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Foreword

Dear Participants,

It’s a great pleasure to welcome all of you in Marseille for the seventh edition of the “International
Conference on Nonlinear Vibrations, Localization and Energy Transfer”. I am glad that the conference
comes back to the south of France after the first gathering in Frejus (2004) and the successful editions
that were successively held in Samos Island (2006), Frescati (Rome, 2009), Haifa (2012), Istanbul
(2014) and Liège (2016).

The purpose of our conference is more than ever to promote exchange and discussions between
scientists from all around the world about the latest research developments in the area of nonlinear
vibrations, with a particular emphasis on the concept of nonlinear normal modes and targeted energy
transfer. We preserve the usual format, with 30 minutes communications within plenary sessions, and
we hope many fruitful discussions will ensue and animate lunch hour and coffee breaks. I have no
doubt that you will enjoy the scientific content of this event and, in particular, the special session
about nonlinear aspects in Musical Acoustics that will illustrate the variety of applications of the
concepts, methods, and tools that we are interested in.

Beyond the scientific aspects, the social program is intended to give you a taste of the Provencal
savoir vivre, and I expect that you will enjoy our city of Marseille and the local peculiarities that make
it so unique.

Finally, I would like to warmly thank all the people that have contributed to the success of this
conference, the scientific committee, all the sponsors and of course all the Keynotes speakers, oral
presenters and poster sessions participants. Special thanks to the local organizing committee, and in
particular to Annie, Elena, Marie-Madeleine, Stéphanie, Alain and Michel from the LMA for their
help.

Marseille, June 2019

Bruno Cochelin
NNM20129 Chair
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W. Lacarbonara La Sapienza, Rome

C.H. Lamarque ENTPE, Lyon

S. Lenci Univ. Politecnica delle Marche

L.I. Manevitch Russian Academy of Sciences

Y. Mikhlin Kharkiv Polytechnical Institute

G. Rega La Sapienza, Rome

F. Romeo La Sapienza, Rome

S.W. Shaw Michigan State Univ.

C. Touzé ENSTA ParisTech, Palaiseau

A.F. Vakakis Univ. of Illinois at Urbana-Champaign

K. Worden Univ. of Sheffield

Organizing committee

B. Cochelin, Chairperson ECM, LMA, Marseille

S. Bellizzi CNRS, LMA, Marseille

R. Cote AMU, LMA, Marseille

P.O. Mattei CNRS, LMA, Marseille

E. Sarrouy ECM, LMA, Marseille

F. Silva CNRS, LMA, Marseille

C. Vergez CNRS, LMA, Marseille

v



vi



Contents

Monday, 1st July 2019

Identification & ROM 1

Keynote: Nonlinear System Identification: Current Status and Challenges Ahead,
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Nonlinear System Identification:
Current Status and Challenges Ahead

G. Kerschen, J.P. Noël

University of Liège
Aerospace and Mechanical Engineering Department

Liège, Belgium
g.kerschen@ulg.ac.be

Abstract Even if we are entering the age of virtual prototyping, experimental testing and
system identification still play a key role because they help the structural dynamicist reconcile
numerical predictions with experimental investigations. The past decade witnessed a shift in
emphasis in nonlinear system identification, accommodating the growing industrial need for a
first generation of tools capable of addressing complex nonlinearities in larger-scale structures.
The objective of this presentation is to survey some of the key developments which arose in the
field and to present the remaining challenges.

System identification refers herein to the development (or the improvement) of mathematical
models from input and output measurements performed on the real structure using vibration
sensing devices [1]. This presentation, which is based on the two review papers [2, 3], provides
first a brief historical perspective of the progress of nonlinear system identification starting from
the seminal work of Masri and Caughey [4].

After this historical perspective, it is shown that the identification process may be regarded
as a progression through three steps, namely detection, characterization and parameter estima-
tion, as outlined in Figure 1. Once nonlinear behavior has been detected, a nonlinear system
is said to be characterized after the location, type and functional form of all nonlinearities
throughout the system are determined. The parameters of the selected model are then esti-
mated using linear least-squares fitting or nonlinear optimization algorithms depending upon
the method considered.

1. Detection: Is there? Ascertain if nonlinearity exists in the structural behaviour,

e.g., yes.

2. Characterization: Where? What? How?

(a) Locate the nonlinearity, e.g., at the joint;

(b) determine the type of nonlinearity, e.g., Coulomb friction;

(c) select the functional form of the nonlinearity, e.g., g(q, q̇) = c sign(q̇).

3. Parameter estimation: How much?

Calculate the coefficients of the nonlinearity model and quantify their uncertainty,
e.g., in a probabilistic sense, c ∼ N (5.47, 1).

Figure 1: Identification process for nonlinear structural models.
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Figure 2: Decommissionned F-16 aircraft at Saffraanberg Airforce Base.

The three steps are illustrated using a real-life aerospace structure, i.e., the F-16 aircraft in
Figure 2, for which a detailed measurement campaign was carried out in 2014 in collaboration
with Siemens Industry Software [5]. It is shown that the F-16 possesses very interesting non-
linear dynamics, including complex nonlinear stiffness and damping between the wing and the
payload.

The presentation concludes by discussing future research directions. Specific attention is
paid to experimental continuation techniques, the physical realization of numerical continua-
tion. It exploits feedback control strategies to stabilize the measured response, enabling both
stable and unstable branches to be measured.

References

[1] K. Worden and G. Tomlinson, Nonlinearity in Structural Dynamics: Detection, Identifica-
tion and Modelling, Institute of Physics Publishing, Bristol and Philadelphia, 2001.

[2] G. Kerschen, K. Worden, A.F. Vakakis and J.C. Golinval, Past, present and future of nonlin-
ear system identification in structural dynamics, Mechanical Systems and Signal Processing
20, 505-592, 2006.

[3] J.P. Noel, G. Kerschen, Nonlinear system identification in structural dynamics: 10 more
years of progress, Mechanical Systems and Signal Processing 83, 2-35, 2017.

[4] S.F. Masri and T.K. Caughey, A nonparametric identification technique for nonlinear dy-
namic problems, Journal of Applied Mechanics 46, 443-447, 1979.

[5] T. Dossogne, J.P. Noel, C. Grappasonni, G. Kerschen, B. Peeters et al., Nonlinear ground
vibration identification of an F-16 aircraft - Part II: understanding nonlinear behaviour in
aerospace structures using sine-sweep testing, Proceedings of the IFASD conference, Saint
Petersburg, Russia, 2015.
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Nonlinear modal analysis based on complete statistical
independence

M. Champneys1, K. Worden1 and N. Dervilis1

1The University of Sheffield
Sheffield, UK

mdchampneys1@sheffield.ac.uk

Abstract A recent study proposes an extension to the Nonlinear modal analysis framework
presented by Worden and Green in [1]. The focus of the current investigation is to advance the
method by developing a quantitative measure of modal separation and by considering alternate
correlation metrics that are able to detect correlations at any order.

Extensions of linear modal analysis to the nonlinear case have been proposed by several
researchers; notably the frameworks from Rosenberg [2] and the geometrically more general
work from Shaw and Pierre [3]. A recent paper [1] has put forward a new data-driven approach,
leveraging statistical independence to optimise the parameters of a Shaw-Pierre mapping to
the nonlinear modal coordinates. For a 2Dof system subject to a cubic transformation, this
approach gives a transformation of the form of equation 1 and equation 2 as an objective
function.

u =

[
a11 a21
a21 a22

] [
x1
x2

]
+

[
b11 b21 b31 b41
b21 b22 b32 b42

]



x31
x21x2
x1x

2
2

x32


 (1)

j = Cor(u1, u2)+ | {a1} · {a2} | +
∑
| pairwise dot products of the {bi} | (2)

In the study, problems arose where the best (lowest cost) transformations found by the
heuristic optimisation were not as attractive as less optimal ones when judged by eye. It was
suggested that this may owe to the fact that only statistical correlations up to the 2nd order
were considered in the optimisation objective function. In order to address this problem, recent
work has investigated ways that the results from the forward mapping may be improved.

In [1], the correlation metric used was the Pearson correlation coefficient (Cor). However
this formulation is of limited use due to the fact that only correlations up to the 2nd order can
be evaluated. The alternate metrics considered by this study are Spearman’s rank monotonicity
test (Spr) equation, and the Mutual information (MI). These have the advantage of being able
to detect monotonic relationships and correlations to any order respectively.

Spr(X, Y ) =
Cov(rX , rY )

σrXσrY
(3)

MI(X, Y ) = −
∑

X

∑

Y

P (X, Y ) log(P (X, Y )) (4)

In order to provide a qualitative measure of mode separation a new approach is presented.
First the spectra of the modal responses are estimated by the Welch method. These spectra
are then convolved sequentially into a single signal. Finally a thresholding algorithm is used to
detect prominent peaks in the convolved spectra. This approach has the desirable property of
generating a unimodal signal only when the modal responses are themselves unimodal.

Some initial results are illustrated in figures 1 and 2. By requiring the convolved spectra to
have a single peak, better separated modes are identified despite less optimal objective scores.
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Figure 1: Modal decomposition of 3Dof Duffing system using Pearson’s correlation metric -
Cubic transformation

Figure 2: Modal decomposition of 3Dof Duffing system using Pearson’s correlation metric -
Cubic transformation subject to single peak constraint

Much remains to be done in regards to analysis of the current method. Potential avenues
for investigation include; alternate formulations of the objective as a constrained optimisation
problem, investigation into ways that computational cost of the metrics might be reduced and
wider questions regarding the analytical uniqueness of the NNMs that are computed using this
method.

References

[1] K. Worden and P. L. Green, “A machine learning approach to nonlinear modal analysis,” in
Dynamics of Civil Structures, Volume 4, F. N. Catbas, Ed. Cham: Springer International
Publishing, 2014, pp. 521–528.

[2] R. M. Rosenberg, “The normal modes of nonlinear n-degree-of-freedom systems,” Journal
of applied Mechanics, vol. 29, no. 1, pp. 7–14, 1962.

[3] S. W. Shaw and C. Pierre, “Normal modes for non-linear vibratory systems,” Journal of
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Advances to Testing and Model Updating for 
Geometrically Nonlinear Structures 

M. Allen1, C. VanDamme1 and M. Kwarta1 

1 Engineering Physics Department, University of Wisconsin-Madison, Madison, WI, USA 
msallen@engr.wisc.edu 

Abstract - Model correlation and updating is an important part of the development process of 
state of the art aircraft, launch vehicles and many other systems.  Even though finite element 
software is highly capable, it still far from reliable when it comes to predicting the actual dynamics 
of complicated structures such as these.  It is necessary to make many approximations around joints, 
mechanisms, simplifications for details such as sandwich structures, neglecting manufacturing 
variations, etc….  Furthermore, the current state of the art neglects nonlinearities in the dynamic 
response. This work seeks to advance the relatively new field of model updating for nonlinear 
systems.  The nonlinear normal modes (NNMs) of the structure are used as a basis for model 
updating, with new stepped-sine approach used to measure the NNMs and a model updating scheme 
to update the parameters of a Nonlinear Reduced Order Model (NLROM) for the structure 

 
For the geometrically nonlinear systems that are the focus of this work, the NLROM has the following 

form [1], where A and B are the constant coefficients of the quadratic and cubic polynomials respectively, 

r  and r  are the damping ratio and natural frequency of the rth mode and rφ  is the rth mass normalized 

mode shape. 

  2 T2 ( )r r r r r r r r F t         q φ   (1)

 
     

1 1

, , ,
m m m m m

r r i j r i j k
i j i i j i k j

B i j q q A i j k q q q
    

  q  (2)

When modeling linear structure such as launch vehicles or aircraft, it is typically necessary to perform 

tests to update the FEM such that it reflects the correct dynamics, which are captured by r , r  and rφ .  

For a nonlinear structure, the coefficients A and B that define nonlinearity in the ROM depend on many 
parameters of the FEM, such as the boundary stiffnesses, material properties, precise curvature of the 
geometry, etc…  and hence we anticipate that it will be necessary to employ testing and model updating to 
bring the NLROM into agreement with measurements. 

The presentation will discuss the authors’ latest approach to model updating for these types of structures.  
The first step involves experimentally estimating the nonlinear normal mode(s) (NNMs) of the system.  To 
do this, the structure is excited near but not precisely at resonance (in order to circumvent difficulty 
associated with tuning the input so near the point of maximum where the response, where the system is prone 
to fall off of the resonance.  Then the known linear modes of the structure are used with a simplified model 
to extrapolate to the precise NNM.  This approach can speed up stepped-sine testing considerably.  The 
method is illustrated in Figure 1, for real experimental measurements near the first NNM of a nominally flat 
clamped-clamped beam that is base excited by a shaker.  The measurements appear to be very near the NNM 
because the nonlinear FRFs for this structure are nearly parallel to the actual NNM curve near resonance.  
The other pane illustrates this for simulated measurements from a curved beam that exhibits both hardening 
and softening nonlinearities. 

Once the NNMs have been measured, the NNMs of the NLROM can be computed and compared.  Many 
iterations may be required to adjust the model parameters until the NNMs come into agreement. This work 
employs a new algorithm that can significantly accelerate model updating by using a multi-harmonic balance 
approach in which the gradients of the NNMs with respect to the NLROM parameters are available 
analytically.  Specifically, the gradient of the harmonic amplitudes, z, with respect to model parameters, p,  

is given by the following closed form expression in terms of the gradient of the internal forces f  with 
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respect to the model parameters.  For an NLROM the parameters are the nonlinear stiffness coefficients, A 
and B, and so these are known in closed form.  The other matrices are part of the harmonic balance method 
[2] and are similarly known. 

 

 
(3)

   

Figure 1. (A) Experimental demonstration of the proposed algorithm to measure NNMs.  A series of 
measurements (blue) are taken near resonance and the single nonlinear resonant mode approximation is used 

to estimate the NNM (red).  (B) Simulated experiments for a curved beam.  The nonlinear frequency 
response is also computed from the measured NNM and compared to simulated measurements (blue). 
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Figure 2. Sample results for nonlinear model updating applied to experimental measurements from a 
clamped-clamped beam similar to that in Fig. 1.  The NNM of the NLROM converges quickly to the 

measured NNM as the parameters are updated. 

References 
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Multi-input phase resonance testing of a nonlinear
wing-engine structure using control-based continuation

L. Renson

Department of Engineering Mathematics,
University of Bristol, UK.

l.renson@bristol.ac.uk

Abstract Control-based continuation (CBC) is a general and systematic method that proved
useful to identify the nonlinear normal modes (NNMs) of conceptually-simple structures directly
during experimental tests. The accurate identification of the NNMs of more complex structures
can, however, require the application of multiple input forces. CBC is here extended to multi-
input experiments and demonstrated on a wing-engine structure.

Nonlinear normal modes (NNMs) are families of periodic responses of the unforced un-
damped system that have been successfully exploited to interpret the nonlinear dynamic be-
haviour of forced and damped systems. For instance, NNMs are found to capture the amplitude-
dependence of the resonance frequency of many harmonically-forced systems, which is valuable
from an engineering perspective because this is where displacements are often maximum and
the structure is at the greatest risk of failure.

NNMs can be identified experimentally through a phase quadrature condition between the
system response and the applied excitation. At quadrature, external input forces exactly coun-
terbalance the internal damping forces and hence the system responds as the underlying con-
servative system. Experimentally finding and tracking this phase quadrature condition is com-
monly referred to as phase resonance testing. Identified NNMs can, in turn, be exploited for
parameter estimation or compared to theoretical predictions for model updating and valida-
tion [1].

The phase resonance testing of complex nonlinear structures raises a number of challenges.
The quadrature condition often lies close to a saddle-node bifurcation. As such, reaching
quadrature requires to test the physical structure on the verge of instability, i.e. where the
system’s response is particularly sensitive to perturbations and untimely transition to other
behaviours can occur. Another difficulty is that quadrature can give results that are significantly
different from the true NNM, in particular, when the excitation applied to the system is limited
to one input force, as is frequently used in practice [4].

Control-based continuation (CBC) is a testing method that uses feedback control to change
the linearisation of the dynamics such that unstable responses of the underlying uncontrolled
system can be made stable. The controller also maintains the experiment around a prescribed
operating point, thus avoiding untimely transitions between coexisting behaviours. As such,
CBC has the potential to be a general and systematic tool to identify NNMs. The method was,
for instance, exploited to track phase quadrature conditions in the forced response of several
single-degree-of-freedom systems subjected to external harmonic excitations [2, 3]. Although
these successful results attest of the power of this method, CBC has been so far limited to
conceptually simple experiments with single-input excitation.

The objective of this work is to further develop CBC such that it can be applied to more
complex experiments including multiple inputs. The presence of several inputs offers the flex-
ibility to exploit one or several exciters to control the experiment. The effects of this choice
on the controller design and the complexity of CBC are discussed. The presence of detrimen-
tal interactions between the different sources of excitation through the tested structure is also
analysed.
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Figure 1: Nonlinear wing-engine structure used to demonstrate the extension of CBC to exper-
iments with multiple input excitations and perform phase-resonance testing.

To validate the extension of CBC to multiple inputs, CBC is tested on a wing-engine
structure (Figure 1). This structure is composed of an aluminum plate to which two masses
are suspended through a nonlinear mechanism. A linear state feedback controller designed
using optimal control techniques and a local linear model of the experiment is sufficient to
apply CBC to this multi-input experiment. This further demonstrates that no sophisticated
(nonlinear) control strategies are necessary for CBC to work. CBC is then exploited to carry
out multi-input phase resonance tests and extract the NNMs of the structure. NNMs identified
using either one or two input forces are compared. Controller invasiveness is analysed in both
configurations of the excitation.
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Abstract Various models and systems involving the escape of periodically forced par ticle 

from the potential well demonstrate a common pattern. The minimal forcing amplitude 

required for the escape exhibits sharp minimum for the excitation frequency below the 

natural frequency of small oscillations in the well. Current work explains this regularity by 

detailed exploration of the transient dynamics of the escape in a number of  benchmark 

potential wells. 

 

Escape from the potential well under external forcing is invoked for description of 

numerous important processes and phenomena in physics, chemistry and engineering. Very 

incomplete list of such processes and phenomena includes dynamics of molecules and 

absorbed particles, celestial mechanics and gravitational  collapse, energy harvesting, 

physics of Josephson junctions, transient resonance dynamics of oscillatory systems, and 

even such deceivingly remote topic as capsize of ships. Another important engineering 

phenomenon related to the escape processes is a dynamic pull-in in microelectromechanical 

systems. 

It is known for a long time [1] that the critical force amplitude required for the 

escape of harmonically forced particle from various potential wells exhibits a sharp 

minimum at certain frequency below the frequency of small oscillations in the well. 

Qualitatively similar escape curves in frequency – voltage domain were observed in the 

problem of dynamic pull-in in MEMS excited by the alternating current.  

In current work, we explain this regularity by considering the escape from three 

benchmark potential wells, described by the following potential functions: 
2 2 4

2 4

0 4

1 1
, 1 ,

 ( ) ;   ( ) ; ( )2 2 2 2 4
2 4

0,  1 0,  

m

m

q q q
q q q q q

U q U q U q

q q q



 
       

    
   

         (1) 

Thus, three different potential functions with increasing complexity are considered: 

truncated parabolic well, truncated weakly nonlinear well and strongly nonlinear quadratic -

quartic potential. For the truncated parabolic well, exact solution is available  and the 

minimum forcing required for the escape tends to zero at the resonant frequency. Addition 

of even small nonlinearity qualitatively modifies the dynamics. The minimum escape 

forcing becomes nonzero and shifts towards smaller frequencies. Interestingly, strongly 

nonlinear model exhibits quite similar properties, at least in the vicinity of main resonance. 

For the nonlinear wells, the analytic treatment relies on the approximation of isolated 

resonance [2] and is performed with the help of appropriate transformations to action-angle 

variables. Results for the escape thresholds for the nonlinear wells are presented in Figure 1.  
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a)              b)  

Figure 1 Escape threshold versus the excitation frequency; a) weakly nonlinear truncated 

well; b) strongly nonlinear well. Dots, circles and diamonds stay for numeric results . 

 

For both nonlinear models one reveals two qualitatively different scenarios of the 

escape transition. They are illustrated for the strongly nonlinear well in Figure 2.  

a)                 b)  

c)                  d)  

Figure 2. Escape mechanisms: a)-b) –the maximum, c) –d) – the dynamical saddle. 

 

 Both in transitions 2a)-2b) and 2c)- 2d) the forcing amplitude differs by about 1%. 

Still, in the latter case the maximum response energy immediately before the escape 

achieves only about a half of the well depth. The abrupt increase occurs due to a dynamical 

heteroclinic bifurcation that reveals itself when details of the transient escape dynamics are 

considered.  
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Abstract A technique based on exploiting Gröbner bases [1] of multivariable polynomials
for detection of periodic solutions is introduced. It is based on generating Gröbner bases
and verifying the possibility of determining/defining polynomials of approximated L2-norms of
solutions which belong to ideals generated by the Gröbner bases.

To track periodic solutions of nonlinear (quite often polynomial nonlinearities) smooth
second order differential systems (i.e. nonlinear vibrations of nonlinear mechanical systems)
perturbation methods have been developed (KBM averaging, Normal Form, Multiple scales,
etc.: [2–19]). These approximated methods lead to algebraic polynomial equations. One can
obtain approximations of periodic solutions by solving systems of algebraic equations with un-
known coefficients (coefficients of truncated Fourier series for examples) and given parameters.
Numerical techniques are used to solve these algebraic equations at given parameters’ values
such as Newton-Raphson methods, or continuation methods [20, 21] if solutions are tracked
versus one (or several, which is not usually the case in practice) parameter(s). Nevertheless
finding all solutions, and especially the isolated branches of solutions is always a challenge. For
systems with k degrees of freedom (dof), k ≥ 1, these perturbation methods tends to provide
approximated values of coefficients of truncated Fourier series and then to provide frequency-
response curves, finally the response corresponds to an approximation of L2 norm of a periodic
response of each dof. We present an approach based on using algebra methods. The main idea
is to exploit Gröbner bases of multivariate polynomials. Contrary to the approach of Grolet and
Thouverez [22], we do not try to obtain a parametrization of the nonlinear vibrations versus
one particular variable which satisfies a polynomial equation. Here, the main idea is to test
the belonging of a polynomial of the approximated L2-norm to the ideal generated by the set
of polynomial equations issuing from the analytical approximated response. We consider the
cases of single dof systems. Let us assume that a perturbation/approximated method provides
N polynomial equations. Then, a general algorithm is described to generate a Gröbner bases
and to test the possibility to constraint a polynomial (to be determined) of the approximated
L2-norm of the solution of single dof systems to belong to ideals generated by the Gröbner
basis. This approach is presented via some simple examples (Duffing oscillator at first) treated
by Harmonic Balance method as an example of the perturbation method. Then, we explain
how to extend the method to two dof systems. It is enough to understand possible general-
ization to n dof systems. The method could be extended to non polynomial nonlinearities.
Limitations/potential of the method are discussed. Moreover, open questions and perspectives
will be given.
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Abstract A nonlinear suspended cable excited by a boundary motion is attacked in two different 

formulations, i.e., the boundary modulation formulation and the quasi-static drift formulation. 

 

Cable’s nonlinear vibration [1] excited by a kinematic boundary motion of a support (deck or tower) 

is important for cable-stayed structures, and also, theoretically, an interesting fundamental dynamics 

problem. Indeed, it can be regarded as one of the two key building blocks  - the other one being the 

support dynamics excited by cable tension - for the boundary modulation concept [2], which allows  

to deal with the two-way (cable-support) coupled problem. This presentation focuses on two 

different approaches for attacking the first (support-to-cable) coupling problem, i.e., the boundary 

modulation approach [2] and the quasi-static drift formulation [3][4]. Their conditional equivalence 

will be analytically established, and differences, limitations will also be reported. Furthermore, an 

interesting logical connection between the common empirical shape function [3] and the new 

rationally derived one, will be discussed.  A cable with boundary motion is formulated as 

      
1

2

0
0

2 sin 0.5 d 0dw cw w w y s t y w w x              
     (1) 

where
0 is boundary motion inclination, w(x,t) and sd(t) represent the cable’s and the support’s 

displacements, respectively. The cable’s non-dimensional stiffness is , and initial sag is 

y(x)=4fx(1-x), where the sag-to-span ratio is f=b/l , with b, l denoting the sag and span. The cable’s 

boundary conditions at x=0 and x=1 are       00, 0, 1, cosdw t w t s t   . A single-mode cable is 

chosen, and m is its dominant frequency. The support motion is assumed to be 

  i 2

0 12 ., 2d t

d d ms t Y e cc   
     , which means the cable is excited parametrically. 

In the boundary modulation formulation, one key assumption is introduced, i.e., the moving 

boundary is too weak to affect cable’s linear modal dynamics while its effects are only on cable’s 

higher order dynamics [2], i.e.,        2, dO w O O s O  . Thus, the moving boundary can be 

transformed analytically to a weak boundary modulation term on cable’s slow dynamics through a 

standard multi-scale expansion (    0 2, , ,j

jw x t w x T T ). After finding the solvability condition 

at the order  3O  , we get the corresponding reduced model 

     1 2
2 i

2 1 0 2 0 0

i i
+

2 2
S

T

m m m m m m S S m

m m

D A A A A A Y e




    
 

           (2) 

Here, Am is cable’s dominant modal amplitude appearing in     0i

1 2 .m T

m mw A T x e cc
  , and 

the boundary modulation coefficient    1 0 2 0, S S     can be analytically derived. 
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In the quasi-static drift formulation, as the cable’s standard boundary condition (fixed at both ends) 

has been relaxed, a modification induced by the moving boundary is introduced, i.e.,  

        0 0cosd m mw x s t x q t      (3) 

where the quasi-static drift function ѱ0(x) satisfies  0 0 0   and  0 1 1  , and the elastic mode 

shape  m x  satisfies    0 1 0m m   . Two empirical drift functions are  0 x x   [3]
 
 and   2

0 x x   

[4].By substituting Eq.(3) into Eq.(1) and using Galerkin discretization technique, we get (similar 

ordering assumption is also used          2,m dO w O q O O s O  ) 

 
2 3 4

1 2 3 4 5 6 72 ( ) 0m m m m m d d d m dq q a q a q a q a s a s a s a q s O             (4) 

Using a proper multi-scale expansion (    0 2, , 1, 2,3,j

m mjq t q T T j  ), the reduced 

model is established through finding the solvability condition 

 1 2
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2 i6 4 2 5 22

2 3 02 2

10i i
3

2 3 2 2 3

Sm

Td
m m m m m

m m m m

a a a a aa
D B B a B B B Y e 




   



    
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  (5) 

Here Bm is the cable’s dominant modal amplitude appearing in   0i

1 2 .m T

m mq B T e cc


  The 

coefficients  1 7a a  can be analytically derived. A full comparative study will be based upon these 

two different reduced models (Eq.(2) and Eq.(5)), as illustrated in Fig. 1 below. 

 

Figure 1: Different shape functions, and two formulation comparisons: μ=0.001, m= 4.21369, 1=0.0. ѱ0=x (*), 

ѱ0=Ѱ3/cos(β0) () 
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Abstract In this contribution, an original mass sensing technique exploiting the nonlineari-
ties of a symmetric array of coupled MEMS (micro electro-mechanical systems) resonators is
proposed. It is shown that the nonlinear normal modes (NNMs) of the system are modified after
a symmetry-breaking event, with the creation of isolated branches of NNMs. This modification
is used to produce easy-to-detect jumps in amplitude when an additional mass is dropped on
the resonator.

Due to their small size and high sensitivity, MEMS resonators are very good candidates for
mass sensing devices. Classical MEMS-based sensing techniques rely on detecting a shift in
frequency induced by an external perturbation (acceleration, addition of mass, ...) in a single
MEMS resonator. The need for parallel mass sensing and highly sensitive devices led to the
development of MEMS arrays [1] and alternative mass sensing techniques based on nonlinear
phenomena [2–4].

In this paper, an array of two coupled electrostatically-actuated MEMS resonators is consid-
ered, as sketched in Figure 1a). The two beams 1 and 2 are identical with the following design
and material properties: h=300nm, b=160nm, l=10µm, E=1.69 1011N/m2, ρ=2330kg/m3, a
quality factor Q=5000 and identical gaps g=200nm between two adjacent beams. Each beam
i is subjected to lateral vibrations wi due to nonlinear harmonic electrostatic forces generated
by the adjacent beam and electrode. The model is similar to the two-beam model detailled
in [4]. The spatial dependence is removed with a Galerkin method using the linear undamped
eigenmodes. The continuation and stability analysis of the underlying NNMs is performed with
the harmonic balance method using 5 harmonics [5].

In the case of a perfectly symmetric configuration (symmetric voltages, no additional mass),
the system exhibits two main (pure) NNM branches corresponding to the out-of-phase and in-
phase motions of the beams respectively, see Figure 1b). A branch point (BP) bifurcation is
found on the in-phase NNM. After this BP, the in-phase NNM becomes unstable and a stable
mixed NNM appears, whose modal shape is an asymmetric mix of the two pure modal shapes.

When a small mass δm=10−4m, with m the mass of one microbeam, is added on beam 1,
the system becomes asymmetric and the symmetry breaking turns the BP of Figure 1b) into an
imperfect bifurcation, see Figure 2. As a result, the in-phase and mixed NNMs are transformed
into an asymmetric (different on each beam) in-phase pure NNM and an isolated NNM (INNM)
which is detached from the pure NNMs. A starting point for the continuation of the INNM
is obtained by performing a bifurcation tracking with respect to δm from the BP of Figure 1
(δm=0) until δm=10−4m corresponding to the limit points (LP) of Figure 2. It is worth noting
that the two plots of Figure 2 are switched if δm is added on beam 2 instead of beam 1.

The nonlinear forced response curves (NFRCs) of this asymmetric array are composed of
a main NFRC supported by the pure NNMs and of isolated solutions (ISs) detached from the
main NFRC and supported by the INNMs and possibly by the pure NNMs. Therefore, in the
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Figure 2: NNMs of the asymmetric array. Left: Beam 1. Right: Beam 2.

case of in-phase response, the main NFRC of beam 1 has a much lower amplitude than beam
2. This localization of motion resulting from symmetry breaking can be exploited for mass
detection. Real devices are likely to be inherently asymmetric due to manufacturing defects
for instance. In this case, the mass detection is based on the reversal of localization of motion
that occurs when the added mass exceeds the level of asymmetry.
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Abstract Phonation is a natural example of nonlinear dynamical system with self-sustained
oscillations, here resulting from the controlled nonlinear coupling between the deformable vocal
folds and the airflow expired from the lungs through the glottis and the vocal tract. As a proof
of concept, we propose a minimal model of the full vocal apparatus using the port-Hamiltonian
representation that emphasises on the structure of a system (on the separation between the
behaviour of the subsystems and their interconnection) and on the power exchanges. Numerical
results on bifurcations are qualitatively discussed in relation to voice pathologies.

Motivations The physics of voice production has motivated a wide variety of models, from
full-featured numerical ones (mainly based on FEM for vocal folds and FVM for the airflow) to
reduced order models focusing on the essential phenomenon underlying the phonation. A large
body of work in the latter category relies on the description of the glottal aerodynamics from
the late 1950 that is based on experiments in rigid static larynx-like ducts. However phonation
intrinsically implies the vibration of the vocal folds periodically closing the glottis. There is a
significant paradox in those simplified models: the vocal folds move as a consequence of the
power exchanged with the glottal flow, but the description of the latter assumes that it does
not receive or provide any power to the folds. This power imbalance in the models introduces
a bias in the analysis of the coupling occurring in the larynx and of the instability leading to
voice production.

Port-Hamiltonian systems (PHS) The port-Hamiltonian theory combines the views of
the (geometric) Hamiltonian mechanics and of port-based modelling approach, emphasising
the separation between the behaviour of components and their interconnection. The lingua
franca of this theory is energy : port-Hamiltonian systems are open passive systems that can
store, dissipate and exchange power with their neighbourhood. Energy-storage is defined by
the Hamiltonian H(x) as a function of state variables x. This dependency, formulated as the
Hamiltonian gradient ∇xH, expresses the effort of the energy-storing component. Conversely,
the evolution of this component is described by the flux variable ẋ. Effort and flux are power
dual variables, i.e., they jointly define the energy flow dH/dt = ẋ · ∇H(x).

Dissipating components are described by dissipation variable w and their constitutive laws
z(w), such that the dissipated power is Pdiss = w · z(w) ≥ 0. Finally, external interactions are
classically described in terms of inputs u (also called efforts) and output y (fluxes) that are
dual with respect to the external power: Pext = y · u (≥ 0 when the system yields power).

The geometric structure (Dirac structure, see [1]) accounting for the interconnection of the
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subsystems is then described by a matrix S relating efforts to fluxes:



ẋ
w
y


 = S(x,w)



∇H
z(w)
u


 . (1)

When the interconnection is conservative, the power balance is ensured provided that the
matrix S is skew-symmetric (e · S · e = 0 for any effort e).

Minimal port-Hamiltonian model of the vocal apparatus The vocal apparatus is mod-
elled as the interconnection of vocal folds, glottal flow, vocal tract and a subglottal pressure
supply. Every component is designed minimally with an emphasis on the dual pairing on the
interconnection ports. For instance, each vocal fold is considered to be a single-d.o.f. oscillator
with an elastic cover, and is submitted to pressure on the upstream and downstream faces,
and interacts with the flow at the glottal face. Reciprocally, the glottal flow is modelled as the
simplest kinematics of potential incompressible flow of inviscid air preserving the continuity of
the normal velocity on the surface of the vocal folds (see details in Ref. [2]). Downstream the
glottis, the flow separates from the folds into a jet that spreads and dissipates its kinetic energy
into heat. Finally, the vocal tract is represented as seen by the larynx, i.e. by means of its
input impedance describing the acoustic feedback on the larynx.

The full vocal apparatus is obtained by conservative interconnection of the previous sub-
systems. For the sake of conciseness, the resulting Hamiltonian and matrix S are not reported
here but can be efficiently computed using the Python package PyPHS [3] designed for the
symbolic manipulation of PHS systems.
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Figure 1: Components of the vocal apparatus. The interconnection takes place via pairs of
effort (P ) and flux (Q) variables.

Numerical results Time-domain simulations are performed using the numerical scheme de-
signed after the principles of the port-Hamiltonian theory [4], i.e. preserving power balance,
but also being more consistent than standard integrators (e.g., RK45, . . . ). Time-domain simu-
lations and bifurcation analysys evidence the ability of the model to produce oscillating regimes
above some pressure threshold, and quasi-periodic vibrations to possible intermittency when
vocal folds are detuned.
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Abstract The design optimization of problems involving nonlinear dynamics is tedious be-
cause of their inherent sensitivity to uncertainties and the presence of discontinuities. Tradi-
tional methods in design optimization are not sufficient to overcome the hurdles encountered
in these problems. This lecture will provide an overview of current difficulties in design opti-
mization and uncertainty propagation. It will also present a new framework for the stochastic
optimization of nonlinear vibration problems.

Nonlinear dynamics phenomena have been studied and leveraged in several areas of sci-
ence and engineering. For instance, nonlinear energy sinks (NESs) [1] have become extremely
popular in vibration mitigation. Nonlinearities are also important in the development of meta-
materials [2] where the tailoring of local nonlinearities can lead to performances and behaviors
not encountered in nature. The use of nonlinearities has markedly extended the realm of design
possibilities and, in conjunction with strides in additive manufacturing, it is an area that has
yet to deliver its full potential.

However, the design, and in particular the optimal design, of dynamical systems exhibiting
a nonlinear behavior is particularly tedious for several reasons. First, “jump” behaviors lead
to discontinuous responses, which present major hurdles for traditional optimization methods.
In the area of nonlinear vibrations, a typical example is provided by the NES efficiency, which
is discontinuous when the activation threshold is reached. Related to the presence of disconti-
nuities, the second difficulty is the potentially high sensitivity of the responses to design and
loading uncertainties. Finally, high dimensional problems involving computationally intensive
function evaluations also represent a major hurdle. Therefore, dedicated design optimization
approaches are needed to tackle the specificities of nonlinear vibration problems.

This lecture will discuss the sensitivity of the dynamic behavior to uncertainties by providing
examples of jump behaviors that can strongly impact the choice and the efficiency of optimiza-
tion or uncertainty propagation techniques. For instance, the non-smoothness of the responses
prevents the use of gradient-based optimization methods or topology optimization approaches
that rely on the computation of adjoint-based sensitivities. Discontinuities also prevent the use
of approximations, referred to as surrogates or metamodels (e.g., Kriging, Polynomial Chaos
Expansion), that typically enable optimization or uncertainty quantification.

A general stochastic optimization framework for nonlinear dynamic problems, which at-
tempts to address the aforementioned difficulties, will be presented. In particular, a solution
scheme to the following optimization problem will be provided [3, 4]:
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max
µd

E(F (Xd,Xa)) (1)

s.t. P((Xd,Xa) ∈ Ω) ≤ PT

µd
min ≤ µd ≤ µd

max

where E(F ) is the expected value of a performance metric F . Xd are random design vari-
ables (e.g., nonlinear stiffness) with hyperparameters µd (e.g., means of distributions) and Xa

are “environmental” random variables (e.g., loading conditions). Ω is a domain of unwanted
behaviors (e.g., no NES activation) and PT is a probability threshold. The key features of the
solution scheme are the use of “machine learning” techniques such as clustering and support
vector machines (SVM) classifier for the purpose of automatically detecting discontinuities and
identifying the boundary, defined through an SVM, segregating various dynamic behaviors. An
adaptive sampling scheme, which helps reduce the number of function calls, has been developed
for the refinement of the SVM boundary thus enabling the optimization and the calculation of
statistical moments and probabilities.

Several examples will be presented: one set of examples will deal with the optimal design of
NESs for simple problems as well as for the mitigation of nonlinear aeroelastic vibrations in the
sub- and supercritical regimes [5]. Another set of examples will present the design optimization
of chains of nonlinear resonators for the mitigation of vibrations using band gap and dissipation
effects.
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Abstract Global dynamics of a model airplane with a strongly nonlinear store attached 

to each wing under impulsive loading is studied for several combinations of locked and 

unlocked stores. 

 

Following methods introduced in [1-2], we investigate the effects of local, strongly 

nonlinear attachments, in this case a store (e.g., an auxiliary fuel tank or missile), attached 

to each wing, on the global dynamics of a model airplane [3] (Figure 1).  The stores are 

constructed and installed such that, when locked, they contribute only a mass effect to the 

dynamics, while when unlocked they impart strong nonlinearity to the dynamic response of 

the plane.  The system is studied experimentally, under impulsive excitation to one of the 

wings, in three configurations:  with (a) both stores locked (the baseline linear system); (b) 

one store unlocked; and (c) both stores unlocked.  The measured responses reveal that the 

unlocked stores drastically affect the participation of the firs t and second modes of the plane 

despite being local attachments. These global effects are further investigated by projecting 

the measured responses of configurations (b) and (c) onto the linear modes of the plane (i.e., 

with both stores locked, configuration (a)), computed using an experimentally-updated finite 

element model. These are used to compute the instantaneous total energy of each projected 

linear modal response. This reveals that, when only one store is unlocked (configuration 

(b)), the first and second projected modal responses decay at significantly faster rates than 

the first and second modal responses observed for the linear baseline system (configuration 

(a)). However, when both stores are unlocked (configuration (c)), the first projected moda l 

response again decays at an increased rate, whereas the second projected modal response 

closely follows the second modal response of the linear baseline system. These results 

suggest that, when both stores are unlocked, their modal responses interfere bo th 

constructively and destructively depending on the locations of the measurements, resulting 

in this somewhat counterintuitive outcome of greater effective modal damping with one 

unlocked store than with two. 
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Figure 1: (a) Support structure with the suspended plane fully instrumented, (b) zoomed-in 

view of the suspended plane, and (c) the instrumentation scheme used for the experimental 

measurements with green circles and the red cross indicating accelerometer and impact 

locations, respectively.  
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Abstract     
 

Passive vibration control has been the theme of numerous scientific works along decades 
for reducing vibrational amplitudes or user’s discomfort when aerospatial structures are 
concerned. Tuned Vibration Absorbers are a good alternative for this purpose by 
synchronizing its natural frequency to the specific target vibration frequency of the primary 
dynamical system. When one desires to reduce multiple frequencies, multimodal vibration 
absorbers are used. Nonetheless, their efficiency is sensitive to variations of the main 
system’s frequency. 

To face this sensitivity issue, essential nonlinear elastic forces have been considered for 
the tuned vibration absorber which are denominated as Nonlinear Energy Sink (NES). 
Indeed, these nonlinear attachments can lead to an irreversible energy transfer from the 
primary system toward the NES which are known as target energy transfer. An important 
feature of this kind of device is that there is no preferable frequency of oscillations because 
of their intrinsic nonlinear nature. Therefore, the NES is able to capture the energy from a 
large broadband resonant condition.  

Most of the works so far have dealt with a nonlinear attachment represented by a cubic 
stiffness. The feasibility on how to obtain a purely cubic stiffness has been presented in [1]. 
Beyond this, others type of nonlinear functions has been evaluated analytically and some 
has been explored experimentally; among these, magnetic-strung mechanisms [2] and a 
vibro-impact NES with non-smooth nonlinear functions [3].  Figure 1 illustrates different 
NES developed and explored experimentally.  

 

 
Fig.1 – Examples of cubic NES, Vibro-Impact NES and Magnet-strung NES designed for 

resonant conditions 
 
Therefore, depending on the NES characteristics, the primary structure under a forcing 

excitation can respond with a steady-state amplitude or even reach a strong modulated 
response regime (SMR).  These different regimes depend on the amplitude level of the 
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response. Moreover, undesired nonlinear phenomena can appear such as jumps or isolated 
responses. The response regime is not robust to the excitation characteristics.  

 Even if the comprehension about the use of NES for vibration amplitude control at 
resonant conditions is well understood, important development for applying them for 
controlling instabilities are necessary. Different from a resonant condition, an instability is 
characterized by the veering of two natural frequencies that submits the structure to high 
amplitude and divergent oscillations. Since the structure is no more able to dissipate the 
input energy, high amplitude is reached which leads to its total destruction. Among others, 
the dynamical instabilities on aerospatial structures addressed are aeroelastic flutter, 
helicopter ground resonances or shimmy landing gear instabilities.  

Concerning NES application for instabilities control, the previous design rules 
developed for resonant structures are not valid anymore. NESs have been studied when 
applied to passive control of these instabilities. In [4], a NES was used to control the limit 
cycles of a Van der Pol oscillator, to suppress aeroelastic instabilities [5] and divergent 
oscillations of the ground resonance of helicopters [6]. Figure 2 highlight some of the 
referred works. 

The main objective of this paper is to highlight the differences on the design of NES for 
controlling resonant and unstable phenomena. Moreover, the main perspectives for a 
successfully achievement of NES design will be pointed out.  

 

 
Fig.2 – Embedded NES on aeronautical structure for Instability control 
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Abstract The presentation is divided into two parts. The first part presents a general method
to predict the steady-state regimes of a multi-degree-of-freedom mechanical system (the primary
system) having one unstable mode coupled to a set of nonlinear energy sinks (NESs). In
the second part the primary system has two unstable modes and it is coupled to one NES.
Preliminary numerical results and analytical treatments of this situation are presented.

In the context of passive mitigation of dynamic instabilities, it is now established that the
Nonlinear Energy Sinks (NESs) are good candidate to consider especially when low frequency
and high level are concerned [1, 2]. The operation of the NESs is based on the concept Targeted
Energy Transfer (TET). A basic NES generally consists of a light mass, an essentially nonlinear
spring and a viscous linear damper. Because of its essentially nonlinear stiffness, a NES can
engage in resonance over a broad frequency range. Whether for a system under impulsive,
harmonic or broadband frequency excitation or whether for an auto-oscillating system, TET
results from nonlinear mode bifurcations. In general, the phenomenon of TET can be described
as a 1:1 resonance capture [3].

This work considers auto-oscillating systems as primary system and it is divided into two
parts described below.

1 Prediction of steady-state regimes of a multi-degree-of-freedom unstable dy-
namical system coupled to a set of nonlinear energy sinks

Here the primary system is a multi-degree-of-freedom (multi-DOF) unstable mechanical systems
undergoing cubic nonlinearities and coupled to M NESs. We assume in this section that the
primary system has only one mode which can become unstable through Hopf bifurcation.

We propose an analytical method to predict the steady-state regimes of the coupled system.
The method begins using the biorthogonal transformation to diagonalize the primary system
written in the state-space form. Afterwards, the dynamics of the diagonalized system is reduced
keeping only the unstable mode and ignoring the stable modes. Then the slow-flow of the system
is obtained using the complexification-averaging (CA-X) method within the assumption of a 1:1
resonance capture around the frequency of the unstable mode. The resulting slow-flow possesses
a small parameter related to the mass of the NES and, in the framework of Geometric Singular
Perturbation Theory (GSPT) [4], it defines a (2M, 1)-fast–slow system. The slow variable
characterizes the unstable mode of the primary system whereas the 2M fast variables describe
the NESs motions (amplitude and phase). It is shown that the Critical Manifold (CM) of the
slow-flow can be reduced to a one dimensional parametric curve evolving in a multidimensional
space. A similar form of the CM is obtained considering a network of parallel NESs [5]. The
knowledge of the stability properties of the critical manifold and the fixed point of the slow-flow
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(position and stability) makes it possible to predict the response regimes. Finally, the method
is applied to the prediction of the steady-state responses of an airfoil undergoing an aeroelastic
instability coupled the a set of NESs (from one to four). Theoretical results are compared, for
validation purposes, to direct numerical integration of the system. The comparison shows a
good agreement.

2 Mitigation by means of nonlinear energy sinks of friction-induced vibrations in
a mechanical system having two unstable modes

In this part, the primary system has two unstable modes and, as a first step, it is linear and
coupled to only one NES. Our objective is to investigate the solutions in the vicinity of two
simultaneous 1:1-1:1 resonances to the natural frequencies of the two unstable modes.

The procedure described above is performed again except that now the two unstable modes
must be kept. Moreover, in spite of the presence of the NES coupling, we assume that each vari-
able associated to the primary system (resulting to the biorthogonal transformation) oscillates
at one single frequency contrary to the degrees of freedom associated to the NES which must be
split as a sum of two terms to capture frequency components with respect to the two unstable
modes. Within this assumptions, the CA-X method is applied leading to a slow-flow (in the
real domain) which takes the form of a (4, 2)-fast–slow system. The slow variables characterize
the two unstable modes of the primary system whereas the 4 fast variables describe the NESs
motion (amplitude and phase of the two frequency components).

Preliminary analytical results, again based on GSPT, are presented. For example the CM,
which appears as a 6-dimensional parametric surface, is determined as well as fixed points of the
slow-flow and their stability. These results are validated by comparison to numerical simulation
of the system.
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Abstract Detecting basins of attraction is a fundamental part of a global analysis, often not
performed due to the lack of analytical methods or hardware limitations of numerical techniques.
In fact, what is required for numerical methods in four dimensions or more is High Performance
Computing to give results in reasonable time. To overcome some of these shortcomings, we have
developed the software to build basins of attraction of high-dimensional systems, illustrating
its capabilities on a case study of a periodically excited three degree-of-freedom sympodial tree.

In practical applications, it is not sufficient to know only the stability of particular attractors.
Supplementary information about their robustness, which is closely related to the structure of
basins of attraction, is needed. This entails performing a global analysis and quantifying a
basin compactness by integrity measures [1].

Our primary goal is to explore the global behavior (including practical stability) of various
strongly nonlinear systems with six state-space dimensions (6D). To do so, it is necessary to
employ High Performance Computing frameworks, as numerical computations of full basins in
6D is a challenging task. The Simple Cell Mapping (SCM) method [2] is an adequate choice
for these computations as it offers possibilities to parallelize the most resource demanding part
of basin computation - the integration of equations of motion of dynamical systems associated
with a large number of initial conditions.

In this work, a software that we have developed is used as a part of a global analysis for the
model of a sympodial tree with first-level branches [3] to underline the complex behaviour of
basins of attraction and to show how attractors are not equally robust. This is helpful in un-
derstanding the resilience of trees to various natural conditions and environmental excitations.

The motion of the sympodial tree shown in Fig. 1 is mathematically modeled by choosing the
generalised coordinates as being the absolute angles ϕ, ψ1, ψ2 (Figure 1b) and also introducing
the dimensionless parameters D1/D = λ1/2, l1/l = λ1/2s, m1/m = λ4/3, κ = k1/k, ζ =
b/2l

√
3/km and β = b1/b, leading to the following equations of motion [3]:

−2κ(ψ1 + ψ2) − 4βζ(ψ̇1 + ψ̇2)

−3λ5/3ψ̇2
2 sin(α− ϕ+ ψ2) + 2(1 + κ)ϕ+ 4(1 + 2β)ζϕ̇

+3λ5/3ψ̇2
1 sin(α + ϕ− ψ1) + 2(1 + 6λ4/3)ϕ̈

+3λ5/3ψ̈1cos(α + ϕ− ψ1) − 3λ5/3ψ̈2 cos(α− ϕ+ ψ2) = 2M cos(Ωt), (1)

2κϕ+ 4βζϕ̇+ 3λ5/3ϕ̇2 sin(α + ϕ− ψ1) − 2κψ1

−4βζψ̇1 − 3λ5/3ϕ̈ cos(α + ϕ− ψ1) − 2λ2ψ̈1 = 0, (2)

2κϕ+ 4βζϕ̇− 3λ5/3ϕ̇2 sin(α− ϕ+ ψ2) − 2κψ1

−4βζψ̇2 − 3λ5/3ϕ̈ cos(α− ϕ+ ψ2) + 2λ2ψ̈2 = 0. (3)

34



a)

D,

,D1D1,

b)

Figure 1: Model of sympodial tree with first-level branches, a) model properties, b) generalized
coordinates.
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Figure 2: 3D basin cross-section ϕ, ψ1, ψ1, ϕ̇ = 12, ψ̇1 = 11, ψ̇2 = 11, sliced with various 2D
planes.

The tree model with the parameter values β = 1/2, κ = 0.3, ζ = 0.03, α = 20◦, λ = 1/2,
s = 3/2, the excitation amplitude M = 0.5 and frequency Ω = 1.57 has both one periodic (PA)
and one quasi-periodic (QP) attractor, which coexist simultaneously. The three-dimensional
cross-sections of their basin corresponding to the generalized coordinates are presented in Fig.
2 (the blue cells belong to the PA basin and the red cells to the QP one), where the initial
generalized velocities are fixed at ϕ̇ = 12, ψ̇1 = 11, ψ̇2 = 11. They are sliced with various planes
to underline the basins structure.

Although it is evident that the steady state of the PA is more robust than the QP one,
a deeper analysis is needed to draw specific conclusions. It is required to compute integrity
measures for various values of relevant system parameters, to obtain the so-called “erosion
profiles” [1]. They would underline the evolution of basin regions that are considered “safe”
from a practical point of view, uncovering the robustness of the examined dynamical system.
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Abstract The nonlinear Bayesian state-space model provides a natural framework for mod-
elling of dynamic systems. The particle filter is an efficient tool for working with such systems;
however, one of the key challenges is when inputs to a system are non-Gaussian. This paper
shows how a latent force approach can be combined with the particle filter in a step towards
removing the assumption of Gaussian white noise as an input to the system of interest.

The problem of output-only identification of dynamic systems is by no means a new chal-
lenge; there remain many open questions in the realm of linear systems and work on nonlinear
systems is, in reality, only just beginning. Methods for identification of linear systems have
revolved around the use of modal methods such as stochastic subspace identification [1, 2].
Nonlinear systems fail to exhibit modes in the same way as a linear system (if at all!) con-
tributing to the impossibility of using these methods in the presence of any (except maybe the
weakest) nonlinearity. One key assumption made in many of these methods is that the system
is under a Gaussian white noise excitation. This assumption becomes stronger and therefore,
more problematic with a nonlinear system, where there can exist changes in resonant frequency
and other phenomena not seen in linear systems.

Previously, the authors have shown the effectiveness of treating the identification problem
as a Bayesian state-space model where the forcing can be treated as a latent state [3]. Using
this method, distributions over the unknown parameters of the system are recovered alongside
a distribution over possible time histories of the forcing. Here, the extension of this work to a
nonlinear example is shown.

A Duffing oscillator is considered, by now a very familiar system to the dynamics community
[4] and is used to demonstrate the methods in this work. Moving to this nonlinear system leads
to a nonlinear Bayesian state-space model. Unlike the linear case which may be solved with the
Kalman filter [5] and Rauch-Tung-Striebel [6] smoothing equations the system is intractable —
no closed form solution exists. Instead the system must be approximated, Sequential Monte
Carlo methods or particle filters provide an elegant solution for this [7–9],

xt ∼ fθ (xt |xt−1, ut−1) (1a)

yt ∼ gθ (yt |xt, ut) (1b)

Here, xt is a vector of some hidden (latent) states at time t, the evolution of which is
governed by fθ (xt |xt−1, ut−1). ut is a vector of ‘control’ inputs to the model at time t; in
structural dynamics this would generally be the force input to the oscillator. These states
are related to a vector of observed variables yt through the probabilistic model defined by
gθ (yt |xt, ut). In this formulation fθ (xt |xt−1, ut−1) is the transition density of the model and
gθ (yt |xt, ut) the observation density of the model. The Duffing oscillator defined as,

mÿ + cẏ + ky + k3y
3 = F (2)
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parameterised by its mass m, damping c, linear stiffness k, and cubic stiffness k3; the oscillator
has a displacement, velocity and acceleration ÿ, ẏ, and y. It is also subjected to an external
force F . A Gaussian Process [10] is used as a Bayesian prior over the forcing function in
time, this is converted to a state-space representation [11] along with the dynamic system to
formulate fθ (xt |xt−1, ut−1). Through this reformulation, a joint state-space model between
the dynamics and the loading is formed as in [12] but with nonlinear dynamics. The use of
particle MCMC [13] is explored to solve this partially-observed nonlinear state-space system
and recover the forcing alongside the parameters of the model.
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Abstract   The nonlinear dynamics of the valve spring of an internal combustion engine is 

mathematically modeled and investigated. Exact solutions in the form of time-periodic and 

spatially localized edge states are derived. The stability of the system is analyzed using the 

Floquet theory. Comparison of the analytical solution with numerical simulations and 

experimental test results conducted on an actual valve spring yields an excellent agreement. 

 

Nonlinearity and discreteness are inherent in many systems in nature, e.g. Josephson 

junction networks, Bose-Einstein condensates, micro-mechanical devices and optical 

devices. This interplay between nonlinearity and discreteness supports time-periodic and 

spatially localized solutions which are often referred to as discrete breathers (DBs) [1]. 

Exact solutions for symmetric discrete breathers are derived for the Hamiltonian model 

[2] and for the case of a homogenous external forcing with restitution coefficient less than 

unity, where it is the only source of damping in the model [3]. The stability of the periodic 

solutions is investigated using Floquet’s theory by observing the movement of the 

eigenvalues of the monodromy matrix in the complex plane [4]. 

 

The purpose of our current work is to develop an exact solution and stability threshold 

for edge states in finite non-homogenous forced-damped chain with vibro-impact 

nonlinearity.  

The proposed model given in Figure 1 presents a finite non-homogenous one-

dimensional mass-spring-damper discrete chain. Periodic displacement (shown in Figure 2), 

which mimics the actual camshaft profile, is applied to the upper end of the chain while the 

other end is fixed. The zeroth mass experiences an impact that satisfies the Newton impact 

law with restitution coefficient less than unity. There are two damping sources in this 

model, one at the contact and the other due to internal damping of the spring material. The 

nonlinearity of the model originates from the periodic impact interactions.  

 

 

 

  

 

 

 

 

Figure 2: The applied displacement mimics 

     a general Camshaft profile. 

 

 

Figure 1: The nonlinear mass-spring-damper chain under periodic excitation. 
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Considering the periodicity of the excitation  h t , its hybrid behavior can be modeled as 

a continuous form using Fourier Series as follows:   

      0

1

cos sinr r

r

h t a a r t b r t




         (1) 

Following Gendelman [3], the non-smooth bounding condition at the impact can be 

eliminated by representing it as an external loading force: 
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where 2 p  represents the change in the linear momentum,   is the phase lag between the 

external forcing and the impact and  x  is the Dirac-delta function. 

The edge state solution of Equation (2) has the following form: 
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  (3)   

The obtained solution is characterized by a strongly localized at the edge of the chain as 

shown in Figure 3. Finally, the analytical solution is compared with numerical simulations 

and experimental data obtained from analysis of actual automotive valve spring (Figure 4).  
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Figure 3: The edge state profile. 
 

Figure 4: Spring force: comparison of 

the exact solution with numerical 

simulations and experimental test results.  
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Abstract   We study solitary waves in a 1-D lattice of identical masses that are interact by 

nonlinear springs of double-well potentials. Based on analytical treatment, combined with 

numerical simulations, we are able to reveal important insights. For example, the solitary 

wave is indifferent to the energy barrier that separates the two energy wells , and the shape of 

the wave can be described by means of two scalar properties of the spring potential. 

 

In general, a 1-D lattice with nonlinear interaction between neighbour masses can support 

propagation of solitary waves. We study special lattice where the neighboring masses interact 

through springs with double-well potentials, also termed bistable springs. The double-well 

potential consists of two disjoint intervals of convex energy, “Phase-I” and “Phase-II”, 

separated by a concave “spinodal” region. This results in a nonlinear, non-monotonous force-

strain curve, consisting of two branches with positive stiffness, separated by a  branch with 

negative stiffness. We note the fundamental difference between the system studied here, 

where double-well potentials govern the interactions between neighbours, and the lattice with 

onsite double-well potential, where each mass lies in a double-well potential. In the latter, 

kink waves (or transition waves), rather than solitary waves, may propagate for very long 

distances, even in the presence of dissipative mechanisms.  

Lattices with double-well-potential interactions have been studied extensively, but not in 

the context of solitary waves. The Lattice with double-well is prototypical to the behavior of 

elastoplastic materials, super elasticity, shape-memory effect, plasticity, fracture, hysteresis 

in material behavior, and more. The dynamic behavior of bistable lattices has also been 

extensively studied, usually by means of modeling inertial dynamics directly, or by assuming 

simplified evolution strategies or kinetic relations. In addition, the unique nonlinear behavior 

associated with the double-well-potential has led to the development of a new class of 

metamaterials, i.e. materials that exploit local instabilities for enhanced performance.  These 

studies have demonstrated the advantages of such architected materials in  the context of 

energy absorption, mechanical/acoustic filtering and tailored bandgaps, transformation of 

mechanical signals, origami-based metamaterials and other applications. 

In a recent work [1], we showed that, governed by the ratio of Phase II to Phase I stiffness, 

a 1D lattice with double-well-potential interactions may exhibit two fundamentally different 

dynamic responses following impact. For a softening media (phase-II is softer than phase-I) 

most of the energy of the impact translates into transition of the first few springs from Phase 

I to Phase II. However, for a hardening media (phase-II is stiffer than phase-I) a solitary wave, 

which propagates faster than the speed of sound associated with phase-I, is formed. Further, 

it was shown that the height of the solitary wave is indifferent to the energy barrier separating 

between phase-I and phase-II. In this study we extend and generalize the results presented in 

[1], and show that: (i) The entire solitary-wave solution is indifferent to the energy barrier 
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which separates Phase I and Phase II. (ii) The shape of the solitary wave is governed by a 

non-dimensional parameter which reflects the relative significance of the spinodal region in 

the double-well potential.  

The above results are obtained analytically based on padé approximations and are 

validated by means of extensive numerical simulations that relax the simplifications adopted 

in the analytical treatment. In particular, the analytical analysis adopts a trilinear 

approximation for the force-strain behavior of the interaction forces and derives a quasi-

continuum approximation based on Padé approximants of the differential operator . These 

steps enable a straight-forward analytical treatment and the derivation of an explicit solution. 

In addition, the numerical simulations suggest that the analytical insights apply to bistable 

lattices with non-trilinear interactions as well. We note that a similar analytical approach has 

been applied in [2–4] for studying solitary waves in a lattice with bilinear force-strain 

interactions (convex potentials).  
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Abstract This work proposes an algorithm allowing to perform a fast and light computation
of branches of damped Nonlinear Normal Modes (dNNMs). Based on a previous work about
undamped NNMs (uNNMs), it couples Proper Generalized Decomposition (PGD) features,
harmonic balance and prediction-correction continuation schemes. After recalling the main
contributions of the method applied on an example with cubic nonlinearities, the issue of a
reduced nonlinear modal synthesis is briefly addressed.

The differential equations governing the motion of a nonlinear dynamical system can usually
take the following form after a spatial discretization, where the nonlinear efforts fnl(x, ẋ) are
separated from the linear ones:

Mẍ(t) + Cẋ(t) + Kx(t) + fnl(x(t),x(t)) = f e(t) (dim.: N) (1)

Assuming the Rosenberg’s framework [4], an undamped NNM is a set of limit cycles of
Eq. (1) from which dissipative and external forcing terms are put to zero. Shaw and Pierre
extended this first definition of NNMs to the case of dissipative systems: a (damped) NNM
is a two-dimensional invariant manifold in the phase space [5]. Hence, one wants to obtain a
dNNM by computing a set of pseudo-periodic solutions of Eq. (1) with f e(t) = 0.

A frequential reduced algorithm coupling a PGD approach with an harmonic balance
method (HBM) is implemented to make a quick and compact dNNM computation. The first
step of the PGD process is separating the variables, here space and time:

x(t) ≈
m∑

j=1

pjqj(t) ⇔ x(t) ≈ Pq(t) with P = [p1, . . . ,pm] (2)

m ≪ N is a positive integerand denotes the number of PGD modes (pj , qj(t)) used for x
decomposition. P is the (N × m)-sized matrix of the m PGD mode shapes pj , and q(t) is
the vector containing the time dependence of each PGD mode. Then a spatial subproblem Sm

and a temporal subproblem Tm are defined from specific weak formulations [1]. The calculus,
its notations and operators are detailed in [3]. Given the spatial matrix P, Tm is a set of m
ordinary differential equations of order 2. A complex HBM [2] is then implemented to obtain
another nonlinear algebraic system for Tm from the following solution form:

q(t) =
a0√
2

+

H∑

k=1

e−kβt[ak cos (kωt) + bk sin (kωt)] (3)

β-dependant linear terms can easily be separated from the classic undamped HBM matrices.
Given the temporal part q(t), the spatial subproblem Sm is a N × m nonlinear algebraic
system which takes into account the damping ratio β into the definition of its operators. The
PGD/HBM solver is obtained by integrating Sm and Tm into an alternated directions solver.
This PGD/HBM solver is eventually embedded into a continuation scheme as a corrector in
order to build the dNNM branch. The choice of predictor is left to the user.
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The first point of the branch is described with only one PGD mode which contains the
shape and the frequency of the underlying linear damped mode with a null amplitude. When
the error criterion can no longer be met through the continuation, the size of the description m
is incremented and some new spatial and temporal information is added to the PGD description.
Unlike Grolet and Thouverez [1] who initialized q(t) with random values, we propose to process
Tm first based on the shape on the next damped linear modes. The full algorithm adds new
modal data on the fly, only when it is necessary with respect to the error criterion.

It should be noted that two variants have been implemented: oPGD (optimized PGD)
recomputes the whole P matrix at each point of the branch whereas pPGD (progressive PGD)
only computes the last shape pm+1 when it is introduced. Although oPGD generally needs less
PGD modes than pPGD, the computational cost is higher.

The method is here applied on a cantilever beam with a cubic spring at its free end investi-
gated in [3]. A 1% modal damping is added on each linear mode. The Frequency-Energy Plot
given on Fig. 1 illustrates the hardening effect of the cubic nonlinearity while the conservative
mechanical energy grows and the damping-energy dependence of the NNM.

Figure 1: (a) Schematic diagram of beam+cubic spring (b) Main branch of dNNM1 (c) Damping
ratio with respect to energy. Squares: Solution points where a PGD mode is added.

Eventually, this compact description of NNMs can be embedded into a reduced modal
synthesis solver in order to quickly build Frequency Response Functions by looking for x solution
of Eq. (1) as follows:

x(t) = P(s)

(
a0(s)√

2
+

H∑

k=1

[ak(s) cos (k(ωt + φ)) + bk(s) sin (k(ωt + φ))]

)
(4)

where s is an index for the dNNM branch and φ is the phase of the response. Although this
decomposition is slightly different of the one given in [2], the two equations used to solve for s
and φ are similar.
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Abstract A robust methodology for deriving nonlinear reduced-order models from finite-
element models would enable powerful nonlinear techniques to be used to analyse large and
complex engineering structures. This work highlights why nonlinear modal coupling leads to
challenges in establishing such a methodology. Furthermore, using analytical insights gained
from considering simple mechanical systems, it is demonstrated how these challenges may be
overcome.

Two popular methods for deriving reduced-order models from finite-element models are the
Enforced Modal Displacement (EMD) and Applied Modal Force (AMF) methods [1]. These
two approaches can lead to significantly different results due to the way in which membrane-
type coupling is captured. Specifically, the EMD method often requires that membrane modes
are included in the reduced-order model (ROM) [2], whilst the modal parameters calibrated
using the AMF method can be sensitive to the magnitude of the force used [3].

In this work, the AMF method is applied to a simple, analytical model of a mass supported
by two orthogonal, linear springs, as shown in Figure 1(a). This mass, m, is free to move in two
degrees-of-freedom, x and y. The spring parallel to direction x has a length `1 and a stiffness
k1, whilst the spring parallel to y has a length `2 and a stiffness k2. The parameters used here
are m = 1 kg, `1 = `2 = 5 cm, k1 = 100 N m−1 and k2 = 15000 N m−1.

(a)
x
y

m
k1

k2

`1

`2

(b)

Figure 1: A schematic diagram of the simple oscillator, used to motivate this work, is shown
in panel (a). The value of the ROM parameter, γ3, as the force scale factor, FS, is varied is
shown in panel (b).

The equation of motion of this system may be written

q̈1 + ω2
n1q1 + 3α1q

2
1 + 2α2q1q2 + α3q

2
2 + 4β1q

3
1 + 3β2q

2
1q2 + 2β3q1q

2
2 + β4q

3
2 = fq1 , (1)

q̈2 + ω2
n2q2 + α2q

2
1 + 2α3q1q2 + 3α4q

2
2 + β2q

3
1 + 2β3q

2
1q2 + 3β4q1q

2
2 + 4β5q

3
2 = fq2 , (2)
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where the modal coordinates q1 = mx and q2 = my have been substituted, and a Taylor expan-
sion, truncated at the third order, has been used to approximate the nonlinear terms. Note that
the linear natural frequencies are given by ω2

n1 = 100 rad s−1 and ω2
n2 = 15000 rad s−1 – hence

the second mode, with a significantly higher frequency, resembles a membrane-type mode.
These equations of motion will be treated as the full-order system (typically represented by a
finite-element method).

To find a reduced-order model describing the dynamics of the first mode of this system, q1,
a suitable parameterised model must be chosen. As the nonlinearity in this full-order system
contains quadratic and cubic terms, it appears reasonable to reduce the system to a model
containing similar nonlinear terms, i.e.

q̈1 + ω2
n1q1 + γ2q

2
1 + γ3q

3
1 = fq1 . (3)

The AMF method is employed by applying a series of static loads to the first mode of the
full-order model (whilst setting the second modal forcing, fq2, to zero) allows the nonlinear
parameters of the ROM, γ2 and γ3, to be estimated. The blue dots in Figure 1(b) show the
estimated value of the cubic parameter, γ3, as the magnitude of the static loads applied to the
full model vary (using scaling FS). This clearly shows that this nonlinear parameter is sensitive
to the magnitude of the applied load, and that the process for calibrating the ROM is not
robust.

To understand the cause of this variation, we return to the equation of motion of the second
mode, Eq. (2). When the system is static and no load is applied, q̈2 = fq2 = 0, and hence the
only remaining variables in Eq. (2) are the modal displacements q1 and q2. As such, Eq. (2)
represents a constraint between q1 and q2, which may be written

q2 = f (q1) ≈ A2q
2
1 + A3q

3
1 + . . . , (4)

where it has been assumed that the function f(q1) may be approximated using a polynomial.
If this polynomial, describing q2 in terms of q1, is truncated at the third-order, substituting this
into the first equation of motion, Eq. (1), gives

q̈1 + ω2
n1q1 + γ2q

2
1 + γ3q

3
1 + γ4q

4
1 + γ5q

5
1 + γ6q

6
1 + γ7q

7
1 + γ8q

8
1 + γ9q

9
1 = fq1 . (5)

This is representative of a 9th-order ROM (i.e. a ROM where the nonlinearity is expressed up
to the 9th-order) which is in contrast to the 3th-order ROM shown in Eq. (4). The variation of
the γ3 parameter of the 9th-order ROM, with the force scale factor FS, is represented by a red
dots in Figure 1(b). This clearly shows that the 9th-order ROM is significantly more robust to
variations in the force scale factor than the 3th-order ROM.

When applying the AMF method, the 3th-order ROM is typically adopted. These results
demonstrate that, due to the strong coupling that may exist between modes that are well-
separated in frequency, the parameters of the 3th-order ROM may vary significantly with the
magnitude of the applied load. Furthermore, these results suggest that a higher-order of non-
linearity should be adopted in the ROM in order to account for these coupling effects.
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Abstract This paper presents a general methodology to predict the dynamics of geometrically
nonlinear electro-mechanical structures with piezoelectric transducers. Modal Reduced Order
Models (ROM) are built using a finite-element software thanks to a non-intrusive strategy.
The resulting system is solved with the Harmonic Balance Method coupled to an Asymptotic
Numerical Method (ANM). The present study focuses on the computation of the ROM and
its validation with experiments on a test structure, exhibiting bent nonlinear modes, internal
resonances and nonlinear response under parametric excitation.
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Figure 1: Photograph of the test structure. Deformed shape of the (0,1) mode and experimental
nonlinear frequency response in forced and free vibrations (backbone curve) with piezoelectric
actuation and detection.

Geometrical nonlinearities, due to large transverse displacements of thin structures, are
involved in a large range of applications. Among them, Micro-Electro Mechanical Systems
(MEMS) developments has been the focus of numerous studies, whose purpose is to master and
use the geometrically nonlinear behaviour (among others, see [5,7,8]). Recent advances in non-
intrusive ROM finite element modeling of nonlinear geometric structures offer new perspectives
to compute accurate ROM of structures with complex geometries [3]. An application on piezo-
electric nanobridges of such a method has been proposed in [2], with a home made finite element
code. The purpose of this paper is to extend this approach to a wider range of electromechan-
ical structures, composed of a thin elastic host structures equipped with several piezoelectric
patches, for actuation and detection of the vibrations. The modelling proposed here includes:
(i) the geometrical nonlinearities (ii) the laminated structure and (iii) the electromechanical
transduction with both converse and direct effects.

Following the ideas of [6] for the linear case and [2] for the case with geometrical nonlinear-
ities, we expand the finite element formulation on K eigenmodes of the structures, by writing
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the displacement vector U(t) =
∑K

k=1 Φkqk(t), where Φk is the k-th. eigenvector with the
piezoelectric patches in short circuit and qk(t) the corresponding modal coordinate. It can be
shown that it verifies, ∀k = 1, . . . K, ∀p = 1, . . . P :




q̈k + 2ξkωkq̇k + ω2
kqk +

K∑

i,j=1

βkijqiqj +

K∑

i,j,l=1

γkijlqiqjql +

P∑

p=1

χ
(p)
k V (p) +

P∑

p=1

N∑

i=1

Θ
(p)
ik qiV

(p) = Fk,

C(p)V (p) −
K∑

k=1

χ
(p)
k qk −

K∑

i,j=1

1

2
Θ

(p)
ij qiqj = Q(p).

(1a)

(1b)

In the above equations, P piezoelectric patches have been considered, whose electrical state is
defined by (V (p), Q(p)), respectively the voltage between the electrodes and the electric charge
contained in one of the electrodes. The above model is composed of four separated parts:
(1) the linear part (that depends on the k-th eigenfrequency in short circuit ωk, the modal
damping factors ξk and the modal mechanical forcing Fk), (2) the geometrical nonlinear part
(with coefficients βk

ij and γkijl), (3) the linear piezoelectric coupling (defined by the coupling

coefficients χ
(p)
k between mode k and patch p) and (4) a less classical part stemming from both

the geometrical nonlinearities and the piezoelectric coupling (of coefs. Θ
(p)
ij ), introduced in [2]

and responsible of parametric excitation effects in thin structures [7].
In this context, we propose an extension of the method introduced in [4] to compute all

coefficients of the above ROM and some validations. A first set of validations is obtained by
considering theoretical test cases for which analytical models are at hand (such as a hinged-
hinged beam with two symmetrically disposed piezoelectric patches that cover its whole length).
Then, some experiments are also considered, on a specially designed test structure, composed
of a circular brass plate equiped with eight piezoelectric patches (Fig. 1). Using experimental
continuation [1], the free (backbone curves / nonlinear mode) and forced vibrations are obtained
for the first axisymmetric mode (Fig. 1), for two companion asymmetric modes involved in
internal resonance and also for parametric excitation. In all cases, the piezoelectric patches are
used for both actuation and detection.
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[6] O. Thomas, J.-F. Deü, and J. Ducarne. Vibration of an elastic structure with shunted piezoelectric patches:
efficient finite-element formulation and electromechanical coupling coefficients. International Journal of
Numerical Methods in Engineering, 80(2):235–268, 2009.

[7] O. Thomas, F. Mathieu, W. Mansfield, C. Huang, S. Trolier-McKinstry, and L. Nicu. Efficient parametric
amplification in mems with integrated piezoelectric actuation and sensing capabilities. Applied Physics
Letters, 102(16):163504, 2013.

[8] L. G. Villanueva, E. Kenig, R. B. Karabalin, M. H. Matheny, R. Lifshitz, M. C. Cross, and M. L. Roukes. Sur-
passing fundamental limits of oscillators using nonlinear resonators. Physical Review Letters, 110(17):177208,
2013.

49



7th International Conference on Nonlinear Vibrations, Localization and Energy Transfer

July 1-4, 2019 - Marseille, France

Retrieving highly structured models starting from
black-box nonlinear state-space models using polynomial

decoupling

J. Decuyper1, K. Tiels2 and J. Schoukens1,3

1Department of Engineering Technology, Vrije Univeristeit Brussel
Brussels, Belgium

jan.decuyper@vub.be

2Department of Information Technology, Uppsala University
Uppsala, Sweden

koen.tiels@it.uu.se

3Department of Electrical Engineering, Eindhoven University of Technology
Eindhoven, The Netherlands

johan.schoukens@vub.be

Abstract This work discusses a model reduction technique for polynomial nonlinear state-
space models. The reduction proceeds by translating the large coupled polynomials into a low
number of univariate polynomial functions.

1 Introduction

The use of nonlinear state-space models as a generic nonlinear model structure has proven
useful in a variety of applications over recent years. The downside of flexibility is the size of the
models, and the large number of parameters required in their description. Moreover, the generic
set of equations rely on large multivariate polynomial functions which are hard to interpret.
This work discusses a method that involves the decoupling of the polynomial functions in order
to retrieve structured models. The size of the models is reduced and the use of univariate
functions provides more insight into the nature of the nonlinearity.

2 Approach

The method consists of three steps:

1. Decouple the multivariate polynomial (f) starting from its first-order derivate sampled in
a number of operating points [1],

f(x(t),u(t)) = Wg

(
VT

[
x(t)
u(t)

])
, (1)

here g is a univariate vector function of a set of intermediate variables. The nonlinear
mappings of g are referred to as branches.

2. Exploiting linear dependencies amongst branches, their number is reduced in successive
steps. Doing so, model complexity is balanced to accuracy.

3. The decoupled function is plugged back into the nonlinear state-space model and nonlinear
optimisation is used to ensure good performance.
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3 Results on the Silver box system

The Silver box is an electrical implementation of the forced Duffing oscillator. Polynomial
nonlinear state-space (PNLSS) modelling [2] results in the following model,

x(k + 1) = Ax(k) + bu(k) +

[
e11 · · · e17
e21 · · · e27

]




x21(k)
x1(k)x2(k)
x22(k)
x31(k)

x21(k)x2(k)
x1(k)x

2
2(k)

x32(k)




(2a)

y(k) = cx(k) + du(k), (2b)

where the nonlinear part (in red) is described using 14 parameters. Without loss of performance
the model is reduced to the following form,

x(k + 1) = Ax(k) + bu(k) +

[
w1

w2

] [
θ1z

3(k) + θ2z
2(k)

]
(3a)

y(k) = cx(k) + du(k), (3b)

z(k) = [v1 v2]

[
x1(k)
x2(k)

]
, (3c)

which uses only 6 parameters (corresponding to only 4 d.o.f) in the nonlinear description. The
results on a validation data set are shown below. Results are also presented for the Bouc-Wen
system, the Van der Pol system and a Li-Ion battery model.
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Figure 1: Results of the Silverbox model on a validation data set. Black is the true output,
blue is the PNLSS model error, red the reduced model error.
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Abstract The effect of on-site damping and other physical parameters on breather arrest,
energy localization and non-reciprocity in strongly nonlinear semi-infinite lattices is studied.
The study is performed for two lattices: (i) a strongly nonlinear uniform semi- infinite lattice
and, (ii) an asymmetric strongly nonlinear hierarchical semi-infinite lattice. A more detailed
presentation of these results are given in (Mojahed et al., 2018).

Breathers are localized oscillatory wavepackets formed by nonlinearity and dispersion, and
breather arrest refers to breather decay and disintegration over a finite “penetration depth”
in a dissipative lattice. First, a simplified system of two nonlinearly coupled oscillators under
impulsive excitation is considered. The exact relation between the finite number of nonlinear
beats (energy exchanges between oscillators), the magnitude of excitation, and the on-site
damping is derived. In the next step, these results are correlated to those of the semi-infinite
extension of the simplified system, and it was found out that the breather penetration depth is
governed by a similar law to that of the finite beats in the simplified system. The comparison
between the characteristic curves (corresponding to disappearance of modulated response after
a specific finite number of beats) and breather penetration depths is demonstrated in figure 1.
The comparison reveals that the 2DOF reduced order model is able to represent the general
breather arrest phenomenon in the semi- infinite uniform lattice.

Figure 1: (a) Characteristic curves for specific maximum number of beatings and (b) breather
penetration depths in the semi-infinite homogeneous lattice in the parameter space correspond-
ing to (damping-excitation level) in logarithmic scales.
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Similarly, for the second nonlinear lattice, energy localization and acoustic non- reciprocity
are studied. Due to asymmetric nature of the lattice, depending on from which end the lattice
is being excited, one can see energy localization at the excitation site or wave propagation
through the lattice from the excitation site. In studying energy localization in this lattice, a
very interesting observation in this system is that when the nonlinear coupling stiffness elements
are considered non-linearizable, energy localization occurs on the opposite end of the lattice
when compared to the similar lattice but with linearizable (small linear stiffness in parallel with
the nonlinear stiffness) nonlinear coupling stiffness elements. Figure 2 illustrates the energy
localization site for both of the discussed cases, i.e. non-linearizable and linearizable nonlinear
coupling.

Figure 2: (a) Energy localization on the left end of the lattice (non-linearizable nonlinear cou-
pling). (b) Energy localization on the right end of the lattice (linearizable nonlinear coupling).

The effect of the small linear component in the nonlinear coupling stiffness on the inversion
of energy localization site is fully explained through studying the governing nonlinear normal
modes (NNMs) [1], of the lattice and the exploring the localized NNMs of this system and their
interactions with the nonlinear propagation zones of the lattice.
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Abstract We discuss new phenomena of energy localization and transition to chaos in the
finite system of coupled pendula without any restrictions on the amplitudes of oscillations. We
propose a new approach to the problem based on the recently developed Limiting Phase Trajec-
tory (LPT) concept in combination with a semi-inverse method. The analytic predictions of the
conditions providing transition to energy localization are confirmed by numerical simulation.

The system of the coupled pendula is the wide-expanded model in the various field of
science [1, 2]. We consider the nonlinear non-stationary dynamics of the sine-lattice [3], which
is very useful in some fields of the polymer physics and biophysics. We start from the Hamilton
function of the discrete system of coupled pendula with the harmonic-type bonds:

H =
N∑

j=1

(
1

2

(
dϕj

dt

)2

+ (1− cos(ϕj+1 − ϕj)) + σ (1− cosϕj)

)
, (1)

where ϕj is the displacement of the j-th pendulum from its equilibrium position and N is the
number of pendula. The dimensionless time t is normalized by the coupling constant while the
”gravity” constant σ can be changed in the accordance of the concrete problem.

It can be shown [4] that the non-stationary dynamics of the system under consideration can
be studied in the terms of the complex variables Ψj = (1/

√
2ω)(ωϕj + idϕj/dt). In such a case,

the energy of the nonlinear normal mode Ψj = ψj exp (−iωt) can be written in the form

Hr =
N∑

j=1

ω

2
|ψj|2 +

(
1− J0

(√
2

ω
|ψj+1 − ψj|

))
+ σ

(
1− J0

(√
2

ω
|ψj|
))

, (2)

where J0 - the Bessel function of zero order and the eigen frequency of the nonlinear normal
mode with the wave number κ can be written as follows

ω2 =
2

Q

(
2J1

(
2Q sin

κ

2

)
sin

κ

2
+ σJ1 (Q)

)
. (3)

Here, the amplitude Q of the oscillations are related to the modulus of the complex variable
|ψj| =

√
ω
2
Q.

Equation (2) with ψj = χ exp (iκj) can be considered as the Hamilton function corre-
sponding to the non-stationary dynamics if the amplitude χ is changed at the scale, which is
essentially larger than the period of the mode (T = 2π/ω). In particular, this occurs when
two mode with close wave numbers are excited simultaneously. In such a case, the equations
of motion can be obtained accordingly the rule:

i
ψj

dτ
= −∂Hr

∂ψ∗
j

(4)
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(the asterisk denotes the complex conjugate function).
It can be shown that equations (4) admit the additional integral of motion X = 1

N

∑
j |ψj|2.

It was shown in [4–6] that the existence of integral X is extremely useful for the analysis of
the nonlinear normal modes (NNMs) interaction. Near the edges of the spectrum (3) this
process leads to the separation of the chain onto two domains, which are differed by the energy
concentration. So we can introduce the ”domain variables”

χ1(τ) =
1√
2N

∑

j

ψj(τ)
(

1 + cos (κj +
π

4
)
)

; χ2(τ) =
1√
2N

∑

j

ψj(τ)
(

1− cos (κj +
π

4
)
)
.

Taking into account integral X one should write the domain variables in the form χ1 =√
X cos θ exp (−i∆/2), χ1 =

√
X sin θ exp (i∆/2) and express the domain occupation via the

value R = |χ1|2−|χ2|2 = X cos 2θ. The accurate analysis of hamiltonian (3) on the phase plane
∆, R shows that there are two threshold values of integral X (see fig. 1(a-c)). Before the first
threshold the modes are stable and the periodic redistribution of the energy between domains
occurs. If X exceeds the first threshold one of the modes losses its stability, but the energy
migration is still possible. Finally, above the second threshold the phase trajectories starting
at R = −1 can not achieve the value R = 1 and vise versa. It means that the energy putting
into one part of the chain can not be redistributed along it.
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Figure 1: Phase portraits (2) in the terms of variablesR and ∆ at different oscillation amplitudes
Q = π/10(a). Q = 2π/10 (b), Q = 3.2π/10 (c). σ = 1, N = 32.
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Abstract    This talk will discuss research aimed at analyzing, simulating, and 

experimentally exploring weakly and strongly nonlinear acoustic periodic materials. In 

particular, the talk will focus on the manner in which these materials can be used to create 

novel wave-control devices for the purposes of wave guiding and filtering. 

 

Weak and strong nonlinearity provide additional design degrees of freedom for achieving novel 

behavior in periodic elastic media. In weakly nonlinear media, perturbation techniques [1, 2] have 

recently been employed to uncover amplitude-dependent dispersion and spatial propagation – see 

Fig. 1 for representative results. These techniques asymptotically expand the displacement field and 

frequency (or, equivalently, time) and result in a cascading set of linear equations. Removal of 

secular terms yield updates to the dispersion relationship, while particular solutions at higher orders 

lead to multiharmonic content. Recent interpretations [3, 4] of these higher-order waves have shown 

that they can propagate through weakly nonlinear media with little to no generation of higher 

harmonics, similar to the invariance displayed by solitons.  

 

 

 

 

 

 

 

Experimental confirmation of these and other findings are an open area of investigation. Manktelow 

et al. [5] provided an indirect measurement of amplitude-dependent dispersion in a periodic string 

by placing evenly-spaced lead masses on a taut string, which was then excited by a shaker and 

measured using a laser Doppler vibrometer. The taut string exhibits a well-known cubic stiffening, 

which leads to positive shifts to the string’s dispersion with increasing amplitude. The analysis 

connected the system’s natural frequencies to the dispersion relationship in the first Brillouin zone 

using a phase closure argument. Measurements of the nonlinear backbones then resulted in 

amplitude-dependent dispersion curves – see Fig. 2. While successful, the experiment was limited 

Figure 1: (a) Weakly nonlinear periodic media give rise to amplitude-dependent dispersion and (b) 

amplitude-dependent spatial dead-zones for (left) small and (right) large amplitude waves. 

(a) (b) 
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to relatively small motions due to the string’s tendency to exhibit a whirling instability. 

Experimental studies have yet to appear which confirm the other richness observed both 

analytically and numerically. 

 

Strongly nonlinear periodic systems exhibit additional 

advantageous behavior, particularly as concerns non-

reciprocal wave propagation. Boechler et al. [6] showed 

that a granular chain with a defect near one end could 

passively break reciprocity due to a bifurcation involving 

the defect mass. More recently, strongly nonlinear systems 

incorporating hierarchical scales and asymmetry have been 

shown theoretically and experimentally to passively break 

reciprocity over a large range of impulse-like excitation [7]. 

Figure 3 illustrates representative results for such systems in 

which excitation on the left yields propagation, while 

excitation on the right leads to localization and no 

propagation. This is an ongoing area of research which is 

currently being extended to strongly nonlinear systems 

which passively break plane wave reciprocity.  
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Figure 2: Experimental apparatus and results: (a) lead bead and steel wire, (b) periodic string fixed 

to two upright aluminium beams, (c) experimentally measured backbone curve AB (black) and 

theoretical backbone curve for a simplified model (red). 

Figure 3: Experimental demonstration of 

non-reciprocity in a chain consisting of 3 

unit cells, each unit cell containing two 

scales coupled by strongly nonlinear 

stiffness. Excitation on the left end clearly 

shows propagation to the right, while 

excitation on the right remains localized, 

and no transmission to the left occurs. 
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Abstract The wave propagation problem of an Euler-Bernoulli beam resting on a tensionless
foundation is addressed. The exact solution of the governing equation is obtained, selecting
among the various mathematical solutions only those having a physical meaning. It is investi-
gated how the stiffness of the unilateral soil influence the wave velocity.

The flexural wave propagation in beams is a classical problem [1], that is characterized by

the velocity of propagation clow =
√

EJ
L

√
ρA

2π, L being the wavelenght. When the beam rests on a

bilateral elastic soil, of stiffness k, this velocity changes to cup =
√

EJ
L

√
ρA

√
4π2 +

(
kL4

EJ

)
1

4π2 . This

problem has been investigated since long time ago, too [2].
Much less investigated is the problem of a beam resting on a unilateral soil, in which the

foundation reach in traction (or compression) only [3], while the problem of wave propagation
in this case has been studied in [4], a paper that constitutes the background of this work.

The mechanical problem is illustrated in Fig. 1, and is governed by the equation of motion

EJw′′′′ + k̂w + ρAẅ = 0, (1)

k̂ =

{
k, w > 0,

0, w ≤ 0,
(2)

where w(x, t) is the transversal displacement of the Euler-Bernoulli beam, EJ the bending
stiffness, ρA the mass per unit length and k̂ the stiffness of the foundation. We consider
undamped free wave propagation.

The solution is sought after in the form

w(x, t) =

{
w1(x, t) = W1(γ1x − ω1t), in the contact part,

w2(x, t) = W2(γ2x − ω2t), in the detached part,
(3)

where

ω1 =

√
EJγ4

1 + k

ρA
, ω2 =

√
EJ

ρA
γ2

2 , (4)

with relevant continuity/periodicity conditions for x = L1 and x = L2.
After long mathematical developments, that are reported in [4] and that require to add a

physical admissibility condition to the purely mathematical solution of (1)-(2), it is possible to
determine the wave velocity cunil as a function of the soil stiffness k.

The solution is made of many branches, the first three being reported in Fig. 2. The
first branch start from 2π for k = 0, increases for increasing k, reaches a maximum and then
approaches π for k going back to k = 0. The other branches, on the other hand, are increasing
functions of k, and, apart from the initial part, are always below the case of bilateral soil,
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Figure 1: The considered mechanical problem.

Figure 2: Wave velocity cunil as a function of the soil stiffness. The dash line corresponds to
the case of bilateral soil cup.

according to the fact that waves propagate faster on stiffer systems; in fact, the bilateral
foundation is stiffer than the unilateral one.

When the solution is close to the dashed line, the wave shape resembles (qualitatively) that
reported in Fig. 1, i.e. the detached and in contact parts have about the same length, while
far from it one of the two parts becomes predominant.
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IMSIA, ENSTA ParisTech-CNRS-EDF-CEA
Palaiseau, France

cyril.touze@ensta-paristech.fr

Abstract Musical instruments are all concerned with a nonlinear characteristics, making the
sound interesting to the ear and the problems challenging for the physician. In this presenta-
tion, we will give an overview of the nonlinear phenomena appearing in a number of musical
instruments, without the aim of exhaustivity. The sound of friction, the acoustic nonlinearity
occuring in brass instruments and giving rise to their particular rich tone will be surveyed, and
a particular emphasis will be given to contact and geometric nonlinearity.

The physics of musical instruments always present a nonlinear characteristics, making the
sound interesting and pleasant to the ear with the generation of a peculiar timbre [1–3]. Con-
sequently the understanding and modeling has to cope with various and complex nonlinear
phenomena that will be surveyed in this talk. When one thinks of the particular sound of a
brass instrument, the high-frequency content generated by contact dynamics in indian stringed
instruments such as tanpoura and sitar, or the wave turbulence at hand in the nonlinear dynam-
ics of gongs and cymbals, one has to face a number of smooth and non smooth nonlinearities
that are key in the sound production and cannot be neglected. Moreover, the sensitivity of
the human perception makes the problems difficult to solve for sound synthesis as any small
amount of numerical dispersion, or any mismodeling in the loss mechanisms and resulting decay
rates, are immediately recognized by the ear as non physical, resulting in poor and unrealistic
sound synthesis.

The talk will survey the main nonlinear characteristics in musical instruments. Without
the aim of exhaustivity, the key components creating the typical sound of bow instruments,
brass instruments, gongs and cymbals, and the problems of collisions, will be overviewed. More
particularly:

• the sound of friction is key to understand the bowed string dynamics. The Helmholtz
motion and the particular stick/slip dynamics will be reviewed, as well as the effect of
rosin. The playability of the bowed string, which gives an idea of the boundary limits
where Helmholtz motion occurs as function of the dynamical input parameters, will be
explained [4–6].

• the brassy sound is generated by nonlinear acoustics propagation in tubes. The effect
will be briefly explained [7]. For wind instruments, another interesting nonlinearity also
occurs in reed instruments, where a nonlinear characteristics between pressure and air
flow velocity is needed to ensure the birth of oscillations through a Hopf bifurcation [8].

• Collisions are present in a number of musical instruments. A special emphasis will be
given to contact dynamics occuring in stringed instruments and used in order to create a
specific tone, such as the one of indian instruments (sitar, tanpura) [9–12].
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• The sound of turbulence is typical of percussion instruments such as gongs and cymbals.
These instruments are characterized by a a broadband Fourier spectrum instead of having
a definite pitch. Geometric nonlinearity occuring due to large-amplitude vibration of those
thin structures, generates a wave turbulent regime with an energy flux from the low to
the high frequencies, resulting in the particular sound of these instruments [13,14].

Models used for sound synthesis of these instruments will then be exemplified and a partic-
ular emphasis on contact dynamics and thin plates dynamics including geometric nonlinearity
will be shown with dedicated sound synthesis examples.
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Abstract Contacts occurring during the string vibration provide a non linear effect which
shapes a specific tone and contributes to the sound identity of the instrument. A conservative
scheme based on a modal representation of the string displacement is presented, allowing the
simulation of a stiff, damped string vibrating against an obstacle with an arbitrary geometry.
Applications on the tanpura and the medieval harp with one contact point and on the electric
bass with numerous contact points are proposed.

Collisions in musical string instruments play a fundamental role in the sound production
in numerous instruments. These collisions are either expected, for specific musical instruments
design or instrumentalist gesture, or undesired and related to adjustment issues. Taking into
account these collisions is then essential to insure the realism of the sound simulation of musical
instruments. An abundant literature [1] exists on numerical simulations of a string vibrating
against an obstacle but a few studies include the two transverse polarisations, physical param-
eters of the string and a comparison with experimental data. The talk aims at presenting a
numerical tool to simulate musical strings vibrating against a unilateral distributed obstacle,
and confronting it to experiments in detail for various instruments.

u,v
z

y

x

g(x)

O

Figure 1: Drawing of a string vibrating against a unilateral obstacle described by g(x).

The numerical method is based on a modal description of the string considered stiff, damped
and simply supported at both ends [2]. The string collides with an obstacle having a profile
g(x) which is constant along (Oy). The contact force is modeled by a penalty approach where
a small amount of interpenetration is allowed. Note also that an alternative modeling using
nonsmooth numerical integration has also been investigated [3], showing equivalent results for
the considered cases. Along the (Oy)-polarisation, a friction force is selected as a regularized
empirical Tresca friction law [4]. In order to take into account the vibrations of the instrument
body, the mobility at the string ends is then added to complete the model. In the case of
solid-body electric guitars and basses, it has been shown that the bridge mobility is negligible
as compared to that at the nut [5].
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For the experimental approach, the mobility at the nut and the string characteristics (modal
parameters, damping, stiffness) have to be obtained to feed the numerical model. String char-
acteristics are identified using the ESPRIT algorithm from the measured vibration of the string
stretched on a frame guaranteeing rigid-end conditions [5]. In order to compare numerical
results to experimental ones, both displacements along (Oz) and (Oy) are recorded simultane-
ously, with optical sensors calibrated according to the procedure described in [6]. The profile
g(x) is also measured using a ruler or an optical profilometer. The initial condition is provided
by pulling the string with a copper wire until it breaks.
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Figure 2: String displacement in the plane (Oyz) at x=854 mm and at y=845 mm, showing
two u and v components. Blue: experiments, Red: numerics for four oscillation periods: 1 to
2 (a); 2 to 3 (b); 3 to 4 (c) and 10 to 11 (d) [1]

In figure 2 is shown an example of a very good agreement between numerical and experi-
mental data measured on an electric bass. The friction force was adjusted empirically. As we
can see in this figure, numerical and experimental string displacements overlap at each time
step from the first period of oscillation to the tenth after colliding many times with 20 frets.

During the talk, other examples will be shown on the tanpura, the medival harp and the
electric bass to understand their specific sound and to see how numerical simulations can be
used as a tool for helping instrument makers to adjust or design musical instruments.
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Abstract A reed-like instrument having two quasi-harmonic resonances, represented by a
4-dimensional dynamical system, is studied using the continuation and bifurcation software
AUTO. Bifurcation diagrams are explored with respect to the blowing pressure, with focus on
amplitude and frequency evolutions along the different solution branches.

Wind musical instruments are nonlinear dynamical systems with a large diversity of oscil-
lating behaviours. Among these, musicians know how to control their instrument in order to
select periodic oscillating regimes, which correspond to notes when their frequency is properly
adjusted. Understanding the conditions required to obtain the desired oscillating regime, in
terms both of control by the musician and of the acoustic properties of the instrument is an
interesting and intricate problem of nonlinear dynamics. In this study we focus on reed instru-
ments. The use of the AUTO continuation package allows to revisit and extend the analytical
approach proposed in [1].

Reed musical instruments can be described in terms of conceptually separate linear and
nonlinear mechanisms: a localized nonlinear element (the valve effect due to the reed) excites a
linear, passive acoustical multimode element (the musical instrument usually represented in the
frequency domain by its input impedance). The linear element in turn influences the operation
of the nonlinear element. The reed musical instruments are self-sustained oscillators. They
generate an oscillating acoustical pressure (the note played) from a static overpressure in the
player’s mouth (the blowing pressure).

A reed instrument having N acoustical modes can be described as a 2N -dimensional au-
tonomous nonlinear dynamical system [2]. For instance a reed-like instrument having two
quasi-harmonic resonances, represented by a 4-dimensional dynamical system, is considered in
this study, in order to be able to use the AUTO continuation method. The modulus of the
corresponding acoustic input impedance of the resonator is shown in figure 1. The acoustic
input impedance is defined in the frequency domain by the ratio between the pressure and the
volume flow at the input of the instrument, so that :

P (ω) = Z(ω)U(ω), where ω is the angular frequency. (1)

On the other hand, the reed-valve nonlinear behaviour can be modelled by the following poly-
nomial nonlinearity in the time domain, where the volume flow u(t) is defined as a function of
the acoustic pressure p(t) [2]:

u = u0 + Ap+Bp2 + Cp3, (2)
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where u0 is the mean volume flow and A, B and C are real numbers that depend on the control
of the musician.

Figure 1: Modulus of the dimensionless input impedance of the resonator with respect to
frequency. The two resonances are quasi-harmonic: first resonance frequency 229Hz (left red
vertical line), second resonance frequency 463.5Hz slightly higher than the octave 458Hz (right
red vertical line), corresponding to an inharmonicity of 0.012.

Bifurcation diagrams are explored with respect to the blowing pressure, with focus on
amplitude and frequency evolutions along the different solution branches (see examples on
figure 2). The ratio between the two acoustic resonance frequencies of the instrument (also
called inharmonicity) appears to be of crucial importance.

Figure 2: Bifurcation diagrams corresponding to the case of an input instrument with a 1st peak
50% larger than the 2nd one, like in figure 1. The ratio between the two resonance frequencies is
2.024, inharmonicity 0.012 (left) or 2.072, inharmonicity 0.036 (right). Top plots represent the
amplitude of the periodic oscillation branches with respect to the blowing pressure. Bottom
plots represent the frequency of the corresponding periodic solutions with respect to the blowing
pressure. Green (red) lines correspond to periodic oscillations resulting from the instability of
the first (second) acoustic resonance and are called 1st and 2nd registers respectively. Blue lines
correspond to periodic oscillations of the 1st register resulting from the period doubling of the
2nd register.

The oral presentation will show how some of these results can be interpreted in terms of
the ease of playing of the reed instrument.
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Abstract The system formed by the couple {player - trumpet} falls into the class of non-linear
dynamical systems likely to be studied using different numerical tools such as numerical contin-
uation methods. In this study we illustrate the interest of this approach for the categorization
of Bb trumpets in the space of some performance descriptors obtained from continuation by
the ANM method combined to the Harmonic Balance Method (HBM).

The model considered is based on one-dimensional lip model, coupled to the resonator
impedance described by a series of complex modes similar to what proposed in [1]. The coupling
between the mechanical oscillator and the acoustic resonator is achieved by a Bernoulli flow
equation, considering turbulent mixing in the mouthpiece with no pressure recovery [2]. The
mechanical and acoustic equations are given in system 1, where y is the vertical lip position
(y0 is the lip position at rest), ωl, Ql, µl and b the mechanical lip parameters, sk and Ck
with k ∈ [1, N ] the modal parameters of the N resonances of the acoustic impedance of the
instrument, Zc the characteristic impedance, u the volume flow, p the downstream pressure at
the input of the instrument (in the mouthpiece), and p0 the upstream (mouth) static pressure.

{
ÿ(t) + ωl

Ql
ẏ(t) + ωl

2(y(t)− y0) = 1
µl

(p0 − p(t))
ṗk(t) = ZcCku(t) + skpk(t), ∀k ∈ [1, N ]

(1)

with p(t) = 2
∑N

k=1<(pk(t)) and u =
√

2|p0−p|
ρ

b · sign(p0 − p) · θ(y), where θ(y) = |y|+y
2

, b is the

lip width and ρ is the air density.

The case of a negative opening of the lips is managed by introducing the Heaviside function
θ(y). The modal parameters of the N modes of the impedance are extracted from measured
impedances, using the high resolution method ESPRIT [3].

The specificity of the approach proposed in this paper is based on combining the ANM
method [4, 5] with the Harmonic Balance Method (HBM) for the search of periodic solutions
of the system. The HBM allows to approximate the unknowns by truncated Fourier series.
The new unknowns of the problem are the Fourier coefficients of each element of U. For more
details about the continuations of periodic solutions using ANM and HBM, the reader is invited
to refer to [6].

The calculation of bifurcation diagrams of system 1 is performed using the Matlab library
MANLAB developed at LMA1. The natural frequency of the lips fl = 2πωl is set to excite
the fourth regime of the instrument in open fingering (no valve pressed). In a first step the
stationary solution of the system is calculated in order to identify a Hopf bifurcation from which
a periodic solution emerges. This periodic solution is then followed by continuation using the
method described previously. A bifurcation diagram obtained for a Bb4 on a Bb trumpet is
represented in Fig. 1.

1http://manlab.lma.cnrs-mrs.fr/
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Figure 1: Left: bifurcation diagram of a Bb4 for a Bb trumpet: amplitude of the mouthpiece
pressure p as a function of the static mouth pressure p0. The dotted line indicates unstable
portions of the branch, while the solid line indicates the stable branch. Right: categorization
of trumpets in the (H,D1) space. The different colors correspond to the different trumpets.
To each trumpet, two points are associated, corresponding to two impedance measurements of
the instrument.

The obtained diagram is characterized by an inverse bifurcation that induces an hystere-
sis H. A quantity D1 associated to the dynamic range of p can also be defined from the stable
part of the solution. By extracting H and D1 on different trumpets, and locating the corre-
sponding points in the (H,D1) 2D space, the categorization represented in Fig. 1 is obtained.
For each instrument, two impedance measurements are used for calculation. The categorization
obtained clearly allows to differentiate instruments in the 2D space, showing the ability of the
method to provide discriminating descriptors.

Acknowledgments

The authors would like to thank Louis Guillot for his precious support on the use of MANLAB.

References

[1] Silva, F., Vergez, C., Guillemain, P., Kergomard, J., and Debut, V., MoReeSC: A Frame-
work for the Simulation and Analysis of Sound Production in Reed and Brass Instruments.
Acta Acustica united with Acustica, 100, 126-138, (2014).

[2] Elliot, S. J., and Bowsher, J. M., Regeneration in brass instruments. Journal of Sound and
Vibration, 83, 2, 181-217, (1982).

[3] Roy, R., and Kailath, T., Esprit: Estimation of signal parameters via rotational invariance
techniques. IEEE Trans. Acoust. Speech, Signal Process., 37, 7, 984-995, (1989).

[4] Cochelin, B., Damil, N., and Poitier-Ferry, M., Méthode asymptotique numérique, Lavoisier,
Cachan, France, (2007).

[5] Cochelin, B., A path-following technique via an asymptotic-numerical method. Computers
& structures, 53, 5, 1181–1192, (1994).

[6] Cochelin, B., and Vergez, C., A high-order purely frequency based harmonic balance formu-
lation for continuation of periodic solutions. Journal of Sound and Vibration, 324, 243-262,
(2009).

71



72



NES & TET

Thursday, 4th July 2019

[\

Chairman: G. Kerschen

73



 

7th International Conference on Nonlinear Vibrations, Localization and Energy Transfer  

July 1-4, 2019 – Marseille, France 

Design criterion and finite element analysis of pure 

cubic system 

A. Zhenhang WU1, B. Sébastien SEGUY1, C. Manuel PAREDES1 

and D. Donghai QIU2 

1 Institut Clément Ader (ICA), CNRS-INSA-ISAE-Mines Albi-UPS 

Université de Toulouse, France 

zhenhang.wu@insa-toulouse.fr  

sebastien.seguy@insa-toulouse.fr 

manuel.paredes@insa-toulouse.fr 

2 Suzhou Institute of Biomedical Engineering and Technology 

Chinese Academy of Sciences, Suzhou, China 

qiudh@sibet.ac.cn 

Abstract    The purpose of this abstract is to report a novel design of pure cubic stiffness 

system and general methodology to parameterize variable pitch spring. The performance of 

the improved design will be tested by finite element analysis (FEA).  

 

In the studies of machining accuracies, devices that work under complex load 

conditions, and comfort, to name a few, vibration mitigation, is an inevitable issue. The 

traditional vibration absorber can be divided into three types: passive, active, and semi -

active. Among these, the passive absorber Nonlinear Energy Sink (NES) attracts 

researcher’s attention because of its lighter attachment and performance in a broader band 

of frequency. 

This type absorber is characterized by a damped linear oscillator coupled  to an 

essentially nonlinear attachment. When the NES meets certain conditions, such as proper 

mass ratio, nonlinear stiffness, and external excitation, it can be activated [1]. There exists 

regimes of the quasi-periodic response and leads to a passive irreversible transfer of primary 

structural energy (referred as energy pumping) towards secondary highly coupled mass via a 

nonlinear element [2]. 

The mastery of nonlinearity is a key issue to obtain the optimal vibration absorption 

performance. To obtain an optimally strong nonlinearity, a generalized methodology for 

designing a novel Nonlinear Energy Sink was established [3]. 

Firstly, a designed parameterization of variable pitch spring is implemented. 

Accordingly, the objective nonlinear Force-displacement function was divided into sections, 

whose stiffness were considered to be constant. The core of generating a variable pitch 

spring is adjusting its variable active coils during the compression. A symmetrical design 

method is applied to overcome the inaccuracy in the end of curve fitting. 

Secondly, it is very challenging to produce a purely cubic stiffness by using variable 

pitch spring directly i.e., without a linear part (Figure 1). In order to overcome this 

shortcoming, two important steps were implemented: 1) a method of axial combination of 

two variable pitch springs and pre-compression at transition point was proposed. This 

produced the force polynomial component with only linear terms and cubic terms. 2) With 

the help of a negative stiffness mechanism that was designed with an axial coincidence 

having two cylindrical springs whose direction of movement is perpendicular to their axis. 

This mechanism can counterbalance the linear term and obtain the pure cubical stiffness.  
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Figure 1: Detailed realization of NES system. 

A finite element model of variable pitch spring was built by optimizing the geometry, 

adjusting and refining the mesh type, resetting the boundary conditions to carry out 

simulations (Figure 2). These parameters of simulations were adjusted to closely match  the 

theoretical results. The current simulation results show that Abaqus can effectively simulate 

the compression characteristics of variable pitch springs (Figure 3) 

                 

Figure 2: 3D model of variable pitch spring   Figure 3: Comparison of theory and simulation 

In the future, the following steps will be carried out： 

1) Complete analysis of the whole system. Study the error between model predictions 

and experiments. 

2) Study the dynamic behaviour of models in Abaqus, and investigate the possibility to 

simulate the phenomena of energy pumping. 

After verifying the effectiveness of finite element models, we will develop an optimized 

NES system by experimentation with the aim towards industrial applications. 
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Abstract A bistable nonlinear energy sink, conceived to mitigate the vibrations of a multi-
degree-of-freedom host mechanical system, is considered. Under impulsive excitation, the invari-
ant manifolds describing the high amplitude slow dynamics are generalised. Results illustrate
that the absorber is generally unable to resonate with more than one mode of the primary
system at a time, experiencing instead a sort of “modal cascade” from higher to lower modes.

Nonlinear vibration absorbers, designed to resonate for broad frequency band, have received
considerable attention in the last decade. A wide spectrum of nonlinearity sources have been so
far addressed, encompassing a variety of excitations, host structure typology, design constraints
and objectives [1,2]. Within this context the nonlinear energy sink (NES), consisting of a small
mass connected to the primary system by an essential nonlinear spring, has been extensively
studied. Recently, the NES capabilities for the mitigation of broadband impulsive energy was
studied by the authors exploiting the four-dimensional invariant manifold of a two-DoF host
system [3]. Stemming from the latter study, a bistable NES (BNES) connected to a multi-
degree-of-freedom (MDOF) system is here considered. Invariant manifolds describing the high
amplitude slow dynamics are analytically identified. These consist in high dimensional surfaces,
which relate the absorber vibration amplitude to the primary system ones.

The dynamics of the BNES attached to an undamped linear n-DOF primary system is
modelled by the following system of differential equations

n∑

j=1

mijẍj +
n∑

j=1

kijxj = 0 for i = 1, ..., n, i 6= l

n∑

j=1

mljẍj +
n∑

j=1

kljxj − ka (xl − xn+1) + ca (ẋl − ẋn+1) + knl (xl − xn+1)
3 = 0

maẍn+1 + ca (ẋn+1 − ẋl)− ka (xn+1 − xl) + knl (xn+1 − xl)3 = 0,

(1)

where mij = mji and kij = kji are the primary system mass and stiffness matrices terms, ma is
the absorber mass, ka, ca and knl are the absorber negative linear stiffness, linear damping and
cubic stiffness coefficients. ma is assumed small with respect to the primary system masses.

We perform a modal analysis according to the primary system modes and we scale ampli-
tudes by the absorber nonlinearity. Then, aiming at characterizing the behavior of the BNES
against impulsive excitation, the invariant manifolds describing the high amplitude slow dy-
namics are identified, following the procedure adopted in [3]. The obtained invariant manifolds
have the form

v2liω
4
nia

2
i = b2i

(
ω2
ni + ω2

a +
3

4
b2i −

3

2

n∑

j=1

b2j

)2

+ 4ζaω
2
aω

2
nib

2
i for i = 1, ..., n (2)
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Figure 1: Time series for a 4-DoF primary system with an attached BNES. y1, y2, y3, y4 indicate
modal amplitudes and f the absorber relative displacement wavelet transformation.

where ai is the vibration amplitude of the ith mode in the primary system, while bi is the
relative vibration amplitude of the absorber with frequency ωni, ωni are the primary system
natural frequencies, vlj are terms of the transformation matrix utilized for the modal analysis,
ζa = ca/(2maωa) and ω2

a = ka/ma.
Results illustrate that the BNES, although is capable of interacting with all modes of the

primary system, it is generally unable to resonate with more than one mode of the primary
system at the same time. It experiences instead a sort of “modal cascade”, dissipating first
energy of higher modes and then of lower ones. Modal interaction between the absorber and
more than one mode of the primary system seems to be possible only at very specific energy
levels. This is clearly illustrated in Fig. 1 for a 4-DOF primary system. The figure shows how
modal energy of the 4th mode is first dissipated (y4). Then, the BNES disengages from the 4th

mode and starts interacting with y3 (t ≈ 385, first vertical dashed line), until it disengages also
from y3 and interacts with y2 (t ≈ 1230, second vertical dashed line). The process goes on until
energy is dissipated on the lowest mode. At t ≈ 6000 the energy level is so low that the BNES
is confined to oscillate in-well.
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Abstract This work addresses the development of a vibroacoustics nonlinear absorber based
on the concept of a Nonlinear Energy Sink (NES) under multi-stable configuration. Numerical
experiments show that adding a bistable property to a NES permits to lower its activation
threshold compared to NESs with only one stable position.

Since the seminal papers by Vakakis et al [1, 2], energy pumping has become a subject
of growing interest. Despite highly efficient energy dissipation, the main drawback is that
the higher the frequency of the primary linear system to control, the higher the amplitude
for activation of non linear passive dissipation. Recent theoretical and numerical works by
Manevitch et al [3], Romeo et al [4] and experimental work by Mattei et al [5] showed that a
bi-stable NES (B-NES) provides improved robustness in frequency and amplitude range over
existing NESs by lowering the activation threshold. This work aims at improving the absorber
developed by R. Bellet et al [6]. The developed absorber is made of a high amplitude vibrating
membrane that is described by linear and cubic stiffnesses and a dissipation described by
linear and quadratic terms. The bistable NES developed in this work can be described by
linear quadratic and cubic stiffness terms. The presence of this quadratic damping conplexifies
the theoretical analysis but doesn’t prevent numerical experiments. The absorber equation
developed in [6] is written as

mmq̈(t) + k1 [(1 + χ)q(t) + ηq̇(t)] + k3(2ηq2(t)q̇(t) + q3(t)) = Sm/(2h)p(t) (1)

where mm = ρmhSm/3 is the dynamic membrane mass, Sm its section, η its viscous damping
and p(t) is the forcing term. The parameter χ = 3R2e0/h

2 is the ratio between the pre-strain
e0 and the (strain) buckling load of the membrane and the coefficients k1 and k3 that respec-
tively stand for the linear and nonlinear stiffnesses are defined as k1 ≈ 1.0154π5

12
Eh3

3(1−ν2)R2 , k3 =

8π Eh3

3(1−ν2)R2 . It is worth noting that 1.0154π5/12 = 8.24 ≈ 8 and thus k1 ≈ k3. By de-

noting 1 + χ = −ζ with ζ > 0 for a buckled membrane, the Eq. (1) is then written as
mmq̈(t) + k1 [−ζq(t) + q3(t) + η(1 + 2q2(t))q̇(t)] = Sm/(2h)p(t). By the change of variable
qm(t) =

√
ζ(y(t) + 1), one obtains a Helmholtz-Duffing like nonlinear equation for the buckled

membrane, very similar to that obtained in [5]

ÿ(t)+f 2
1

[
y(t) + 3/2 y2(t) + 1/2 y3(t) + η

(
1/(2ζ) + (1 + y(t))2

)
ẏ(t)

]
= Sm/(2

√
ζhmm)p(t) (2)

where f1 =
√

2ζk1/mm is the linear frequency of the buckled membrane. Such an equation
with a non-linearity of the form y + 3/2y2 + 1/2y3 possesses two stable equilibrium points (0
and -2) and one unstable (-1). We investigated the targeted energy transfer occurring between
the acoustic medium (the one-dimensional tube of length L around its first acoustic mode)
and the bistable membrane during both the sinusoidal forced regime and the free oscillations
as proposed in [6]. Using non-dimensional quantities defined as τ = ωt, ω = c0π/L, and
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u = ua2St/(hSm) if ua is the acoustic velocity inside the tube and St its section, with the
notations of [6], the two d.o.f. non-dimensional system is given by

d2u(τ)
dτ2 + λdu(τ)

dτ
+ u(τ) + β

(
u(τ) − √

ζ(y(t) + 1)
)

= F cos(Ω
ω
τ)

γ
√

ζ d2y(τ)
dτ2 + c1

√
ζ

[
ηω (1 + 2ζ(1 + y(τ))2) dy(τ)

dτ

+ζ (2y(τ) + 3y(τ)2 + y(τ)3)] − β
(
u(τ) − √

ζ(y(t) + 1)
)

= 0

(3)

The numerical results for this system are compared to the numerical results for the system
(22) given in [6]. The simulation had been obtained for the numerical values: λ ≈ 0.014,
β ≈ 0.12, ω ≈ 545, Ω = 1.06ω, γ ≈ 1.73, ζ = 10, η = 10−4, c1 = 0.04, c3 ≈ 0.036,
f1 = 57 and f1/f0 ≈ 4.4. The last three coefficients are used for the Bellet’s model.The results
are presented in Figure 1. It is worth noting that the classical membrane do not show any
particular modulation while the bistable membrane show strongly modulated response which is
characteristic of dissipation by NES. As the forcing are identical in the two cases, the threshold
for energy pumping has been lowered by the bi-stable membrane.

u y

(a)

u y

(b)

Figure 1: Time response of the system (22) in [6] figure (a) and 3 figure (b). The forcing of
amplitude F = 13 is stopped at t = 4800.

References

[1] O. Gendelman, L.I. Manevitch, A.F. Vakakis, R.M. Closkey, Energy Pumping in Nonlinear
Mechanical Oscillators: Part I–Dynamics of the underlying Hamiltonian systems. ASME
Journal of Applied Mechanics 68 (2011) 34-42. doi:10.1115/1.1345524.

[2] A.F. Vakakis, O.V. Gendelman, Energy Pumping in Nonlinear Mechanical Oscillators:
Part II–Resonance Capture. ASME Journal of Applied Mechanics 68 (2011) 42-48.
doi:10.1115/1.1345525.

[3] L.I. Manevitch, G. Sigalov, F. Romeo, L.A. Bergman, A. Vakakis, Dynamics of a Linear
Oscillator Coupled to a Bistable Light Attachment: Analytical Study. ASME Journal of
Applied Mechanics 81 (2014) 041011-1-9. doi:10.1115/1.4025150.

[4] F. Romeo, L.I. Manevitch, L.A. Bergman, A. Vakakis, Transient and chaotic low-
energy transfers in a system with bistable nonlinearity. Chaos 25 (2015) 053109.
doi:10.1063/1.4921193.
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Abstract    An electroacoustic loudspeaker linearly coupled to an electric nonlinear shunt 

circuit acting as a nonlinear energy sink is considered. An analytical treatment enabling to 

analyze the behavior of the system around the 1:1 resonance at different time scales is 

performed. Extended form of Manevitch's complex variables is introduced, taking into 

account higher harmonics. Periodic and strongly modulated responses are well predicted. 

 

 

We consider an electroacoustic loudspeaker, shunted to an electrical nonlinear circuit 

(cubic nonlinearity is chosen to use the nonlinear energy sink concept developed in [1]) and 

subjected to an external periodically varying sound pressure. The dynamics can be described 

by the following equations [2]:  

 

 
 
                     

                            

          
                       

            
  

(1) 

 

where x and Vc describe the small displacement of the loudspeaker membrane and the electrical 

potential applied to the capacitor in the nonlinear shunt circuit, with       
      

  
. Mms, Rms and Cmc 

are the mass, the mechanical resistance of the moving bodies and the equivalent compliance of the 

enclosed loudspeaker. Bl is the force factor of the transducer, B represents the magnetic field 

magnitude and l stands for the length of the wire in the voice coil. Am stands for the pressure 

amplitude,   the angular frequency and S the diaphragm area. From the electrical side, Re and Le are 

respectively the DC resistance and the inductance of the voice coil and          is the back 

electromotive force. Rc, Lc and C are the inductor, resistor and capacitance of the corresponding 

nonlinear shunt circuit. k is the nonlinear coefficient (related to the design of the electronic circuit). 

Then we introduce the following non-dimensional time variable       with 

                and       . We denote        
      

  
. Then, scaling of parameters is also 

done by considering their physical range and by expressing them in function of a small parameter  

         .  

The Slow Invariant Manifold (SIM) of the system is generally obtained by treating the 

system (1) analytically after introducing the classical Manevitch's complex variables [3]. However, 

with the present system, we can show (by looking at results by direct numerical integration of the 

system) that the contribution of the third harmonic for        in the transient regime is not 

negligible and that the contribution of the third harmonic for       in the transient regime is 
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negligible. That is why we propose to extend the method by introducing higher harmonics of the 

present system: 

 

 
 

              
    

  
              

           
     

  
(2) 

 

We also write the complex variables into their polar form as             . 

The analytical treatment allows to detect time multi-scale energy pumping between the 

primary system that describes the displacement of the loudspeaker and the shunt nonlinear 

circuit. It permits the detection of the SIM of the system at fast time scale, in addition to the 

equilibrium and fold singularities identification of the obtained reduced order system at 

slow time scales. Figure 1 (a) illustrates the fact that the extended method allows to better 

predict the SIM than the classical one. 

Figure 1 (b) shows the normalized admittance according to frequency for different cases of 

coupling. The classical shunt optimal resistor permits a significant decrease in the normalized 

admittance with a perfect absorption at the resonance. However, this approach is limited to a narrow 

range of frequency with no possible broadening control of the bandwidth. In the vicinity of 1:1 

resonance, an optimal response frequency of the system can be identified through a selected 

threshold. It corresponds to the maximum of energy that the primary system can reach during an 

energy exchange process with the NES. Thus, the optimal design defined in terms of normalized 

admittance is represented by the horizontal line. The added passive nonlinear shunt circuit allowed 

a significant decrease of the admittance, principally at the vicinity of the resonance frequency where 

the targeted energy transfer prevents the velocity to exceed a certain amplitude. Moreover, we can 

identify that the frequency bandwidth undergoes a 45% of relative increase. 
 

(a)                                                                  (b) 

 
Figure 1: (a) Comparison between the analytical classical SIM, the new one obtained by 

taking into account the third harmonic and the direct numerical integration of the initial system ; 

(b) Comparison of the normalized admittance as function of frequency between the cases of 

open circuit, optimal linear resonator and the shunt nonlinear circuits with two examples of 

nonlinear coupling (two different amplitudes for sound incident wave).  
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Abstract Conservative backbone curves are often observed to shape forced-damped frequency
responses for multi-degree-of-freedom nonlinear vibratory systems. This relationship, however,
is generally inferred a posteriori from experiments or numerical simulations. Here we discuss an
analytic criterion to predict the bifurcation of frequency-amplitude plots from their conservative
limits without assumptions on the amplitude or the number of degrees of freedom.

Conservative families of periodic orbits, or nonlinear normal modes, are commonly described
in the analysis of nonlinear oscillations [1]. Among their properties, such oscillations are noted
to act as backbones of forced-damped frequency responses. Analytic calculations supporting
this observation are only available for specific, low-dimensional oscillators under the assumption
of small response amplitudes.

Establishing a rigorous mathematical relation between conservative oscillations and fre-
quency responses would have important numerical and experimental implications. Indeed, a
qualitative description of the frequency response starting from conservative backbone curves
would avoid computationally expensive simulations for several parameters value or shapes of
the dissipative contributions. Moreover, there are experimental routines (e.g. force appropri-
ation, [2]) that explicitly rely on the observed relation between conservative backbone curves
and forced response, thus an analytic criterion could determine the range of applicability of
such methods.

In this contribution, we clarify the persistence and bifurcations of conservative periodic
orbits under small non-conservative perturbations [3]. We reduce the problem to the analysis of
a bifurcation function that turns out to be the classic subharmonic Melnikov function [4]. When
our analysis is applied to mechanical systems featuring pure forcing and arbitrary dissipative
terms, it proves that either two, one or no isochronous or isoenergetic periodic orbit can arise
from the conservative limit.

As an example, we apply this generalized Melnikov method to a three-degree-of-freedom
system whose equations of motion read:





q̈1 + 3q1 − q2 − 0.75q31 + 0.25q51 = f0 cos(ωt) − 0.005(3q̇1 − q̇2)

q̈2 + 3q2 − q1 − 2q3 = −0.005(3q̇2 − q̇1 − 2q̇3)

q̈3 + 4q3 − 2q2 + 0.5q33 = −0.01(2q̇3 − q̇2)

q =



q1
q2
q3


 . (1)

Linearization around the origin reveals that three families of periodic orbits emanate from the
origin under zero forcing and damping terms are zero. By analyzing each conservative orbit
family separately, we obtain rigorous predictions for the frequency response as illustrated in
the left plot of Figure 1. Using different colors for each mode, we depict the analytic relation
between the maximum of the frequency response and the forcing parameter. Such relation
can be extracted identifying limit points of a suitable bifurcation function evaluated using
conservative trajectories only. Moreover, when these trajectories have lower amplitudes then
the maximum value, two orbits laying the frequency response with the same energy bifurcate
from the conservative limit, while no solution persists for higher amplitudes. We illustrate
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Figure 1: Left: analytic relation between the maximum value in the frequency response of the
L2-norm of the full trajectory x = (q, q̇) and the forcing amplitude obtained from a Melnikov
analysis of conservative nonlinear normal modes for the three modes; mode 1 in blue, mode 2
in orange and mode 3 in yellow. Right: the black line depicts a frequency response simulation
with f0 = 0.1 including three colored lines for the conservative backbone curves. The frequency
is normalized with that of the first linear mode. The analytic predictions are also carried over
from the left plot using gray dotted lines.

this behavior using solid and dashed lines respectively, selecting maximal modal amplitudes
corresponding to f0 = 0.1. Our predictions are confirmed in the right plot of Figure 1 where
the black line illustrates the frequency response computed with numerical continuation. This
plot is completed with conservative backbone curves with the same colors used for the left plot.
Our conclusions assume that the non conservative terms are small enough and that there is no
interaction between single modes.
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Abstract    This study treats oscillations of a liquid in partially filled vessel under 

horizontal harmonic ground excitation. Such excitation may lead to hydraulic impacts 

applied on the tank walls. Different equivalent mechanical models are suggested to mimic 

the most essential sloshing regimes of the overall tank-liquid system. Then, the contribution 

of Nonlinear Energy Sink (NES) to the overall system mitigation is firstly examined.  

 

We introduce the equivalent mechanical model for liquid sloshing in cylindrical tank with the well 

explored TMD attached [1]. Parameters K and C are modal stiffness and damping of the vessel 

fundamental (1,1) beam-type mode, respectively. The tank is of radius R and height H and exposed 

to arbitrary external excitation of
gu . 

 

Figure 1: Scheme of cylindrical tank with liquid interacting with structure walls, and attached TMD 
 

The liquid static and dynamic portions heights and the combined tank-static liquid portion center of 

gravity height are denoted by
0 1 and h h , respectively. Parameters 

2 3andk k  represent the coupling 

stiffness associated with the TMD and NES, respectively. 2c  is the linear damping coefficient. The 

PEA installation height
2h  is determined by the designer. Masses 

tan km and
0m are the tank shell mass 

and the liquid 'static' portion mass, respectively. The sloshing dynamics combines infinite number 

of sloshing modes with mass of
nm . However, as shown by Abramson [2], the modal mass decreases 

rapidly with increasing mode number. Then, to reveal most important aspects of dynamics, one can 

take into account only the first sloshing mode and the static-like portion of the fluid in the 

mechanical equivalent model, as long as the excitation frequency is far from the natural frequencies 

of the higher modes. The normalized displacement coordinate of the sloshing mass m with respect 

to the tank axis is denoted by v . Impact takes place for the absolute value of v  reaches unity. The 

liquid-structure interaction involves energy dissipation due to wave breaking and fluid viscosity, 

which exhibits VI behavior. Interaction between the sloshing mass and the tank walls is described 

by a strongly nonlinear power-form forces with high exponents potential and dissipation force 
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functions [3-5], fully-defined by empirical positive integers, which are going to be assessed both 

numerically and experimentally. Seismically-induced tank failure modes are explained extensively 

by Maekawa [6]. Based on the ROM, Von-Mises equivalent stresses were calculated in the tank 

critical point P. We separately apply both the well-known TMD and the cubic NES as vibration 

mitigation solutions. The following equations of motion are obtained for the overall tank-PEA 

system: 
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(1) 

While the TMD is examined, we take 2 0  , when 2  is the parameter associated with the coupling 

between the NES and the tank structure, and in the same manner, when the NES is examined, we 

take 2 0  . The performances of both PEAs are evaluated with the help of two criteria; stress 

reduction and time of vibration decay. At this stage, the PEAs optimization is performed 

numerically; the TMD with mass about 10% of the total mass of the system allows up to 40% stress 

level reduction and 95% reduction of characteristic decay time in conditions of an optimal tuning. 

 

Figure 2: Example of performance optimization graph for impulsive excitation vs. PEA design 

parameters (stiffness and dissipation): from left to right: TMD optimization graph with respect to 

stress mitigation and time of decay, respectively; cubic NES optimization graph with respect to 

identical evaluation criteria. 

Conclusions ROM is used to describe main most hazardous dynamical regimes taking place 

in cylindrical tank subjected to horizontal ground excitation, and internal impact regime on 

particular. Additional TMD and NES vibration mitigation performances were primarily 

examined and exhibit promising results, in term of both decay time and stresses mitigation 

in the tank critical location. 
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Abstract In this work we investigate experimentally the localisation of energy that occurs in
a symmetric structure composed of two weakly coupled identical beams impacting against bi-
lateral rigid stoppers. The nonlinear modes of the underlying simplified model display localised
solutions bifurcating from the homogeneous out-of-phase mode. In the range of frequencies
where in-phase and out-of-phase nonlinear modes can interact, four stable branches are ob-
served both numerically and experimentally, two of which consist of localised vibrating states.

This work aims at investigating, both numerically and experimentally, the existence of
localised vibrations in a symmetric structure subject to piecewise-smooth nonlinearities.
Energy localisation in two degrees of freedom systems with cubic-type spring nonlinearities has
been widely investigated (see e.g. Refs. [1]). Here a minimal model composed of two weakly
coupled oscillators subject to bilinear springs is studied (1).

Figure 1: Minimal model of a symmetric piecewise linear system with two degrees of freedom
subjected to base displacements.

Nonlinear modal analysis of this system has been performed and the existence of localised
states bifurcating from the homogeneous out-of-phase mode is assessed. The out-of-phase
solution, stable in the linear regime, loses stability at the grazing point and bifurcates in two
localised solution branches. These branches only exist in a restricted range of frequencies that
coincides with the range where in-phase and out-of-phase mode coexist. The localised branches
then merge back onto the out-of-phase solution branch when the in-phase mode reaches its
asymptotic limit frequency. The response of the system to a symmetric excitation also shows
stable branches of localised solutions coexisting with the main branch of in-phase vibration.

A test-rig composed of two weakly coupled cantilever beams touching symmetrical stoppers,
has been designed to reproduce the localisation phenomenon described above. The piecewise
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stiffness, which introduces the nonlinear effect in the minimal model of Fig. 1, is obtained
by means of impactors placed on each side of each beams at a fixed distance from the beam
equilibrium position (cfr Refs. [2]). Two masses attached at the tip of each blade ensure that
each beam behaves as a simple oscillator. The base excitation provides the symmetric forcing
of both oscillators. Experimental results demonstrated the existence of four stable branches:
the lower main branch where both masses vibrates in phase at low amplitude without impacts,
the higher main branch where they both touch the stoppers, and two localised branches where
they possess an out-of-phase component and either the first or the second beam is impacting
and the other is not.
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Figure 2: (a) Backbone curves of in-phase ond out-of-phase mode (gray) and localised solutions
branch bifurcating at grazing point and merging at limit frequency and (b) displacement of the
two masses over time at bifurcated branches
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Figure 3: Test rig. Panel (b) shows the platform connected to the shaker, while Panel (a)
depicts the stoppers near one of the two beams.
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1Aix Marseille Univ, CNRS, Centrale Marseille, LMA
Marseille, France

volpe@lma.cnrs-mrs.fr, bellizzi@lma.cnrs-mrs.fr, cote@lma.cnrs-mrs.fr

Abstract To characterize nonlinear acoustic loads identification techniques have been devel-
oped. A specific setup of impedance tube named “Short Kundt’s Tube” (SKT) was built to
reach high sound levels at low frequencies. Two approaches, developed in the frequency domain,
are discussed : a linearization method giving access to the acoustic impedance and a nonlinear
model which is able to characterize energy transfer to higher harmonics. Both are excitation
level dependent.

Numerous sound absorbers dedicated to noise reduction at low frequencies are based on non-
linear properties, such as nonlinear vibroacoustic absorbers also known as Nonlinear Energy
Sinks (see for example [1,2]). In this work, nonlinear elements are characterized at low frequen-
cies and very high levels using a SKT [3] composed of a complex acoustic source connected to
a tube wich support the device under test (DUT) (see Figure 1.(a,b)).

U

P

0 xm x

Source
Absorber
(DUT) Source

Absorber
(DUT)

Q=HaeU

Qa

Qs QT

Zs ZT

(a) (b) (c)

Figure 1: (a) Picture of the source. (b) Scheme of the experimental set-up and (c) the
equivalent electroacoustic circuit of the one-microphone identification method.

A first identification technique is a linearization method and gives access to the acoustic
impedance and/or the reflection coefficient which are excitation level dependent. After a source
calibration step [3], the nonlinear DUT is characterized by an equivalent impedance ZT (f) (and
the reflection coefficient RT (f)). ZT (f) is definied as a linear approximation of the transfert
between the pressure P (f) and volume velocity Q(f). They are both considered over the tube
section in the measurement plane (see Figure 1.(c)). Two nonlinear acoustic absorbers, a thin
viscoelastic circular membrane and the same membrane with a plywood box clamped on its
rear face described in [2], have been studied. We observe that resonance frequencies of the two
absorbers increase with the excitation level, characterizing a nonlinear behaviour of the systems
and their hardening nature. Moreover, the energy extracted by the absorbers increase with the
excitation level, over a frequency range widening.

A second technique is based on a nonlinear model which is able to characterize energy
transfer to higher harmonics, by defining an impedance or a scattering matrix [4]. We assume
that the acoustic source generates an excitation at only one frequency f (the fundamental
frequency). The impedance formulation of multi-port model characterizes the relationship
between the harmonic terms (Pn(f)) of the acoustic pressure at the microphone position and
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the harmonic terms (Qn(f)) of the corresponding acoustic volume velocity as

Pn(f) =
∞∑

k=1

Znk(f, |P1(f)|)Qk(f) for n = 1, 2, · · · (1)

The impedance term, Znk(f, |P1(f)|), represents the opposition at the frequency nf that
the acoustic load presents to the acoustic flow at the frequency kf from a source signal at
frequency f . This term depends on the excitation frequency f and on the amplitude level of
the acoustic pressure represented by |P1(f)| (amplitude of the first harmonics). An equivalent
formulation can be obtained using a scattering-matrix approach and Eq.(1) can be simplified
by assuming that energy exchange can occur only from low to high frequency and that the DUT
satisfies the harmonic superposition principle [5]. This method has been applied to an adjustable
nonlinear acoustic absorber, made of a loudspeaker membrane described in [1]. Coefficients of
the impedance matrice are reported Figure.2. Nonlinear behaviour of the absorber is visible on
|Z11| where we can observe the frequency shift of the apparent resonance when the excitation
level increases (see Figure2.(a)). |Z22(f)| is equivalent to a |Z11(f)| associated to a lower
excitation level (level of P2(f)) and shifted in frequency with a ratio of f/2 (see Figure.2(b)).
Finally, |Z21| shows the transfer of energy between the fundamental and the second harmonics,
which increases with the excitation level (see Figure.2(c)).
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Figure 2: Estimation of impedance coefficients for three excitation levels.

These experimental results have been compared to numerical simulations results. In future
works the quantification of energy transfer will be done with a larger number of harmonics,
in order to quantify all the wave conversions present in the tube. A synchronized swept-sine
method will be developed to improve experimental procedure.
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Abstract A numerical methodology is described to design a frictional damper for blade struc-
ture within aircraft engine. A finite element beam-platform model is used for preliminary design
stage. The frictional damper is designed based on two parameters, contact angle and vertical
position of the platform. Nonlinear modal analysis is used to investigate the nonlinear dynamic
behaviour and damping performance.

High cycle fatigue (HCF) is one of the common failure of turbines bladed disks within aircraft
engines and normally caused by large vibrational stress. Dry friction dampers are widely used
in turbomachinery industrial, since vibrational energy can be released through rubbing motion
between the contact surfaces. The placement of dry friction damper is also important. In
literature, there are several types of dry friction dampers within blade-disks [3]: root joints in
Fig.1a [6], tip shrouds in Fig.1b [4] and underplatform dampers in Fig.1c [5]. Those interaction
force, friction, between contact surfaces are strongly nonlinear due to stick-slide and separation,
leading to complex dynamic behaviour. Therefore, after taking the friction into consideration,
the techniques for nonlinear dynamic analysis are required to solve this complex problem.

Figure 1: Different frictional dampers [1] Figure 2: Beam-Platform Model

The objective is to determine the influence of the position of the damper on nonlinear
dynamic behaviour of the system. Hence, a 2-D case is investigated. The blade is modelled
with finite element beam-platform model displayed in Fig.2, where the platform can be located
between the ground and tip of the beam. The position of platform is characterized by its
vertical position H. The tip of the platform is in contact with frictional damper, the contact
is characterized by the contact angle denoted θ. Therefore, this frictional damper is designed
based on two parameters, contact angle θ ∈ [0◦, 90◦] and vertical position of the platform
H/Lb ∈ (0, 1]. By varying the design parameters, all three types dampers given in Fig.1 can be
modelled. A 2-D contact model is used to simulate the contact forces. Ideally, there are three
contact status: separation, sticking and sliding.

Complex nonlinear normal modes are computed through the nonlinear modal analysis based
on the method proposed by Krack [2]. Harmonic Balanced Method with continuation technique
is the numerical approach used to solve the autonomous equation of motion in Eq.1, where Q
is mass normalized displacements; Fc is contact forces. ζ is a negative artificial damping to
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(a) Frequency-Amplitude Plot (b) Damping Ratio-Amplitude Plot

(c) Maximum Damping Ratio ζp (d) Damping Ratio at Large Amplitude ζs

(e) Natural Frequency Shift ∆ω0 (f) Natural Frequency Sensitivity

Figure 3: Overview of the results

compensate the energy lost due to friction [2]. System vibrates at its natural frequency ω0 and
α is modal amplitude. Detailed description of numerical approach can be found in [7].

MαQ̈(t)− (ζ ×K)αQ̇(t) + KαQ(t) + Fc(αQ, t) = 0 (1)

The 1st bending mode is chosen to assess the damping performance. After the nonlinear
modal analysis, natural frequency ω0 and modal damping ratio ζ are calculated within range
of modal amplitude α. As shown in Fig.3a and 3b, the natural frequency and modal damping
ratio are plotted against the modal amplitude. When the modal amplitude is low, the contact
status is sticking and the whole system is purely linear. The natural frequency of the system
is constant and there is no energy lost due to the friction. Then, the modal amplitude is
increased to certain value, the platform starts to slide. In this case, two contact points are
partial-sliding-partial-sticking. In this case, both natural frequency and modal damping ratio
reach to a steady value. The softening effect is caused by change of the stiffness at the contact
points. To assess the damping performance, three objectives are chosen: modal damping ratio
at peak ζp and stable region (α = 2) ζs as well as the shift of natural frequency ∆ω0 in Fig.3c,
3d, 3e.

The damping performance is evaluated for whole design space and it appears that it is highly
sensitive to both design parameters. The optimized damping performance is achieved while the
contact angle θ is around 25◦-30◦. Shift of natural frequency can be explained by natural
frequency sensitivity to the contact stiffness as shown in Fig.3f. Generally, underpaltform
damper with desired contact angle is able to provide effective damping and acceptable shift
of natural frequency. Uncertainty Quantification with Latin Hypercube Simulation will be
investigated in near future to taking wearing effect and manufacturing tolerance of frictional
damper into consideration.

93



7th International Conference on Nonlinear Vibrations, Localization and Energy Transfer

July 1-4, 2019 - Marseille, France

A Taylor series based continuation method for
equilibrium, periodic, quasi-periodic and transient

solutions of dynamical systems

L. Guillot, B. Cochelin and C. Vergez

Aix Marseille Univ, CNRS, Centrale Marseille, LMA, UMR 7031,
Marseille, France,

guillot@lma.cnrs-mrs.fr, bruno-cochelin@centrale-marseille.fr, vergez@lma.cnrs-mrs.fr

Abstract. This paper emphasizes how a quadratic rewriting of ordinary differential equations
(ODE) allows different types of solutions to be easily continued by asymptotic numerical method
(ANM). The focus will be especially on the continuation of quasi-periodic steady state solutions
and transient solutions. A toy model of saxophone is studied in detail to illustrate the methods
presented.

Introduction. The ANM relies on a high-order Taylor series representation of the solution-
branch. This technique has already proven its efficiency for a lot of applications in engineering,
mechanics or acoustics for example. As opposed to standard predictor-corrector algorithm,
the high order prediction of ANM series does not need a correction step in most cases. While
some implementations relying on automatic differentiation do exist the choice is made here
to work with a quadratic framework. A generic implementation of this latest approach which
minimizes problem-dependent implementation has been developed [3, 4]. A simplified scheme
is represented in figure 1. It is based on the numerical continuation of algebraic systems of the
form

R(V ) = 0, where V ∈ Rn+1 and R(V ) ∈ Rn is analytic (1)

This system is always written in a quadratic format as a prerequisite of the method. This
formalism is not a constraint that we suffer but a choice that allows to treat a very wide range
of problems as shown in [3].

The quadratic framework. The quadratic rewriting of the system is a key point of our
approach since it allows to compute the terms in the development of the series explicitly and
very efficiently (see [3] for details). Here, the focus is on ODE :

Ẋ = F (X,λ, t), where X and F ∈ Rn and λ ∈ R (2)

Ordinary 
Differential 

Equations (E)

Unknowns (X)

Type of the unknowns: 
algebraic, periodic, quasi-
periodic, steady state or 
transient regime

Quadratic recast  of 
the equations (Eq)

If X is algebraic,
Unknowns = X

If X(t) is periodic, or quasi-periodic, 
Harmonic Balance Method (HBM) 
Unknowns = Fourier series coeff.

If X(t) is discretized / time samples  
Unknowns = X(ti), i=1..N

Continuation of the quadratic algebraic system (Eq,alg) is done using the Asymptotic Numerical Method

A quadratic algebraic system (Eq,alg) is obtained.

Figure 1: Different types of ODE solutions that can be easily continued by Asymptotic Nu-
merical Method using quadratic rewriting.
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Figure 2: The two limit cycles and a quasi-periodic orbit of a system of a toy model of sax-
ophone [4] obtained with our method. A transient that goes to one of the limit cycles is also
represented.

Equ. (2) is solved using a quadratic recast. The equilibrium of ODEs and their stability can
be classically treated by solving F (X,λ, t) = 0 and is not detailed. The periodic solutions and
their stability is addressed with the harmonic balance method [4] and Hill’s method [1]. The
focus is on quasi-periodic and transient solutions.

A quasi-periodic solution can be sought for under the form of a truncated double Fourier
series

X(t) =
H∑

k1=−H

H∑

k2=−H

Xk1,k2e
j(k1ω1+k2ω2)t, where Xk1,k2 ∈ C, ω1, ω2 ∈ R?

+. (3)

Replacing X(t) by (3) in equ (2) and deriving a quadratic algebraic system from the recast
of equ. (2) can be automatized [2]. Continuation is then possible on unknowns Xk1,k2 , ω1 and
possibly ω2 if the system is autonomous.

To continue transient regimes of ODEs, the solution X is discretized on time samples

X(ti), 1 ≤ i ≤ N,N ∈ N?. (4)

Then, the quadratic rewriting of equ. (2) is written on each time step so that the equations
are automatically quadratic. A wide range of discretization schemes can be used : Runge-
Kutta, Euler, Newmark, finite-differencesetc... Once the initial value is specified, continuation
is possible on unknowns X(ti) and possibly ti for schemes with auto-adaptive time steps.

Conclusion. The details of the methods discussed above are available in the journal arti-
cle [4]. The method requires very few effort to switch between the different types of solutions
since the original ODE is rewritten quadratically by the user once and for all. It can also
be applied to implicit differential-algebraic systems with time-delay or fractional order deriva-
tives. An implementation of this approach is freely available online on a dedicated website
http://manlab.lma.cnrs-mrs.fr/.
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Abstract Several component of turbomachinery operate in nonlinear regime of vibration
during operation. We present in this work the state of the art techniques for analysing nonlinear
vibration of turbomachinery. Most of the vibration anlayses are performed using frequency
response for forced response problem. It is possible to use the concept of nonlinear normal
modes and their adaptation for non conservative system. The periodic response are calculated
using boundary value problem (BVP) solvers. We will present results using harmonic balance
method and finite element in time techniques for non smooth dynamic problem. The work will
conclude with presentation of challenge for the future in turbomachinery vibration analysis.

Turbomachinery are very complicated systems and undergo a large level of vibration during
operation that leads to nonlinear behavior. Several kinds of nonlinearity are present in an
aircraft engine as shown in Figure 1.

Figure 1: Nonlinearities in aircraft engine (pictures courtesy Rolls-Royce Plc)

An in-house code named FORSE has been developed at Imperial College for twenty years to
deal with nonlinear vibration and different types of nonlinearity. The code was first designed to
treat localized nonlinearities: contact, friction, impact, bearings. . . and was recently extended
to distributed nonlinearities: material nonlinearities and geometric nonlinearities. FORSE is
based on harmonic balance method coupled with continuation method and permits to compute
frequency response, (complex) nonlinear normal modes and limit cycle oscillation. The software
is based on object oriented programming using Modern Fortran. Some feature of the code are
presented in this work and results for different applications. FORSE permit to solve boundary
value problem in time defined by the following equation

MÜ + CU̇ + Fint(U) = Fnl(U, U̇) + αFex(t) (1)

where M and C are the mass and damping matrices, U is the vector of displacement, Fint

represents the internal forces due to large deformation or material nonlinearities, Fnl is the
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vector of localized nonlinearities, αFex(t) are the excitation forces and α is a cefficient used to
switch between autonomous and non-autonomous system. The ordinary differential equation
Eq. 1 is transformed to nonlinear algeabric system using Fourier Galerkin method and reduced
order modelling (ROM) based on Component Mode Synthesis. The proposed ROM depends
on the nonlinearities [2, 7]. The proposed techniques permits to calculate frequency response
with detection and path following of bifurcated branches [4]. The code has been modified to
calculate (complex) nonlinear normal modes for different applications [5, 6]. It is possible to
extend the technique for analysing stability of rotating system [1]. Figure 2 shows results for a
blade tip rub application [3].

(a) turbine blade (b) FEP

Figure 2: Nonlinear Normal Mode of blade of first bending mode due to tip rub
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Abstract Dynamics of a beam attached to a rotating rigid hub is presented in the paper. A
beam model, based on extended Bernoulli-Euler theory, takes into account a nonlinear curva-
ture, coupled transversal and longitudinal oscillations and non-constant angular velocity of the
hub. Natural and forced vibrations are studied on the basis of exact equations of motion and
associated dynamic boundary conditions derived from Hamilton principle.

The development of modern materials and design of lightweight and flexible rotating struc-
tures give rise to better understanding their dynamic response. Thus, more precise mathe-
matical models which take into account nonlinearity of the system are required. Derivation
of equations of motion of nonlinear flexural-torsional vibrations of a beam has been presented
in [1] where a nonlinear beam curvature has been taken into account. However, inextensibil-
ity condition has been applied in the mathematical formulation. This resulted in a constraint
relation between transversal and longitudinal displacements. Similar approach to the rotating
structure with attached tip mass is presented in [2], but additionally quasi-static elongation
of the beam and tension force occurring due to beam rotation have been considered. A rotat-
ing thin–walled composite beam has been studied in [3] but because of structural complexity
only a linear deformation field has been included in the mathematical description. Nonlinear
vibrations of a rotating cantilever beam have been studied recently in [4] where hardening
or softening phenomenon has been demonstrated for reduced nonlinear Bernoulli-Euler beam
based on the inextensionality condition.
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Figure 1: A model of a rotating hub-beam system with attached tip mass mt, (a) top view with
indicated deformations and (b) side view with preset angle Θ.

In the present paper we will develop a model of a rotating beam presented in [5] however,
apart from rotation of the hub also translation of its center is considered. Equations of motion
are based on assumptions of Bernoulli-Euler beam theory extended for axial elongation of the
beam and nonlinear curvature based on the strict definition.

The model with global and local coordinate sets as well as displacements of an elementary
beam point (u, v) are presented in Fig. 1(a) while the beam preset angle Θ is shown in side
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view (Fig. 1b). The strain of the elementary segment and beam’s curvature are defined as:

ε =

√
(1 + u′)2 + v′2 − 1, κ =

∂φ

∂s
=

v′′ (1 + u′) − v′u′′
[
(1 + u′)2 + v′2

]3/2
(1)

Components of velocity vector Ṙ of an arbitrary beam point in the absolute coordinates frame
is defined as:

ṘX0 = Ẋh −
[
(Rh + s+ u) ψ̇ + v̇ cos Θ

]
sinψ − v cos Θψ̇ cosψ

ṘY0 = Ẏh −
[
(Rh + s+ u) ψ̇ + v̇ cos Θ

]
cosψ − v cos Θψ̇ sinψ (2)

ṘZ0 = v̇ sin Θ

The differential equations of motion are derived on the basis of the extended Hamilton principle
of least action

t2∫

t1

(δT − δV + δWnc) dt = 0 (3)

where T and V are kinetic and potential energies

T =
1

2
Jhψ̇

2+
1

2

L∫

0

ρ1Ṙ
2ds+

1

2
mtṘ

2
t , V =

1

2

L∫

0

(
EIκ2 + EAε2

)
ds+

1

2
kX (X0 − ξ)2+

1

2
kY (Y0 − η)2

(4)
and δWnc is virtual work of other nonconservative forces.

Substituting definitions for the strain, curvature and velocity into potential and kinetic
energies as well as considering nonconservative forces, damping and excitations, we derive
partial differential equations (PDEs) of motion of the rotating nonlinear hub–beam structure
and associated dynamical boundary conditions for transversal and longitudinal vibrations. Due
to long and complex forms the equations are not presented in the abstract. The ongoing work
is to solve the equations by the direct attempt to PDEs by the multiple time scale method and
then to determine natural and forced vibrations for fixed and varied angular velocity.
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Abstract A new definition is proposed for the Nonlinear Normal Modes, close to the one de-
veloped by Bellizzi & Bouc [1]. Theses NNMs are the used to evaluate the forced responses using
a modal phase parametrization rather than the classical forcing frequency parametrization.

The basic dynamic equation considered for nonlinear dynamics writes

Mü + Cu̇ + Ku + fnl(u, u̇) = f e(t) (1)

where fnl gathers nonlinear forces while f e denotes a periodic external forcing.
Damped nonlinear normal modes (dNNMs) are the solutions of Eq. (1) when the forcing f e

is nullified [3]. Several methods to compute these solutions where proposed. The one exposed
and used here is close to the amplitude and phase parameterization described by Bellizzi and
Bouc [1]. Displacements u and velocities v have the same dependency to an amplitude α and
a dimensionless time τ than in [1] but the amplitude decay function η and the pseudo circular
frequency ω only depend on amplitude here:

u(t) = α(t)ψu(α(t), τ(t)), v(t) = α(t)ψv(α(t), τ(t)), α̇(t) = η(α(t))α(t), τ̇(t) = ω(α(t)) (2)

Once injected in Eq. (1), and adding v = u̇ condition leads to

αψv(α, τ) = η(α)αψu(α, τ) + α (Dαψ
u(α, τ)η(α)α +Dτψ

u(α, τ)ω(α)) (3a)

M (η(α)αψv(α, τ) + α (Dαψ
v(α, τ)η(α)α +Dτψ

v(α, τ)ω(α))) +
C (αψv(α, τ)) + K (αψu(α, τ)) + fnl(αψ

u(α, τ), αψv(α, τ)) = 0
(3b)

Instead of seeking for the various quantities as a power series in α and a Fourier series in τ
which leads to a very large system of equations, a “point-by-point” approach is preferred in the

α dimension: a branch is defined by successive points gathering α(i) (modal amplitude), Qu(i)

(Fourier coefficients for ψu(i)), Qv(i) (Fourier coefficients for ψv(i)), η(i) (modal amplitude decay
function) and ω(i) (modal circular frequency). While Dτ• = ∂ •/∂τ quantities can be evaluated
exactly via Fourier series derivation, Dα• = ∂ • /∂α is evaluated using a linear interpolation
between the previous and the current points. The two necessary normalization conditions are
defined by

ψu(α, 0)TMψu(α, 0) +ψu(α, π/2)TMψu(α, π/2) = 1 (4a)

ψu(α, 0)TMψu(α, π/2) = 0 (4b)

Lastly, points on the branch are index by their (discrete) arclength s(i):

s(i) = s(i−1) +
( (
α(i) − α(i−1))2 +

(
η(i) − η(i−1)

)2
+
(
ω(i) − ω(i−1))2

+
∣∣∣
∣∣∣Qu(i) −Qu(i−1)

∣∣∣
∣∣∣
2

+
∣∣∣
∣∣∣Qv(i) −Qv(i−1)

∣∣∣
∣∣∣
2 )1/2

(5)
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Figure 1: Illustration: modal synthesis around first mode for a 2-dofs system.

Once a dNNM is calculated, it offers a first understanding of the structure as well as a rough
prediction of its behavior when forcing is introduced. It can also be used to compute the forced
response effectively using modal synthesis.
Let us assume that f e(t) = f e0 cos(ωt). Using a dimensionless time τ = ωt and denoting
uτ (τ) = u(t), •′ = d • /dτ , Eq. (1) becomes

ω2Mu′′τ + ωCu′τ + Kuτ + fnl(uτ , ωu
′
τ ) = f eτ (τ) (6)

Then, uτ is naturally sought as
uτ (τ) = ũ(s, τ + φ) (7)

where the 2 unknowns are s which defines the location on the dNNM branch and φ, the phase
with respect to the excitation as in the linear case.
Equations used to find these 2 unknowns are

∫ 2π

0

r(τ) ũ(s, τ + φ) dτ = 0 and

∫ 2π

0

r(τ) (ωũ′(s, τ + φ)) dτ = 0 (8)

with r(τ) being the residue of the dynamical equation (6):

r(τ) = ω2Mu′′τ + ωCu′τ + Kuτ + fnl(uτ , ωu
′
τ )− f eτ (τ) (9)

This system can be solved using any continuation method in the variables ω, s, φ.
Another approach is to consider that, as in the linear case, φ will vary from 0 to −π with

a continuous decrease along the frequency function response (FRF). Hence, the FRF can be
computed by solving for ω and s only for discrete values of φ ∈] − π, 0] avoiding the use of
a continuation scheme. This approach was applied to compute the first mode and the FRF
around this first mode for the 2-dofs example used by Touzé and Amabili [4] and return very
accurate results as illustrated in Figure 1 for which reference results are HBM results with up
to 5 harmonics. This phase parameterization can be very interesting in the stochastic case to
link points of different realizations as explained in [2] for the linear case.
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Abstract The harmonic balance method is combined to the asymptotic numerical method
to compute the nonlinear modes of geometrically nonlinear structural mechanical systems dis-
cretized by the finite element method. The method is first described on a toy duffing model
and then applied to a beam formulation with large displacements, large rotations but small
strain. Various examples computed with the V4 Manlab software are presented.

Let us described the numerical method on a toy duffing equation ü + λu̇ + u + u3 = 0.
Introducing the velocity v = u̇ and the auxiliary variable w = u2 the system is recasted as a
first order ODE with quadratic nonlinearities

u̇ = v
v̇ = −λv −u ∗ w
0 = w −u ∗ u

The harmonic balance method aims at determining periodic solutions of the system using
Fourier expansion of the unknowns u(t), v(t) and w(t). Denoting û the vector of Fourier coef-
ficients of u(t) and ω the angular freuency, the balance of the harmonics yields the following
quadratic algebraic system

ω D û = v̂
ω D v̂ = −λv̂ −conv(û, ŵ)same

0 = ŵ −conv(û, û)same

where D and ’conv’ are operators for derivative and convolution (same : means that the output
has the same harmonic truncature as the two inputs). A phase condition is added to close the
system. The computation of the solution branches of this algebraic system is performed by
the so-called asymptotic-numerical method,ie , a high order Taylor series based computation
method.

The key point of the method is the quadratic recast of the governing equation. This can
be achieved for almost any model by following the procedure presented in [1] . It is illustrated
here for a beam model with large displacements and rotations. Let u(x), w(x), θ(x) denote
the displacements and the rotation of the cross-section. By introducing the following auxiliary
variables (quadratic equation)

C(x) = cos(θ)→ dC = −Sdθ N(x) = ESe
S(x) = sin(θ)→ dS = Cdθ M(x) = EIk
e(x) = (1 + u′) ∗ C + w′ ∗ S − 1 T (x) = GSγ
k(x) = θ′ Fx(x) = N ∗ C − T ∗ S
γ(x) = −(1 + u′) ∗ S + w′ ∗ C Fy(x) = N ∗ S − T ∗ C

T2 = N ∗ γ − (1 + e) ∗ T
the governing equations of the beam reads (linear equation)

∫ L

0

ρSüδu+ ρSẅδw + ρIθ̈δθdv +

∫ L

0

Fxδu
′ + Fyδw

′ +Mδθ′ + T2δθdv = 0
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A finite element discretization is performed with the element descrtibed in [2]. Several
nonlinear mode examples will be presented at the conference as in the figure below. The well-
known difficulty of dealing with the numerous bifurcations associated with modal interactions
will be adressed for NNMs and for forced responses.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 Frequency= 0.91129 hertz, Energy= 0.22157 J

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 Frequency= 3.9621 hertz, Energy= 0.31254 J

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

1.5

2

2.5

3

 Frequency= 1.9903 hertz, Energy= 46.6056 J

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

1

1.2

 Frequency= 1.4765 hertz, Energy= 0.51166 J

Figure 1: Nonlinear mode periodic motion of various beam structures. In blue : extreme
position at t = 0 and t = T

2
, in black : position at t = T

4
and t = 3T

4
, in red : trajectory of the

nodes. left up : first mode of a clamped-free beam. right up : Second mode of a clamped-free
beam with a mass at the end. Left bottom : Second mode of a circular beam. Right bottom
: second mode of a T-shape frame. A pure harmonic balance with H=14 harmonics has been
used for these computation

1.5 1.55 1.6 1.65 1.7

pulsation  (*10
-2

)

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

A
m

p
lit

u
d

e

Backbone curve

0 0.5 1 1.5 2

-0.6

-0.4

-0.2

0

0.2

0.4

 Frequency= 24.4605 hertz, Energy= 27097.0519 J

Figure 2: The first nonlinear mode of a this frame structure is softening because of local buckling
near the attached end, The model has 258 d.o.f., H=8 harmonics
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