How Potential BLFs Can Help to Decide under Incomplete Knowledge

Florence Dupin de Saint-Cyr Romain Guillaume

IRIT, Université de Toulouse, Toulouse, France

IPMU 2018, June 11th - 15th

Introduction

Bipolar Layered Frameworks (BLFs) Awareness and K-Potential-BLF K-Potential-BLF and Decision Making Conclusion

- Qualitative decision problem
- Under incomplete knowledge
- Bipolar evaluation
- BLF = good visualization of
 - Connection between decision alternatives and goals,
 - Importance and Polarities of goals
- Aim: take into account completeness of knowledge.

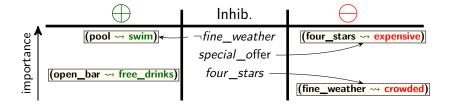
Bipolar Layered Frameworks (BLFs)

Agent's information:

- set \mathcal{P} of decision principles (DP) in $\mathscr{L}_F \times LIT_G$ $(\varphi, g) =$ defeasible rule "when φ (features) holds then g (goal) is generally achieved"
- polarity of goals: \oplus (desirable) and \ominus (undesirable)
- $\bullet\,$ relative importance of goals: $\preceq\,$
- exceptions that inhibit defeasible rules: $\mathcal{R} = \{(\psi, p) | \psi \in \mathscr{L}_F, p \in \mathcal{P}\}$

Example of BLF: Find a hotel

- goals: swim ≃ expensive ≻ free_drinks ≻ crowded
- features: {pool, open_bar, four_stars, fine_weather, special_offer}



K-Valid-BLF

- Decision maker: knowledge K about alternative a
- $K \subseteq \mathscr{L}_F$ (features) supposed consistent
- Three kinds of knowledge about a:
 - φ holds for candidate *a* (i.e., $K \models \varphi$)
 - φ does not hold ($K \models \neg \varphi$)
 - φ is unknown for a $(K \not\models \varphi \text{ and } K \not\models \neg \varphi)$

Definition (K-Valid-BLF)

Given K and BLF= $(\mathcal{P}, \mathcal{R}, pol, \preceq)$ A K-Valid-BLF is a quadruplet $(\mathcal{P}_K, \mathcal{R}_K, pol, \preceq)$

• $\mathcal{P}_{K} = \{(\varphi, g) \in \mathcal{P}, s.t. \ K \models \varphi\}$ DPs whose reason holds in K: K-valid-DPs.

• $\mathcal{R}_{K} = \{(\psi, p) \in \mathcal{R}, s.t. \ K \models \psi\}$: valid inhibitions wrt to K.

Comparing alternatives

Definition (realized goal)

A goal g is realized w.r.t. a K-Valid-BLF ($\mathcal{P}_{K}, \mathcal{R}_{K}, \text{ pol}, \preceq$) iff

 $\exists (arphi, \mathsf{g}) \in \mathcal{P}_{\mathcal{K}} \text{ and } (arphi, \mathsf{g}) \text{ not inhibited in } \mathcal{R}_{\mathcal{K}}$

Definition (BiLexi decision rule (Bonnefon, Dubois, Fargier'08))

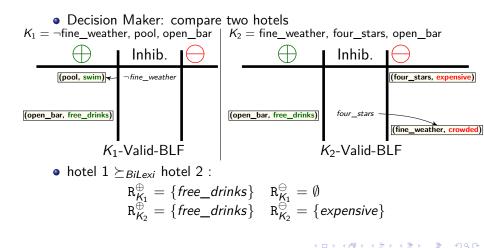
Alternatives	а	a'
Knowledge	K	<i>K′</i>
Realized goals	R	R′

$$R^{\oplus}=R\cap\overline{\oplus},\ R^{\ominus}=R\cap\overline{\ominus}.$$

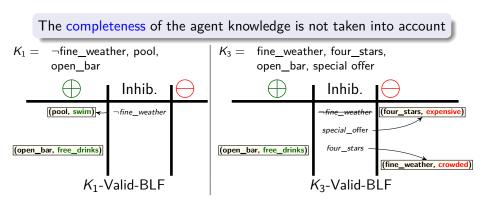
 $a \succeq_{\textit{BiLexi}} a' \quad \textit{ iff } |R^\oplus_\delta| \geq |R^{\prime\oplus}_\delta| \textit{ and } |R^\ominus_\delta| \leq |R^{\prime\ominus}_\delta|$

where $\delta = \operatorname{argmax}_{\lambda}(\{|\mathtt{R}_{\lambda}^{\oplus}| \neq |\mathtt{R}_{\lambda}'^{\oplus}| \text{ or } |\mathtt{R}_{\lambda}^{\ominus}| \neq |\mathtt{R}_{\lambda}'^{\ominus}|\})$

Example of K-Valid-BLF



Weakness of K-Valid-BLF



(日)

K-Potential-BLF

Definition (K-Potential-BLF)

Given K and BLF=($\mathcal{P}, \mathcal{R}, pol, \preceq$), the K-Potential-BLF is the quadruplet ($\hat{\mathcal{P}}_{K}, \hat{\mathcal{R}}_{K}, pol, \preceq$)

• $\widehat{\mathcal{P}}_{\mathcal{K}}$: potential DPs

 $\widehat{\mathcal{P}}_{\mathcal{K}} = \{ p \in \mathcal{P} \mid K \cup \{ reas(p) \} \text{ is consistent } \}$

• $\widehat{\mathcal{R}}_{K}$: potential inhibitions relation

 $\widehat{\mathcal{R}}_{\mathcal{K}} = \{(\psi, p) \in \mathcal{R} \mid \mathcal{K} \cup \{reas(p) \land \psi\} \text{ is consistent } \}$

 $\begin{aligned} &\mathcal{K}_{1}\text{-Potential-BLF: } \widehat{\mathcal{P}}_{\mathcal{K}_{1}} = \{p_{1}, p_{2}, p_{3}\} \\ &\widehat{\mathcal{R}}_{\mathcal{K}_{1}} = \{(\neg \textit{fine_weather}, p_{1}), (\textit{special_offer}, p_{3}), (\textit{four_stars}, p_{4})\} \end{aligned}$

Potential realization

status	Realized	Not realized	
notation	$g\in \mathtt{R}_{\mathcal{K}}$	$\pmb{g}\in\overline{\mathtt{R}}_{\mathcal{K}}$	
definition	$\exists p \in \mathcal{P}_{\mathcal{K}} \ \ concl(p) = g$ and	$\forall p \in \mathcal{P}_{\mathcal{K}}$ either $concl(p) eq g$	
	$\nexists(\psi, \boldsymbol{p}) \in \mathcal{R}_{\mathcal{K}}$	or $\exists (\psi, {\pmb{p}}) \in {\mathcal{R}}_{{\mathcal{K}}}$	
status	Necessarily realized	Possibly not realized	
notation	$m{g}\in N$ R $_{K}$	$g\in \Pi\overline{\mathtt{R}}_{\mathcal{K}}$	
definition	$\exists p \in \mathcal{P}_{\mathcal{K}} \ \ concl(p) = g$ and	$orall p \in \mathcal{P}_{\mathcal{K}}$ either $concl(p) eq g$	
	$ ot ot = \widehat{\mathcal{R}}_{\mathcal{K}}$	or $\exists (\psi, {m p}) \in \widehat{\mathcal{R}}_{\mathcal{K}}$	
status	Potentially realized	Potentially not realized	
notation	$g\in P\mathtt{R}_{\mathcal{K}}$	$g\in P\overline{\mathtt{R}}_{K}$	
definition	$\exists \pmb{p}\in \widehat{\mathcal{P}}_{\mathcal{K}} \ \ oldsymbol{concl}(\pmb{p})=\pmb{g} \ ext{and}$	$orall p\in \widehat{\mathcal{P}}_{\mathcal{K}}$ either $\mathit{concl}(p) eq g$	
	$ earrow(\psi, oldsymbol{ ho}) \in \widehat{\mathcal{R}}_{oldsymbol{\kappa}}$	or $\exists (\psi, {m p}) \in \widehat{\mathcal{R}}_{\mathcal{K}}$	
status	Possibly realized	Necessarily not realized	
notation	$m{g}\in \Pi\mathtt{R}_{\mathcal{K}}$	$g\in N\overline{\mathtt{R}}_{K}$	
definition	$\exists p\in \widehat{\mathcal{P}}_{\mathcal{K}} \ \ concl(p)=g ext{ and }$	$orall p\in \widehat{\mathcal{P}}_{\mathcal{K}}$ either $concl(p) eq g$	
	$ eq (\psi, oldsymbol{p}) \in \mathcal{R}_{\mathcal{K}}$	or $\exists (\psi, p) \in \mathcal{R}_{\mathcal{K}}$	

Florence Dupin de Saint-Cyr, Romain Guillaume Poten

Link between K-Potential-BLF and K-Valid-BLF

Proposition

For any BLF ($\mathcal{P}, \mathcal{R}, pol, \preceq$) and any knowledge base K

 $N \mathbb{R}_{\mathcal{K}} \subseteq \mathbb{R}_{\mathcal{K}} \subseteq \Pi \mathbb{R}_{\mathcal{K}}$ $N \mathbb{R}_{\mathcal{K}} \subseteq P \mathbb{R}_{\mathcal{K}} \subseteq \Pi \mathbb{R}_{\mathcal{K}}$

 $\begin{array}{l} \Pi \overline{\mathbb{R}}_{K} \subseteq \overline{\mathbb{R}}_{K} \subseteq N \overline{\mathbb{R}}_{K} \\ \Pi \overline{\mathbb{R}}_{K} \subseteq P \overline{\mathbb{R}}_{K} \subseteq N \overline{\mathbb{R}}_{K} \end{array}$

Definition (Sensitivity)

Sensitivity of a BLF $(\mathcal{P}, \mathcal{R}, pol, \preceq)$ wrt K:

$$s(BLF, K) = \left| \frac{\Pi R_K}{N R_K} \right|$$

Awareness

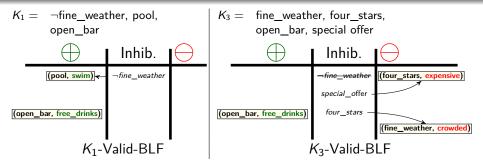
Definition

K is perfect knowledge wrt a BLF ($\mathcal{P}, \mathcal{R}, pol, \preceq$) iff $\forall \varphi \in \bigcup_{p \in P} \{reas(p)\} \cup \bigcup_{(\psi,p) \in \mathcal{R}} \{\psi\}, \text{ either } K \models \varphi \text{ or } K \models \neg \varphi.$

Proposition

For all BLF ($\mathcal{P}, \mathcal{R}, pol, \preceq$), (K is a perfect knowledge wrt BLF) \Rightarrow ($\widehat{\mathcal{P}}_{K} = \mathcal{P}_{K}$ and $\widehat{\mathcal{R}}_{K} = \mathcal{R}_{K}$) \Rightarrow s(BLF, K) = 0. But the converse does not necessarily hold.

Refining the ordering of Candidates



 $1 \sim_{BiLexi} 3$ can be refined by using either NR_K or ΠR_K .

- NR_K is taken if the DM is skeptical
- ΠR_K if the DM is a believer

With NR_{K} : $1 \sim_{BiLexi} 3$ while With ΠR_{K} , $3 \succ_{BiLexi} 1$.

Acquisition of Knowledge to Discriminate Alternatives

We consider that decision maker able to acquire knowledge

Definition

Given a BLF, a ε and K and K' describing alternatives a and a',

• a is ε-sensitivity-comparable to a' iff

$$|s(BLF, K) - s(BLF, K')| \le \varepsilon$$

 a is BiLexi-preferred to a' with ε-sensitivity awareness iff they are ε-sensitivity-comparable and a ≿_{BiLexi} a'

Acquisition of Knowledge to Discriminate Candidates

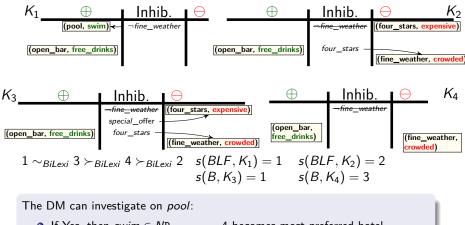
- "What most important goal could be necessarily realized
 - by adding only one formula φ to K
 - s.t. not possibly realized by adding $\neg \varphi$?"
- "What is the simplest formula φ that could do that?"

Definition

Given a BLF $(\mathcal{P}, \mathcal{R}, pol, \preceq)$ and K, a best-discriminating formula is:

$$\varphi^* = \operatorname*{arg\,max}_{\varphi \in \mathscr{L}_F} \left\{ k : \left\{ \begin{array}{l} \mathit{level}(g) = k \textit{ and} \\ g \in \mathit{NR}_{\mathcal{K} \cup \{\varphi\}} \textit{ and} \\ g \notin \mathit{\PiR}_{\mathcal{K} \cup \{\neg\varphi\}} \end{array} \right\} \right\}$$

Example with 4 hotels



- If Yes, then $swim \in NR_{K_4 \cup \{pool\}}$, 4 becomes most preferred hotel
- otherwise swim ∉ ΠR_{K4∪{¬pool}}

Conclusions and Perspectives

Conclusions

- BLF = visual tool for decision making
- Use potential-BLFs to refine comparison between candidates
- potential-BLFs integrates what could additionally be learned about the candidates.

Perspectives

- Enhance expressiveness by adding supports and weights.
- Take into account uncertainty on the features of candidates.