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1. Introduction 1.1. Convex functions. The Hermite-Hadamard inequality dates back to an 1883 observation of Hermite [START_REF] Hermite | Sur deux limites dune integrale define[END_REF] with an independent use by Hadamard [START_REF] Hadamard | Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann[END_REF] in 1893: it says that for convex functions f :

[a, b] → R 1 b -a b a f (x)dx ≤ f (a) + f (b) 2 .
This inequality is rather elementary and has been refined in many ways -we refer to the monograph of Dragomir & Pearce [START_REF] Dragomir | Selected Topics on Hermite-Hadamard Inequalities and Applications[END_REF]. However, there is relatively little work outside of the one-dimensional case; we refer to [START_REF] Carcamo | Multidimensional Hermite-Hadamard inequalities and the convex order[END_REF][START_REF] De La Cal | A general multidimensional Hermite-Hadamard type inequality[END_REF][START_REF] Lu | A Dimension-Free Hermite-Hadamard Inequality via Gradient Estimates for the Torsion Function[END_REF][START_REF] Mihailescu | An extension of the Hermite-Hadamard inequality through subharmonic functions[END_REF][START_REF] Niculescu | The Hermite-Hadamard inequality for convex functions of a vector variable[END_REF][START_REF] Niculescu | Old and New on the Hermite-Hadamard Inequality[END_REF][START_REF] Pasteczka | Jensen-type Geometric Shapes[END_REF][START_REF] Steinerberger | The Hermite-Hadamard inequality in higher dimension[END_REF]. The strongest possible statement that one could hope for is, for convex functions

f : Ω → R defined on convex domains Ω ⊂ R n , 1 |Ω| Ω f dx ≤ 1 |∂Ω| ∂Ω f dσ.
This inequality has been shown to be true for many special cases: it is known for Ω = B 3 the 3-dimensional ball by Dragomir & Pearce [START_REF] Dragomir | Selected Topics on Hermite-Hadamard Inequalities and Applications[END_REF] and Ω = B n by de la Cal & Carcamo [START_REF] Carcamo | Multidimensional Hermite-Hadamard inequalities and the convex order[END_REF] (other proofs are given by de la Cal, Carcamo & Escauriaza [START_REF] De La Cal | A general multidimensional Hermite-Hadamard type inequality[END_REF] and Pasteczka [START_REF] Pasteczka | Jensen-type Geometric Shapes[END_REF]), the simplex [START_REF] Bessenyei | The Hermite-Hadamard inequality on simplices[END_REF], the square [START_REF] Dragomir | On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane[END_REF], triangles [START_REF] Chen | Hadamard's inequality on a triangle and on a polygon[END_REF] and Platonic solids [START_REF] Pasteczka | Jensen-type Geometric Shapes[END_REF]. It was pointed out by Pasteczka [START_REF] Pasteczka | Jensen-type Geometric Shapes[END_REF] that if the inequality holds for a domain Ω with constant 1, then plugging in affine functions shows that the center of mass of Ω and the center of mass of ∂Ω coincide, which is not generally true for convex bodies; therefore the inequality cannot hold with constant 1 in higher dimensions uniformly over all convex bodies. The first uniform estimate was shown in [START_REF] Steinerberger | The Hermite-Hadamard inequality in higher dimension[END_REF]: if f : Ω → R is a convex, positive function on the convex domain Ω ⊂ R n , then we have

(1) 1 |Ω| Ω f dx ≤ c n |∂Ω| ∂Ω f dσ
with c n ≤ 2n n+1 . In this paper, we will improve this uniform estimate and show that the optimal constant satisfies n-1 ≤ c n ≤ 2n 3/2 . We do not have a characterization of the extremal convex functions f on a given domain Ω (however, see below, we have such a characterization in the larger family of subharmonic functions).

1.2. Subharmonic functions. Niculescu & Persson [START_REF] Niculescu | Old and New on the Hermite-Hadamard Inequality[END_REF] (see also [START_REF] De La Cal | A general multidimensional Hermite-Hadamard type inequality[END_REF][START_REF] Mihailescu | An extension of the Hermite-Hadamard inequality through subharmonic functions[END_REF]) have pointed out that one could also seek such inequalities for subharmonic functions, i.e. functions satisfying ∆f ≥ 0. We note that all convex functions are subharmonic. Jianfeng Lu and the last author [START_REF] Steinerberger | The Hermite-Hadamard inequality in higher dimension[END_REF] showed that for all positive, subharmonic functions

f : Ω → R on convex domains Ω ⊂ R n (2) 
Ω f dx ≤ |Ω| 1/n ∂Ω f dσ.
Estimates relating the integral of a positive subharmonic function f over Ω to the integral over the boundary ∂Ω are linked to the torsion function on Ω given by

-∆u = 1 in Ω u = 0 on ∂Ω.
Integration by parts and the inequalities u ≥ 0, ∆f ≥ 0 show that

Ω f dx = Ω f (-∆u)dx = ∂Ω ∂u ∂ν f dσ - Ω (∆f )udx ≤ ∂Ω ∂u ∂ν f dσ ≤ max x∈∂Ω ∂u ∂ν (x) ∂Ω f dσ,
where ν is the inward pointing normal vector. This computation suggests that we may have the following characterization of the optimal constant for a given convex domain Ω.

Proposition (see e.g. [START_REF] Dragomir | A Hadamard-Jensen inequality and an application to the elastic torsion problem[END_REF][START_REF] Niculescu | Old and New on the Hermite-Hadamard Inequality[END_REF]). The optimal constant c(Ω) in the inequality

Ω f dx ≤ c(Ω) ∂Ω f dσ
for positive subharmonic functions is given by

c(Ω) = max x∈∂Ω ∂u ∂ν (x).
The lower bound on c(Ω) follows from setting f to be the Poisson extension of a Dirac measure located at the point at which the normal derivative assumes its maximum. The derivation also shows that it suffices to consider the case of harmonic functions f . Implicitly, this also gives a characterization of extremizing functions (via the Green's function). Jianfeng Lu and the last author [START_REF] Lu | A Dimension-Free Hermite-Hadamard Inequality via Gradient Estimates for the Torsion Function[END_REF] used this proposition in combination with a gradient estimate for the torsion function to show that the best constant in (2) is uniformly bounded in the dimension. We will follow a similar strategy to obtain an improved bound for the optimal constant in (2).

The Results

Our first result improves the constant c n from (1) in all dimensions for subharmonic functions and shows that the growth is at most polynomial.

Theorem 1. Let Ω ⊂ R n be convex and let f : Ω → R be a positive, subharmonic function. Then

(3) 1 |Ω| Ω f dx ≤ c n |∂Ω| ∂Ω f dσ,
where the optimal constant c n satisfies

c n ≤ n 3/2 if n is odd, n 2 +n √ n+2
if n is even.

In particular, for n = 2 dimensions, our proof shows the inequality 1

|Ω| Ω f dx ≤ 3 |∂Ω| ∂Ω f dσ,
where the constant 3 improves on constant 8 obtained earlier for convex functions in [START_REF] Steinerberger | The Hermite-Hadamard inequality in higher dimension[END_REF]. To complement the result in Theorem 1 we prove that any constant for which (3) is valid must grow at least linearly with the dimension.

Theorem 2. The optimal constant c n in (3) is non-decreasing in n and satisfies

(4) c n ≥ max{n -1, 1}.
In order to prove Theorem 2 we establish a connection to an isoperimetric problem that is of interest in its own right. Specifically, we prove the following Lemma.

Lemma. In any dimension n ≥ 1,

(5) sup |∂Ω 1 | |Ω 1 | |Ω 2 | |∂Ω 2 | : Ω 2 ⊂ Ω 1 both convex domains in R n = n.
We are not aware of any prior treatment of this shape optimization problem in the literature. Problem ( 5) can be equivalently written as

sup |∂Ω| |Ω| 1 h(Ω) : Ω a convex set in R n-1 , where h(Ω) = inf X⊂Ω |∂X| |X|
denotes the Cheeger constant. We refer to Alter & Caselles [START_REF] Alter | Uniqueness of the Cheeger set of a convex body[END_REF] and Kawohl & Lachand-Robert [START_REF] Kawohl | Characterization of Cheeger sets for convex subsets of the plane[END_REF]. The result of Kawohl & Lachand-Robert [START_REF] Kawohl | Characterization of Cheeger sets for convex subsets of the plane[END_REF] will be a crucial ingredient in the proof of Theorem 2 (we note that the infimum runs over all subsets, it is known that the Cheeger set is unique and convex).

We also obtain a slight improvement of the constant in (2).

Theorem 3. Let Ω ⊂ R n be convex and let f : Ω → R be a positive, subharmonic function.

Then

Ω f dx ≤ |Ω| 1/n ω 1/n n √ n ∂Ω f dσ,
where ω n is the volume of the unit ball in n-dimensions.

We observe that, as n tends to infinity, ω

1/n n √ n → √ 2πe.
We also note a construction from [START_REF] Lu | A Dimension-Free Hermite-Hadamard Inequality via Gradient Estimates for the Torsion Function[END_REF] which shows that the constant in Theorem 3 is at most a factor √ 2 from optimal in high dimensions.

Proof of Theorem 1

3.1. Convex functions. We first give a proof of Theorem 1 under the assumption that f is convex; this argument is fairly elementary and is perhaps useful in other settings. A full proof of Theorem 1 is given in §3.2.

Proof. This proof combines three different arguments. The first argument is that ( 6)

Ω f dx ≤ w(Ω) 2 ∂Ω f dσ
from the one-dimensional Hermite-Hadamard inequality applied along fibers that are orthogonal to the hyperplanes realizing the width w(Ω).

w(Ω) Ω Figure 1. Application of the one-dimensional inequality on a onedimensional fiber. This step is lossy if the boundary is curved.

Steinhagen [START_REF] Steinhagen | Uber die grosste Kugel in einer konvexen Punktmenge[END_REF] showed that width can be bounded in terms of the inradius [START_REF] Dragomir | Selected Topics on Hermite-Hadamard Inequalities and Applications[END_REF] w

(Ω) ≤ 2 √ n • inrad(Ω) if n is odd, 2 n+1 √ n+2 • inrad(Ω)
if n is even.

The last inequality follows from [START_REF] Larson | A bound for the perimeter of inner parallel bodies[END_REF]: if Ω ⊂ R n is a convex body and

Ω t = {x ∈ Ω : d(x, ∂Ω) > t},
where d(x, ∂Ω) denotes the distance to the boundary

d(x, ∂Ω) = inf y∈∂Ω x -y , then |∂Ω t | ≥ |∂Ω| 1 - t inrad(Ω) n-1 + .
Since |∇d(x, ∂Ω)| = 1 almost everywhere, the coarea formula implies

|Ω| = inrad(Ω) 0 |∂Ω t |dt ≥ |∂Ω| inrad(Ω) 0 1 - t inrad(Ω) n-1 dt = |∂Ω| inrad(Ω) n
and thus we obtain (also stated in [START_REF] Larson | Asymptotic shape optimization for Riesz means of the Dirichlet Laplacian over convex domains[END_REF]Eq. 13])

(8) inrad(Ω) ≤ n |Ω| |∂Ω| .
Combining inequalities ( 6), ( 7) and ( 8) implies the result. Both Steinhagen's inequality as well as inequality ( 8) are sharp for the regular simplex. However, see Fig. 1, an application of the one-dimensional Hermite-Hadamard inequality can only be sharp if the fibers are hitting the boundary at a point at which they are normal, otherwise there is a Jacobian determinant determined by the slope of the boundary and better results are expected. It is not clear to us how to reconcile these two competing factors.

3.2.

A Proof of Theorem 1.

Proof. We have, for all positive, subharmonic functions

f : Ω → R, Ω f dx ≤ max x∈∂Ω ∂u ∂ν (x) ∂Ω f dσ,
where u is the torsion function. A classic bound on the torsion functions is given in Sperb [20, Eq. (6.12)]),

max x∈∂Ω ∂u ∂ν (x) ≤ √ 2 u 1 2 L ∞ .
Moreover, using Steinhagen's inequality in combination with (8), we know that Ω is contained within a strip of width

w(Ω) ≤ |Ω| |∂Ω| 2n 3/2 if n is odd, 2 n 2 +n √ n+2
if n is even.

We can now use the maximum principle to argue that the torsion function in Ω is bounded from above by the torsion function in the strip of width w(Ω) (see Fig. 2). That torsion function, however, is easy to compute since the problem becomes one-dimensional. Orienting the strip to be given by

S = (x, y) ∈ R n-1 × R : |y| ≤ w(Ω) 2 ,
we see that the torsion function on the strip is given by

v(x, y) = w(Ω) 2 8 - y 2 2 .
w(Ω) Ω 

This shows

u L ∞ ≤ w(Ω) 2 8 
and thus

max x∈∂Ω ∂u ∂ν (x) ≤ √ 2 u 1/2 L ∞ ≤ w(Ω) 2 ≤ |Ω| |∂Ω| n 3/2 if n is odd, n 2 +n √ n+2
if n is even.

Proof of Theorem 2

The purpose of this section is to prove c n+1 ≥ c n as well as the inequality

c n ≥ sup |∂Ω 1 | |Ω 1 | |Ω 2 | |∂Ω 2 | : Ω 2 ⊂ Ω 1 both convex domains in R n-1 .
Theorem 2 is then implied by this statement together the proof of the Geometric Lemma in Section §5.

Proof. The proof is based on explicit constructions. We first show that c n+1 ≥ c n . This is straightforward and based on an extension in the (n + 1)-first coordinate: for any ε > 0, we can find a convex domain Ω ε ⊂ R n and a positive, convex function

f ε : Ω ε → R such that 1 |Ω ε | Ωε f ε dx ≥ c n -ε |∂Ω ε | ∂Ωε f ε dσ.
We define, for any z > 0,

Ω z,ε = {(x, y) : x ∈ Ω ε and 0 ≤ y ≤ z} ⊂ R n+1 and f z,ε : Ω z,ε → R via f z,ε (x, y) = f ε (x). Then 1 |Ω z,ε | Ωz,ε f z,ε dxdy = 1 |Ω ε | Ωε f ε dx.
This integral simplifies for z large since

lim z→∞ 1 |∂Ω z,ε | ∂Ωz,ε f z,ε dσ = 1 |∂Ω ε | ∂Ωε f ε dσ.
Picking ε sufficiently small and z sufficiently large shows that c n+1 < c n leads to a contradiction.

We now establish the inequality

c n ≥ sup |∂Ω 1 | |Ω 1 | |Ω 2 | |∂Ω 2 | : Ω 2 ⊂ Ω 1 both convex domains in R n-1 .
To this end pick 0 ∈ Ω 2 ⊂ Ω 1 ⊂ R n-1 in such a way that both domains are convex.

We will now define a domain Ω N ⊂ R n and a convex function f N : Ω N → R where N 1 will be a large parameter. We first define the convex sets

C 1 = (x, y) : x ∈ Ω 1 and y ≥ -N 3 and C 2 = (x, y) : x ∈ 1 - y N 2 Ω 2 and y ≤ N .
The set Ω N is then given as the intersection Ω N = C 1 ∩ C 2 (see Fig. 3). We observe that Ω N is the intersection of two convex sets and is therefore convex. Also, looking at the scaling, we see that C 1 dominates: looking at Ω N from 'far away', it looks essentially like C 1 truncated. We now make this precise: note that there exists a constant λ ≥ 1 such that Ω 1 ⊆ λΩ 2 and then

Ω N ∩ (x, y) ∈ R n : y ≤ -(λ -1)N 2 = C 1 ∩ (x, y) ∈ R n : y ≤ -(λ -1)N 2 .
This means, that for N λ, the 'left' part of the convex domain dominates area and volume. We also observe that

|Ω N | = N 3 |Ω 1 | + O(N 2 ) |∂Ω N | = N 3 |∂Ω 1 | + O(N 2 ),
where the implicit constants depend on Ω 1 and Ω 2 . Since Ω 2 ⊂ Ω 1 , we have that

Ω N ∩ {(x, y) ∈ R n : y ≥ 0} = C 2 ∩ {(x, y) ∈ R n : y ≥ 0} .
We now define a convex function on R n via

f (x, y) = y if y ≥ 0, 0 otherwise.
We obtain

Ω N f dxdy = Ω N ∩{y>0} f dxdy = C2∩{y>0} f dxdy = (1 + o(1)) N 2 2 |Ω 2 | ∂Ω N f dσ = ∂Ω N ∩{y>0} f dσ = ∂C2∩{y>0} f dσ = (1 + o(1)) N 2 2 |∂Ω 2 |.
This shows that 1

|Ω N | Ω N f dxdy = (1 + o(1)) 2N |Ω 2 | |Ω 1 | and 1 |∂Ω N | ∂Ω N f dσ = (1 + o(1)) 2N |∂Ω 2 | |∂Ω 1 |
which implies the desired result for N → ∞.

Proof of the Geometric Lemma

Proof. By the inequality

|Ω| |∂Ω| ≤ inrad(Ω) ≤ n |Ω| |∂Ω| ,
a proof of which can be found in [START_REF] Larson | Asymptotic shape optimization for Riesz means of the Dirichlet Laplacian over convex domains[END_REF], the supremum is no larger than n since ( 9)

|∂Ω| |Ω| |Ω | |∂Ω | ≤ n • inrad(Ω ) inrad(Ω) ≤ n.
What remains is to prove that this upper bound is saturated. The underlying idea of our proof is a theorem of Kawohl and Lachand-Robert [START_REF] Kawohl | Characterization of Cheeger sets for convex subsets of the plane[END_REF] characterizing the Cheeger set of a convex set Ω ⊂ R 2 . Specifically, their theorem states that for a convex Ω ⊂ R 2 the Cheeger problem

h(Ω) = inf |∂Ω | |Ω | : Ω ⊂ Ω is solved by the set Ω = {x ∈ Ω : ∃y ∈ Ω such that x ∈ B 1/h(Ω) (y) ⊂ Ω},
where B r (x 0 ) is a ball of radius r centered at x 0 . We recall our use of the notation 

Ω t = {x ∈ Ω : d(x, ∂Ω) > t},
A + B = {x : x = a + b, a ∈ A, b ∈ B}.
The situation when n ≥ 2 is more complicated, and as far as we know a precise solution of the Cheeger problem is not available [START_REF] Alter | Uniqueness of the Cheeger set of a convex body[END_REF]. Nonetheless, our aim in what follows is to prove that by taking Ω as a very thin n-simplex we can find a good enough candidate for Ω among the one-parameter family of sets ( 10)

Ω t + B t , 0 ≤ t ≤ inrad(Ω).
We construct our candidate for Ω as follows. Let Ω(η) ⊂ R n be the n-simplex obtained by taking a regular (n -1)-simplex of sidelength η 1 in the hyperplane {x ∈ R n : x 1 = -1} with (-1, 0, . . . , 0) as center of mass and adding the last vertex at (h(η), 0, . . . , 0), where h(η) is chosen so that inrad(Ω(η)) = 1. Note that, as η becomes large, h(η) is approximately 1 and |Ω(η)| ∼ η n-1 .

By construction B 1 ⊂ Ω(η), and it is the unique unit ball of maximal radius contained in Ω(η). Moreover, the set Ω(η) is a tangential body to this ball (that is, a convex body all of whose supporting hyperplanes are tangential to the same ball). Since every tangential body to a ball is homothetic to its form body [START_REF] Schneider | Convex bodies: the Brunn-Minkowski theory[END_REF] (in our case Ω(η) is in fact equal to its form body), the main result in [START_REF] Larson | A bound for the perimeter of inner parallel bodies[END_REF] implies

|(∂Ω(η)) t | = (1 -t) n-1 |∂Ω(η)|, for all t ∈ [0, 1].
An application of the coarea formula now yields the identity ( 11)

|Ω(η)| = 1 0 |∂(Ω(η)) t |dt = |∂Ω(η)| n .
We also note that Ω(η) ⊂ B 2η . To see why this is true, we first note that the inradius of the regular n-simplex (by which we mean n + 1 points all at distance 1 from each other embedded in R n ) is given by

r n = 1 2n(n + 1)
.

The regular simplex is the convex body for which John's theorem is sharp, the circumradius is thus given by

R n = n • r n = √ n 2(n + 1) ≤ 1 √ 2 .
This shows that Ω(η) ⊂ B 2η (for the purpose of the proof, the constant 2 is not important and could be replaced by a much larger (absolute) constant). Since it makes the computations somewhat simpler we consider, for a suitably chosen number t, the set (1 + t)Ω(η). By construction B 1 ⊂ Ω(η) which implies the inclusion Ω(η) + B t ⊂ Ω(η) + tΩ(η) = (1 + t)Ω(η). In particular, we can test [START_REF] Chen | Hadamard's inequality on a triangle and on a polygon[END_REF] with Ω = (1 + t)Ω(η) and Ω = Ω(η) + B t for any values of t, η 1. We note that up to rescaling by (1 + t) -1 this is exactly the family of sets in [START_REF] Hermite | Sur deux limites dune integrale define[END_REF]. Indeed, for each t the set ((1 + t)Ω(η)) t = Ω(η).

The final step of the proof is to show that by letting t, η → ∞ appropriately [START_REF] Larson | A bound for the perimeter of inner parallel bodies[END_REF] |∂((1

+ t)Ω(η))| |(1 + t)Ω(η)| |Ω(η) + B t | |∂(Ω(η) + B t )| → n.
To prove [START_REF] Larson | A bound for the perimeter of inner parallel bodies[END_REF] we recall the definition and some basic properties of mixed volumes [19, p. 275ff]. Let K denote the set of convex bodies in R n with nonempty interior. The mixed volume is defined as the unique symmetric function W :

K n → R + satisfying |η 1 Ω 1 + . . . + η m Ω m | = m j1=1 • • • m jn=1 η j1 • • • η jn W (Ω j1 , . . . , Ω jn ),
for any Ω 1 , . . . , Ω m ∈ K and η 1 , . . . , η m ≥ 0 [START_REF] Schneider | Convex bodies: the Brunn-Minkowski theory[END_REF]. Then W satisfies the following properties:

(1) W (Ω 1 , . . . , Ω n ) > 0 for Ω 1 , . . . , Ω n ∈ K.

(2) W is a multilinear function with respect to Minkowski addition.

(3) W is increasing with respect to inclusions in each of its arguments. Since only mixed volumes of two distinct sets appear in our proof we introduce the shorthand notation

W j (K, L) = W (K, . . . , K n-j , L, . . . , L j ).
By [START_REF] Kawohl | Characterization of Cheeger sets for convex subsets of the plane[END_REF], we have

|∂((1 + t)Ω(η))| |(1 + t)Ω(η)| = n 1 + t .
The definition of W implies

|Ω(η) + B t | = W (Ω(η) + B t , . . . , Ω(η) + B t ).
Multilinearity allows us to expand this term as

W (Ω(η) + B t , . . . , Ω(η) + B t ) = n j=0 n j t j W j (Ω(η), B 1 )
and the same argument shows

|∂(Ω(η) + B t )| = n n-1 j=0 n -1 j t j W j+1 (Ω(η), B 1 ).
Altogether, we can write the expression of interest as

(13) |∂((1 + t)Ω(η))| |(1 + t)Ω(η)| |Ω(η) + B t | |∂(Ω(η) + B t )| = n (1 + t) n j=0 n j t j W j (Ω(η), B 1 ) n n-1 j=0 n-1 j t j W j+1 (Ω(η), B 1 
) .

In order to prove [START_REF] Larson | A bound for the perimeter of inner parallel bodies[END_REF] we need a bound from below. For the sum in the numerator it suffices to keep the first two terms in the expansion and to use Property (1) of W resulting in

n j=0 n j t j W j (Ω(η), B 1 ) ≥ W 0 (Ω(η), B 1 ) + ntW 1 (Ω(η), B 1 ) = |Ω(η)| + t|∂Ω(η)|.
To bound the sum in the denominator we wish to keep the term with j = 0 as is.

For j ≥ 1, we now use that Ω(η) ⊂ B 2η together with Property (3) to bound

W j+1 (Ω(η), B 1 ) ≤ W j+1 (B 2η , B 1 ) = (2η) n-j-1 |B 1 |.
Inserting the two bounds above into (13) yields

|∂((1 + t)Ω(η))| |(1 + t)Ω(η)| |Ω(η) + B t | |∂(Ω(η) + B t )| ≥ n (1 + t) |Ω(η)| + t|∂Ω(η)| |∂Ω(η)| + n n-1 j=1 n-1 j
2 n-j-1 t j η n-j-1 |B 1 | . 2 n-j-1 t j η n-j-1 /|∂Ω(η)| .

By construction |∂Ω(η)| ∼ η n-1 as η → ∞. Consequently, by choosing t = √ η (though the more general choice t = η α for 0 < α < 1 would also work) we find t j η n-j-1 /|∂Ω(η)| ∼ η -j/2 . Therefore, taking η (and thus t) to infinity, we obtain L ∞ .

It remains to estimate the largest value of the torsion function. There are two different approaches: we can interpret it as the maximum lifetime of Brownian motion inside a domain of given measure or we can interpret it as the solution of a partial differential equation to which Talenti's theorem [START_REF] Talenti | Elliptic equations and rearrangements[END_REF] can be applied. In both cases, we end up with a standard isoperimetric estimate [START_REF] Talenti | Elliptic equations and rearrangements[END_REF] (that was also used in [START_REF] Lu | A Dimension-Free Hermite-Hadamard Inequality via Gradient Estimates for the Torsion Function[END_REF])

u L ∞ ≤ 1 2n
|Ω| ω n 

Figure 2 .

 2 Figure 2. The torsion function in Ω is bounded from above by the torsion function of the strip.

Figure 3 .

 3 Figure 3. The construction of C 1 and C 2 .

  where d(x, ∂Ω) denotes the distance to the boundary d(x, ∂Ω) = inf y∈∂Ω x -y , and we can equivalently write the Cheeger set of Ω as Ω = Ω 1/h(Ω) +B 1/h(Ω) , where B r denotes a ball of radius r centered in 0. Here and in what follows the sum of two sets is to be interpreted in the sense of the Minkowski sum:

( 4 )

 4 The volume and perimeter of Ω ∈ K can be written in terms of W : |Ω| = W (Ω, . . . , Ω n times ) and |∂Ω| = nW (Ω, . . . , Ω n-1 times , B 1 ).

  We recall that |Ω(η)| = n -1 |∂Ω(η)| and therefore|∂((1 + t)Ω(η))| |(1 + t)Ω(η)| |Ω(η) + B t | |∂(Ω(η) + B t )|

6 . 3 Proof

 63 lim inf η→∞ |∂((1 + √ η)Ω(η))| |(1 + √ η)Ω(η)| |Ω(η) + B √ η | |∂(Ω(η) + B √ η )| ≥ n,which when combined with the matching upper bound (9) completes the proof. Proof of Theorem 1 above and use, inspired by the argument in[START_REF] Lu | A Dimension-Free Hermite-Hadamard Inequality via Gradient Estimates for the Torsion Function[END_REF], estimates for the torsion function. One such estimate for the torsion function comes from P -functions, we refer to the classic book of Sperb[START_REF] Sperb | Maximum principles and their applications[END_REF] Eq. (6.12)
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