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Abstract

We consider the problem of stabilizing a nonlinear system with filtered output. Given an output feedback control law which
satisfies a stability requirement, we consider the case in which the necessary output cannot be measured. The measure is rather
the output of an auxiliary stable dynamics in cascade with the system. In place of fully redesign the control architecture, we
slightly modify the original control law design by adding a disturbance observer and we recover the desired stability property
for the system. The disturbance observer is design as an extended high-gain observer.

1 Introduction

We consider the problem of output feedback stabiliza-
tion of single-input single-output nonlinear systems in
presence of filtered outputs. In particular, we suppose
that the origin of a given system

Σ :

{
ẋ = f(x, u), x ∈ Rn, u ∈ R,
y = h(x), y ∈ R,

(1)

can be stabilized by means of a known (dynamic) output
feedback law Ση

Ση :

{
η̇ = φ(η, y), η ∈ Rm,
u = ψ(η, y).

(2)

The design of ϕ,ψ can be obtained with any desired
method such as state-feedback design combined with a
state observer, feedback linearization approach, back-
stepping design, forwarding design, Lyapunov redesign,
passivity tools, see, e.g., [13, 15, 18] and references
therein. In many practical applications, however, the
output y of Σ is not directly available, but we can only
have access to a static/dynamical version of it. For in-
stance, in [14, 21], it is studied the case in which the
output y is saturated. In [7], the authors address the
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case in which the output is multiplied by a time-varying
function perturbing its current magnitude. Many other
researchers addressed the problem in which the output
is subject to sampling, delays, quantization and other
hybrid phenomena, see, among others, [11, 26].

In this work, we focus to the case in which we can only
measure a filtered version of y. In particular, y is the
input to an auxiliary cascade system Σf

Σf :

{
ż = Arz +Br

(
q(z) + y

)
, z ∈ Rr,

p = Crz, p ∈ R
(3)

whose output p is the real available measure. System
(3) is supposed to be a stable (in some sense defined in
the following) dynamical filter. This scenario can occur
when the dynamics of a sensor is slow [12] or drifting [9],
as in the context of chemical concentrations sensors, or
in parallel power plants applications where the dynam-
ics of a load is modeled as dynamical cascaded systems
[5]. These dynamics may represent also a physical inter-
connection between parts of a system, like transmission
line in a network [10]. Our objective is to stabilize the
cascade system Σ-Σf on an equilibrium on which x = 0.

It is worth noticing that the cascade Σ-Σf can be seen
as a system in feedforward form. The problem of stabi-
lizing a feedforward system has attracted increasing in-
terest by the control community and has been addressed
with different tools: between the others, passivity ap-
proaches, see e.g. [22], state-feedback laws with satu-
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rated inputs, see e.g. [14,28] and state-feedback forward-
ing techniques, see e.g. [23, 24]. Based on forwarding,
also an integral action approach can be applied, by fol-
liwing [3]. The main weakness of the majority of these
approaches, however, is that either the full-state x needs
to be known (or estimated) or a passivity assumption
on the system Σf is needed. In this paper, instead, we
follow a different path and we explicitly use the informa-
tion that the controller Ση exists and has already been
designed.

In particular, rather than designing an output feedback
stabilizer for the cascade Σ-Σf , we propose to modify
the known stabilizer Ση by adding an opportune system
which pre-processes the output p of Σf . For this, the full
knowledge of the state x of the plant Σ is not required.
To this end, the main idea is to use a disturbance ob-
server [8] designed in particular as an extended high-gain
observer (see, e.g., [16,25], also known as extended state
observer, [20]) able to recover the output y of Σ from
the estimation of the state of the filter Σf . In the same
spirit of standard results about separation principle for
nonlinear systems in semi-global output feedback sta-
bilization (see, e.g., [4, 29, 30]), the resulting controller
allows to stabilize an equilibrium of the cascade system
Σ-Σf with a domain of attraction that includes the set
of initial conditions. On this equilibrium, the state of Σ
coincides with the origin, thus recovering the properties
of the original output feedback law Ση. The proposed
approach can also be seen as a tool to design stabiliza-
tion law for interconnected systems for which passivity
conditions may not be satisfied and for which the de-
sign of a full-state observer may be impossible (or to be
avoided). This, in particular, will be shown with an aca-
demic example.

Notation R is the set of real numbers, R≥0 := [0,∞),
and | · | denotes the standard Euclidean norm in Rn.
Given c > 0, we define Bnc := {x ∈ Rn : |x| ≤ c}. If
n = 1, then we compactly write Bc. Given x ∈ Rn, y ∈
Rm, we denote (x, y) := (x>, y>)>. A triplet of matrices
(An, Bn, Cn) is in prime form of dimension n if An ∈
Rn×n is a shift matrix (all 1’s on the upper diagonal
and all 0’s elsewhere), B>n := (0 · · · 0 1), B ∈ Rn×1

and Cn := (1 0 · · · 0) ∈ R1×n. Given s, L ∈ R, L > 0,
we define satL(s) := min{L,max{s,−L}}. We refer to
standard definitions of class K, KL functions [27].

2 Main result

We state the following assumptions.

Assumption 1 The functions f, φ, ψ in (1), (2), are lo-
cally Lipschitz and zero at the origin. The function h is
zero at the origin, and dh/dx is locally Lipschitz. The

triplet (Ar, Br, Cr) in (3) is in prime form and the func-
tion q is locally Lipschitz and zero at the origin. The ini-
tial conditions of (1), (2), (3), range in some given com-
pact sets X × E × Z ⊂ Rn × Rm × Rr.

Assumption 2 The origin of the closed-loop system
(1), (2) is asymptotically stable with a domain of attrac-
tion A ⊃ X × E, and locally exponentially stable.

Assumption 3 One of the following is satisfied.

a. For any positive number µ > 0 and compact set Z ⊂
Rr, there exist a compact set Z ⊇ Z such that, for
any continuous function y : [0,∞) → Bµ, solutions

to (3) satisfy z(t) ∈ Z for all t ≥ 0.
b. System (3) is input-to-state stable (ISS) with respect

to y, namely there exist a class K function γ and a
class KL function β so that solutions to (3) satisfy
|z(t)| ≤ β(|z(0)|, t)+γ(sups∈[0,t] |y(s)|) for all t ≥ 0.

Assumptions 1-2 state that all the functions in (1), (2)
are smooth enough and that controller (2) asymptoti-
cally stabilizes the origin of the plant (1) with a pre-
scribed domain of attraction A. Assumption 3.a states
that filter (3) satisfies a bounded-input bounded-state
property (BIBS), while Assumption 3.b is a stronger con-
dition, asking for an input-to-state (ISS) property [27].
In the main theorem below, we will analyze both the
cases in which filter (3) satisfies either Assumption 3.a,
or 3.b.

The goal of this paper is to design a control law of the
form

ζ̇ = fc(ζ, p), u = ψc(ζ, p), (4)

achieving the stabilization of an equilibrium of the
closed-loop system (1), (3), (4) on which x = 0. In-
spired by classical approaches in output feedback liter-
ature, we propose a simple paradigm composed of two
steps. First, we design an extended high-gain observer
[8, 16, 25] able to recover the input y from the filter (3).
Then, we replace the input of the controller (2) by the
saturated version of the estimate given by the observer.
By following this strategy, the state of controller (4) is
then partitioned as ζ := (η, ẑ, σ), where the dynamics
of η ∈ Rm is given by

η̇ = φ(η, satL(σ)), u = ψ(η, satL(σ)), (5)

with the functions φ, ψ defined as in (2), L ∈ R≥0 a
positive parameter to be chosen large enough and ini-
tial conditions ranging in the compact set E defined in
Assumption 1, and the dynamics of (ẑ, σ) ∈ Rr × R is
given by

˙̂z = Ar ẑ +Br(satM (q(ẑ)) + σ) +Dr(g)Kr(p− Cr ẑ),
σ̇ = gr+1kr+1(p− Cr ẑ),

(6)
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with initial conditions ranging in a compact set
R ⊂ Rr+1, (Ar, Br, Cr) a triplet in prime form,
Kr := (k1, . . . , kr), Dr(g) := diag(g, . . . , gr) with g ≥ 1
being a (high-gain) positive parameter to be chosen
large enough and M ∈ R≥0 a second positive parameter
to be selected. We have the following result.

Theorem 1 Let k1, . . . , kr+1 be chosen such that the
characteristic polynomial sr+1 + k1s

r + · · ·+ krs+ kr+1

has all eigenvalues with strictly negative real part and let
Assumption 1 and 2 hold. Then, there exist L,M > 0,
g? ≥ 1 and δ ≥ 0, such that, for any g > g? one of the
following is satisfied.

• If Assumption 3.a holds, the solutions of the closed-
loop system (1), (3), (5), (6) converge asymptotically
the set

S = {(x, η, z, ẑ, σ) : x = 0, η = 0, (z, ẑ) ∈ B2r
2δ, σ = 0}

(7)
for any initial condition in X × E × Z ×R.

• If Assumption 3.b is satisfied, then δ in (7) is zero,
namely the origin of the closed-loop system (1), (3),
(5), (6) is asymptotically stable with a domain of at-
traction including X ×E ×Z ×R. If, in addition, the
origin of (3) is locally exponentially stable, then the
origin of the closed-loop system is also locally exponen-
tially stable.

Proof Consider the change of coordinates ei :=
gr+1−i(ẑi − zi) for i = 1, . . . , r, and er+1 := σ − h(x).
The closed-loop system (1), (3), (5), reads

χ̇ = ϕ(χ) + ∆ϕ(χ, e) ,

ė = gFe+ ∆χ(χ, e) + ∆z(z, e)

ż = Arz +Br(q(z) + h(χ))

(8)

where we used the compact notation χ := (x, η), h(χ) :=
h(x), the function ϕ,∆ϕ,∆χ,∆z are defined as

ϕ(χ) :=
(
f(x, ψ(η, h(x))), φ(η, h(x))

)
ϕL(χ, e) :=

(
f(x, ψ(η, satL(h(x) +B>r+1e))),

φ(η, satL(h(x) +B>r+1e))
)

∆ϕ(χ, e) := ϕL(χ, e)− ϕ(χ)

∆χ(χ, e) := −Br+1
∂ h(x)
∂x ϕL(χ, e) ,

∆z(z, e) := gH
[
satM (q(z1 + e1

gr , . . . , zr + er
g ))

−q(z1, . . . , zr)
]

and F := (Ar+1 − Kr+1Cr+1), H := (B, 0), Kr+1 :=
(k1, . . . , kr+1), with (Ar+1, Br+1, Cr+1) being a triplet
in prime form. Note that the initial conditions
(χ(0), e(0), z(0)) of (8) ranges in the set (X × E) ×
Br+1
dgr ×Z, for some d large enough. Since, by definition,

e = 0 implies σ = 0 and |ẑ − z| = 0, the proof of the
theorem is completed if we are able to show that solu-
tions of (8) converge to the set {χ = 0, e = 0, z ∈ Brδ},
the latter implying also (z, ẑ) ∈ B2r

2δ. To this end, we
can follow most of the arguments used in the nonlinear
separation principle in [4]. As a consequence, we sketch
here the main steps and highlight the main differences
with respect to [4].

Definition of the parameters. By using the converse Lya-
punov theorem of Kurzwel, [19, Theorem 7], Assumption
2 allows to establish the existence of a Lyapunov func-
tion Vχ : Rn×m → R≥0 and some positive definite func-
tions α, ᾱ : R→ R≥0 and Φ : Rn×m → R≥0, satisfying

α(|χ|) ≤ Vχ(χ) ≤ ᾱ(|χ|), lim
χ→∂A

α(|χ|) =∞,
∂Vχ
∂χ

ϕ(χ) ≤ −Φ(χ),
(9)

for all χ ∈ A, where ∂A denotes the boundary of A.
In light of the properties (9), there exists v̄χ > 0 such
that the corresponding Lyapunov level set Γχ := {χ :
Vχ(χ) ≤ v̄χ} contains the set (X × E), namely (X ×
E) ⊂ Γχ ⊂ A. With this Γχ in mind, we can fix L :=

supχ∈Γχ |h(χ)| and we denote we consider the set Z of
Assumption 3.a corresponding to such µ = L. We define
then M := supz∈Z(q(z)) and δ := supz∈Z |z|. With this
choice we have fixed all the constants of the theorem,
except from g?, that will be fixed later.

Existence of solutions. Recall that all functions are (at
least) locally Lipschitz, see Assumption 1. As a conse-
quence, solutions starting in X×E×Z×R are uniquely
defined on some interval of time [0, τ̄). Since (X ×E) is
strictly contained in ∈ Γχ, there exists τ ∈ (0, τ̄) such
that any solution to (8) starting inside (X × E) satis-
fies χ(t) ∈ Γχ for all t ∈ [0, τ ]. Then, we focus on the
e-dynamics. By using standard arguments on high-gain
observers, see for instance [1, 4, 17], we can show that
the value of |e| can be made arbitrarily small in an ar-
bitrary short amount of time by picking a value of g
large enough. This can be established by differentiating
the Lyapunov function Ve(e) := e>Pe along solutions
to (8), with P = P> > 0 satisfying 1 PF + F>P = −I
(recall that F is Hurwitz by construction). We obtain

V̇e ≤ −g|e|2 +2e>P (∆χ+∆z). The following arguments
can then be used: with L fixed, there exists ∆̄χ ∈ R≥0

independent of g so that |∆χ(χ, e)| ≤ ∆̄χ for all (χ, e) ∈
Γχ × Rr+1; ∆z(z, 0) = 0 for all z ∈ Z; there exists
`z ∈ R≥0 independent of g so that |∆z(z, e)| ≤ `z|e| for
all (χ, e) ∈ Γχ × Rr+1. Therefore, for any (arbitrarily
small) ε1 > 0, we can claim that there exists g?1 ≥ 1 large
enough, such that, for any g > g?1 we have |e(t)| ≤ ε1 for
all t ∈ [ τ2 , τ ].

1 We denote with p, p̄ the smallest and the largest eigenval-
ues of P .
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Now consider the Lyapunov function Vχ defined in (9).

Its derivative along solutions of (8) gives V̇χ ≤ −Φ(χ) +
(∂Vχ/∂χ)∆ϕ(χ, e). Due to the saturation function inϕL,
there exists `ϕ satisfying |(∂Vχ/∂χ)∆ϕ(χ, e)| ≤ `ϕ|e| for
all (x, e) ∈ Γχ ×Rr+1. Since we can select ε1 arbitrarily
small, there exists ε1 > 0 such that the derivative of
Vχ along the χ-dynamics in (8) satisfies V̇χ ≤ 0 for all
χ ∈ Γχ and all |e| ≤ ε1. This shows that χ(t) ∈ Γχ for
all t ∈ [0, τ ]. Note that this also implies |h(χ(t))| ≤ L for
all t ∈ [0, τ ] and therefore, in light of Assumption 3.a,
z(t) ∈ Z for all t ∈ [0, τ ]. In light of previous analysis,
the set Γχ × Br+1

ε1 × Z is invariant and therefore we
can extend the solutions of (8) to [0,∞). We deduce
(χ(t), e(t), z(t)) ∈ Γχ × Br+1

ε1 × Z for all t ∈ [ τ2 ,∞).

Practical Attractiveness. The second part of the proof
consists in showing practical attractiveness of the equi-
librium (χ, e) = 0. In particular, this can be established
by applying the same arguments used in [4, Section V-
B] to the subsystem (χ, e). Note that in light of the Lip-
schitz properties of ∆z and the fact that ∆z(z, 0) = 0
for all z ∈ Z, the system (8) can be viewed as a cascade
between the subsystems (χ, e) and z. As a consequence,
we can use the Laypunov functions Vχ(χ) and Ve(e) pre-
viously defined to show that for any arbitrarily small
ε2 > 0, there exists T ≥ τ

2 and g?2 ≥ g?1 large enough,

such that (χ(t), e(t)) ∈ Bn+m+r+1
ε2 for all t ∈ [T,∞), and

for any g > g?2 .

Asymptotic Stability. Finally, the last part of the proof
consists in showing the asymptotic convergence to the
equilibrium (χ, e) = 0. For this, first we recall that
the origin of χ̇ = ϕ(χ) is locally exponentially stable,
see Assumption 2, and invoke the converse Lyapunov
theorem in [15, Theorem 4.14] to establish the exis-
tence of a Lyapunov function Vχ(χ), and real numbers
a, ā, a0, a1, % > 0 such that,

a|χ|2 ≤ Vχ(χ) ≤ ā|χ|2,
∂Vχ
∂χ

ϕ(χ) ≤ −a0|χ|2,
∣∣∣∣∂Vχ∂χ (χ)

∣∣∣∣ ≤ a1|χ|,
(10)

for all χ ∈ Bn+m
% . Select ε2 = %/2 (see the para-

graph Practical Attractiveness), and define the Lya-
punov functionW(χ, e) := 1

āVχ(χ) + 1
p̄Ve(e). By letting

Ω% := {(χ, e) : W(χ, e) ≤ %}, we have Bn+m+r+1
%/2 ⊂ Ω%

and supχ∈Ω% |χ| ≤ %. As a consequence, in light of
previous arguments, for any g > g?2 , any solution
(χ(t), e(t)) to (8) starting in (X × E)× Bdgr × Z satis-

fies (χ(T ), e(T ), z(T )) ∈ Ω% × Z. Now we compute the

derivative of W as Ẇ ≤ −a0

a
|χ|2 − g

p
|e|2 + β(χ, e, z)

where β(χ, e, z) := 1
ā
∂Vχ
∂χ ∆ϕ(χ, e) + 1

p̄
∂Ve
∂e (∆χ(χ, e) +

∆z(z, e)). We recall that Vχ, Ve,∆ϕ,∆χ,∆z are locally
Lipschitz and moreover ∆ϕ(χ, 0) = 0, ∆χ(0, 0) = 0,

∆z(z, 0) = 0. As a consequence by using the third in-
equality in (10), and by applying also Young’s inequal-
ity, we can bound as |β(χ, e, z)| ≤ c1

κ |χ|
2 +(c2 + c2κ)|e|2

for all (χ, e, z) ∈ Ω%×Z for some constants c1, c2, c3 > 0
independent of g and any arbitrarily large κ > 0. This
gives Ẇ ≤ −(a0/a − c1/κ)|χ|2 − (g/p − c2(1 + κ))|e|2

for all (χ, e, z) ∈ Ω% × Z. By selecting κ and g? ≥ g?2
larges enough, we obtain Ẇ ≤ −(c4|χ|2 + c5|e|2)
for all (χ, e) ∈ Ω%, for some c4, c5 > 0, and for
all g > g?3 . We conclude that all solutions satisfy
limt→∞(χ(t), e(t)) = 0, namely all solutions converge
asymptotically to {χ = 0, e = 0, z ∈ Brδ} (where we used
the definition of δ given in Definition of the parameters).
Furthermore, in view of the change of coordinates, e = 0
implies σ = 0 and |ẑ− z| = 0, and therefore (z, ẑ) ∈ Br2δ
which proves the first statement of Theorem 1. Similarly
to [4], the second part of Theorem 1 can be directly ob-
tained by using the ISS-property of Assumption 3.b and
standard small-gain arguments for the interconnection
of the subsystems (χ, e) and z. 2

Remarks

• Note that local exponential stability of the origin of
(1)-(2) in Assumption 2 is, in our context, necessary to
preserve asymptotic stability of the equilibrium x = 0.
When only local asymptotic stability is guaranteed,
the proposed feedback design (5), (6) can guarantee
only practical stability of x = 0. In order to relax such
assumption, a different design needs to be used.

• If the function q in (3) is globally Lipschitz, then no
saturation function in (6) is needed.

• The extended high-gain observer (6) may be de-
signed by following the low-power high-gain observer
paradigm introduced in [1, 2]. Such design is of par-
ticular interest to address numerical challenges and
improve the sensitivity to high-frequency measure-
ment noise. We can therefore design an extended
low-power high-gain observer, replacing (6), as

ξ̇1 = A2ξ1 +N>2 ξ2 +D2(g)G1(p− C2ξ1),

ξ̇i = A2ξi +N>2 ξi+1 +D2(g)Gi(B
>
2 ξi−1 − C2ξi),

i = 2, . . . , r−2,

ξ̇r−1 = A2ξr−1 +N>2 ξr +B2satM (q(ẑ))

+D2(g)Gr−1(B>2 ξr−2 − C2ξr−1),

ξ̇r = A2ξr + C>2 satM (q(ẑ))

+D2(g)Gr(B
>
2 ξr−1 − C2ξr),

σ = B>2 ξr,

(11)
where ξ = (ξ1, . . . , ξr) ∈ R2r is the full state of the
observer, with ξi ∈ R2, for i = 1, . . . , r, N2 = B2B

>
2 ,

(A2, B2, C2) is a triplet in prime form of dimension
2, D2(g) = diag(g, g2), and Gi ∈ R2×1, i = 1, . . . , r,
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are some fixed coefficients to be selected. In view of
the properties of the observer (11) highlighted in [1,
2], the result of Theorem 1 holds for the closed-loop
system (1), (3), (5), (11) if the coefficients G1, . . . , Gr
are chosen accordingly to [1, Lemma 1]. Moreover,
the peaking-phenomenon, see [17], can be removed by
following the saturation design proposed in [2].

3 Example

Results of Theorem 1 can be applied also to design sta-
bilizing output feedback laws for interconnected systems
that do not satisfy passivity conditions [22]. Consider for
instance the following nonlinear system

ẇ1 = ρ(w1) + w2 + u, ẇ3 = w4,

ẇ2 = −w1 + w2
2u, ẇ4 = w1 + w3

2 − w3 − w4,

p = w3,

(12)
where w := (w1, w2, w3, w4) ∈ R4 is the state, with ini-
tial condition ranging in some given compact set W ⊂
R4, u ∈ R is the control input, p ∈ R is the mea-
sured output, and ρ(·) is any Lipschitz function satisfy-
ing ρ(s)s ≤ 0 for any s ∈ R. Our objective is to design
an output feedback law of the form (4) to stabilize the
origin of (12). First, define x := (w1, w2), z := (w3, w4)
so that we obtain the representation (1), (3) in which

f(x, u) =

(
φ(x1) + x2 + u

−x1 + x2
2u

)
, h(x) = x1 + x3

2, (13)

q(z) = −z1 − z2 = Qz, Q =
(
− 1, −1

)
. (14)

The x-subsystem (1), (13) is passive with input u and
output y = w1 + w3

2, and zero-state detectable. This
can be established by means of the Lyapunov function
V (w1, w2) := 1

2 (w2
1 + w2

2), and by noting that V̇ =

w1ρ(w1) + (w1 + w3
2)u ≤ yu. As a consequence (see for

instance [15]), Assumption 2 can be verified for system
(1), (13), by selecting for instance the state feedback law
u = ψ(y) with ψ any function satisfying sψ(s) < 0 for
any s 6= 0. For example, ψ(s) = −κs for some κ > 0.
On the other hand, z-subsystem(3), (14) with input y
and output p is linear but not passive, since the rel-
ative degree between y and p is 2 (see [15, Example
6.4], [15, Lemma 6.4]). Nevertheless, since the the poles
of A2 + B2Q have strictly negative real part, Assump-
tions 3.b can be easily verified by using the Lyapunov
function Vz(z) = z>Pzz, with Pz = P>z > 0 satisfying
Pz(A2 +B2Q)+(A2 +B2Q)>Pz ≤ −λI for some λ > 0.
As a consequence, we can apply Theorem 1 to design
a dynamic semi-global output feedback law for system
(12) by designing the dynamic controller ẑ, σ given by
(6) and by selecting u = ψ(satL(σ)) for some L > 0 large
enough.

4 Conclusion

In this note, we considered the problem of designing sta-
bilizing feedback laws for nonlinear systems with filtered
output. Given an output feedback control law which
satisfies some stability requirements, we showed that,
in place of a complete redesign, adding an extended
high-gain observer allows to retrieve the desired stabil-
ity properties for the system. With an eye to the appli-
cation in power networks, this result can be further ex-
tended to the multi-agent framework to solve the prob-
lem of synchronization when dynamics over the commu-
nication line is present, see [6].
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