwarzentruber. A logic for reasoning about
counterfactual emotions. Artificial Intelligence, 175(3-
4):814–847, 2011.

[Moulin and Peleg, 1982] H. Moulin and B. Peleg. Cores of
effectivity functions and implementation theory. Journal
of Mathematical Economics, 10:115–145, 1982.

[Pauly, 2002] M. Pauly. A modal logic for coalitional power
in games. Journal of Logic and Computation, 12(1):149–
166, 2002.

[van Benthem et al., 2009] J. van Benthem, P. Girard, and
O. Roy. Everything else being equal: A modal logic for ce-
teris paribus preferences. Journal of Philosophical Logic,
38:83–125, 2009.

[van der Hoek and Pauly, 2007] W. van der Hoek and
M. Pauly. Modal logic for games and information. In
P. Blackburn, J. van Benthem, and F. Wolter, editors,
Handbook of Modal Logic, pages 1077–1146. Elsevier,
2007.

[van der Hoek and Wooldridge, 2005] W. van der Hoek and
M. Wooldridge. On the logic of cooperation and proposi-
tional control. Artificial Intelligence, 164:81–119, 2005.

[van Eijck, 2000] J. van Eijck. Making things happen. Studia
logica, 66(1):41–58, 2000.

[Xu, 1998] M. Xu. Axioms for deliberative STIT. Journal
of Philosophical Logic, 27:505–552, 1998.




