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Abstract The distribution of transit stations constitutes an ubiquitous
task in large urban areas. In particular, bus stops spacing is a crucial
factor that directly affects transit ridership travel time. Hence, planners
often rely on traffic surveys and virtual simulations of urban journeys
to design sustainable public transport routes. However, the combinator-
ial structure of the search space in addition to the time-consuming and
black-box traffic simulations require computationally expensive efforts.
This imposes serious constraints on the number of potential configura-
tions to be explored. Recently, powerful techniques from discrete optimiz-
ation and machine learning showed convincing to overcome these limita-
tions. In this preliminary work, we build combinatorial surrogate models
to approximate the costly traffic simulations. These so-trained surrog-
ates are embedded in an optimization framework. More specifically, this
article is the first to make use of a fresh surrogate-assisted optimiza-
tion algorithm based on the mathematical foundations of discrete Walsh
functions in order to solve the real-world bus stops spacing optimization
problem. We conduct our experiments with the sialac benchmark in the
city of Calais, France. We compare state-of-the-art approaches and we
highlight the accuracy and the optimization efficiency of the proposed
methods.

Keywords: bus stops spacing · combinatorial optimization · surrogate
models

1 Motivations

The United Nations expect sixty percent of the world’s population to live in
urban areas by the next decade [2]. This relentlessly growing rate constantly
challenges urban planners to design sustainable cities so as to improve the mo-
bility of their inhabitants and travellers. This objective can be achieved, in a
way, by an efficient planning and management of public transport systems, such
as trams, buses or even self-service bicycles. The correct design of these systems
is the key to offer potential users a competitive transit mode compared to the
private car. This is particularly advocated for mitigating environmental impacts
of transport and could also help to revitalize and renew interest in some districts
of the city. For example, the location of a transit station in an area where none



2 Florian Leprêtre, Cyril Fonlupt, Sébastien Verel, and Virginie Marion

currently exists may attract new customers to public transport who previously
lacked the service.

Substantial works exist in the litterature on the deployment of such effi-
cient transport systems. A recurring challenge is to ensure that transit stops are
properly spaced. Without loss of generality, the present article focuses on the
optimization of bus stops spacing. It is well known that their distribution repres-
ents an important factor directly affecting passengers travel times [21,27]. Some
research even investigates social costs, economic benefits or environmental im-
pacts of bus stations positionings [24,19]. Also, several methods are introduced to
find optimal spacings for minimal travel costs. On the one hand, coverage models
have been widely employed, such as the Thiesen polygons [27] or the Voronoi dia-
grams [28]. These techniques allow additional data to be assessed while searching
for optimal stop positions (e.g., district density around the stop). On the other
hand, the discretization of the study areas has also shown promising. Ibeas et.
al. proposed to split the transit route area in small links of equal distance [11].
Each link represents a potential stop location, and the so-discretized optimiz-
ation problem is solved with a pattern-search iterative algorithm [9]. Besides,
Furth et. al. considered each intersection of the studied road network as a po-
tential stop location [8]. Then, a dynamic programming algorithm was used to
determine the optimal bus stop positions.

Inspired by the aforementioned works, this article considers the bus stops
spacing problem as a pseudo-boolean problem, where the passenger travel time
is the fitness function to minimize. Then, a binary variable is associated with each
possible location for a bus stop: the variable equals one if the stop is activated
or equals zero if not – this will be discussed further in section 3. However, such
studies as well as many others in the literature mostly rely on numerical simula-
tions of urban traffic flows, which are usually blackbox models. As a consequence,
only the design variables and the resulting values of the simulation are known.
Moreover, it is often computationally time expensive (from minutes to hours)
to get the fitness value of one single simulation [3,6]. In addition with the com-
binatorial explosion of the search space, optimization experts thus face a serious
limitation on the capacity to freely explore potential solutions. To tackle such
an optimization challenge, one classical solution in Surrogate-assisted Optimiz-
ation (SaO) is to learn a surrogate model to approximate the costly simulator
evaluations and then reduce the number of potential sampled solutions during
the search process. Although the field of combinatorial surrogate models has
long received little attention, it is now experiencing a sudden renewed interest,
bringing with it new algorithmic ideas to the community [5,4,22].

As part of this preparatory and applicative work for further studies, we imple-
ment a variety of recent combinatorial surrogate modeling techniques to approx-
imate the time-expensive traffic simulations. Further, we embed the so-learnt
surrogates in the context of bus stops spacing optimization. In particular, this
work is the first to make use of a newly published SaO algorithm based on
the mathematical foundations of discrete Walsh functions coupled with power-
ful grey-box optimization techniques [14], in order to solve a class of real-world
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problems. We aim to highlight the accuracy and the optimization performances
of these methods.

The rest of this paper is organized as follows. In section 2, we introduce the
state-of-the-art combinatorial surrogate modeling techniques and the founda-
tions of SaO. Section 3 is devoted to experiments specifications and their ana-
lyses. In section 4, we conclude the paper and discuss future works.

2 Combinatorial Surrogate-Assisted Optimization

Surrogate models formulate quick-to-evaluate mathematical models, so as to
approximate black-box and time-consuming computations. They are built from a
sample of evaluated solutions. Therefore, the main purpose of surrogate-assisted
optimization is to efficiently select the solutions to be sampled in order to quickly
improve the quality of the surrogate and thus the quality of the solutions found.

A surrogate-assisted method combines three components (see Algorithm 1).
The first component is the surrogate model itself which is a regression model of
the fitness function. The model must be expressive enough to catch the complex-
ity of the fitness function, but at the same time slightly sophisticated in order
to ease the learning when a small sample of solutions is available. The second
component is an acquisition function defined from the surrogate model. This
acquisition function can be directly the surrogate model or a trade-off between
the predicted quality of candidate solution and the estimation error of the sur-
rogate model. The goal is to guide the search and to ensure a balance between
exploration that increases the quality of the surrogate model and exploitation
that pushes towards high-quality solutions according to the surrogate model.
The last component is the algorithm to optimize the acquisition function. This
algorithm has to be efficient in time and in quality to converge quickly to the
promising solutions given by the acquisition function. Therefore, such promising
solution is selected, evaluated and added to the sample for the next iteration of
the search algorithm. An efficient surrogate-assisted optimizer for combinatorial
problems is a relevant combination of these three components.

To the best of our knowledge, four main methods have been proposed for
pseudo-boolean problems: Radial Basis Function model [16], Kriging approach
[26], Bayesian approach [4] and Walsh basis functions decomposition [22].

Algorithm 1: Surrogate-assisted optimization framework.

1 S ← Initial sample {(x, f(x)), . . .}
2 while computational budget is not spent do
3 M ← Build model S
4 x← Optimize M w.r.t. an acquisition function
5 Evaluate x using f
6 S ← S ∪ {(x, f(x)}
7 end
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Kriging approach Kriging approach is a direct extension of the numerical sur-
rogate approach and is based on Gaussian Process (GP) [26,25]. In the context
of combinatorial structures, Euclidean distance is replaced by the Hamming dis-
tance for pseudo-boolean functions or more sophisticated discrete distance for
the search space of permutations. Then, Kriging is coupled with the Efficient
Global Optimizer framework (EGO) [12]. This framework takes advantage of
the uncertainty of the approximations given by the GP and uses a genetic al-
gorithm to select the promising solution that maximizes the Expected Improve-
ment (EI), i.e., the acquisition function. One should note that the computational
complexity of EI is high and can not be reduced by some classic techniques in
combinatorial optimization such as incremental evaluation. Nevertheless, this
surrogate-assisted optimization has been shown to outperform the aforemen-
tioned Radial Basis Function model [16] – thus the latter will not be detailed
here.

Bayesian approach Another state-of-the-art surrogate-assisted approach is
the Bayesian Optimization of Combinatorial Structures (BOCS) algorithm [4].
The statistical model of BOCS is the standard multilinear polynomial of binary
variables. Therefore, Baptista et. al. argue that the model takes into account the
interactions between the binary variables. Only a quadratic polynomial model
is studied in their article (i.e., one variable interacts with only other one):

∀x ∈ {0, 1}n, M2(x) = a0 +
∑
i∈N

aixi +
∑

i<j∈N

aij xixj , (1)

where N = {1, . . . , n}. The regression technique is the Sparse Bayesian Linear
Regression [15]. The optimizer is a basic simulated annealing that minimizes the
approximation of the fitness function provided by the surrogate model with a
regularization term.

Walsh basis functions A new combinatorial surrogate model based on Walsh
functions has been proposed [22]. Walsh functions [23] describe a normal and
orthogonal basis of discontinuous functions that can be employed to decompose
any function of the Hilbert space. Therefore, Verel et. al. assumed that the
expensive pseudo-boolean functions might be substituted by a polynomial of
Walsh decompositions of order k:

∀x ∈ {0, 1}n, Wk(x) =
∑

` s.t. o(`)6k

w` · (−1)
∑n

i=1 `ixi , (2)

where o is the order of the Walsh function, i.e., the number of binary digits
equals to 1 in the binary representation of `. In the following, we restrain to
quadratic interactions:

∀x ∈ {0, 1}n, W2(x) = w0 +

n∑
i=1

wi (−1)xi +
∑

i<j∈N

wij (−1)xi+xj . (3)
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To face the quadratic number of polynomial terms, the regression technique is a
linear model trained with `1-norm as regularizer, aka the Lasso [20]. Recently, the
Walsh Surrogate-assisted Optimization (WSaO) algorithm has been introduced
[14]. The authors benefit from powerful grey-box optimization techniques and use
the so-called Efficient Hill-climber (EH) from Chicano et. al. [7] as an optimizer
for the Walsh surrogates. WSaO has been shown to outperform both Kriging
and BOCS approaches, scaling up at least to dimension n = 100.

3 Experiments

3.1 Overview

We consider the bus stops spacing problem as a pseudo-boolean optimization
challenge. For the sake of simplicity in this preliminary work, the focus is on one
regular bus line in the city of Calais, France.

Bus stops All potential bus stops are implemented in advance on the given road
network. They are manually located on intersection nodes and are numbered
from 1 to n, where n is the total number of potential stops in the bus route,
following [8]. Then, a solution to the optimization problem, i.e., a possible design
of the bus stops, is denoted by a binary string x ∈ {0, 1}n. Therefore, open bus
stops are associated to bits in x equal to one, whereas closed stops are associated
to bits equal to zero. The first and last stops are constrained to be open. Only
open bus stops are taken into account during the forthcoming simulations. Figure
1 illustrates a simplified bus stops design on the studied bus route. The complete
bus route considers n = 20 potential stop locations.

Urban flows The simulation system considered in this work is the Multi Agent
Transport Simulation (MATSim) [10]. MATSim requires as inputs a road net-
work model [18] and the initial mobility scenarios for a set of agents (i.e., a set
of travelers’ schedules). These scenarios are generated according to the SIALAC
Benchmark [13]. The latter allows to synthesize mobility plans which assess such
information as living quarters, business districts or main entry and exit points of
the city. As an example, Figure 2 illustrates a scenario where agents are distrib-
uted into four living quarters. The present work studies six scenarios involving
5000 travelers with different number of home and working area clusters. The
possible home cluster number is 1 cluster, 4 clusters or uniform when the pop-
ulation is randomly distributed over the city area; they are denoted as 1h, 4h
or uh, respectively. The possible working area cluster number is 1 or 4 clusters;
they are denoted as 1a or 4a, respectively. Finally, a scenario defines a round
trip between a home location and an activity location, for each traveler. The
latter are distributed according to the configuration of the six studied scenarios:
1h-1a, 1h-4a, 4h-1a, 4h-4a, uh-1a, and uh-4a. The number of cluster impacts the
travel time for pedestrians and cars which allows to test the robustness of SaO
algorithms. One simulation with MATSim, i.e., one fitness function evaluation,
requires about a minute of computation as a single-thread program.
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Figure 1. Simplified example of open or closed bus stops (white or black dots) on the
regular bus route (red line), according to the solution x = 1101001101.
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Figure 2. Four home clusters inside Calais road network. Colors indicate the number
of agents departing from a node.
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Experimental setup We aim to minimize the travelers mean travel time, i.e.,
the fitness function computed by MATSim, i.e., the black-box simulator. Then,
we use binary strings of dimension n = 20, corresponding to the 20 potential bus
stops locations. We follow the experimental setup exposed in [14], except that we
validate the accuracy of the models against a test-set of 250 solutions generated
uniformly at random and we restrain to quadratic interactions for BOCS and
WSaO methods. Algorithms and experiments are fully implemented in Python,
using standard machine learning and optimization packages [17].

3.2 Accuracy of Surrogate Models

We first benchmark the accuracy of three surrogate models based on gaussian
process (Kriging), multilinear polynomials used in BOCS, and Walsh polynomi-
als. No optimization algorithm is involved yet. Selected solutions to learn the
black-box simulator are sampled randomly from {0, 1}n. Figure 3 compares the
mean absolute error made by the models as a function of the random sample
size dedicated to their learning. Although Kriging seems promising in the very
first iterations, the computational effort required for a slight improvement in ac-
curacy increases considerably as the learning process progesses. For both Walsh,
and multilinear based methods, the convergence of the model quality is reached
around a sample size of 400 solutions on 3 scenarios (1h-1a, 4h-1a and uh-1a). For
more difficult scenarios 1h-4a, 4h-4a and uh-4a, the precision quality increases
beyond the largest sample size. Overall scenarios, Walsh surrogates appear as the
most accurate models. On all scenario, the precision gain of Walsh vs. multilinear
polynomial is approximatively 30% for the largest sample size of 103.

3.3 Performances of Optimizers

We compare state-of-the-art SaO algorithms presented in section 2. In addition,
we also compare the performances of multilinear polynomials embedded with
an Iterated Local Search based on the Efficient Hill-climber (EH) [7]. Unlike
the regression analysis of the previous section and according to Algorithm 1,
the solution added each iteration to the surrogate’s learning sample is now the
solution that minimizes the surrogate model. Figure 4 plots the minimization
of the fitness as a function of the learning sample, for one SIALAC scenario.
At a glance, EGO algorithm stalls as soon as the sample size gets bigger than
100. This unsuitable scaling-up was already identified in [14]. However, WSaO
seems promising with a small learning sample, while a multilinear polynomial
coupled with BOCS appears better when the sample size grows (see Table 1).
However, notice that the order of difference between the two approaches is only
in seconds of mean travel time. Both methods seems promising for that moderate
size scenario with one bus line, and 20 potential bus stop positions. These results
are still under active work and follow the first results performed on artificial
benchmarks [14].
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Figure 3. Mean absolute error with confidence interval as a function of random samples
for six SIALAC scenarios (h: home clusters, a: activity clusters). The lower the better.
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Figure 4. Minimization of mean travel times according to sample size for one SIALAC
scenario. The lower the better.

Table 1. Average mean travel times according to the learning sample size. The lower
the better. Values appear in bold when they are statistically significant with Mann-
Whitney tests at level 5%.

Sample size Kriging (EGO) Multilinear (EH) Walsh (WSaO) Multilinear (BOCS)

100 850.82±4.00 843.55±4.17 840.59±3.03 842.24±2.58
400 844.49±3.55 839.99±3.56 836.57±1.70 836.81±1.78
1000 841.71±3.27 838.41±2.68 836.43±1.62 835.64±1.13
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4 Discussion

Combinatorial surrogate models succeed to learn the time-consuming and black-
box traffic simulator, with a reasonable error lower than three percent of the av-
erage real simulator responses. The results show that polynomial-based models
coupled with grey-box optimization algorithms are competitive against standard
state-of-the-art methods in a surrogate-assisted optimization purpose. EGO ap-
proach quickly stalls, while WSaO and BOCS approaches converge to satisfying
bus route designs. In particular, this article is the first to apply WSaO to solve
such a class of real-world optimization problem.

This preparatory work opens many directions for future applicative research.
First, we would like to scale up the bus stop spacing problem to a hundred di-
mensions at least, in order to design more concise bus routes and to get more
challenging problems to face for state-of-the-art SaO methods. As it was pointed
out in [14], a higher dimension would allow to draw more clearly conclusions as
to the most appropriate polynomial decomposition. Further, these polynomial
models are restrained here to quadratic interactions between variables. The cu-
bic, or higher interaction is envisaged in order to aspire to the conception of
more accurate models. Finally in a more applicative way, we are considering
to redraw a part of the bus routes, based on the results obtained from SaO
algorithms. Such routes could be implemented in the Zenbus [1] vizualisation
platform, which could represent a powerful tool for urban planners and decision-
makers.
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